Published as a conference paper at ICLR 2021

COMBINING LABEL PROPAGATION AND SIMPLE MOD-
ELS OUT-PERFORMS GRAPH NEURAL NETWORKS

Qian Huang!*, Horace He* , Abhay Singh?, Ser-Nam Lim®, Austin R. Benson*
Cornell University*, Facebook’, Facebook AT’

ABSTRACT

Graph Neural Networks (GNNs) are a predominant technique for learning over
graphs. However, there is relatively little understanding of why GNNs are suc-
cessful in practice and whether they are necessary for good performance. Here,
we show that for many standard transductive node classification benchmarks, we
can exceed or match the performance of state-of-the-art GNNs by combining shal-
low models that ignore the graph structure with two simple post-processing steps
that exploit correlation in the label structure: (i) an “error correlation” that spreads
residual errors in training data to correct errors in test data and (ii) a “prediction
correlation” that smooths the predictions on the test data. We call this overall pro-
cedure Correct and Smooth (C&S), and the post-processing steps are implemented
via simple modifications to standard label propagation techniques that have long
been used in graph-based semi-supervised learning. Our approach exceeds or
nearly matches the performance of state-of-the-art GNNs on a wide variety of
benchmarks, with just a small fraction of the parameters and orders of magnitude
faster runtime. For instance, we exceed the best-known GNN performance on the
OGB-Products dataset with 137 times fewer parameters and greater than 100 times
less training time. The performance of our methods highlights how directly incor-
porating label information into the learning algorithm (as is common in traditional
methods) yields easy and substantial performance gains. We can also incorporate
our techniques into big GNN models, providing modest gains in some cases.

1 INTRODUCTION

Following the success of neural networks in computer vision and natural language processing, there
are now a wide range of graph neural networks (GNNs) for making predictions involving relational
data (Battaglia et al., 2018; Wu et al., 2020). These models have had much success and sit atop
leaderboards such as the Open Graph Benchmark (Hu et al., 2020). Often, the methodological devel-
opments for GNNs revolve around creating strictly more expressive architectures than basic variants
such as the Graph Convolutional Network (GCN) (Kipf & Welling, 2017) or GraphSAGE (Hamilton
et al., 2017a); examples include Graph Attention Networks (Velickovi€ et al., 2018), Graph Isomor-
phism Networks (Xu et al., 2018), and various deep models (Li et al., 2019; Rong et al., 2019; Chen
et al., 2020). Many ideas for new GNN architectures are adapted from new architectures in models
for language (e.g., attention) or vision (e.g., deep CNNs) with the hopes that success will translate
to graphs. However, as these models become more complex, understanding their performance gains
is a major challenge, and scaling them to large datasets is difficult.

Here, we see how far we can get by combining much simpler models, with an emphasis on un-
derstanding where there are easy opportunities for performance improvements in graph learning,
particularly transductive node classification. We propose a simple pipeline with three main parts
(Figure 1): (i) a base prediction made with node features that ignores the graph structure (e.g., a
shallow multi-layer perceptron or just a linear model); (ii) a correction step, which propagates un-
certainties from the training data across the graph to correct the base prediction; and (iii) a smooth-
ing of the predictions over the graph. Steps (ii) and (iii) are post-processing and implemented with
classical methods for graph-based semi-supervised learning, namely, label propagation techniques

*Equal contribution
"Work done while at Cornell University

Published as a conference paper at ICLR 2021

Dataset Correct and Smooth

Scale |

) Smoothed'Résidual | |
Train Labels Residual Correlation _ Prediction Correlation /

Figure 1: Illustration of our GNN-free model, Correct and Smooth (C&S), with a toy example.
Nodes in the left and right clusters have different labels, marked by color (orange or blue). We use
a multilayer perceptron (MLP) for base predictions, ignoring the graph structure. We assume this
gives the same prediction on all nodes in this example (which could happen if, e.g., all nodes had the
same features). After, base predictions are corrected by propagating errors from the training data.
Finally, corrected predictions are smoothed with label propagation.

(Zhu, 2005).! With a few modifications and new deployment of these classic ideas, we achieve state-
of-the-art performance on several node classification tasks, outperforming big GNN models. In our
framework, the graph structure is not used to learn parameters (which is done in step (i)) but instead
as a post-processing mechanism. This simplicity leads to models with orders of magnitude fewer
parameters that take orders of magnitude less time to train and can easily scale to large graphs. We
can also combine our ideas with state-of-the-art GNNS, although the performance gains are modest.

A major source of our performance improvements is directly using labels for predictions. This
idea is not new — early diffusion-based semi-supervised learning algorithms on graphs such as the
spectral graph transducer (Joachims, 2003), Gaussian random field models (Zhu et al., 2003), and
and label spreading (Zhou et al., 2004) all use this idea. However, the motivation for these methods
was semi-supervised learning on point cloud data, so the “node features” were used to construct the
graph itself. Since then, these techniques have been used for learning on relational data consisting
of a graph and some labels but no node features (Koutra et al., 2011; Gleich & Mahoney, 2015; Peel,
2017; Chin et al., 2019); however, they have largely been ignored in the context of GNNs. (That
being said, we still find that even simple label propagation, which ignores features, does surprisingly
well on a number of benchmarks.) This provides motivation for combining two orthogonal sources
of prediction power — one coming from the node features (ignoring graph structure) and one coming
from using the known labels directly in predictions.

Recent research connects GNNs to label propagation (Wang & Leskovec, 2020; Jia & Benson, 2020;
2021) as well as Markov Random fields (Qu et al., 2019; Gao et al., 2019), and some techniques
use ad hoc incorporation of label information in the features (Shi et al., 2020). However, these
approaches are usually still expensive to train, while we use label propagation in two understand-
able and low-cost ways. We start with a cheap “base prediction” from a model that uses only node
features and ignores the graph structure. After, we use label propagation for error correction and
then to smooth final predictions. These post-processing steps are based on the fact that errors and
labels on connected nodes tend to be positively correlated. Assuming similarity between connected
nodes is at the center of much network analysis and corresponds to homophily or assortative mix-
ing (McPherson et al., 2001; Newman, 2003; Easley & Kleinberg, 2010). In the semi-supervised
learning literature, the analog is the smoothness or cluster assumption (Chapelle et al., 2003; Zhu,
2005). The good performance of label propagation that we see across a wide variety of datasets
suggests that these correlations hold on common benchmarks.

'One of the main methods that we use (Zhou et al., 2004) is often called label spreading. The term “label
propagation” is used in a variety of contexts (Zhu, 2005; Wang & Zhang, 2007; Raghavan et al., 2007; Gleich &
Mahoney, 2015). The salient point for this paper is that we assume positive correlations on neighboring nodes
and that the algorithms work by “propagating” information from one node to another.

Published as a conference paper at ICLR 2021

Overall, our methodology demonstrates that combining several simple ideas yields excellent per-
formance in transductive node classification at a fraction of the cost, in terms of both model size
(i.e., number of parameters) and training time. For example, on the OGB-Products benchmark, we
out-perform the current best-known GNN with more than two orders of magnitude fewer parame-
ters and more than two orders of magnitude less training time. However, our goal is not to say that
current graph learning methods are poor or inappropriate. Instead, we aim to highlight easier ways
in which to improve prediction performance in graph learning and to better understand the source
of performance gains. Our main finding is that more direct incorporation of labels into the learning
algorithms is key. We hope that our approach spurs new ideas that can help in other graph learning
tasks, such as inductive node classification, link prediction, and graph prediction.

1.1 ADDITIONAL RELATED WORK

The Approximate Personalized Propagation of Neural Predictions (APPNP) framework is most rel-
evant to our work, as they also smooth base predictions (Klicpera et al., 2018). However, they focus
on integrating this smoothing into the training process so that their model can be trained end to
end. Not only is this significantly more computationally expensive, it also prevents APPNP from
incorporating label information at inference. Compared to APPNP, our framework produces more
accurate predictions, is faster to train, and more easily scales to large datasets. That being said,
APPNP can also be used without end-to-end training, which can make it faster but less accurate.
Our framework also complements the Simplified Graph Convolution (Wu et al., 2019) and other
algorithms designed to increase scalability (Bojchevski et al., 2020; Zeng et al., 2019; Frasca et al.,
2020). The primary focus of our approach, however, is using labels directly, and scalability is a
byproduct. There is also prior work connecting GCNs and label propagation. Wang & Leskovec
(2020) use label propagation as a pre-processing step to weight edges for GNNs, whereas we use
label propagation as a post-processing step and avoid GNNs. Jia & Benson (2020; 2021) use label
propagation with GNNs for regression tasks, and our error correction step adapts some of their ideas
for the case of classification. Finally, there are several recent approaches that incorporate nonlinear-
ity into label propagation methods to compete with GNNs and achieve scalability (Eliav & Cohen,
2018; Ibrahim & Gleich, 2019; Tudisco et al., 2021), but these methods focus on settings of low
label rates and do not use feature-based learning.

2 CORRECT AND SMOOTH (C&S) MODEL

We start with some notation. We assume that we have an undirected graph G = (V, E), where
there are n = |V| nodes with features on each node represented by a matrix X € R"*P. Let A
be the adjacency matrix of the graph, D be the diagonal degree matrix, and S be the normalized
adjacency matrix D~'/2AD~1/2, For the prediction problem, the node set V' is split into a disjoint
set of unlabeled nodes U and labeled nodes L, which are subsets of the indices {1,...,n}. We will
further split the labeled nodes into a training set L; and validation set L,,. We represent the labels
by a one-hot-encoding matrix ¥~ € R"*¢, where c is the number of classes (i.e., Y;; = 1if i € L is
known to be in class 7, and 0 otherwise, where the ith row of Y is all zero if ¢ € U), Our problem is
transductive node classification: assign each node j € U alabelin {1,...,c}, given G, X,and Y.

Our approach starts with a simple base predictor on node features that does not rely on any learning
over the graph. After, we perform two types of label propagation (LP): one that corrects the base
predictions by modeling correlated error and one that smooths the final prediction. We call the
combination of these two methods Correct and Smooth (C&S; Figure 1). The LPs are only post-
processing steps, and our pipeline is not trained end-to-end. Furthermore, the graph is only used
in the post-processing steps (and in a pre-processing step to augment the features X)), but not for
the base predictions. This makes training fast and scalable compared to standard GNN models.
Moreover, we take advantage of both LP (which performs fairly well on its own without features) and
the node features. We find that combining these complementary signals yields excellent predictions.

2.1 SIMPLE BASE PREDICTOR

To start, we use a simple base predictor that does not rely on the graph structure. More specifically,

we train a model f to minimize) ;. ; £(f(:),y:), where ; is the ith row of X, y; is the ith row

Published as a conference paper at ICLR 2021

of Y, and / is a loss function, For this paper, f is either a linear model or a shallow multi-layer
perceptron (MLP) followed by a softmax, and ¢ is the cross-entropy loss. The validation set L, is
used to tune hyperparameters such as learning rates and the hidden layer dimensions for the MLP.
From f, we get a base prediction Z € R"*¢, where each row of Z is a probability distribution
resulting from the softmax. Omitting the graph structure for these base predictions avoids most
of the scalability issues with GNNs. In principle, though, we can use any base predictor for Z,
including those based on GNNs, and we explore this in Section 3. However, for our pipeline to be
simple and scalable, we just use linear classifiers or MLPs with subsequent post-processing, which
we describe next.

2.2 CORRECTING BASE PREDICTIONS WITH ERROR CORRELATION

Next, we improve the accuracy of the base prediction Z by incorporating labels to correlate errors.
The key idea is that we expect errors in the base prediction to be positively correlated along edges
in the graph. In other words, an error at node ¢ increases the chance of a similar error at neighbors of
1. Thus, we should “spread” such uncertainty over the graph. Our approach here is inspired in part
by residual propagation (Jia & Benson, 2020), where a similar concept is used for node regression
tasks, as well as generalized least squares and correlated error models more broadly (Shalizi, 2013).
To this end, we first define an error matrix £ € R™*¢, where error is the residual on the training
data and zero elsewhere:

Ey,.=Yr,.—Z1,., FEr,.=0, Ey.=0. (D

v

The residuals in rows of E corresponding to training nodes are zero only when the base predictor
makes a perfect prediction. We smooth the error using the label spreading technique of Zhou et al.
(2004), optimizing the objective

E = argmin trace(W7T (I — S)W) + pu|W — E|%. (2)

WE]R'H.XC

The first term encourages smoothness of the error estimation over the graph, and is equal to
p oy i jyer(Wik/ VD — Wi/, /D;;)?. The second term keeps the solution close to the initial
guess I of the error. As derived in Zhou et al. (2004), the solution can be obtained via the iteration
EMD = (1 —a)E + aSE®, where a = 1/(1 +) and E(®) = E, which converges rapidly to
E. This iteration is a propagation (or diffusion or spreading) of the error, and we add the smoothed
errors to the base prediction to get corrected predictions Z(") = Z + E. We emphasize that this is a
post-processing technique and there is no coupled training with the base predictions.

This type of propagation is motivated by a particular correlated Gaussian error assumption for re-
gression problems (Jia & Benson, 2020; 2021). For the classification problems we consider, we find

that the smoothed errors £ might not be at the right scale. We know that
IECV s < (1 = Q)IE] + alIS[2 ED 2 = (1 = Q)| Ell2 + | BV 2 3)

When E(©) = E, we then have that |[E!)||y < ||E||2. Thus, the propagation cannot completely
correct the errors on all nodes in the graph, as it does not have enough “total mass,” and we find
that adjusting the scale of the residual can help substantially in practice. To do this, we propose two
variations of scaling the residual.

Autoscale. Intuitively, we want to scale the size of errors in E to be approximately the size of the
errors in F/. We only know the true errors at labeled nodes, so we approximate the scale with the
average error over the training nodes. Formally, let e]T € R¢ and éJT correspond to the jth rows of

and E and define o = \T1| > ier,
node i € Utobe Z,") = Z; . + o/|jeulls

Ile; || 1. Then we define the corrected predictions on an unlabeled

Scaled Fixed Diffusion (FDiff-scale). Alternatively, we can use a diffusion like the one from
Zhu et al. (2003), which keeps the known errors at training nodes fixed. More spec:1ﬁcally, we
iterate E(Hl) [D~YAE®];;. and keep fixed E() = = FEy, . until convergence to E, starting with
EO — E. Intuitively, this fixes error values where we know the error (on the labeled nodes L),
while other nodes keep averaging over the values of their neighbors until convergence. With this
type of propagation, the maximum and minimum values of entries in E(*) do not go beyond those
in E. We still find it effective to select a scaling hyperparameter s to produce Z(") = Z + sE.

Published as a conference paper at ICLR 2021

2.3 SMOOTHING FINAL PREDICTIONS WITH PREDICTION CORRELATION

At this point, we have a score vector Z("), obtained from correcting the base predictor Z with
a model for the correlated error £. To make a final prediction, we further smooth the corrected
predictions. The motivation is that adjacent nodes in the graph are likely to have similar labels,
which is expected given network homophily or assortative properties of a network. Thus, we can
encourage smoothness over the distribution over labels by another label propagation. First, we start
with our best guess H € R™*¢ of the labels:

HLt,: - YLt,H HLvUU,Z = Z}:,)UU,:' (4)

Here, the true labels are used at the training nodes and the corrected predictions are used for the
validation and unlabeled nodes, the latter of which no longer correspond to probability distributions.
We can (and should) also use the true labels at the validation labels, which we discuss later in the
experiments, but the setup in Equation (4) aligns more closely with standard GNN evaluation. We
then iterate H(*Y = (1 — a)H + aSH® with H(®) = H until convergence to give the final

prediction Y. The classification for a node i € U is arg max;e

.....

As with error correlation, the smoothing here is a post-processing step, decoupled from the other
steps. This type of prediction smoothing is similar in spirit to APPNP (Klicpera et al., 2018), which
we compare against later. However, APPNP is typically trained end-to-end, propagates final-layer
representations instead of softmaxes, does not use labels, and is motivated differently.

2.4 SUMMARY AND ADDITIONAL CONSIDERATIONS

To summarize, we start with a cheap base prediction Z, using only node features but not the graph

structure. After, we estimate errors E' by propagating errors on the training data. Then, we add these
errors back to the base predictions, forming corrected predictions. Finally, we treat the corrected
predictions as score vectors on unlabeled nodes, and combine them with the known labels via another
LP step for smoothed final predictions. We call this pipeline Correct and Smooth (C&S).

Before showing that this pipeline achieves state-of-the-art performance on transductive node classi-
fication, we briefly describe another simple way of improving performance: feature augmentation.
The hallmark of deep learning is that we can learn features instead of engineering them. However,
GNN s still rely on informative input features to make predictions. There are numerous ways to
get useful features from just the graph topology to augment the raw node features (Henderson et al.,
2011; 2012; Hamilton et al., 2017b). In our pipeline, we augment features with a regularized spectral
embedding (Chaudhuri et al., 2012; Zhang & Rohe, 2018) coming from the leading k eigenvectors

of the matrix D, 1/2 (A+ %llT)DT_ Y 2, where 1 is a vector of all ones, T is a regularization pa-
rameter set to the average degree, and D, is diagonal with ith diagonal entry equal to D;; + 7. The
underlying matrix is dense, but we can apply matrix-vector products in time linear in the number of
edges and use iterative eigensolvers to compute the embeddings quickly.

3 EXPERIMENTS ON TRANSDUCTIVE NODE CLASSIFICATION

To demonstrate the effectiveness of our methods, we use nine datasets (Table 1). The Arxiv and
Products datasets are from the Open Graph Benchmark (OGB) (Hu et al., 2020); the Cora, Cite-
seer, and Pubmed are three classic citation network benchmarks (Getoor et al., 2001; Getoor, 2005;
Namata et al., 2012); and wikiCS is a web graph (Mernyei & Cangea, 2020). In these datasets,
classes are categories of papers, products, or pages, and features are derived from text. We also
use a Facebook social network of Rice University, where classes are dorm residences and features
are attributes such as gender, major, and class year (Traud et al., 2012), as well as a geographic
dataset of US counties where classes are 2016 election outcomes and features are demographic (Jia
& Benson, 2020). Finally, we use an email dataset of a European research institute, where classes
are department membership and there are no features (Leskovec et al., 2007; Yin et al., 2017).

Data splits. The training/validation/test splits for Arxiv and Products are given by the benchmark,
and the splits for wikiCS come from Mernyei & Cangea (2020). For the Rice, US counties, and email
data, we use 40%/10%/50% random splits. For the smaller citation networks, we use 60%/20%/20%

Published as a conference paper at ICLR 2021

Table 1: Summary statistics of datasets and model performance. For the accuracy of our best C&S
model compared to the state-of-the-art GNN method (see text), we report the change in the number
of parameters and the accuracy. We also list the training time with time to compute the spectral em-
bedding in parentheses (even if not used in the best model). Our methods require fewer parameters,
are typically more accurate, and are fast to train. Also see Tables 2 and 3.

Datasets Classes Nodes Edges Parameter A Accuracy A Time (s)
Arxiv 40 169,343 1,166,243 —84.90% +0.26 12 (+90)
Products 47 2,449,029 61,859,140 —93.47% +1.74 171 (4+2959)
Cora 7 2,708 5,429 —98.37% +1.09 <1(+7)
Citeseer 6 3,327 4,732 —89.68% —0.69 <1(+7)
Pubmed 3 19,717 44,338 —96.00% —0.30 <1(+14)
Email 42 1,005 25,571 —97.89% +4.33 43 (+17)
Rice31 10 4,087 184,828 —99.02% +1.39 39 (+12)
US County 2 3,234 12,717 —74.56% +1.77 39 (+12)
wikiCS 10 11,701 216,123 —84.88% +2.03 7 (+11)

random splits, as in Wang & Leskovec (2020). Standard deviations in prediction accuracy over splits
is < 1% in most experiments and such variance does not change our qualitative comparisons.

C&S setup and baselines. We use Linear and MLP models as simple base predictors based on
node features. When a spectral embedding is included as a node feature, we refer to these models as
Linear-SE and MLP-SE. We also evaluate Label Propagation itself (LP; specifically, the Zhou et al.
(2004) version), which only uses labels. In all cases, the number of LP iterations is fixed to 50.

For GNN models comparable to our framework in terms of simplicity or style, we use GCN, SGC,
and APPNP. For GCNs, we add residual connections from the input to every layer and from every
layer to the output, as well as dropout. Thus, GCN is not the original model Kipf & Welling (2017)
and instead serves as a fairly strong representative of out-of-the-box GNN capabilities. The number
of layers and hidden layer dimensions for the GCNs are the same as the MLPs used by our base
predictors. The GCN only uses raw node features, and additional results in Appendix C show that
including spectral embeddings minimally changes performance. APPNP uses a linear model for
base predictions, also with the raw node features.

Finally, we include several “state-of-the-art” (SOTA) baselines. For Arxiv and Products, this is
UniMP (Shi et al., 2020) (top of OGB leaderboard, as of October 1, 2020). For Cora, Citeseer
and Pubmed, we use the top scores from Chen et al. (2020). For Email and US County, we use
GCNII (Chen et al., 2020). For Rice31, we use GCN with spectral embedding as additional features,
which is the best GNN-based model that we found. For wikiCS, we use APPNP as reported by
Mernyei & Cangea (2020). Hyperparameters are tuned using the validation set.

All of the above models select hyperparameters using the validation set. See Appendix A for addi-
tional model architecture details.

3.1 FIRST RESULTS ON NODE CLASSIFICATION

In our first set of results, we only use the training labels in our C&S framework, as these are what
GNNGs typically use to train models. For the results discussed here, this is generous to our baselines.
The ability to include validation labels is an advantage of our approach (and LP in general), and this
improves performance of our framework even further (Table 1). We discuss this in the next section.

Table 2 reports the results, and we highlight a few important findings. First, within our model, there
are substantial gains from the LP post-processing steps (e.g., the MLP-SE base prediction accuracy
increases from 63% to 84% on Products). Second, even Linear with C&S outperforms GCNs in
many cases, and simple LP is often competitive with GCNs. This is striking given that the main
motivation for GCNs was to address the fact that connected nodes may not have similar labels (Kipf
& Welling, 2017). Our results suggest that directly incorporating correlation in the graph with simple
use of the features is often a better idea. Results in Appendix B show that both label propagation
post-processing steps are important for performance. Third, our model variants can out-perform
SOTA on Products, Cora, Email, Rice31, and US County (often substantially so). On the other
datasets, there is not much difference between the best C&S model and the SOTA.

Published as a conference paper at ICLR 2021

Table 2: Performance of our C&S framework, using only the training labels as ground truth in final
prediction smoothing (Equation (4)). Further improvements can be made by including ground truth
validation labels (Table 3). The Email dataset has no raw node features, so some methods are not
evaluated. APPNP ran out of memory (OOM) on the products dataset.

Method Arxiv Products Cora Citeseer Pubmed
LP 68.5 74.76 86.50 70.64 83.74
GCN 71.74 75.64 85.77 73.68 88.13
SGC 69.39 68.83 86.81 72.04 84.04
APPNP 66.38 OOM 87.87 76.53 89.40
SOTA 73.79 82.56 88.49 77.99 90.30
Linear 52.32 47.73 73.85 70.27 87.10
Linear-SE 70.08 50.05 74.75 70.51 87.19
MLP-SE 71.51 63.41 74.06 68.10 86.85
Linear + C&S (Autoscale) 71.11 80.24 88.62 76.31 89.99
Linear-SE + C&S (Autoscale) 72.07 80.25 88.73 76.75 89.93
MLP-SE + C&S (Autoscale) 72.62 78.60 87.39 76.31 89.33
Linear + C&S (Fdiff-scale) 70.60 82.54 89.05 76.22 89.74
Linear-SE + C&S (Fdiff-scale) 71.57 83.01 88.66 77.06 89.51
MLP-SE + C&S (Fdiff-scale) 72.43 84.18 87.39 76.42 89.23
Method Email Rice31 US County wikiCS
LP 70.69 82.19 87.90 76.72
GCN — 15.45 84.13 78.61
SGC — 16.59 83.92 72.86
APPNP — 11.34 84.14 69.83
SOTA 71.96 86.50 88.08 79.84
Linear — 9.84 75.74 72.45
Linear-SE 66.24 70.26 84.07 74.29
MLP-SE 69.13 17.16 87.70 73.07
Linear + C&S (Autoscale) — 75.99 85.25 79.57
Linear-SE + C&S (Autoscale) 72.50 86.42 86.15 79.53
MLP-SE + C&S (Autoscale) 74.55 85.50 89.64 78.10
Linear + C&S (Fdiff-scale) — 73.66 87.38 79.54
Linear-SE + C&S (Fdiff-scale) 72.53 87.55 88.11 79.25
MLP-SE + C&S (Fdiff-scale) 75.74 85.74 89.85 78.24

To get a sense of how much using ground truth labels di- ~\ rothod Arxiv Products

rectly helps, we also evaluate a version of C&S where
we smooth base predictions from a linear model or MLP, Linear-SE-smooth ~ 71.42 78.73
using the Zhou et al. (2004) version of label propagation. =~ MLP-SE-smooth ~ 72.48 80.34
We call these Linear-SE-smooth and MLP-SE-smooth and ~ GCN 71.74 75.64

find that they often outperform GCNs (right). Again,

these results suggest that smoothed outputs are important, aligning with recent research (Wu et al.,
2019; Bojchevski et al., 2020), and that the original motivations for GCNs might be misleading.
However, there are still gaps in performance between these models and those in Table 2 that directly
use labels. Next, we see how to improve performance of C&S even further by using more labels.

3.2 FURTHER IMPROVEMENTS BY USING MORE LABELS

We improve the C&S performance by using both training and validation labels, instead of just the
training labels as in Equation (4). Importantly, we do not use validation labels to update the base
prediction model — they are just used to select hyperparameters. Using validation labels boosts
performance even further: Table 3 shows accuracies and Table 1 shows gains over SOTA. The
ability to incorporate validation labels is a benefit of our approach. On the other hand, GNNs do
not have this advantage, as they often rely on early stopping to prevent overfitting, may not always

Published as a conference paper at ICLR 2021

Table 3: Performance of C&S, using both training and validation labels as ground truth in the final
prediction smoothing (cf. Equation (4), Table 2).

Method Arxiv Products Cora Citeseer Pubmed
Linear + C&S (Autoscale) 72.71 80.55 89.54 76.83 90.01
Linear-SE + C&S (Autoscale) 73.78 80.56 89.77 77.11 89.98
MLP-SE + C&S (Autoscale) 74.02 79.29 88.55 76.36 89.50
Linear + C&S (Fdiff-scale) 72.42 82.89 89.47 77.08 89.74
Linear-SE + C&S (Fdiff-scale) 72.93 83.27 89.53 77.29 89.57
MLP-SE + C&S (Fdiff-scale) 73.46 84.55 88.18 76.41 89.38
SOTA 73.65 82.56 88.49 77.99 90.30
Methods Email Rice31 US County wikiCS
Linear + C&S (Autoscale) — 76.59 85.22 81.87
Linear-SE + C&S (Autoscale) 73.33 87.25 86.38 81.57
MLP-SE + C&S (Autoscale) 73.45 86.13 89.71 80.75
Linear + C&S (Fdiff-scale) — 75.31 88.16 81.18
Linear-SE + C&S (Fdiff-scale) 72.57 87.89 88.06 81.06
MLP-SE + C&S (Fdiff-scale) 76.22 86.26 90.05 80.83
SOTA 71.96 86.50 88.08 79.84
84 ogbn-products
o Table 4: C&S with GNN base predictions.
. Dataset Model Performance
5% . . GAT 73.56
< ogbn-arxiv GAT + C&S 73.86
SOTA 73.79
—— OGB Leaderboard
76 C&S (Ours) US County GCNII (SOTA) 88.08
10 10° 106 GCNII + C&S 89.59

Parameters

Figure 2: Accuracy and model size on Products.

benefit from more data (e.g., under distributional shift), and do not directly use labels. Thus, our
comparisons in Table 2 are more generous than needed. With validation labels, our best model
out-performs SOTA in seven of nine datasets, often by substantial margins (Table 1).

The evaluation procedure for GNN benchmarks differ from those for LP. For GNNSs, a sizable valida-
tion set is often used (and needed) for substantial hyperparameter tuning, as well as early stopping.
With LP, one can use the entire set of labeled nodes L with cross-validation to select the single
hyperparameter «. Given the setup of transductive node classification, there is no reason not to use
validation labels at inference if they are helpful (e.g., via LP in our case). The results in Tables 1
and 3 show the true performance of our model and is the proper point of comparison.

Overall, our results highlight two important findings. First, big and expensive-to-train GNN models
are not actually necessary to achieve top performance for transductive node classification on many
datasets. Second, combining classical label propagation ideas with simple base predictors outper-
forms graph neural networks on these tasks.

3.3 TRAINING TIME AND IMPROVING EXISTING GNNS

Our C&S framework often has significantly fewer parameters compared to GNNs or other SOTA
solutions. As an example, we plot parameters vs. performance for the Products dataset in Fig-
ure 2. While having fewer parameters is useful, the real gain is in faster training time. Our models
are typically orders of magnitude faster to train than models with comparable accuracy because
we do not use the graph structure for our base prediction models. As one example, although our
MLP-SE + C&S model for the Arxiv dataset has a similar number of parameters compared to the

Published as a conference paper at ICLR 2021

Republican
® Democratic

(a) Ground Truth (c) GCN-SE predictions

Figure 3: (a) US County visualizations, where the embedding is given by GraphViz and colors
correspond to class labels. (b) Panels corresponding to parts of (a) that show at which stage Linear-
SE + C&S made a correct prediction. (c) The same panels showing GCN predictions.

“GCN+linear+labels” method on the OGB leaderboard (Wang, 2020), our model runs 7 times faster
per epoch and converges much faster. In addition, compared to the SOTA for the Products dataset,
our framework with a linear base predictor has higher accuracy, trains over 100 times faster, and
has 137 times fewer parameters.

We also evaluated our methods on an even larger dataset, the papers100M OGB benchmark (Hu
et al., 2020). Here, we obtain 65.33% using C&S with the Linear model as the base predictor, which
out-performs the state-of-the-art (63.29%, as of October 1, 2020).

Our pipeline can also be used to improve the performance of GNNs in general. We used C&S with
base predictions given by GCNII or GAT. This improves our results on some datasets, such as ogbn-
arxiv (Table 4). However, the performance improvements are sometimes only minor, suggesting that
big models might be capturing the same signal as our simple C&S framework.

3.4 PERFORMANCE VISUALIZATION

To aid in understanding the performance of our C&S framework, we visualize the predictions on
the US County dataset (Figure 3). As expected, the residual error correlation tends to correct nodes
where neighboring counties provide relevant information. For example, we see that many errors in
the base predictions are corrected by the residual correlation (Figure 3b, left and right panels). In
these cases, which correspond to parts of Texas and Hawaii, the demographic features of the counties
are outliers compared to the rest of the country, leading both the linear model and GCN astray. The
error correlation from neighboring counties is able to fix the predictions. We also see that the final
prediction correlation can fix errors when nearby nodes are correctly classified, as shown in the
center panel of Figure 3b. We observe similar behavior on the Rice31 dataset (Appendix D).

4 DISCUSSION

GNN models are becoming more expressive, more parameterized, and more expensive to train.
Our results suggest that we should explore other techniques for improving performance, such as
label propagation and feature augmentation. In particular, label propagation and its variants are
longstanding, powerful ideas. More directly incorporating them into graph learning models has
major benefits, and we have shown that these can lead to both better predictions and faster training.

Acknowledgments. This research was supported by Facebook Al, NSF Award DMS-1830274,
ARO Award W911NF19-1-0057, ARO MURI, and JP Morgan Chase & Co. We also thank Cornell
University Artificial Intelligence for their support, as well as Marc Brockschmidt, Matthias Fey,
Stephan Giinnemann, Weihua Hu, and Junteng Jia for insightful discussions.

https://cuai.github.io/
https://cuai.github.io/

Published as a conference paper at ICLR 2021

REFERENCES

P. Battaglia, Jessica B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, Mateusz Malinowski,
Andrea Tacchetti, D. Raposo, Adam Santoro, R. Faulkner, Caglar Giilgehre, H. Song, A. Ballard,
J. Gilmer, G. Dahl, Ashish Vaswani, Kelsey R. Allen, C. Nash, V. Langston, Chris Dyer, N. Heess,
Daan Wierstra, Pushmeet Kohli, M. Botvinick, Oriol Vinyals, Y. Li, and Razvan Pascanu. Rela-
tional inductive biases, deep learning, and graph networks. arXiv:1806.01261, 2018.

Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek
Rézemberczki, Michal Lukasik, and Stephan Giinnemann. Scaling graph neural networks with
approximate PageRank. In International Conference on Knowledge Discovery and Data Mining,
2020.

Olivier Chapelle, Jason Weston, and Bernhard Scholkopf. Cluster kernels for semi-supervised learn-
ing. In Advances in Neural Information Processing Systems, 2003.

Kamalika Chaudhuri, Fan Chung, and Alexander Tsiatas. Spectral clustering of graphs with general
degrees in the extended planted partition model. In The Conference on Learning Theory, 2012.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning, 2020.

Alex Chin, Yatong Chen, Kristen M. Altenburger, and Johan Ugander. Decoupled smoothing on
graphs. In The Web Conference, 2019.

David Easley and Jon Kleinberg. Networks, Crowds, and Markets. Cambridge University Press,
2010.

Buchnik Eliav and Edith Cohen. Bootstrapped graph diffusions: Exposing the power of nonlinearity.
International Conference on Measurement and Modeling of Computer Systems, 2018.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. In
ICLR Workshop Representation Learning on Graphs and Manifolds, 2019.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Benjamin Chamberlain, Michael Bronstein, and
Federico Monti. SIGN: Scalable inception graph neural networks. In ICML Workshop on Graph
Representation Learning and Beyond, 2020.

Hongchang Gao, Jian Pei, and Heng Huang. Conditional random field enhanced graph convolutional
neural networks. In The 25th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2019.

Lise Getoor. Link-based classification. In Advanced Methods for Knowledge Discovery from Com-
plex Data, 2005.

Lise Getoor, Nir Friedman, Daphne Koller, and Benjamin Taskar. Learning probabilistic models of
relational structure. In International Conference on Machine Learning, 2001.

David F Gleich and Michael W Mahoney. Using local spectral methods to robustify graph-based
learning algorithms. In International Conference on Knowledge Discovery and Data Mining,
2015.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, 2017a.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications. IEEE Data Engineering Bulletin, 2017b.

Keith Henderson, Brian Gallagher, Lei Li, Leman Akoglu, Tina Eliassi-Rad, Hanghang Tong, and
Christos Faloutsos. It’s who you know: graph mining using recursive structural features. In
International Conference on Knowledge Discovery and Data Mining, 2011.

Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato Basu, Leman Akoglu,
Danai Koutra, Christos Faloutsos, and Lei Li. RolX: structural role extraction & mining in large
graphs. In International Conference on Knowledge Discovery and Data Mining, 2012.

10

Published as a conference paper at ICLR 2021

Weihua Hu, M. Fey, M. Zitnik, Yuxiao Dong, H. Ren, Bowen Liu, Michele Catasta, and J. Leskovec.
Open graph benchmark: Datasets for machine learning on graphs. In Advances in Neural Infor-
mation Processing Systems, 2020.

Rania Ibrahim and David Gleich. Nonlinear diffusion for community detection and semi-supervised
learning. In The Web Conference, 2019.

Junteng Jia and Austin R. Benson. Residual correlation in graph neural network regression. In /ICML
Workshop on Graph Representation Learning and Beyond workshop, 2020.

Junteng Jia and Austin R Benson. A unifying generative model for graph learning algorithms: Label
propagation, graph convolutions, and combinations. arXiv:2101.07730, 2021.

Thorsten Joachims. Transductive learning via spectral graph partitioning. In International Confer-
ence on Machine Learning, 2003.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Giinnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, 2018.

Danai Koutra, Tai-You Ke, U Kang, Duen Horng Polo Chau, Hsing-Kuo Kenneth Pao, and Christos
Faloutsos. Unifying guilt-by-association approaches: Theorems and fast algorithms. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, 2011.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and shrinking
diameters. ACM Transactions on Knowledge Discovery from Data, 2007.

Guohao Li, Matthias Miiller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gens go as deep as
cnns? In IEEE International Conference on Computer Vision, 2019.

Leland Mclnnes, John Healy, Nathaniel Saul, and Lukas Grof3berger. UMAP: Uniform Manifold
Approximation and Projection. Journal of Open Source Software, 2018.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
networks. Annual Review of Sociology, 2001.

P’eter Mernyei and Citélina Cangea. Wiki-CS: A wikipedia-based benchmark for graph neural
networks. In ICML Workshop on Graph Representation Learning and Beyond, 2020.

Galileo Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven active surveying for
collective classification. In International Workshop on Mining and Learning with Graphs, 2012.

Mark EJ Newman. Mixing patterns in networks. Physical Review E, 2003.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems, 2019.

Leto Peel. Graph-based semi-supervised learning for relational networks. In SIAM International
Conference on Data Mining. SIAM, 2017.

Meng Qu, Yoshua Bengio, and Jian Tang. GMNN: Graph markov neural networks. In International
Conference on Machine Learning, 2019.

Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time algorithm to detect
community structures in large-scale networks. Physical Review E, 2007.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In International Conference on Learning Repre-
sentations, 2019.

11

Published as a conference paper at ICLR 2021

Cosma Shalizi. Advanced data analysis from an elementary point of view. Cambridge University
Press, 2013.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, and Yu Sun. Masked label prediction: Unified mas-
sage passing model for semi-supervised classification. arXiv:2009.03509, 2020.

Amanda L Traud, Peter] Mucha, and Mason A Porter. Social structure of facebook networks.
Physica A: Statistical Mechanics and its Applications, 2012.

Francesco Tudisco, Austin R Benson, and Konstantin Prokopchik. Nonlinear higher-order label
spreading. In The Web Conference, 2021. To appear.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph Attention Networks. In International Conference on Learning Representations,
2018.

Fei Wang and Changshui Zhang. Label propagation through linear neighborhoods. IEEE Transac-
tions on Knowledge and Data Engineering, 2007.

Hongwei Wang and Jure Leskovec. Unifying graph convolutional neural networks and label propa-
gation. arXiv:2002.06755, 2020.

Yangkun Wang. Gen+linear+labels. https://ogb.stanford.edu/docs/leader_
nodeprop/, 2020.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simpli-
fying graph convolutional networks. In International Conference on Machine Learning, 2019.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, C. Zhang, and Philip S. Yu. A compre-
hensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

Hao Yin, Austin R Benson, Jure Leskovec, and David F Gleich. Local higher-order graph clustering.
In International Conference on Knowledge Discovery and Data Mining, 2017.

Hanging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
SAINT: Graph sampling based inductive learning method. In International Conference on Learn-
ing Representations, 2019.

Yilin Zhang and Karl Rohe. Understanding regularized spectral clustering via graph conductance.
In Advances in Neural Information Processing Systems, 2018.

Dengyong Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bernhard Scholkopf. Learn-
ing with local and global consistency. In Advances in Neural Information Processing Systems,
2004.

Xiaojin Zhu, Zoubin Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields
and harmonic functions. In International Conference on Machine Learning, 2003.

Xiaojin Jerry Zhu. Semi-supervised learning literature survey. Technical report, University of
Wisconsin-Madison Department of Computer Sciences, 2005.

12

https://ogb.stanford.edu/docs/leader_nodeprop/
https://ogb.stanford.edu/docs/leader_nodeprop/

Published as a conference paper at ICLR 2021

A MODEL DETAILS

Here we provide some more details on the models that we use. In all cases we use the Adam opti-
mizer and tune the learning rate. We follow the models and hyperparameters provided in OGB (Hu
et al., 2020) and wikiCS (Mernyei & Cangea, 2020) and manually tune some hyperparameters on
the validation data for the potential of better performance.

For our MLPs, every linear layer is followed by batch normalization, ReLU activation, and 0.5
dropout. The other parameters depend on the dataset as follows.

* Products and Arxiv: 3 layers and 256 hidden channels with learning rate equal to 0.01.

¢ Cora, Citseer, and Pubmed (Getoor et al., 2001; Getoor, 2005; Namata et al., 2012) and
Email (Leskovec et al., 2007; Yin et al., 2017): 3 layers and 64 hidden channels with
learning rate = 0.01.

* wikiCS: 3 layers and 256 hidden channels with learning rate equal to 0.005.

* US County (Jia & Benson, 2020) and Rice31 (Traud et al., 2012): 5 layers and 256 hidden
channels with learning rate equal to 0.005.

SOTA models for most datasets are taken from existing benchmarks. We determined SOTA for
Email, US County, and Rice31 by evaluating several models discussed in the paper. The best per-
forming baselines were as follows. For Email, GCNII with 5 layers, 256 hidden channels, learning
rate equal to 0.01. For US County, GCNII with 8 layers, 256 hidden channels, learning rate equal
to 0.03. For Rice31, we reused our GCN architecture and trained it over spectral embedding, which
substantially outperformed the other GNN variants.

All models were implemented with PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey &
Lenssen, 2019).

B PERFORMANCE RESULTS WITH ONLY THE CORRECTION STEP

Table 5 shows results with and without smoothing in the final predictions, i.e., just the “C step” vs.
C&S. Including final prediction smoothing provides a substantial performance boost in many cases.

C ANALYSIS OF PERFORMANCE GAINS FROM SPECTRAL EMBEDDINGS

Table 6 shows the effect of including spectral embeddings as node features on the accuracy of the
MLP-based and GCN models. In the case of the Arxiv dataset, including the spectral embedding
improves the MLP base prediction performance substantially and the C&S performance modestly,
but hardly changes the performance of the GCN. For Pubmed, including the spectral embeddings
barely changes the performance of any model.

D ADDITIONAL VISUALIZATION

Full visualizations of C&S and GCN-SE performance for the US County dataset are in Figures 4
to 6. Similar visualizations for the Rice31 are in Figures 7 to 9, which are generated by project-
ing the 128-dimensional spectral embedding used in the main text down to two dimensions with
UMAP (Mclnnes et al., 2018).

13

Published as a conference paper at ICLR 2021

Table 5: Performance of our C&S framework with and without the final prediction smoothing. In
cases where final prediction smoothing is used, only ground truth training are used.

Method Arxiv Products Cora Citeseer Pubmed
Linear + C (Autoscale) 66.89 74.63 79.56 72.56 88.56
Linear + C&S (Autoscale) 71.11 80.24 88.62 76.31 89.99
Linear-SE + C (Autoscale) 71.52 70.93 79.08 70.77 88.84
Linear-SE + C&S (Autoscale) 72.07 80.25 88.73 76.75 89.93
MLP-SE + C (Autoscale) 71.97 69.85 74.11 71.78 87.35
MLP-SE + C&S (Autoscale) 72.62 78.60 87.39 76.31 89.33
Linear + C (Fdiff-scale) 65.62 80.97 76.48 70.48 87.52
Linear + C&S (Fdiff-scale) 70.60 82.54 89.05 76.22 89.74
Linear-SE + C (Fdiff-scale) 70.26 73.89 79.32 70.53 84.47
Linear-SE + C&S (Fdiff-scale) 71.57 83.01 88.66 77.06 89.51
MLP-SE + C (Fdiff-scale) 71.55 72.72 74.36 71.45 86.97
MLP-SE + C&S (Fdiff-scale) 72.43 84.18 87.39 76.42 89.23
Method Email Rice31 US County wikiCS

Linear + C (Autoscale) — 43.97 82.60 77.49

Linear + C&S (Autoscale) — 75.99 85.25 79.57

Linear-SE + C (Autoscale) 73.39 86.19 84.08 74.06

Linear-SE + C&S (Autoscale) 72.50 86.42 86.15 79.53

MLP-SE + C (Autoscale) 71.64 84.61 88.83 78.72

MLP-SE + C&S (Autoscale) 74.55 85.50 89.64 78.10

Linear + C (Fdiff-scale) — 72.44 87.16 75.98

Linear + C&S (Fdiff-scale) — 73.66 87.38 79.54

Linear-SE + C (Fdiff-scale) 71.31 85.22 88.27 73.86

Linear-SE + C&S (Fdiff-scale) 72.53 87.55 88.11 79.25

MLP-SE + C (Fdiff-scale) 72.59 85.42 89.62 78.40

MLP-SE + C&S (Fdiff-scale) 75.74 85.74 89.85 78.24

14

Published as a conference paper at ICLR 2021

Table 6: Comparison of models with and without spectral embeddings, using only ground truth
training labels for final prediction smoothing within C&S.

Method Arxiv Products Cora Citeseer Pubmed
GCN 71.74 75.64 85.77 73.68 88.13
GCN-SE 71.76 76.12 85.83 73.60 88.32
MLP 59.67 59.23 74.21 69.34 86.73
MLP-SE 71.51 63.41 74.06 68.10 86.85
MLP + C&S (Autoscale) 71.76 79.42 87.56 76.42 89.29
MLP-SE + C&S (Autoscale) 72.62 78.60 87.39 76.31 89.33
MLP + C&S (FDiff-scale) 71.57 83.8 87.61 76.44 89.28
MLP-SE + C&S (Fdiff-scale) 72.43 84.18 87.39 76.42 89.23
Method Email Rice3l US County wikiCS

GCN — 15.45 84.13 78.61

GCN-SE 74.51 38.54 89.72 78.15

MLP — 15.73 87.77 71.42

MLP-SE 69.13 17.16 87.70 73.07

MLP + C&S (Autoscale) — 85.05 89.67 78.92

MLP-SE + C&S (Autoscale) 74.55 85.50 89.64 78.10

MLP + C&S (FDiff-scale) — 86.40 89.64 78.10

MLP-SE + C&S (Fdiff-scale) 75.74 85.74 89.85 78.24

15

Published as a conference paper at ICLR 2021

.
.
.
.

.
25
2%
O

. o
i

a
T,

NN
ALY

RY C s
D S

=T A
I
L) o
i, Py,
L
Ve 2

ot
A/

4

41

s,
ity

Republican
Democratic

Figure 4: US County ground truth class labels.

16

Published as a conference paper at ICLR 2021

f\'”/‘[‘/-‘ y
Y
Y

Train

Base
Correction step
Smoothing step
Incorrect

Figure 5: Linear-SE + C&S prediction performance on US County.

17

Published as a conference paper at ICLR 2021

o T

EENPSeey 3

RV
\um/\/-’»‘

GO
b

20N

el

Train
Correct
® Incorrect

Figure 6: GCN-SE prediction performance on US County.

18

Published as a conference paper at ICLR 2021

" iy
N
rA
¢ ¥
’A: AAA““
-,
4 S
S BV NI
o . K b A
. ettt Y B
. ' 4 . e
2y a A A
h
o~ .
44
N ’
" .
.
»A s
%

Figure 7: Rice31 ground truth class labels.

19

Published as a conference paper at ICLR 2021

Train

Base
Correction step
Smoothing step
Incorrect

Figure 8: Linear-SE + C&S prediction performance on Rice31.

A

o, N
Yy
- A A,
‘A " Yy R A
A A N
Y A A 4
4 s Lol Bt £
.) \
8 . A‘:,{?i,(‘. vy ‘Q‘ &
N
g .
AR A B e
T -} i‘.w&l‘i; A K
. Av"ii'f e B
Lot A s g AL
RN :fé? fq“‘;.““"& Lb "
» ¢ }‘.A A a e’ aa B y
ATy VAV 4
4 m MaELEERN L, L L
oot b A TS
¥ v N a0t a &
s AT “
. “ h"“ A“l&; Lo s Ay
VA I A N YL P
= —
A‘AA“\‘A a0 e K
at 1% ALY
PR
a n }) vy } -
A, apt s “ A
oy ; “ 3
2,
A a A
. L
o A »
A A
I ‘ 4
P .2 P 3!
aa Aoy

20

Published as a conference paper at ICLR 2021

LA
N
X A
N N » {Q
a
4 b, -
A A &+ -
2y A L4
ut PN 4a a
a . A Ls
i ; a ey in Ea i
4 A A
{ I Y i
A fua adhy by,
N
ek % e
v T A A F
= A "“A“, aAa :'ﬁ
RYYRYIN L,
R I O Y
P SO SR T 0 e S S W 4
N) A5 Bl 44 =
by) P
R IR “(\i 3 Uj[:‘AA‘ Ry oy -
N Cosboga a -
Y S A A a
ot Sy TR ity
bt A A A A
Pe e w ot o aa s D
a
2 s KN
N a4 " AA‘ /‘; ’ a .
A, g ; aeh
“ , A N N
at 4 i ¢
PRV TN
e R
F I .
A A i A N i} » i »
daga At 4 y o
. ’ J 4
“ £ A
et Lt
ok . N
~h A E1Y
N
2 a
o i
), b A
asr i A kAAA »
y
& N
n /‘
Train J
Correct iy

® Incorrect

Figure 9: GCN-SE prediction performance on Rice31.

21

	Introduction
	Additional related work

	Correct and Smooth (C&S) Model
	Simple base predictor
	Correcting base predictions with error correlation
	Smoothing final predictions with Prediction Correlation
	Summary and additional considerations

	Experiments on Transductive Node Classification
	First results on node classification
	Further improvements by using more labels
	Training time and improving existing GNNs
	Performance visualization

	Discussion
	Model details
	Performance results with only the correction step
	Analysis of performance gains from spectral embeddings
	Additional visualization

