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ABSTRACT

Generalization analysis of learning algorithms often builds on a critical assumption
that training examples are independently and identically distributed, which is often
violated in practical problems such as time series prediction. In this paper, we use
algorithmic stability to study the generalization performance of learning algorithms
with ψ-mixing data, where the dependency between observations weakens over
time. We show uniformly stable algorithms guarantee high-probability generaliza-
tion bounds of the order O(1/

√
n) (within a logarithmic factor), where n is the

sample size. We apply our general result to specific algorithms including regular-
ization schemes, stochastic gradient descent and localized iterative regularization,
and develop excess population risk bounds for learning with ψ-mixing data. Our
analysis builds on a novel moment bound for weakly-dependent random variables
on a φ-mixing sequence and a novel error decomposition of generalization error.

1 INTRODUCTION

Generalization gap refers to the discrepancy between training and testing, which is a quantity of
central importance in statistical learning theory (SLT) (Shalev-Shwartz & Ben-David, 2014). A
popular approach to controlling the generalization gap is to bound it by the uniform convergence
between training and testing errors over a function space (Bartlett & Mendelson, 2002), which
leads to bounds depending on the complexity of function spaces, such as VC dimension (Vapnik,
2013), covering number (Cucker & Zhou, 2007) and Rademacher complexity (Bartlett & Mendelson,
2002). These complexity-based bounds do not exploit the property of a learning algorithm and
would generally admit a square-root dependency on the dimension (Feldman, 2016), which are
not favorable for large-scale problems. To incorporate the property of a learning algorithm and
remove the dependency on dimension, a concept of algorithmic stability has been introduced into
SLT (Bousquet & Elisseeff, 2002). Intuitively speaking, algorithmic stability measures how a small
perturbation of the training dataset would affect the output model of a learning algorithm, which
has close connection to several key properties such as learnability (Shalev-Shwartz et al., 2010),
robustness and privacy (Bassily et al., 2020).

Recent research has witnessed an increasing interest in leveraging stability to study the generalization
behavior of various algorithms, such as stochastic gradient descent (Hardt et al., 2016), structured
prediction (London et al., 2016), meta learning (Maurer, 2005) and transfer learning (Kuzborskij
& Lampert, 2018). Most of these discussions are based on a critical assumption that the training
examples are independently and identically distributed (i.i.d.). This assumption is often violated
in practical applications. For example, the i.i.d. assumption is too restrictive in time series pre-
diction (Vidyasagar, 2013). The prices of the same stock on different days may have temporal
dependence. These phenomena motivate several analyses to derive meaningful bounds for learning
problems with observations drawn from a non-i.i.d. process (Yu, 1994; Vidyasagar, 2013).

A widely used relaxation of the i.i.d. assumption is to assume the observations are drawn from a
mixing process (Yu, 1994; Meir, 2000; Lozano et al., 2005; Vidyasagar, 2013), where the dependency
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between two observations is quantified by a mixing coefficient as a function of the discrepancy
of the associated two indices. These mixing coefficients decay either as a polynomial function
or an exponential function of the discrepancy (Vidyasagar, 2013). Several mixing processes have
been introduced into the literature, including the β-mixing, φ-mixing and ψ-mixing processes (Yu,
1994; Meir, 2000; Lozano et al., 2005). Within this formulation, various generalization bounds have
been developed to show how the dependency among observations would affect the learning process.
Interestingly, these discussions imply a concept called “effective size” which plays a similar role of
the sample size in the i.i.d. scenario (Yu, 1994; Kuznetsov & Mohri, 2017).

As in the i.i.d. case, most generalization analyses in the non-i.i.d. case focus on complexity-based
bounds (Meir, 2000; Yu, 1994; Kuznetsov & Mohri, 2017). There are few stability analyses of
learning algorithms in the non-i.i.d. cases. An exception is the work in Mohri & Rostamizadeh
(2010), which, to our knowledge, gives the first systematic analysis on the stability and generalization
in a non-i.i.d. case. The authors developed high-probability generalization bounds for learning with
stationary φ-mixing and β-mixing sequences, which are then applied to general kernel regularization-
based bounds. Due to the algorithm-specific nature, these bounds are preferable to complexity-based
bounds if the associated hypothesis space has a very large complexity.

However, the stability analysis (Mohri & Rostamizadeh, 2010) only implies sub-optimal general-
ization bounds. Indeed, for β-uniformly stable algorithms, the high-probability bounds in Mohri &
Rostamizadeh (2010) are of the order of O(

√
nβ +∆n/

√
n), where n is the sample size and ∆n

is a term depending on the decay rate of mixing coefficients. For learning with λ-strongly convex
problems, the uniform stability parameter is of the order O(1/(nλ)) (Bousquet & Elisseeff, 2002)
and therefore the bounds in Mohri & Rostamizadeh (2010) become O(1/(

√
nλ) + ∆n/

√
n). A

typical choice of λ is λ ≈ n−α for α > 0 (Shalev-Shwartz & Ben-David, 2014) and then the bounds
further become O(nα−

1
2 + ∆n/

√
n), which cannot imply the optimal bounds O(1/

√
n) even if

∆n = O(1). For learning with i.i.d. data, recent breakthroughs (Feldman & Vondrak, 2019; Bousquet
et al., 2020) in stability analysis show that β-uniformly stable algorithms enjoy generalization bounds
of the order Õ(1/

√
n)*. This motivates a natural question: can we develop generalization bounds of

the order Õ(1/
√
n) for uniformly stable algorithms applied to mixing process?

This paper provides an affirmative answer to the above question. Our contributions are listed below.

1. We develop a moment bound for weakly dependent random variables defined on a φ-mixing
sequence. We show our bound matches the existing moment bounds for i.i.d. random variables up
to a logarithmic factor. As a byproduct, we develop a Marcinkiewicz-Zygmund inequality for a
φ-mixing sequence, which may be interesting in its own right.

2. We develop high-probability bounds of order Õ(1/
√
n) for uniformly stable algorithms for learning

with ψ-mixing sequences (our results actually require assumptions on φ′-mixing coefficients which
are weaker than assumptions on ψ-mixing coefficients). We achieve this by introducing a different
decomposition of generalization errors to make sure we get weakly-dependent and mean-zero random
variables, which is more challenging than the i.i.d. case. Our results recover the existing bounds
within a constant factor in the i.i.d. case.

3. We apply our general bound to some specific algorithms to show the effectiveness of our results,
including kernel regularization schemes, stochastic gradient descent (SGD) and iterative localization.

The paper is organized as follows. We present the related work in Section 2. We develop concentration
inequalities for φ-mixing data in Section 3 and present general stability-based bounds in Section 4.
We apply our general result to specific algorithms in Section 5. We conclude the paper in Section 6.

2 RELATED WORK

In this section, we discuss the related work. We first discuss the related work on algorithmic stability
and then the related work on learning with dependent data.

Algorithmic stability. Algorithmic stability measures how the replacement/removal of a single (or
a few) example would affect the output model, which is an important concept in SLT (Bousquet &
Elisseeff, 2002). A nice property of algorithmic stability is that it only considers the behavior of the

*We use Õ to hide logarithmic factors
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output model and therefore can imply capacity-independent generalization bounds. An important
stability measure called uniform stability was introduced in an influential work (Bousquet & Elisseeff,
2002), which was used to study the generalization behavior of regularization schemes. This uniform
stability was extended to the setting of randomized algorithms (Elisseeff et al., 2005), which was
further used to study the generalization guarantee of SGD (Hardt et al., 2016). To better exploit the
training examples for better generalization bounds, a relaxation of uniform stability called on-average
stability has been introduced (Shalev-Shwartz et al., 2010). In particular, the on-average stability
was shown to be equivalent to learnability (Shalev-Shwartz et al., 2010) and was used to derive
data-dependent error bounds (Kuzborskij & Lampert, 2018; Lei & Ying, 2020; Zhou et al., 2021;
Li et al., 2020; Nikolakakis et al., 2022). The smoothness assumption for stability analysis of SGD
was removed in the papers (Lei & Ying, 2020; Bassily et al., 2020). For nonconvex problems,
stability and generalization of learning algorithms that converge to global optima were studied for
gradient-dominated problems (Charles & Papailiopoulos, 2018; Lei & Ying, 2021). While most
discussions focus on upper bounds on the stability, recent work also develops lower bounds on the
stability of SGD (Bassily et al., 2020; Amir et al., 2021). While most stability analyses imply optimal
bounds in expectation, the recent study shows that uniform stability can imply almost optimal bounds
with high probability (Feldman & Vondrak, 2019; Bousquet et al., 2020; Klochkov & Zhivotovskiy,
2021; Yuan & Li, 2022; Li & Liu, 2022). Algorithmic stability has found wide applications in various
learning problems, including transfer learning (Kuzborskij & Lampert, 2018), meta-learning (Maurer,
2005), structured prediction (London et al., 2016), hyperparameter optimization (Bao et al., 2021),
neural networks (Richards & Kuzborskij, 2021) and adversarial training (Xing et al., 2021).

Learning with dependent data. For learning with dependent data, one generally assumes that the
data are drawn from stationary and mixing sequences with the dependence between observations
diminishing appropriately over time (Doukhan, 1994; Smale & Zhou, 2009). Initially, generalization
bounds were established via a uniform convergence approach based on complexity measures of
function classes, such as VC dimension (Yu, 1994), covering numbers (Meir, 2000) and Rademacher
complexity (Mohri & Rostamizadeh, 2008). Based on a localization idea and self-bounding loss
functions, Steinwart & Christmann (2009) developed fast learning rates for regularized algorithms
with geometrically α-mixing data. Ralaivola et al. (2010) and Alquier et al. (2013) established
convergence rates under the assumption of stationary and weak dependence. While most discussions
focus on stationary sequence, Kuznetsov & Mohri (2017) used Rademacher complexity to study
learning bounds with non-stationary φ-mixing and β-mixing sequences. The first stability analysis of
learning with mixing sequences was given in the paper (Mohri & Rostamizadeh, 2010). The stability
approach was also used to study online learning with dependent data (Agarwal & Duchi, 2013) and
learning with graph-dependent data (Zhang et al., 2019). SGD with Markov sampling has also been
recently studied (Sun et al., 2018; Wang et al., 2022).

3 CONCENTRATION INEQUALITIES FOR φ-MIXING SEQUENCES

We consider learning problems with a sequence of dependent observations. We assume the depen-
dency between two observations decays with their gap. There are several concepts to quantify the de-
pendency relationship within a stationary sequence such as β-mixing, φ-mixing and ψ-mixing (Mohri
& Rostamizadeh, 2010; Yu, 1994). We focus on the φ-mixing and ψ-mixing sequences in this paper.
Let Z = {Zt}∞t=−∞ be a stationary sequence of random variables. For any i, j ∈ N, let σj

i denote
the σ-algebra generated by the random variables Zk, i ≤ k ≤ j.
Definition 1 (φ-Mixing Sequence). For any k ∈ N, the φ-mixing coefficient of Z is defined as

φ(k) = sup
n,A∈σ∞

n+k,B∈σn
−∞

∣∣Pr(A|B)− Pr(A)
∣∣.

Z is said to be φ-mixing if φ(k) → 0 as k → ∞. It is said to be algebraically φ-mixing (with degree
r > 0) if there exists a real number φ0 > 0 such that φ(k) ≤ φ0/k

r for all k, exponentially mixing
(with degree r) if there exist real numbers φ0, φ1 such that φ(k) ≤ φ0 exp(−φ1k

r) for all k.
Definition 2 (ψ-Mixing Sequence (Bradley, 2007)). For any k ∈ N, the ψ-mixing coefficient of the
stochastic process Z is defined as

ψ(k) = sup
n,A∈σ∞

n+k,B∈σn
−∞

∣∣Pr(A ∩B)/Pr(A)Pr(B)− 1
∣∣.

Z is said to be ψ-mixing if ψ(k) → 0 as k → ∞. It is said to be algebraically ψ-mixing (with degree
r > 0) if there exists a real number ψ0 > 0 such that ψ(k) ≤ ψ0/k

r for all k, exponentially mixing
(with degree r) if there exist real numbers ψ0, ψ1 such that ψ(k) ≤ ψ0 exp(−ψ1k

r) for all k.
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We will use ψ-mixing to give a bound on the stability analysis version of φ′-mixing in Lemma 3.
Intuitively speaking, φ(k) and ψ(k) measure the dependency of an event on those happened k units
of time ahead. By the definition, we know that ψ-mixing is stronger than the φ-mixing. Below we
provide examples of φ-mixing and ψ-mixing sequences in Kesten & O’Brien (1976).

We first consider random variables Vn, Un and Sn for n ∈ Z defined on the probability space
(Ω,F , P ), which are independent of each other and have the following distributions: for all n ∈ Z,
P (Vn = i) = βi, i = 0, 1 and 0 < β0 < β0 + β1 = 1; P (Un = k) = pk ≥ 0, k = 0, 1, · · · and∑∞

k=0 pk = 1; P (Sn = j) = γj , j = 0, 1, 2 and 0 < γ0 < γ0 + γ1 < γ0 + γ1 + γ2 = 1.

Example 1 (Example of φ-mixing sequence). Let {fk, k ≥ 1} be a non-increasing sequence such
that f1 ≤ 1, fk → 0 as k → ∞ and 2 log(1−fk+1) ≥ log(1−fk)+log(1−fk+2) for {k : fk < 1}.
For any 0 < ϵ < 1

2 we define β0 = ϵ, β1 = 1− ϵ. Define {pn} by

n−1∑
k=0

pk =

{
(1− fn) (1− fn+1)

−1 if fn < 1

0 if fn = 1.

Note that pk = (1 − fk+1)(1 − fk+2)
−1 − (1 − fk)(1 − fk+1)

−1 ≥ 0 for {k : fk < 1} since
2 log(1− fk+1) ≥ log(1− fk)+ log(1− fk+2). Let Xn = Un +

1
2Vn +

1
4Wn where Wn = Vn−Un

.
Then {Xn, n ∈ Z} is a φ-mixing sequence with (1− ϵ)fk ≤ φ(k) ≤ fk.

Next we provide an example of ψ-mixing sequence.

Example 2 (Example of ψ-mixing sequence). Let {gk, k ≥ 1} be a sequence such that g1 − g2 = 1,
gk → 0 as k → ∞ and 2gk+1 ≤ gk + gk+2, k = 1, 2, · · · . For any ϵ ∈ (0, 1), Let γ2 = ϵ,
γ0 = γ1 = 1

2 (1− ϵ), β0 = β1 = 1
2 . Define {pn} by

p0 = 0, pk = gk − 2gk+1 + gk+2, k = 1, 2, · · · .
Note that pk ≥ 0 for k = 0, 1, · · · . Let Un, Vn and Sn be as before. Let Zn = SnI[Sn=0 or 1] +
Vn−UnI[Sn=2], where I is the indicator function. Finally we define Xn = Vn + 2Zn. Then {Xn, n ∈
Z} is a ψ-mixing sequence with ϵ(1 + ϵ)−1gk ≤ ψ(k) ≤ exp

[
ϵ(1− ϵ)−1gk

]
− 1.

To develop error bounds for learning with φ-mixing sequences, we first develop concentration
inequalities for φ-mixing sequences. In the following theorem to be proved in Section A, we derive a
tail bound for the summation of dependent random variables in terms of the tail behavior of each
individual random variable. Let ∆n = 1 + 2

∑n
k=1 φ(k). The Lp-norm of a real-valued random

variable Z is denoted by ∥Z∥p :=
(
E[|Z|p]

) 1
p , p ≥ 1.

Theorem 1. Let X1, . . . , Xn be a finite contiguous subsequence from a φ-mixing sequence. Let Zi

be a function of Xi with E[Zi] = 0 and Pr{|Zi| > ϵ̃} ≤ 2 exp(−ϵ̃2/b). Then for any p ≥ 1 we have∥∥∥ n∑
i=1

Zi

∥∥∥
p
≤ (9 + log(n))p∆n

√
2nb.

Remark 1. Theorem 1 is an extension of Marcinkiewicz-Zygmund inequality for independent random
variables to φ-mixing sequences. Indeed, if Zi are i.i.d., it was shown

∥∥∑n
i=1 Zi

∥∥
p
= O(p

√
nb)

(Ren & Liang, 2001). We show how the mixing behavior would affect the concentration by including
∆n in our bound. In particular, if Zi are independent then ∆n = 1 and in this case, our result
matches the Marcinkiewicz-Zygmund inequality up to a logarithmic factor. Note ∆n = O(1) for
algebraical φ-mixing with r > 1 and exponential φ-mixing sequences (Mohri & Rostamizadeh, 2010).

Under the assumption
∑∞

k=1 φ
1
2 (k) < ∞, it was shown

∥∥∥∑n
i=1 Zi

∥∥∥
p
≤ Cp

((∑n
i=1 ∥Zi∥pp

) 1
p

+(∑n
i=1 ∥Zi∥22

) 1
2
)

(Xuejun et al., 2010). This bound requires an assumption involving
∑∞

k=1 φ
1
2 (k),

which is larger than
∑n

k=1 φ(k) in ∆n since φ
1
2 (k) ≥ φ(k). For example, if φ(k) = O(k−1) then∑n

k=1 φ(k) = O(log n) while
∑n

k=1 φ
1
2 (k) = O(

√
n). Moreover, the bound in Xuejun et al. (2010)

involves Cp which is not explicitly stated. As a comparison, our bound involves all explicit constants.

Remark 2. Our basic idea to prove Theorem 1 is to apply a McDiarmid inequality (Lemma A.1) to a
Lipschitz function defined on a φ-mixing sequence. If we define Φ′(X1, . . . , Xn) =

∑n
i=1 Zi, one

cannot guarantee the Lipschitz continuity of Φ due to the unboundedness of Zi. Our novelty is to
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define Z̃i = ZiI|Zi|≤ϵ where I[·] is an indicator function and ϵ = O(
√
b log(1/δ)). The boundedness

of Z̃i implies the (2ϵ)-Lipschitz continuity of Φ and therefore we can apply the McDiarmid inequality
to study its decay rate of Φ. Furthermore, the assumption Pr{|Zi| > ϵ̃} ≤ 2 exp(−ϵ̃2/b) shows that
Φ and Φ′ are equal with a high probability. We then combine these two observations together to
derive a high-probability bound for Φ′, which further leads to a bound on the Lp-norm of Φ′ by the
equivalence between high-probability bound and the Lp-norm bound.

Based on Theorem 1, we develop a moment bound for Lipschitz functions (w.r.t. the Hamming
distance) defined on mixing sequences. The following theorem is an extension of a result in the i.i.d.
case (Bousquet et al., 2020) to the case with mixing sequences. This result plays a major role in
developing our generalization bounds for learning with mixing sequences. The first assumption is a
conditional boundedness assumption which is standard for concentration inequalities. The second
assumption implies that the gi is of mean zero conditioned on any fixed Z[n]\[i], which is stronger than
E[gi] = 0 since the conditional expectation holds for any fixed Z[n]\[i]. The last assumption implies
that gi is insensitive to the change of any single example, which implies that gi is concentrated around
its expectation by McDiarmid’s inequality. Our proof follows from the framework in Bousquet et al.
(2020), which is given in Section B.
Theorem 2 (Concentration Inequality for φ-Mixing Sequence). Let Z1, . . . , Zn be a finite contiguous
subsequence from aφ-mixing sequence. DenoteZ = {Z1, . . . , Zn}. Let g1, . . . , gn be some functions
gi : Zn 7→ R such that the following holds for any i ∈ [n]

•
∣∣EZ[n]\[i] [gi(Z)|Zi]

∣∣ ≤M almost surely,

• EZi [gi(Z)|Z[n]\[i]] = 0 a.s.,

• gi is β-Lipschitz w.r.t. the Hamming distance.

Then for any p ≥ 1 we have (k = ⌈log2 n⌉)∥∥∥ n∑
i=1

gi

∥∥∥
p
≤ 3M∆n

√
2pn+ 2kpβ

k−1∑
l=0

(9 + l)∆2
2l .

Remark 3. If the sequence is i.i.d., the following bound was developed (Bousquet et al., 2020)∥∥∥ n∑
i=1

gi

∥∥∥
p
≤ 3M

√
2pn+ 12

√
6pnβ log2 n. (3.1)

Our bound recovers the existing result in the i.i.d. case. Note ∆n = 1 for any n and then Theorem 2
implies

∥∥∥∑n
i=1 gi

∥∥∥
p
≤ 3M

√
2pn+npβ(5+log2⌈n⌉)2, which matches Eq. (3.1) up to a logarithmic

factor. This is the first extension of the result in Bousquet et al. (2020) to a φ-mixing setting.

We follow the framework in Bousquet et al. (2020) to prove Theorem 2. The difference is to replace the
Marcinkiewicz-Zygmund inequality for i.i.d. random variables by Theorem 1 for φ-mixing random
variables. The basic idea is to use the representation

∑n
i=1 gi =

∑n
i=1 E[gi|Zi]+

∑k−1
l=0

∑n
i=1

(
gli −

gl+1
i

)
, where gli is the expectation of gi conditioned on some random variables and k is an integer

depending on n. We then use a McDiarmid inequality and the conditional boundedness of E[gi|Zi]

to control
∑n

i=1 E[gi|Zi], and use Theorem 1 to control
∑k−1

l=0

∑n
i=1

(
gli − gl+1

i

)
.

4 STABILITY AND GENERALIZATION

Let Z = X × Y be a sample space, where X ⊆ Rd is an input space and Y is an output space.
We consider supervised learning problems where S = {z1, . . . , zn} =

{
(x1, y1), . . . , (xn, yn)

}
is a

contiguous subsequence from a ψ-mixing sequence. Based on S, we wish to find a model h : X 7→ Y .
We consider parametric models where the model is determined by a parameter w in a parameter
space W . The performance of a model w on a single example z can be measured by a loss function
f(w; z). The empirical risk and population risk are then defined by

FS(w) =
1

n

n∑
i=1

f(w; zi) and F (w) = Ez[f(w; z)], (4.1)
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which measure the behavior of w on training examples and test examples, respectively. Here the test
point z is assumed to be dependent on S (i.e., z is assumed to follow immediately after the sample
S), which is the most realistic setting considered in Mohri & Rostamizadeh (2010). We refer to
the discrepancy between training and testing as the generalization gap F (w)− FS(w). In machine
learning, we often apply an algorithm to get a model with a small training error. Meanwhile, we
wish the output model also admits a small generalization gap to enjoy good generalization to test
data. In this paper, we are interested in developing generalization error bounds that decay to zero
as the sample size goes to infinity. Our basic tool is the algorithmic stability, which measures the
sensitivity of the output up to the perturbation of a single example. Various concepts of stability have
been introduced in the literature. In this paper, we focus on the uniform stability which is arguably
the most widely used algorithmic stability. We use wS to mean the output model if we apply an
algorithm A to the dataset S. Note we omit the dependency of the notation on A, which should be
clear from the context. We say two sets are neighboring datasets if they differ by one example.
Definition 3 (Uniform Stability (Bousquet & Elisseeff, 2002)). A randomized algorithm A is ϵ-
uniformly stable if for all neighboring datasets S, S′ ∈ Zn we have supz

[
f(wS ; z)−f(wS′ ; z)

]
≤ ϵ.

Our stability analysis requires a different mixing coefficient defined as follows
φ′(k) = sup

n,A∈σn−k
−∞ ,zn∈σn

n ,B∈σ∞
n+k

∣∣Pr(zn|A,B)− Pr(zn)
∣∣. (4.2)

It is clear that φ′(k) ≥ φ(k). The following lemma controls φ′(k) in terms of the ψ-mixing
coefficients. According to the following lemma, one can show that if ψ(k) = O(k−r) then φ′(k) =
O(k−r). If ψ(k) = O(exp(−ψ1k

r)) then φ′(k) = O(exp(−ψ1k
r)).

Lemma 3. Let Z = {Zt}∞t=−∞ be drawn from a ψ-mixing distribution and assume ψ(k) < 1. Then

φ′(k) ≤ max
{ (1 + ψ(k))2

1− ψ(k)
− 1, 1− (1− ψ(k))2

1 + ψ(k)

}
.

To apply Theorem 2 to learning with mixing sequences, we need to introduce a sequence of functions
gi satisfying the conditions in Theorem 2 and relate them to the generalization gap. Let z′i (resp.
z′′i ) be drawn from the same distribution of zi, i.e., the conditional distribution of z′i (resp. z′′i )
given z1, . . . , zi−1, zi+1, . . . , zn is the same as that of zi given z1, . . . , zi−1, zi+1, . . . , zn. Let
Si,b = {z1, . . . , zi−b−1, zi, zi+b+1, . . . , zn−b}, i.e., we remove 2b points around zi. For any i ∈ [n],
let Si

i,b = {z1, . . . , zi−b−1, z
′
i, zi+b+1, . . . , zn−b}. We then define the following random variables

gi = Ez′
i

[
Ez′′

i
[f(wSi

i,b
; z′′i )]− f(wSi

i,b
; zi)

]
, ∀i ∈ [n]. (4.3)

The following lemma to be proved in Section C gives generalization bounds in terms of stability and∑n
i=1 gi. We will use φ′(b) in Theorem 5 and all corollaries in Section 5. The underlying reason is

that we need to remove 2b points around zi to get Si,b for the application of Theorem 2. An upper
bound |F (wS)− Ez′′

i
[f(wSi,b

; z′′i )]| requires to use φ′(b).

Lemma 4. Let S be drawn from a ψ-mixing distribution. Let b ∈ {0, . . . , n} denote the number of
last points removed in S, i.e., Sb = {z1, . . . , zn−b}. Let wS denote the hypothesis trained on S. If
the algorithm A is β-uniformly stable and the loss function is bounded by M > 0, then the following
inequality holds with gi defined in Eq. (4.3)∣∣n(F (wS)− FS(wS))

∣∣ ≤ 2n(3b+ 1)β + nM(φ(b) + φ′(b)) +
∣∣ n∑
i=1

gi
∣∣.

We can apply Theorem 2 to control the term
∑n

i=1 gi and derive the following generalization bounds
in terms of mixing coefficients.
Theorem 5 (General Mixing Stability Bound). Let wS denote the hypothesis returned by a β-
uniformly stable algorithm trained on a sample S drawn from a ψ-mixing stationary distribution. Let
M denote the uniform bound of the loss function. Then for any b ∈ {0, . . . , n} and any δ ∈ (0, 1),
the following inequality holds with probability at least 1− δ (k = ⌈log2 n⌉)∣∣F (wS)− FS(wS)

∣∣ ≤ 2(3b+ 1)β +M(φ(b) + φ′(b))

+ 3eM∆n

√
2 log(e/δ)

n
+

2k+1eβ log(e/δ)

n

k−1∑
l=0

(9 + l)∆2
2l .
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Remark 4. For φ-mixing sequences, the following high-probability bounds were developed (Mohri
& Rostamizadeh, 2010)∣∣F (wS)− FS(wS)

∣∣ = O
(√

log(1/δ)∆n

(√
n(b+ 1)β +

√
nφ(b) + n−

1
2

))
. (4.4)

As a comparison, our generalization bound in Theorem 5 becomes∣∣F (wS)− FS(wS)
∣∣ = O

(
φ′(b) + ∆n

√
n−1 log(1/δ) + β(b+∆2

n log
2 n log(1/δ))

)
. (4.5)

Eq. (4.5) improves Eq. (4.4) as follows: (1) we replace
√
nφ(b) with φ′(b); (2) we replace

√
nbβ∆n

with β(b + ∆2
n log

2 n). The above two terms save a factor of
√
n. Meanwhile it should be also

mentioned that our bounds involve φ′, while the bounds in Mohri & Rostamizadeh (2010) involve
φ. We now compare these two bounds under assumptions of φ′ in three cases (results in Mohri &
Rostamizadeh (2010) hold for φ-mixing coefficients and also hold for φ′-mixing coefficients).

1. In the i.i.d. case, (4.5) becomes
∣∣F (wS)− FS(wS)

∣∣ = O
(√

n−1 log(1/δ) + β log2 n log(1/δ)
)
,

which matches existing stability-based bounds (Bousquet et al., 2020) up to a logarithmic factor. As
a comparison, Eq. (4.4) becomes

∣∣F (wS)− FS(wS)
∣∣ = O

(√
log(1/δ)(

√
nβ + 1/

√
n)
)
.

2. We now consider algebraically mixing sequences, i.e., φ′(k) ≤ φ0k
−r with r > 1. In this case,

we know ∆n = O(1) (Mohri & Rostamizadeh, 2010). If we choose b ≍ β− 1
r+1 in Eq. (4.5), we get

βb ≍ b−r ≍ β
r

r+1 and therefore (we denote B ≍ B̃ if there are absolute constants c1 and c2 such
that c1B ≤ B̃ ≤ c2B.)∣∣F (wS)− FS(wS)

∣∣ = O
(
β

r
r+1 +

√
n−1 log(1/δ) + β log2 n log(1/δ)

)
. (4.6)

As a comparison, the optimal choice b ≍ β− 1
r+1 in Eq. (4.4) implies∣∣F (wS)− FS(wS)

∣∣ = O
(√

log(1/δ)(
√
nβ

r
r+1 + n−

1
2 )
)
. (4.7)

It is clear our bound replaces
√
nβ

r
r+1 in Eq. (4.7) by β

r
r+1 + β log2 n log(1/δ), which is smaller.

3. Finally, we consider exponential mixing sequences, i.e., φ′(k) ≤ φ0 exp (−φ1k
r), which imply

∆n = O(1). If we fix b = ⌈log
1
r (1/β)⌉, we know exp(−br) ≤ bβ = O(β log

1
r (1/β)) and∣∣F (wS)− FS(wS)

∣∣ = O
(√

n−1 log(1/δ) + β log2 n log(1/δ) + β log
1
r (1/β)

)
. (4.8)

As a comparison, Eq. (4.4) implies
∣∣F (wS)−FS(wS)

∣∣ = O
(√

log(1/δ)
(√
nβ log

1
r (1/β)+

√
nβ+

1/
√
n
))
. It is clear that our analysis removes a factor of

√
n in front of the stability parameter β.

Remark 5. The analysis in the mixing case is more challenging than that in the i.i.d. case. The
analysis in Bousquet et al. (2020) introduces g̃i = Ez′

i
Ezi [f(wSi ; z) − f(wSi ; zi)], where z is

independently drawn from the stationary distribution and Si = {z1, . . . , zi−1, z
′
i, zi+1, . . . , zn}.

While Ezi [g̃i] = 0 in the i.i.d. case, we cannot guarantee Ezi [g̃i] = 0 in the mixing case due to the
dependency between zi and zj (j ̸= i). In this way, one cannot apply Theorem 2 to g̃i in the mixing
case. We use a much more complicated decomposition of the generalization error in terms of gi in
Eq. (4.3), which is of mean zero in the mixing case. In this process, we introduce concepts such as
Si,b, S

i
i,b to fully exploit the stability and mixing property. It should be mentioned that Si,b, S

i
i,b have

been introduced in Mohri & Rostamizadeh (2010). However, the aim is different. These concepts are
used in Mohri & Rostamizadeh (2010) to get bounds in expectation for Φ(S) := F (wS)− FS(wS)
via a lemma in Yu (1994) for β-mixing sequence, where the concentration of Φ(S) around its
expectation can be directly studied via the McDiarmid inequality for φ-mixing sequence. As a
comparison, our aim is to replace the sequence g̃i = Ez′

i
Ezi [f(wSi ; z)− f(wSi ; zi)] (with non-zero

conditional mean) by the sequence gi in Eq. (4.3) with zero conditional mean, which is then controlled
by our new concentration inequality for φ-mixing sequences (Theorem 2).

5 APPLICATIONS

We now present applications of Theorem 5 to several algorithms, including the kernel regularization
algorithm, SGD and localized iterative regularization. Let A be an algorithm which outputs a model
A(S) after observing the dataset S. We are interested in the excess population risk of a model

7
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A(S) defined by F (A(S))− F (w∗), which measures the performance of the output model A(S) as
compared to the best model w∗ = argminw F (w). An efficient approach to this aim is based on the
following error decomposition (Bousquet & Bottou, 2008)

F (A(S))−F (w∗) = F (A(S))−FS(A(S)) +FS(A(S))−FS(w
∗) +FS(w

∗)−F (w∗), (5.1)

where we refer to F (A(S))− FS(A(S)) as the generalization gap and FS(A(S))− FS(w
∗) as the

optimization error. The last term FS(w
∗)− F (w∗) is easy to control since w∗ is independent of S.

We will apply stability analysis to control the generalization gap, and tools in optimization theory
to control the optimization error. To this aim, we give some necessary definitions. The Lipschitz
condition means the gradient is bounded, and the smoothness means the gradient is Lipschitz
continuous. Examples of Lipschitz loss functions include the hinge loss, logistic loss and absolute
loss. Examples of Lipschitz and smooth loss functions include the logistic loss and Huber loss.
Definition 4 (Lipschitz, smoothness and convexity). Let L, γ > 0 and µ ≥ 0. Let f : W ×Z 7→ R.

• We say f is L-Lipschitz continuous if |f(w; z)− f(w′; z)| ≤ L∥w−w′∥ for any w,w′, z.

• We say f is γ-smooth if ∥∇f(w; z)−∇f(w′; z)∥ ≤ γ∥w −w′∥ for any w,w′, z.

• We say f is µ-strongly convex if f(w; z)−f(w′; z)−⟨w−w′,∇f(w′; z)⟩ ≥ µ
2 ∥w−w′∥2

for any w,w′, z. We say f is convex if it is µ-strongly convex with µ = 0.

5.1 KERNEL REGULARIZATION SCHEMES

We first consider kernel regularization schemes with convex and Lipschitz loss functions. Let
K : X × X 7→ R be a Mercer kernel (i.e., K is symmetric and positive definite) and W be the
associated reproducing kernel Hilbert space with the norm ∥ · ∥K . We consider the following model

wS,λ = arg min
w∈W

{
FS(w) + λ∥w∥2K

}
, (5.2)

where λ > 0 is a regularization parameter to tradeoff the data-fitting term FS and the regularizer
∥w∥2K . The following corollary gives high-probability excess population risk bounds on kernel
regularization. The proof is given in Section D.1.
Corollary 6. Let wS,λ denote the hypothesis returned by Eq. (5.2) when trained on a sample S
drawn from a ψ-mixing stationary distribution. Assume f is convex, L-Lipschitz and bounded by
M > 0. Then, with probability at least 1− δ, the following excess risk bound holds (k = ⌈log2 n⌉)

F (wS,λ)− F (w∗) = O
(∆n log

1
2 (1/δ)√
n

+
b

nλ
+Mφ′(b) +

∑k−1
l=0 l∆

2
2l log(1/δ)

nλ

)
+ λ∥w∗∥2K .

Remark 6. We now instantiate the above bounds under special mixing sequences. We first consider
the algebraically mixing sequence, i.e., φ′(k) ≤ φ0k

−r with r > 1. In this case, analysis similar to
Remark 4 implies the following bound with an appropriate choice of b

F (wS,λ)− F (w∗) = O
(
n−

1
2 log

1
2 (1/δ) + (nλ)−

r
r+1 +

log2 n log(1/δ)

nλ

)
+ λ∥w∗∥2K .

If ∥w∗∥K = O(1), then we choose λ ≍ 1/
√
n and get

F (wS,λ)− F (w∗) = O
(
n−

1
2 log

1
2 (1/δ) + n−

r
2(r+1) log2 n log(1/δ)

)
.

We now consider the exponential mixing case, i.e., φ′(k) ≤ φ0 exp (−φ1k
r). In this case, analysis

similar to Remark 4 implies∣∣F (wS)−FS(wS)
∣∣ = O

(√
n−1 log(1/δ)+(nλ)−1 log2 n log(1/δ)+(nλ)−1 log

1
r (nλ)

)
+λ∥w∗∥2K .

If ∥w∗∥K = O(1), then we can choose λ ≍ 1/
√
n to derive∣∣F (wS)− FS(wS)

∣∣ = O
(
n−

1
2

(√
log(1/δ) + log2 n log(1/δ) + log

1
r (n)

))
.

5.2 STOCHASTIC GRADIENT DESCENT

We apply our generalization bounds to SGD with convex and smooth loss functions, which has wide
applications in training complex models in the big-data era due to its simplicity and efficiency.
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Definition 5 (Stochastic Gradient Descent). Let w1 = 0 ∈ Rd be an initial point and {ηt}t be
a sequence of positive step sizes. SGD updates models by wt+1 = wt − ηt∇f(wt; zit), where
∇f(wt, zit) denotes a gradient of f w.r.t. the first argument and it is independently drawn from the
uniform distribution over [n] = {1, . . . , n}.

We assume the algorithm produces wS = 1
T

∑T
t=1 wt, which is an average of SGD iterates. We first

present the generalization error bounds. The proofs are given in Section D.2.
Corollary 7 (Generalization bound). Assume that the loss function f(·; z) is γ-smooth, convex,
L-Lipschitz and bounded by M > 0 for every z. Suppose that we run SGD with step sizes ηt ≤
min(2/γ, η) for T ≍ n steps on a sample S drawn from a ψ-mixing stationary distribution. Then,
with probability at least 1− δ we have (k = ⌈log2 n⌉)∣∣F (wS)− FS(wS)

∣∣ = O
(
ηb log(1/δ) + η

k−1∑
l=0

l∆2
2l log

2(1/δ) +Mφ′(b) + ∆n

√
log(1/δ)

n

)
.

As a corollary, we develop the following excess risk bounds.
Corollary 8 (Excess risk bound). Assume that the loss function f(·; z) is γ-smooth, convex, L-
Lipschitz and bounded by M > 0 for every z. Suppose that we run SGD with step sizes ηt = η ≍
1/

√
T for T ≍ n steps on a sample S drawn from a ψ-mixing stationary distribution. Then, with

probability at least 1− δ we have (k = ⌈log2 n⌉)

F (wS)−F (w∗)=O

(
n−

1
2 b log(1/δ)+n−

1
2

k−1∑
l=0

l∆2
2l log

2(1/δ)+Mφ′(b)+
∆n log

1
2 (1/δ)+log

3
2 (n/δ)√

n

)
.

5.3 ITERATIVE LOCALIZED ALGORITHM

We now turn to convex and non-smooth problems. In this case, SGD requires a very small step size
to enjoy good stability, which however would affect the optimization process. Indeed, a tradeoff
between generalization and optimization requires running SGD with O(n2) iterations, which is
not computationally efficient (Lei & Ying, 2020; Bassily et al., 2020). To speed up the algorithm,
we consider an iterative localization scheme (Algorithm 1 is deferred to Section D.3), which was
introduced in Feldman et al. (2020). The basic idea of Algorithm 1 is to implement the optimization
in epochs. At each epoch, Algorithm 1 builds an objective function with a regularizer depending on
the output of the previous epoch, which is solved by SGD with Ti iterations and learning rates {ηt}.

The following corollary gives error bounds for Algorithm 1. The proof is given in Section D.3.
Corollary 9. Assume that the loss function f(·; z) is convex, L-Lipschitz and bounded by M > 0 for
every z. We run Algorithm 1 on sample Si, i ∈ [m] drawn from a ψ-mixing stationary distribution. If
we choose γ ≍ n−

1
2 , then, with probability at least 1− δ

F (wm)−F (w∗) = O
(
n−

1
2 log n∆n log

1
2 (n/δ)+bn−

1
2+M log nφ′(b)+n−

1
2

k−1∑
l=0

l∆2
2l log(n/δ)

)
,

where k = ⌈log2 n⌉. Moreover, Algorithm 1 requires only O(n log n) gradient computations to
achieve this generalization bound.

6 CONCLUSIONS

With high probability, we develop the first stability-based generalization bounds of the order Õ(1/
√
n)

for learning with a mixing sequence. We apply our results to several specific algorithms such as
regularization schemes, SGD and localized iterative regularization. Our analysis relies on a new
moment bound for weakly-dependent random variables defined on a mixing sequence.

Our generalization bounds involve φ′-mixing coefficients, which are larger than the φ-mixing
coefficients. It would be very interesting to investigate whether these φ′-mixing coefficients can be
replaced by φ-mixing coefficients. We guess φ′-mixing would be more similar to φ-mixing than
ψ-mixing since both φ- and φ′-coefficients measure the difference between a conditional probability
and a probability (i.e., of the form |Pr(A|B)− Pr(A)|). As a comparison, ψ-mixing considers the
difference between 1 and the ratio of probabilities (i.e. of the form |1− Pr(A ∩B)/Pr(A)Pr(B)|).
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A PROOF OF THEOREM 1

In this section, we prove Theorem 1. To this aim, we introduce several lemmas. The following
lemma is a McDiarmid inequality for stable functions defined on mixing sequences (Kontorovich &
Ramanan, 2008).
Lemma A.1. Let Φ : Zn 7→ R be a measurable function that is c-Lipschitz w.r.t. the Hamming
distance for some c > 0, and let Z1, . . . , Zn be random variables distributed according to a φ-mixing
distribution. Then for any ϵ > 0 the following inequality holds

Pr
{∣∣Φ(Z1, . . . , Zn)− E[Φ(Z1, . . . , Zn)]

∣∣ ≥ ϵ
}
≤ 2 exp

( −2ϵ2

nc2∆2
n

)
.

Furthermore, for any δ ∈ (0, 1) the following inequality holds with probability at least 1− δ∣∣Φ(Z1, . . . , Zn)− E[Φ(Z1, . . . , Zn)]
∣∣ ≤ c∆n

√
n log(2/δ)√
2

.
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The following lemma shows the equivalence of tails and moments (Bousquet et al., 2020).
Lemma A.2. Let Y be a random variable. If for any δ ∈ (0, 1), with probability at least 1− δ

|Y | ≤ a
√
log(e/δ) + b log(e/δ),

then for any p ≥ 1 it holds that
∥Y ∥p ≤ 3

√
pa+ 9pb.

If ∥Y ∥p ≤ √
pa+ pb for any p ≥ 1, then for any δ ∈ (0, 1) we have with probability at least 1− δ

|Y | ≤ e
(
a
√
log(e/δ) + b log(e/δ)

)
.

Proof of Theorem 1. Let ϵ > 0 be a number to be fixed later and define

Z̃i = ZiI|Zi|≤ϵ, ∀i ∈ [n],

where I[·] is the indicator function (1 if the argument is true and 0 otherwise). Define
Φ(X1, . . . , Xn) =

∑n
i=1 Z̃i. First we show the Lipschitz continuity of Φ w.r.t. the Hamming dis-

tance. Suppose we change X1 by X ′
1 and keep other Xi. Define Z ′

1, . . . , Z
′
n similarly to Z1, . . . , Zn

but as functions of X ′
1, X2, . . . , Xn. Since Zj is a function of Xj (i.e., once we know Xj we know

Zj), we know Z̃j = Z̃ ′
j for all j ̸= 1. Then∣∣Φ(X1, . . . , Xn)− Φ(X ′

1, X2, . . . , Xn)
∣∣ = ∣∣(Z̃1 + . . .+ Z̃n

)
−
(
Z̃ ′
1 + Z̃2 + . . .+ Z̃n

)∣∣∣
= |Z̃1 − Z̃ ′

1| ≤ 2ϵ.

According to Lemma A.1 with c = 2ϵ we derive the following inequality with probability at least
1− (e− 2)δ/e ∣∣∣ n∑

i=1

Z̃i

∣∣∣ ≤ ϵ∆n

√
2n log(2e/((e− 2)δ)). (A.1)

According to the assumption Pr{|Zi| > ϵ̃} ≤ 2 exp(−ϵ̃2/b), we know with probability at least
1− 2δ/(en)

|Zi| ≤
√
b log(en/δ). (A.2)

We fix ϵ =
√
b log(en/δ). We now assume that Eq. (A.1) and Eq. (A.2) hold for all i ∈ [n], which

happen with probability at least 1 − δ. Under this event, we have Zi = Z̃i and (for simplicity we
assume n ≥ 2/(e− 2))∣∣∣ n∑

i=1

Zi

∣∣∣ = ∣∣∣ n∑
i=1

Z̃i

∣∣∣ ≤ ∆n

√
2nb log(en/δ) log(2e/((e− 2)δ)) ≤

√
2nb∆n log(en/δ).

The following inequality then holds with probability at least 1− δ∣∣∣ n∑
i=1

Zi −
√
2nb∆n log(n)

∣∣∣ ≤ √
2nb∆n log(e/δ).

According to Lemma A.2, for any p ≥ 1 it holds that∥∥∥ n∑
i=1

Zi −
√
2nb∆n log(n)

∥∥∥
p
≤ 9p

√
2nb∆n.

The stated bound follows directly. The proof is completed.

B PROOF OF THEOREM 2

We follow the framework in Bousquet et al. (2020) to prove Theorem 2.

Proof of Theorem 2. Without loss of generality, we assume n = 2k. Consider a sequence of partitions
B0, . . . ,Bk with Bk = {1, 2, . . . , 2k}. We then obtain Bl from Bl+1 by splitting each subset in Bl+1

into two equal parts. In this way, we get

B0 = {{1}, {2}, . . . , {2k}}, B1 = {{1, 2}, {3, 4}, . . . , {2k − 1, 2k}}, . . . ,Bk = {[n]}.
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For each i ∈ [n] and l = 0, 1, . . . , k, denote by Bl(i) ∈ Bl the only set from Bl that contains i. In
particular, B0(i) = {i} and Bk(i) = [n].

For each i ∈ [n] and each l = 0, 1, . . . , k, introduce the random variables
gli = gli(Zi, Z[n]\Bl(i)) = E[gi|Zi, Z[n]\Bl(i)].

That is, we condition on Zi and all the variables that are not in the same set as Zi in the partition Bl.
One can check that g0i = gi and gki = E[gi|Zi]. We can write a telescopic sum for each i ∈ [n]

gi = E[gi|Zi] +

k−1∑
l=0

(gli − gl+1
i ).

It then follows from the triangle inequality that∥∥∥ n∑
i=1

gi

∥∥∥
p
≤
∥∥∥ n∑

i=1

E[gi|Zi]
∥∥∥
p
+

k−1∑
l=0

∥∥∥ n∑
i=1

(gli − gl+1
i )

∥∥∥
p
. (B.1)

Since |E[gi|Zi]| ≤ M , one can check that Φ(Z1, . . . , Zn) =
∑n

i=1 E[gi|Zi] is 2M -Lipschitz w.r.t.
the Hamming distance. Furthermore, we have E[E[gi|Zi]] = 0. Now we can apply Lemma A.1 with
c = 2M to derive the following inequality with at least 1− δ∣∣ n∑

i=1

E[gi|Zi]
∣∣ ≤M∆n

√
2n log(2/δ).

It then follows from Lemma A.2 that∥∥ n∑
i=1

E[gi|Zi]
∥∥
p
≤ 3M∆n

√
2pn. (B.2)

According to the definition of gli, one can see that
EZ

Bl+1(i)\Bl(i)
[gli] = gl+1

i .

Furthermore, according to our assumption we know gli as a function of Zj , j ∈ Bl+1(i)\Bl(i)
satisfies the β-Lipschitz continuity w.r.t. the Hamming distance. Therefore, one can apply Lemma
A.1 with c = β and Φ = gli to derive the following inequality with (there are 2l random variables)

Pr
{
|gli − gl+1

i | ≥ ϵ̃
}
≤ 2 exp

(
− 2ϵ̃2

β2 · 2l∆2
2l

)
, (B.3)

where the probability is w.r.t. ZBl+1(i)\Bl(i).

Let us consider the sum
∑

i∈Bl(gli − gl+1
i ) for any Bl ∈ Bl. Note Z ′

i := gli − gl+1
i is a function of

Zi, Z[n]\Bl . We now condition on Z[n]\Bl and then Z ′
i is a function of Zi. According to Eq. (B.3),

we can apply Theorem 1 with b = 2l−1β2∆2
2l to derive the following inequality

E
[∥∥∑

i∈B

(gli − gl+1
i )

∥∥
p
|Z[n]\Bl

]
≤ (9 + log(|Bl|))p

√
2l|Bl|β2∆2

2l
∆2

|Bl|

= (9 + l)p
√
22lβ2∆4

2l
= (9 + l)p2lβ∆2

2l .

We now take integration w.r.t. Z[n]\Bl and get∥∥ ∑
i∈Bl

(gli − gl+1
i )

∥∥
p
≤ (9 + l)p2lβ∆2

2l .

According to the triangle inequality, we further get∥∥ ∑
i∈[n]

(gli − gl+1
i )

∥∥
p
≤
∑

Bl∈Bl

∥∥∥ ∑
i∈Bl

(gli − gl+1
i )

∥∥∥
p
≤ 2k−l · (9 + l)p2lβ∆2

2l = (9 + l)2kpβ∆2
2l ,

where we have used the fact that |Bl| = 2k−l. It follows that
k−1∑
l=0

∥∥∥ n∑
i=1

(gli − gl+1
i )

∥∥∥
p
≤ 2kpβ

k−1∑
l=0

(9 + l)∆2
2l .

We can plug Eq. (B.2) and the above inequality back into Eq. (B.1) to derive∥∥∥ n∑
i=1

gi

∥∥∥
p
≤ 3M∆n

√
2pn+ 2kpβ

k−1∑
l=0

(9 + l)∆2
2l .

The proof is completed.
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C PROOF OF THEOREM 5

To prove Theorem 5, we require the following lemma to control the difference between two test
errors: one with the test example drawn from the mixing sequence and one with the test example
drawn from the independent stationary distribution. Let Sb = {z1, . . . , zn−b} be the sequence by
removing the last b points of S.
Lemma C.1 (Mohri & Rostamizadeh 2010). Let F (wS) = Ez [f (wS ; z) | S] denote the expectation
in the dependent case (i.e., z depends on S) and F̃ (wSb

) = Ez̃ [f (wSb
; z̃)] denote the expectation

where the test points are assumed independent of the training data (i.e., z̃ is independent of S). If A
is β-uniformly stable and f(w; z) ∈ [0,M ], then the following inequality holds for any b > 0∣∣Ez̃[f(wSb

; z̃)]− Ez[f(wS ; z) | S]
∣∣ ≤ bβ +Mφ(b).

Proof of Lemma 4. Let z′i (resp. z′′i ) be drawn from the same distribution of zi, i.e., the condi-
tional distribution of z′i (resp. z′′i ) given z1, . . . , zi−1, zi+1, . . . , zn is the same as that of zi given
z1, . . . , zi−1, zi+1, . . . , zn. Let Si,b = {z1, . . . , zi−b−1, zi, zi+b+1, . . . , zn−b}. For any i ∈ [n], let
Si
i,b = {z1, . . . , zi−b−1, z

′
i, zi+b+1, . . . , zn−b}. We have the following decomposition

n∑
i=1

(
Ez′′

i
[f(wSi,b

; z′′i )]− f(wSi,b
; zi)

)
=

n∑
i=1

(
Ez′′

i
[f(wSi,b

; z′′i )]− Ez′
i
Ez′′

i
[f(wSi

i,b
; z′′i )]

)
+

n∑
i=1

Ez′
i

[
Ez′′

i
[f(wSi

i,b
; z′′i )]− f(wSi

i,b
; zi)

]
+

n∑
i=1

Ez′
i

[
f(wSi

i,b
; zi)− f(wSi,b

; zi)
]
.

According to the definition of β-uniform stability we know∣∣∣ n∑
i=1

(
Ez′′

i
[f(wSi,b

; z′′i )]− f(wSi,b
; zi)

)∣∣∣ ≤ 2βn+
∣∣∣ n∑
i=1

Ez′
i

[
Ez′′

i
[f(wSi

i,b
; z′′i )]− f(wSi

i,b
; zi)

]∣∣∣.
(C.1)

For any i ∈ [n], introduce

gi = Ez′
i

[
Ez′′

i
[f(wSi

i,b
; z′′i )]− f(wSi

i,b
; zi)

]
.

Then, we have ∣∣∣ n∑
i=1

(
Ez′′

i
[f(wSi,b

; z′′i )]− f(wSi,b
; zi)

)∣∣∣ ≤ 2βn+
∣∣∣ n∑
i=1

gi

∣∣∣. (C.2)

According to Lemma C.1 we know∣∣F (wS)− Ez̃[f(wSi,b
; z̃)]

∣∣ ≤ 3bβ +Mφ(b).

By the definition of φ′, we know∣∣Ez′′
i
[f(wSi,b

; z′′i )]− Ez̃[f(wSi,b
; z̃)]

∣∣ ≤Mφ′(b).

Furthermore, the definition of stability implies
|f(wSi,b

; zi)− f(wS ; zi)| ≤ 3bβ.

We combine the above three inequalities together and derive
n∑

i=1

|F (wS)−Ez′′
i
[f(wSi,b

; z′′i )]|+
n∑

i=1

∣∣f(wSi,b
; zi)− f(wS ; zi)

∣∣ ≤ (6bβ+Mφ(b)+Mφ′(b))n.

Combining the above inequality and Eq. (C.1), we obtain∣∣n(F (wS)− FS(wS))
∣∣

≤
∣∣∣ n∑
i=1

(
Ez′′

i
[f(wSi,b

; z′′i )]− f(wSi,b
; zi)

)∣∣∣+ n∑
i=1

|F (wS)− Ez′′
i
[f(wSi,b

; z′′i )]|+
n∑

i=1

∣∣f(wSi,b
; zi)− f(wS ; zi)

∣∣
≤ (6b+ 2)nβ + n(Mφ(b) +Mφ′(b)) +

∣∣ n∑
i=1

gi
∣∣.

The proof is completed.
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Proof of Theorem 5. Recall the definition of gi,
gi = Ez′

i

[
Ez′′

i
[f(wSi

i,b
; z′′i )]− f(wSi

i,b
; zi)

]
.

Since zi and z′′i follow from the same distribution, we know
E[gi|zn\i] = 0.

One can check other assumptions in Theorem 2 also hold. Therefore, one can apply Theorem 2 to
derive the following inequality with probability at least 1− δ∥∥∥ n∑

i=1

gi

∥∥∥
p
≤ 3M∆n

√
2pn+ 2k+1pβ

k−1∑
l=0

(9 + l)∆2
2l ,

where k = ⌈log2 n⌉. According to Lemma A.2 we further get the following inequality with probability
at least 1− δ

n∑
i=1

gi ≤ e
(
3M∆n

√
2n log(e/δ) + 2k+1β

k−1∑
l=0

(9 + l)∆2
2l log(e/δ)

)
. (C.3)

According to Lemma 4, we know∣∣n(F (wS)− FS(wS))
∣∣ ≤ (6b+ 2)nβ + n(Mφ(b) +Mφ′(b)) +

∣∣ n∑
i=1

gi
∣∣.

We can combine the above inequality with Eq. (C.3) to derive the following inequality with probability
at least 1− δ

n
(
F (wS)− FS(wS)

)
≤ e
(
3M∆n

√
2n log(e/δ) + 2k+1β

k−1∑
l=0

(9 + l)∆2
2l log(e/δ)

)
+ (6b+ 2)nβ + n(Mφ(b) +Mφ′(b)).

The proof is completed.

D PROOF OF APPLICATIONS

D.1 PROOF OF COROLLARY 6

To prove Corollary 6, we require the following lemma on the uniform stability of kernel regulariza-
tion (Bousquet & Elisseeff, 2002).
Lemma D.1 (Bousquet & Elisseeff 2002). Let the loss function f be L-Lipschitz and convex. Let the
algorithm A be defined in (5.2). Then A is β-uniformly stable with β ≤ L2

λn .

Proof of Corollary 6. Let A be the algorithm which returns wS,λ. By Lemma D.1, we know A is
β-uniformly stable, where β ≤ L2

nλ . Plugging the above inequality into Theorem 5, we derive the
following inequality with probability at least 1− δ∣∣F (wS,λ)− FS(wS,λ)

∣∣ ≤ 2(3b+ 1)L2

nλ
+Mφ(b) +Mφ′(b)

+ 3eM∆n

√
2

n
log(e/δ) +

2eL2

nλ

k−1∑
l=0

(9 + l)∆2
2l log(e/δ).

By Lemma A.1, we have the following inequality with probability at least 1− δ

FS(w
∗)− F (w∗) = O

(∆n log
1
2 (1/δ)√
n

)
.

Furthermore, we have the following error decomposition
F (wS,λ)− F (w∗) + λ∥wS,λ∥2K
= F (wS,λ)− FS(wS,λ) + FS(wS,λ)− FS(w

∗) + λ∥wS,λ∥2K − λ∥w∗∥2K + λ∥w∗∥2K + FS(w
∗)− F (w∗)

≤ F (wS,λ)− FS(wS,λ) + FS(w
∗)− F (w∗) + λ∥w∗∥2K ,

where we have used the definition of wS,λ. We can combine the above three inequalities together to
derive the stated bound. The proof is completed.
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D.2 PROOF OF COROLLARY 7 AND COROLLARY 8

First, we prove the stability bound for convex loss minimization via SGD. Then, we apply the stability
bound and Theorem 5 to the generalization bound. To develop high-probability bounds, we need to
introduce a concentration inequality (Wainwright, 2019).
Lemma D.2 (Chernoff’s Bound). Let X1, . . . , Xt be independent random variables taking values
in {0, 1}. Let X =

∑t
j=1Xj and µ = E[X]. Then for any δ̃ > 0 with probability at least

1− exp
(
− µδ̃2/(2 + δ̃)

)
we have X ≤ (1 + δ̃)µ. Furthermore, for any δ ∈ (0, 1) with probability

at least 1− δ we have
X ≤ µ+ log(1/δ) +

√
2µ log(1/δ).

Proof of Corollary 7. Let S and S′ be two samples of size n differing in only a single example.
Consider the gradient updates w1, . . . ,wT and w′

1, . . . ,w
′
T induced by running SGD on sample S

and S′. We now suppose S and S′ differ by the first example and apply the Lipschitz condition on
f(·; z) to get

|f (wT ; z)− f (w′
T ; z)| ≤ L [δT ] , (D.1)

where δT = ∥wT −w′
T ∥. Observe that at step t, with probability 1− 1/n, the example selected by

SGD is the same in both S and S′. The convexity and γ-smoothness imply that (Hardt et al., 2016)

⟨∇f(v, z)−∇f(w, z),v −w⟩ ≥ 1

γ
∥∇f(v, z)−∇f(w, z)∥2 (D.2)

If it ̸= 1, by ηt ≤ 2/γ we know∥∥wt+1 −w′
t+1

∥∥2
= ∥wt −w′

t∥2 − 2ηt⟨∇f(wt, zit)−∇f(w′
t, z

′
it),wt −w′

t⟩+ η2t ∥∇f(wt, zit)−∇f(w′
t, z

′
it)∥

2

≤ ∥wt −w′
t∥2 −

(
2ηt
γ

− η2t

)
∥∇f(wt, zit)−∇f(w′

t, z
′
it)∥

2

≤ ∥wt −w′
t∥2. (D.3)

With probability 1/n, the example selected is different, i.e. it = 1. Then, by the triangle equality and
Eq. D.3,∥∥wt+1 −w′

t+1

∥∥
= ∥wt − ηt∇f(wt, zit)− (w′

t − ηt∇f(w′
t, zit)∥+ ηt∥∇f(w′

t, z
′
it)−∇f(w′

t, zit)∥
≤ ∥wt −w′

t∥+ 2ηtL.

(D.4)

Combining the above two cases, we can conclude that for every t,∥∥wt+1 −w′
t+1

∥∥ ≤ ∥wt −w′
t∥+ 2ηtLI[it=1], (D.5)

where I denotes the indicator function. Solving recursive inequality gives,∥∥wt+1 −w′
t+1

∥∥ ≤ 2L

t∑
k=1

ηkI[ik=1] ≤ 2Lη

t∑
k=1

I[ik=1]. (D.6)

We can apply Lemma D.2 withXk = I[ik=1], µ = t/n to get the following inequality with probability
at least 1− δ

t∑
k=1

I[ik=1] ≤ t/n+ log(1/δ) +
√
2tn−1 log(1/δ).

Therefore, with probability at least 1− δ, there holds∥∥wt+1 −w′
t+1

∥∥ ≤ 2Lη(t/n+ log(1/δ) +
√

2tn−1 log(1/δ)).

By the convexity of the norm ∥ · ∥, we get the following inequality with probability at least 1− δ

∥wS −w′
S∥ ≤ 2Lη(T/n+ log(1/δ) +

√
2Tn−1 log(1/δ)).

Plugging the inequality back into Eq. (D.1), we obtain that, with probability at least 1− δ

|f (wS ; z)− f (w′
S ; z)| ≤ 2L2η(T/n+ log(1/δ) +

√
2Tn−1 log(1/δ)). (D.7)
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We can combine Eq. (D.7) and Theorem 5 to obtain the following inequality with probability at least
1− δ∣∣n(F (wS)− FS(wS))

∣∣ (D.8)

≤ 4nL2η(3b+ 1)(T/n+ log(2/δ) +
√
2Tn−1 log(2/δ)) + 3eM∆n

√
2n log(2e/δ)

+ 4nL2ηe
(
T/n+ log(2/δ) +

√
2Tn−1 log(2/δ)

) k−1∑
l=0

(9 + l)∆2
2l log(

2e

δ
) + nM(φ(b) + φ′(b)).

By the choice of T ≍ n, we can get

∣∣n(F (wS)−FS(wS))
∣∣ = O

(
nη(b+1) log(1/δ)+nMφ′(b)+∆n

√
n log(1/δ)+nη log2(1/δ)

k−1∑
l=0

l∆2
2l

)
.

The proof is completed.

To prove excess risk bounds, we require the following high-probability bound on optimization error.
Notice that optimization error analysis does not depend on the mixing property of the dataset since
the randomness is taken with respect to the random indices.

Lemma D.3 (Optimization Error (Lei & Tang, 2018)). Assume that the loss function f(·; z) is convex
and L-Lipschitz for every z. Suppose that we run SGD with step sizes ηt = η ≍ 1√

T
then with

probability at least 1− δ we have

FS(wS)− inf
w
FS(w) = O(T− 1

2 log
3
2 (T/δ)).

Proof of Corollary 8. By Corollary 7, we know with probability at least 1− δ that

∣∣F (wS)− FS(wS)
∣∣ = O

(
ηb log(1/δ) + η

k−1∑
l=0

l∆2
2l log

2(1/δ) +Mφ′(b) + ∆n

√
log(1/δ)

n

)
.

By Lemma A.1, we have the following inequality with probability at least 1− δ

FS(w
∗)− F (w∗) = O

(∆n log
1
2 (1/δ)√
n

)
.

Lemma D.3 shows the following inequality with probability at least 1− δ

FS(wS)− inf
w
FS(w) = O(T− 1

2 log
3
2 (T/δ)).

We plug the above three inequalities back into Eq. (5.1), and derive the following inequality with
probability at least 1− 3δ

F (wS)− F (w∗) = O

(
n−

1
2 b log(1/δ) + n−

1
2

k−1∑
l=0

l∆2
2l log

2(1/δ)

+Mφ′(b) +
∆n log

1
2 (1/δ) + log

3
2 (n/δ)√

n

)
.

The proof is completed.

D.3 PROOF OF COROLLARY 9

In this section, we present the proof on the stability of the iterative localization technique. To this
aim, we first present Algorithm 1.
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Algorithm 1: Iterative Localized Algorithm

Input: initial point w0 = 0, parameter γ > 0,m =
⌈
1
2 log2 n

⌉
1 for i = 1, 2, . . . ,m do
2 set Ti ≍ n, γi =

γ
2i , ηt =

γin
t+1 , t ∈ N

3 draw a sample Si of size n from the mixing distribution
4 apply SGD with Ti iterations and step size ηt to minimize the following problem and get wi

F̃Si
(w) :=

1

n

∑
z∈Si

f(w; z) +
1

γin
∥w −wi−1∥2 .

5 end

Then we move to generalization bound for Corollary 9. To this aim, We need to introduce some
definitions for our proof. For any i, let

ŵi = argmin
w

F̃Si(w), (D.9)

where F̃Si is defined in Algorithm 1.

Lemma D.4 (Optimization Error Bound). Suppose that the function w 7→ f(w; z) is µ-strongly
convex (with respect to ∥ · ∥) and L-Lipschitz. Let {wt}t be produced by SGD on sample S and step

size ηt = 2/(µ(t+ 1)) to minimize FS(w) = 1
n

∑n
i=1 f(w; zi). Set w̄′

t =
(∑t

j=1 jwj

)
/
∑t

j=1 j.

Then, for any δ ∈ (0, 1), with probability at least 1− δ,

FS (w̄′
t)− FS(w) = O(log(1/δ)/(tµ)).

The proof of Lemma D.4 can be found in Harvey et al. (2019). According to Algorithm 1, wi is the
output by SGD with ηt = γin/(t + 1) to minimize F̃Si(w), with the iterates weighted as Lemma
D.4. The following lemma establishes the bound of Euclidean distance of wi and ŵi.

Lemma D.5. Suppose that the function w 7−→ f(w; z) is L-Lipschitz and µ-strongly convex. For
any δ ∈ (0, 1), the following inequality holds with probability at least 1− δ

∥ŵi −wi∥ = O
(√

nγi log
1
2 (1/δ)

)
.

Proof. From Algorithm 1, we know that F̃Si
is λi := 2/ (γin)-strongly convex. According to

Lemma D.4, the following inequality holds with probability at least 1− δ

F̃Si
(wi)− F̃Si

(ŵi) = O (log(1/δ)/ (Tiλi)) = O (log(1/δ)/ (nλi)) .

It then follows from the definition of ŵi and the strong convexity that

λi
2
∥ŵi −wi∥2 ≤ F̃Si

(wi)− F̃Si
(ŵi) = O (log(1/δ)/ (nλi))

and therefore
∥ŵi −wi∥2 = O

(
log(1/δ)/

(
nλ2i

))
= O

(
nγ2i log(1/δ)

)
.

The proof is completed.

Lemma D.6 (Bousquet & Elisseeff 2002). Suppose the function f : W ×Z 7→ R takes a structure
f = ℓ + r, where ℓ : W ×Z 7→ R and r : W 7→ R. Assume for all z, we have ∥∇ℓ (w; z)∥ ≤ L.
Suppose FS = 1

n

∑n
i=1 f(w; zi) is µ-strongly convex and define A as A(S) = argminw∈W FS(w).

Then A is 4L2

nµ -uniformly stable.

Lemma D.7. Assume for any z,w 7→ f(w; z) is L-Lipschitz. Let ŵi be defined in Eq. (D.9). With
probability at least 1− δ/(2m) we have the following inequality uniformly for any w

F̃i(ŵi)−F̃i(w) = O
(∆n log

1
2 (2m/δ)√
n

+
bγi
2

+Mφ′(b)+
γi
∑k−1

l=0 l∆
2
2l log(2m/δ)

2

)
+
2∥w −wi−1∥2

γin
,

where k = ⌈log2 n⌉.
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Proof. For any i, define

F̃i(w) = Ez[f(w; z)] +
1

γin
∥w −wi−1∥2

and w∗
i = argminw F̃i(w), where we assume z is independently drawn from the stationary distribu-

tion of mixing sequence. Let Ai be the algorithm outputting the minimizer of F̃Si
. We know F̃Si

is λi = 2/(γin)-strongly convex. Then analysis similar to Corollary 6 implies the stated inequality
with probability at least 1− δ/(2m). The proof is completed.

Based on the above lemmas, we now turn to proving Corollary 9.

Proof of Corollary 9. Let ŵ0 = w∗ and ŵi be defined by Eq. (D.9). We can decompose F (wm)−
F (w∗) by

F (wm)− F (w∗) =

m∑
i=1

(
F (ŵi)− F (ŵi−1)

)
+ F (wm)− F (ŵm). (D.10)

Since f isL lipschitz, Lemma D.5 implies the following inequality with probability at least 1−δ/(2m)

F (wm)− F (ŵm) ≤ L∥wm − ŵm∥ = O(
√
nγm log

1
2 (1/δ)). (D.11)

Furthermore, we can apply Lemma D.7 with w = ŵi−1 to derive the following inequality with
probability at least 1− δ/(2m)

F̃i(ŵi)−F̃i(ŵi−1) = O
(∆n log

1
2 (2m/δ)√
n

+
bγi
2

+Mφ′(b)+γi

k−1∑
l=0

l∆2
2l log(2m/δ)

)
+
2∥ŵi−1 −wi−1∥2

γin
.

The following inequality then holds with probability at least 1− δ/2

m∑
i=1

(
F (ŵi)− F (ŵi−1)

)
=

m∑
i=1

O
(∆n log

1
2 (2m/δ)√
n

+ bγi +Mφ′(b) + γi

k−1∑
l=0

l∆2
2l log(2m/δ) +

∥ŵi−1 −wi−1∥2

γin

)
.

By Lemma D.5, we further get the following inequality with probability at least 1− δ

m∑
i=1

(
F (ŵi)− F (ŵi−1)

)
=

m∑
i=1

O
(∆n log

1
2 (2m/δ)√
n

+ bγi +Mφ′(b) + γi

k−1∑
l=0

l∆2
2l log(2m/δ) +

nγ2i−1 log(1/δ)

γin

)
=

m∑
i=1

O
(∆n log

1
2 (2m/δ)√
n

+ bγi +Mφ′(b) + γi

k−1∑
l=0

l∆2
2l log(2m/δ) + γi−1 log(1/δ)

)
= O

(m∆n log
1
2 (2m/δ)√
n

+ bγ +mMφ′(b) + γ

k−1∑
l=0

l∆2
2l log(2m/δ) + γ log(1/δ)

)
,

where in the last two steps we have used γi = γ/2i. We can plug the above inequality and Eq. (D.11)
back into Eq. (D.10), and derive the following inequality with probability 1− δ

F (wm)− F (w∗) = O
(m∆n log

1
2 (2m/δ)√
n

+ bγ +mMφ′(b) + γ

k−1∑
l=0

l∆2
2l log(2m/δ)

+
√
nγm log

1
2 (1/δ)

)
.

This gives the stated bound. The proof is completed.
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E PROOF OF LEMMA 3

Proof of Lemma 3. For simplicity, we only consider discrete random variables. Let A ∈ σn−k
−∞ , B ∈

σ∞
n+k and Zn, z ∈ σn

n . According to the definition of mixing sequence, we know

1− ψ(k) ≤ Pr(A|B)

Pr(A)
≤ ψ(k) + 1. (E.1)

By Eq. (E.1) we know

Pr(Zn|A,B) =
Pr(Zn, A,B)

Pr(A,B)
=

Pr(Zn, A,B)∑
z Pr(z,A,B)

=
Pr(A)Pr(Zn|A)Pr(B|A,Zn)∑

z Pr(A)Pr(z|A)Pr(B|A, z)
=

Pr(Zn|A)Pr(B|A,Zn)∑
z Pr(z|A)Pr(B|A, z)

≥ Pr(Zn|A)Pr(B|A,Zn)∑
z Pr(z|A)

(
Pr(B) + ψ(k)Pr(B)

) =
Pr(Zn|A)Pr(B|A,Zn)

Pr(B) + ψ(k)Pr(B)

≥ Pr(Zn|A)Pr(B)(1− ψ(k))

Pr(B) + ψ(k)Pr(B)
=

Pr(Zn|A)(1− ψ(k))

1 + ψ(k)

≥ Pr(Zn)(1− ψ(k))2

1 + ψ(k)
.

It then follows that

Pr(Zn|A,B)− Pr(Zn) ≥
Pr(Zn)(1− ψ(k))2

1 + ψ(k)
− Pr(Zn) = Pr(Zn)

( (1− ψ(k))2

1 + ψ(k)
− 1
)
.

In a similar way, one can show

Pr(Zn|A,B)− Pr(Zn) ≤ Pr(Zn)
( (1 + ψ(k))2

1− ψ(k)
− 1
)
.

The proof is completed by combining the above two inequalities together.

21


	Introduction
	Related Work
	Concentration Inequalities for -mixing Sequences
	Stability and Generalization
	Applications
	Kernel Regularization Schemes
	Stochastic Gradient Descent
	Iterative Localized Algorithm

	Conclusions
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 5
	Proof of Applications
	Proof of Corollary 6
	Proof of Corollary 7 and Corollary 8 
	Proof of Corollary 9

	Proof of Lemma 3

