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Abstract

Detecting out-of-distribution (OOD) objects is indispensable for safely deploying
object detectors in the wild. Although distance-based OOD detection methods have
demonstrated promise in image classification, they remain largely unexplored in
object-level OOD detection. This paper bridges the gap by proposing a distance-
based framework for detecting OOD objects, which relies on the model-agnostic
representation space and provides strong generality across different neural architec-
tures. Our proposed framework SIREN contributes two novel components: (1) a
representation learning component that uses a trainable loss function to shape the
representations into a mixture of von Mises-Fisher (vMF) distributions on the unit
hypersphere, and (2) a test-time OOD detection score leveraging the learned vMF
distributions in a parametric or non-parametric way. SIREN achieves competitive
performance on both the recent detection transformers and CNN-based models, im-
proving the AUROC by a large margin compared to the previous best method. Code
is publicly available at https://github.com/deeplearning-wisc/siren.

1 Introduction

Teaching object detectors to be aware of out-of-distribution (OOD) data is indispensable for building
reliable AI systems. Today, the mainstream object detection models have been operating in the
closed-world setting. That is, a model will match an object to one of the given class labels, even if
it is irrelevant. Instead, the open-world setting emphasizes that objects from the unknown classes
can naturally emerge, which should not be blindly predicted into a known class. In safety-critical
applications, such as autonomous driving, failing to detect OOD objects on the road can directly lead
to disastrous accidents [50]. The situation can be better avoided if the object detector recognizes the
object as unfamiliar and appropriately cautions the human driver to take over.

In this paper, we pioneer a distance-based framework for detecting OOD objects. Currently, the
distance-based method remains largely unexplored in object-level OOD detection. In particular, by
operating in the representation space, distance-based methods are model-agnostic and provide strong
generality across neural architectures. In contrast, existing approaches derive highly specialized OOD
detection scores based on the outputs of the object detectors, which may not be seamlessly applicable
across architectures. For example, the classification output of the Faster R-CNN [52] is optimized by
the multi-class softmax loss, whereas the recent transformer-based object detection networks such
as DEFORMABLE-DETR [75] uses multi-label focal loss [36]. Thereby, while output-based OOD
scoring functions may be limited to specific architectures, distance-based methods are not.

Although distance-based OOD scoring functions have been studied in image classification, they do not
trivially transfer to object detection models. For example, [33] modeled the feature embedding space
as a mixture of multivariate Gaussian distributions and used the maximum Mahalanobis distance [41]
to all class centroids for OOD detection. However, we observe that the modern object detection
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Figure 1: (a) Feature embeddings from the penultimate layer of a vanilla DEFORMABLE-DETR [75] trained
on the PASCAL-VOC dataset [14], which display irregular distributions. (b) Feature embeddings shaped by the
proposed SIREN, which form compact clusters on the unit hypersphere.

models such as DEFORMABLE-DETR [75] produce highly irregular embeddings (Figure 1 (a)), which
do not fit the Gaussian distributional assumption. As a result, the OOD detection score relying on
such suboptimal embeddings can misbehave.

We propose a novel framework called SIREN, tackling two highly dependent problems—representation
learning and OOD detection—in one synergistic framework. Concretely, SIREN contributes two novel
components: (1) We introduce an end-to-end trainable loss that enables ShapIng the RepresENtations
into a desired parametric form (Section 3.1). In particular, we model the representations by the
von Mises-Fisher (vMF) distribution, a classic probability distribution in directional statistics for
hyperspherical data with the unit norm. Our loss function encourages the normalized embedding
to be aligned with its class prototype and shapes the overall representations into compact clusters
for each class. Compared to the Gaussian distribution, using the vMF distribution avoids estimating
large covariance matrices for high-dimensional data that is shown to be costly and unstable [7, 65].
(2) We explore test-time OOD detection by leveraging the optimized embeddings in a parametric or
non-parametric way (Section 3.2). We propose a new test-time OOD score based on the learned class-
conditional vMF distributions. The parameterization of the vMF distribution is directly obtainable
after training, without requiring separate estimation. Different from Mahalanobis distance [33],
the proposed parametric score in principle suits the learned vMF distributions on the hypersphere.
Additionally, we explore a non-parametric nearest neighbor distance for OOD detection [60], which
is agnostic to the type of distribution of the feature space.

Empirically, SIREN establishes superior performance on both transformer-based and CNN-based
models. On PASCAL-VOC, SIREN outperforms the latest baseline OW-DETR [18] by a significant
margin (↑22.53% in AUROC). Moreover, our framework is model-agnostic and does not incur
changes to the existing network architecture. The proposed loss can be flexibly added as a plug-in
module on top of modern architectures, as we show in Section 4.

Our key contributions are summarized as follows:

1. To the best of our knowledge, SIREN pioneers a distance-based approach for object-level
OOD detection. Different from previous works, SIREN does not rely on specialized output-
based OOD scores, and can generalize across different architectures in a model-agnostic
fashion.

2. SIREN establishes competitive results on a challenging object-level OOD detection task.
Compared to the latest method [18], SIREN improves the OOD detection performance by
a considerable margin while preserving the mAP on the ID task. We show that SIREN is
effective for both recent transformer-based and classic CNN-based models.

3. We shape representations via a novel vMF-based formulation for object-level OOD detection.
We conduct in-depth ablations to understand how different factors impact the performance
of SIREN (Section 5).
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Figure 2: Overview of the proposed learning framework SIREN. We introduce a new loss LSIREN which
shapes the representations on the unit hypersphere into compact class-conditional vMF distributions. The
embedding r ∈ Rd has unit norm ∥r∥2 = 1. In testing, we can employ either parametric or non-parametric
distance functions for OOD detection. See Section 3 for details.

2 Preliminaries: Object-level OOD Detection

We start by introducing the OOD detection problem for object detection in the open-world setting,
which has received increasing research attention lately [13, 18]. Our goal is to train object detection
networks that can simultaneously: (1) localize and classify objects belonging to known categories
accurately, and (2) identify unfamiliar objects outside the training categories. Compared to image-
level OOD detection, object-level OOD detection is more suitable for real-world machine learning
systems, yet also more challenging as it requires reasoning OOD uncertainty at the fine-grained object
level. Since natural images are composed of multiple objects, knowing which regions of an image are
anomalous allows for safe handling of unfamiliar objects.

Notations. We denote the input and label space by X = Rq and Y = {1, 2, ..., C}, respectively.
Let x ∈ X be the input image, b ∈ R4 be the bounding box coordinates associated with objects
in the image, and y ∈ Y be the semantic label of the object. An object detection model is trained
on ID dataset Din

tr = {(xi,bi, yi)}Mi=1 drawn from an unknown joint distribution P . We use neural
networks with parameters θ to model the bounding box regression pθ(b|x) and the classification
pθ(y|x,b).

Object-level OOD detection. The OOD detection can be formulated as a binary classification
problem, distinguishing between the in- vs. out-of-distribution objects. Let PX denote the marginal
probability distribution on X . Given a test input x′ ∼ PX , as well as an object b′ predicted by the
object detector, the goal is to predict a binary outcome g(x′,b′). We use g = 1 to indicate a detected
object being ID, and g = 0 being OOD, with semantics outside the support of Y .

3 Proposed Method

Overview. Our framework SIREN is illustrated in Figure 2, which trains an object detector in
tandem with a representation-shaping branch. The object detector backbone f : X 7→ Rm maps an
object to its feature embedding h(x,b) ∈ Rm (often referred to as the penultimate layer). In addition,
we introduce a new MLP projection head ϕ : Rm 7→ Rd that maps the h(x,b) to a lower-dimensional
embedding r ∈ Rd (d < m) with unit norm ∥r∥2 = 1. The normalized embeddings are also referred
to as hyperspherical embeddings, since they are on a unit hypersphere. In designing SIREN, we
address two key challenges: (1) How to shape the hyperspherical representations into desirable
probability distributions during training time (Section 3.1)? (2) How to perform test-time OOD
detection by leveraging the learned distributions (Section 3.2)? Our method does not incur any change
to the object detection network backbone. The proposed regularization can be flexibly used as a
plug-in module on top of the modern architectures, as we will show in Section 4.
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3.1 SIREN: Shaping Representations

Modeling the latent distributions. We propose to model the latent representations by the von
Mises-Fisher (vMF) distribution [43], a probability distribution in directional statistics for spherical
data with unit norm ∥r∥2 = 1. The probability density function for a unit vector r in Rd is given as
follows:

pd(r;µ, κ) = Zd(κ) exp
(
κµ⊤r

)
, (1)

where κ ≥ 0, ∥µ∥2 = 1, and the normalization factor Zd(κ) is defined as:

Zd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
, (2)

where Iv is the modified Bessel function of the first kind with order v. Zd(κ) can be calculated in
closed form based on κ and the dimensionality d. Importantly, the vMF distribution is characterized
by two parameters: the mean vector µ and concentration parameter κ. Samples that are more aligned
with the center µ have a higher probability density, and vice versa. Here κ indicates the tightness of
the distribution around the mean direction µ. The larger value of κ, the stronger the distribution is
concentrated in the mean direction. In the extreme case of κ = 0, the sample points are distributed
uniformly on the hypersphere.

When considering multiple classes, we can model the embedding space as a mixture of class-
conditional vMF distributions, one for each class c ∈ {1, 2, ..., C}:

pcd(r;µc, κc) = Zd(κc) exp
(
κcµ

⊤
c r

)
, (3)

where κc and µc are class-conditional parameters. Under this probability model, an embedding
vector r is assigned to class c with the following normalized probability:

p(y = c|r; {κj ,µj}Cj=1) =
Zd (κc) exp

(
κcµ

⊤
c r

)∑C
j=1 Zd (κj) exp

(
κjµ⊤

j r
) . (4)

Shaping representations. Our key idea is to design an end-to-end trainable loss function that
enables ShapIng the RepresENtations into a mixture of vMF distributions, which facilitates test-time
OOD detection in the representation space (Section 3.2). We therefore name our method SIREN.
The learned mapping function projects an input to a point in the embedding space, where higher
probability is assigned to the correct class in comparison to incorrect classes. To achieve this, we can
perform maximum likelihood estimation (MLE) on the training data:

argmaxθ

M∏
i=1

p(yi|ri; {κj ,µj}Cj=1), (5)

where i is the index of the object embedding and M is the size of the training set. By taking the
negative log-likelihood, the objective function is equivalent to minimizing the following loss:

LSIREN = − 1

M

M∑
i=1

log
Zd (κyi

) exp
(
κyi

µ⊤
yi
ri
)∑C

j=1 Zd (κj) exp
(
κjµ⊤

j ri
) , (6)

where yi is the ground truth label for the embedding ri. In effect, LSIREN encourages the object
embeddings to be aligned with its class prototype, which shapes the representations such that objects
in each class form a compact cluster on the hypersphere; see Figure 1 (b).

Prototype estimation and update. During training, SIREN estimates the class-conditional object
prototypes µc, c ∈ {1, 2, ..., C}. The conventional approach for estimating the prototypes is to
calculate the mean vector of all training samples (or a subset of them) for each class, and update it
periodically during training [74]. Despite its simplicity, this method requires alternating training and
prototype estimation, which incurs a heavy computational toll and causes undesirable latency. Instead,
we update the class-conditional prototypes in an exponential-moving-average (EMA) manner [34, 63]:

µc := Normalize(αµc + (1− α)r),∀c ∈ {1, 2, . . . , C}, (7)
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Algorithm 1 SIREN: Shaping Representations for object-level OOD detection

Input: ID training data Din
tr = {(xi,bi, yi)}Mi=1, randomly initialized object detector and MLP

projection head with parameter θ, loss weight β for LSIREN, and learnable {κc}Cc=1.
Output: Object detector with parameter θ∗ and OOD detector G.
while train do

1. Update class-conditional prototypes µc with the hyperspherical embeddings r by Equation (7).
2. Calculate the vMF-based representation shaping loss LSIREN by Equation (6).
3. Update the learnable {κc}Cc=1 and the network parameters θ using Equation (8).

end
while eval do

1. Calculate the OOD score by Equation (9) or Equation (11).
2. Perform OOD detection by Equation (10).

end

where α is the prototype update factor, and r denotes the normalized object embeddings from class c.
The update can be done efficiently with negligible cost, enabling end-to-end training.

Overall training objective. The overall training objective combines the standard object detection
loss, along with our new representation shaping loss LSIREN:

min
θ,κ

E(x,b,y)∼P [Lcls + Lloc] + β · LSIREN, (8)

where β is the weight of our representation shaping loss. Lcls and Lloc are losses for classification
and bounding box regression, respectively. We provide extensive empirical evidence in Section 4
demonstrating the efficacy of our loss function.

To the best of our knowledge, our work makes the first attempt to explore vMF-based learning and
inference for object-level OOD detection. To highlight the novelty of the loss itself: we introduce a
novel learnable {κj}Cj=1 for each ID class in Equation (6), instead of using fixed values. Our loss
allows concentration parameter κ to adaptively and flexibly capture the class-conditional feature
statistics during training. This is desirable when each ID class may have its own concentration in
the hypersphere. We will later show that such learnable {κj}Cj=1 enables better OOD detection
performance (Section 5).

3.2 Test-time OOD Detection

During inference, we explore and contrast two types of uncertainty scores for detecting OOD objects.

Parametric vMF score. We propose a new test-time OOD score based on the learned class-
conditional vMF distributions, parameterized by {κ̂c,µc}Cc=1. Here κ̂c denotes the learned concen-
tration parameter for class c, which captures the concentration of representations for class c. For a
test-time object (x′,b′), we use the largest estimated class-conditional likelihood as the OOD score:

S (x′,b′) = max
c

Zd(κ̂c) exp
(
κ̂cµ

⊤
c r

′) , (9)

where r′ = ϕ(h(x′,b′)) is the normalized embedding from the MLP projection head. Our OOD
detection score thus in principle suits our learned embeddings and vMF distributions. For OOD
detection, one can use the level set to distinguish between ID and OOD objects:

G (x′,b′) =

{
1 if S (x′,b′) ≥ γ

0 if S (x′,b′) < γ
(10)

The threshold γ can be chosen so that a high fraction of ID data (e.g., 95%) is correctly classified. For
objects classified as ID, one can obtain the bounding box and class prediction using the prediction
head as usual.

Non-parametric KNN score. To relax the distributional assumption on the learned embeddings, we
additionally employ a non-parametric KNN distance for OOD detection, which performs well on
compact and normalized feature space. Following Sun et al. [60], the KNN distance is defined as:

S (x′,b′, k) = −
∥∥r′ − r(k)

∥∥
2
, (11)

where r(k) denotes the normalized embedding of the k-th nearest neighbor (in the training data), for
the test embedding r′. Our algorithm is summarized in Algorithm 1.
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 (a)  vMF score  (b)  Mahalanobis distance

Figure 3: The uncertainty surface is calculated using our vMF
score (a) and the Mahalanobis distance (b). We showcase one
class for visual clarity.

Remark 1. Different from Mahalanobis
distance [33], our parametric vMF-based
OOD detection score operates under the
same distributional model as the training
process, and hence enjoys mathematical
compatibility. Computationally, we can di-
rectly use the parameters of vMF distri-
butions (such as κ) learned from training.
In contrast, the Mahalanobis distance re-
quires a separate test-time estimation of
feature statistics—which involves an expen-
sive and numerically unstable step of cal-
culating the covariance matrix. The distinction of the uncertainty surface calculated by both our
vMF score and the Mahalanobis distance is qualitatively demonstrated in Figure 3. The data points
are sampled from a mixture of three class-conditional vMF distributions (see details in Appendix F).

4 Experiments
In this section, we validate the effectiveness of SIREN on object detection models, including the latest
transformer-based (Section 4.1) and flagship CNN-based models (Section 4.2).

Datasets. Following [13], we use PASCAL-VOC1 [14] and Berkeley DeepDrive (BDD100K)2 [73]
datasets as the ID training data. For both tasks, we evaluate on two OOD datasets that contain a
subset of images from: MS-COCO [37] and OPENIMAGES (validation set) [30]. Extensive details on
the datasets are in Appendix A.

Metrics. For evaluating the OOD detection performance, we report: (1) the false positive rate
(FPR95) of OOD objects when the true positive rate of ID samples is at 95%; (2) the area under the
receiver operating characteristic curve (AUROC). For evaluating the object detection performance on
the ID task, we report the common metric mAP.

4.1 Evaluation on Transformer-based Model

Experimental details. We adopt a very recent DEFORMABLE-DETR (DDETR) architecture [75].
DDETR introduces multi-scale deformable attention modules in the transformer encoder and decoder
layers of DETR [4], and provides better convergence and lower complexity. The multi-scale feature
maps in DDETR are extracted from a ResNet-50 [21] pre-trained on ImageNet in a self-supervised
fashion, i.e., DINO [5]. We use the embeddings at the penultimate layer of the decoder in DDETR
for projection. For the projection head, we use a two-layer MLP with a ReLU nonlinearity, with
dimensionality 256 → d → d. The dimension d of the unit hypersphere is 16 for PASCAL-VOC and
64 for BDD100K. The default weight β for the SIREN is 1.5 and the prototype update factor α is
0.95. We initialize the learnable κ to be 10 for all classes. The k in the KNN distance is set to 10.
Ablations on the hyperparameters are provided in Section 5 and Appendix C. Other hyperparameters
are the same as the default ones in DDETR [75].

SIREN achieves superior performance. In Table 1, we compare SIREN with competitive OOD
detection methods in literature. For a fair comparison, all the methods only use ID data for training.
SIREN outperforms competitive baselines, including Mahalanobis distance [33], KNN distance [60],
CSI [61], Gram matrices [53] and Dismax [39]. These baselines operate on feature embedding space,
allowing a fair comparison. Note that other common output-based methods (such as MSP [23],
ODIN [35], and energy [38]) are not directly applicable for multi-label classification networks in
DDETR. For these methods relying on a multi-class classification model, we will later provide
comparisons on the Faster R-CNN model in Section 4.2. Implementation details and the training time
for all the baseline methods are reported in Appendix D and E. We highlight a few observations:

1) The comparison between SIREN vs. Mahalanobis highlights precisely the benefits of our
embedding shaping loss LSIREN. As shown in Figure 1, the vanilla DETR model produces ill-

1PASCAL-VOC consists of the following ID labels: Person, Car, Bicycle, Boat, Bus, Motorbike, Train,
Airplane, Chair, Bottle, Dining Table, Potted Plant, TV, Sofa, Bird, Cat, Cow, Dog, Horse, Sheep.

2BDD100K consists of ID labels: Pedestrian, Rider, Car, Truck, Bus, Train, Motorcycle, Bicycle, Traffic
light, Traffic sign.
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In-distribution dataset Method FPR95 ↓ AUROC ↑ mAP (ID)↑
OOD: MS-COCO / OpenImages

PASCAL-VOC

Mahalanobis [33] 97.39 / 97.88 50.28 / 49.08 60.6
Gram matrices [53] 94.16 / 95.29 43.97 / 38.81 60.6
KNN [60] 91.80 / 91.36 62.15 / 59.64 60.6
CSI [61] 84.00 / 79.16 55.07 / 51.37 59.5
VOS [13] 97.46 / 97.07 54.40 / 52.77 60.3
OW-DETR [18] 93.09 / 93.82 55.70 / 57.80 58.3
Dismax [39] 82.05 / 76.37 75.21 / 70.66 60.1
SIREN-vMF (ours) 75.49±0.8 / 78.36±1.0 76.10±0.1 / 71.05±0.1 60.8±0.1
SIREN-KNN (ours) 64.77±0.2 / 65.99±0.5 78.23±0.2 / 74.93±0.1 60.8±0.1

BDD100K

Mahalanobis [33] 70.86 / 71.43 76.83 / 77.98 31.3
Gram matrices [53] 73.81 / 71.56 60.13 / 57.14 31.3
KNN [60] 64.75 / 61.13 80.90 / 79.64 31.3
CSI [61] 70.27 / 71.30 77.93 / 76.42 29.9
VOS [13] 76.44 / 72.58 77.33 / 76.62 31.0
OW-DETR [18] 80.78 / 77.37 70.29 / 73.78 28.1
Dismax [39] 77.62 / 81.23 72.14 / 67.18 31.2
SIREN-vMF (ours) 67.54±1.3 / 66.31±0.9 80.06±0.5 / 79.77±1.2 31.3±0.0
SIREN-KNN (ours) 53.97±0.7 / 47.28±0.3 86.56±0.1 / 89.00±0.4 31.3±0.0

Table 1: Main results. Comparison with competitive out-of-distribution detection methods. All
baseline methods are based on the same model backbone DDETR. ↑ indicates larger values are better
and ↓ indicates smaller values are better. All values are percentages. Bold numbers are superior
results. We report standard deviations estimated across 3 runs. SIREN-vMF/KNN denotes using vMF
score and KNN distance during inference.

conditioned embeddings that do not conform to multivariate Gaussian distributions, rendering the
Mahalanobis approach ineffective (with AUROC around 50%–which is random guessing). In contrast,
SIREN-vMF improves the OOD detection performance (AUROC) by 25.82% on PASCAL-VOC (MS-
COCO as OOD). Different from the Mahalanobis distance, our parametric vMF scoring function
naturally suits the learned hyperspherical embeddings with vMF distributions. The advantage of the
vMF loss can be further verified by observing that SIREN-KNN outperforms directly applying KNN
distance on the vanilla DDETR (16.08% AUROC improvement on VOC with COCO as OOD).

2) SIREN outperforms the latest methods VOS [13] and OW-DETR [18], which are designed for
object detection models and serve as strong baselines for us. Compared with OW-DETR, SIREN-KNN
substantially improves the AUROC by 22.53% on PASCAL-VOC (COCO as OOD). OW-DETR uses
the unmatched object queries with high confidence as the unknowns, and trains a binary classifier to
separate ID and unknown objects. However, the unmatched object queries might be distributionally
too close to the ID classes and thus displays limited improvement for OOD detection. In addition, VOS
synthesizes virtual outliers from the class-conditional Gaussian distributions of the penultimate layer
but fails to perform well due to the ill-conditioned embedding distribution in DDETR (non-Gaussian).

4.2 Evaluation on CNN-based Model

Method FPR95 ↓ AUROC ↑ Time

COCO/ OpenImages
MSP 70.99 / 73.13 83.45 / 81.91 2.1 h
ODIN 59.82 / 63.14 82.20 / 82.59 2.1 h

Mahalanobis 96.46 / 96.27 59.25 / 57.42 2.1 h
Energy score 56.89 / 58.69 83.69 / 82.98 2.1 h

Gram matrices 62.75 / 67.42 79.88 / 77.62 2.1 h
KNN 52.67 / 53.67 87.14 / 84.54 2.1 h
CSI 59.91 / 57.41 81.83 / 82.95 4.9 h

GAN-synthesis 60.93 / 59.97 83.67 / 82.67 3.7 h
VOS 47.53 / 51.33 88.70 / 85.23 4.3 h

Dismax 84.38 / 86.93 74.56 / 71.53 2.2 h
SIREN-vMF (ours) 64.68 / 68.53 85.36 / 82.78 2.1 h
SIREN-KNN (ours) 47.45 / 50.38 89.67 / 88.80 2.1 h

Table 2: OOD detection results of SIREN and com-
parison with competitive baselines on two OOD
datasets: COCO and OpenImages.

Going beyond detection transformers, we show
that SIREN is also suitable and effective on
CNN-based object-level OOD detection mod-
els, e.g., Faster R-CNN [52]. Table 2 show-
cases the OOD detection performance with
SIREN trained on PASCAL-VOC dataset and
evaluated on both MS-COCO and OPENIM-
AGES datasets. In addition to baselines con-
sidered in Table 1, we include common output-
based methods relying on multi-class classifi-
cation, such as MSP, ODIN, and energy score.

In Table 2, we additionally report training
time comparison. SIREN consistently improves
OOD detection performance on both OOD
datasets. Notably, SIREN performs better than
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Figure 4: (a) Ablation study on using different fixed values of concentration parameter κ in Equa-
tion (12). (b) Ablation on different weights β for LSIREN in Equation (8). (c) Ablation on the
dimension of the hyperspherical embeddings r. (d) Ablation study on the parameter k in the KNN-
based OOD detection score for SIREN. Numbers are AUROC. The ID training dataset is PASCAL-VOC
and OOD dataset is MS-COCO.

the previous best OOD detection approach VOS on Faster R-CNN while preserving the same training
time as vanilla Faster R-CNN.

5 Ablations and Discussions

In this section, we provide ablation results on how different factors impact the performance of SIREN.
For consistency, we present the analyses below based on the DDETR model. Unless otherwise pointed,
we use the KNN distance by default.

Ablations on learnable vs. fixed κ. In this ablation, we show that our approach using learnable
concentration parameters {κc}Cc=1 is better than using the fixed ones. Our method with learnable κ is
desirable, since each ID class may have its own concentration in the hypersphere. With fixed κ, the
loss function can be simplified as follows:

L = − 1

M

M∑
i=1

log
exp

(
κµ⊤

yi
ri
)∑C

j=1 exp
(
κµ⊤

j ri
) . (12)

Empirically, we indeed observe that employing learnable {κc}Cc=1 achieves better OOD detection
performance, with AUROC 78.23% on PASCAL-VOC model (MS-COCO as OOD). In Figure 4 (a),
we show SIREN’s performance when trained under different fixed κ values. The best model under
the fixed κ = 10 achieves an AUROC of 77.67%. Too small of κ value (e.g., κ = 1) leads to almost
uniform distributions and is therefore not desirable.

Ablations on the SIREN loss weight β. Figure 4 (b) reports the OOD detection results as we vary
the weight β for the representation shaping loss LSIREN. The model is evaluated on the MS-COCO
dataset as OOD. Overall a mild weight works well. Across all the β values considered, SIREN
consistently outperforms the baseline OOD detection methods in Table 1. One can use our SIREN
loss as an easy plug-in module, with minimal hyperparameter tuning.

Ablations on the dimension d of hypersphere. SIREN projects the object feature embeddings
into a lower-dimensional hypersphere in Rd, which allows tractable vMF estimation. Figure 4 (c)
shows the effect the embedding dimension d on the OOD detection performance. We find that a lower
dimension between 16 and 64 achieves favorable and stable performance. In the extreme case with
dimension d = 8, the model suffers from considerable information loss and degraded performance.
On the other hand, too large of d causes training instability, which is not desirable either.

Ablations on the uncertainty score. We perform ablation on two variants of the vMF-based OOD
detection score (c.f. Equation (9)): using the learned {κc}Cc=1 vs. approximately estimate the κ
parameters directly from the converged embeddings. In literature, there are several established
methods for approximating κ [43, 55]. Denote rc the average of object embeddings for class c, the
simplest approximate solution is given as follows:

κ̂c =
∥rc∥(d− ∥rc∥2)

1− ∥rc∥2
, (13)
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Figure 5: Visualization of detected objects on the OOD images (from MS-COCO and OPENIMAGES)
by vanilla DDETR (top) and SIREN (bottom). The ID is BDD100K dataset. Blue: OOD objects
classified as the ID classes. Green: OOD objects detected by DDETR and SIREN, which reduce false
positives.

The proof is given in Appendix B. We show in Table 3 that using learned {κc}Cc=1 avoids the
imprecision in approximating κ̂c directly from embeddings. This affirms the importance of employing
learnable concentration parameters in our SIREN loss. Moreover, the non-parametric KNN density
estimation provides stronger flexibility and generality, and leads to better performance.

FPR95 ↓ AUROC ↑
COCO / OpenImages as OOD

vMF w/ κ from [55] 78.60 / 78.42 73.03 / 70.27
vMF w/ learned κ (ours) 75.49 / 78.36 76.10 / 71.05

Non-parametric KNN distance 64.77 / 65.99 78.23 / 74.93
Table 3: Ablation on different OOD detection scores. The ID dataset is PASCAL-VOC.

Ablations on the projection head. We ablate on the nonlinearity in the projection head by
comparing with SIREN trained with a linear layer in Table 4. The result shows using a nonlinear
mapping for projection helps obtain a more expressive hypersphere, which improves OOD detection
by 4.37% in terms of AUROC (MS-COCO as OOD, vMF as the OOD score).

FPR95 ↓ AUROC ↑
COCO / OpenImages as OOD

vMF w/o nonlinearity 82.85 / 83.69 71.73 / 66.82
vMF w/ nonlinearity 75.49 / 78.36 76.10 / 71.05

KNN w/o nonlinearity 67.03 / 72.11 78.02 / 72.42
KNN w/ nonlinearity 64.77 / 65.99 78.23 / 74.93

Table 4: Ablation on the projection head. The ID dataset is PASCAL-VOC.

6 Qualitative analysis

In Figure 5, we visualize the predictions on several OOD images, using object detection models
trained without SIREN (top) and with SIREN (bottom), respectively. The in-distribution data is
BDD100K. SIREN better identifies OOD objects (in green) compared to a vanilla object detector
DDETR, reducing false positives. Moreover, the confidence score of the false-positive objects of
SIREN is lower than that of the vanilla model (see the train/bicycle in the 3rd/5th column).

7 Related work

OOD detection for classification can be broadly categorized into post hoc and regularization-based
approaches [72]. In [2], the OpenMax score is proposed for OOD detection based on the extreme value
theory (EVT). Subsequent work [23] proposed a simple baseline using maximum softmax confidence
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(MSP). Several improvements have been proposed, such as deep ensemble [31], ODIN [35], distance-
based score [33, 51, 53, 60], energy-based score [38, 49, 64], DICE [59] and ReAct score [58]. While
post hoc methods often considered OOD scoring function alone, our framework considers both
representation learning (at training) and OOD detection (at testing).

Along the line of regularization-based approaches, most prior works focused on regularizing the
model’s output [3, 16, 22, 26, 28, 42, 44, 47, 48, 62, 66, 71]. For example, the model is regularized
to produce lower confidence [24, 32] or higher energy [13, 38] on the outlier data. In contrast, SIREN
regularizes the model by shaping the representations during training. [39, 40, 61] employed self-
supervised learning and learnable prototypes to learn desirable representations for novelty detection,
respectively, but they used complex output-based score ensembles during inference, which are not
generalizable and perform sub-optimally (see Tables 1 and 2). [57] shaped the latent representations as
multivariate Gaussians but they trained a variational autoencoder and utilized the reconstruction error
for open-set recognition. In contrast, SIREN directly shapes the embeddings of a discriminative-based
model, and does not require training a generative model.

OOD detection for object detection is a rising topic with very few existing works. For Faster R-CNN,
Du et al. [13] proposed to synthesize virtual outliers in the feature space for model regularization,
which we compare in Section 4. [12] explored unknown-aware object detection by leveraging videos
in the wild, whereas we focus on settings with still images only. For DETR, [18] adopted unmatched
object queries that are with high confidence as unknowns, which did not focus on regularizing the
model for desirable representations. Several works [9, 11, 19, 45, 46] used approximate Bayesian
methods, such as MC-Dropout [15] for OOD detection. They require multiple inference passes to
generate the uncertainty score, which are computationally expensive on larger datasets and models.

vMF distribution in ML has been adopted for supervised classification [29, 54], face verification [20],
generative modeling [8], segmentation [25] and clustering [17], etc. Some works exploited vMF
distribution for anomaly detection, they employed generative models and used the vMF distribution
as the prior for zero-shot learning [6] and document analysis [76]. Both the problem settings and
approaches are orthogonal to SIREN. To the best of our knowledge, our work makes the first
attempt to employ vMF-based learning and inference with learnable parameters for object-level
OOD detection. Metric learning has been explored for both classification [10, 67, 70, 74] and object
detection [27, 56, 68, 69]. Unlike ours, they did not focus on the OOD detection problem.

8 Conclusion

In this paper, we propose a novel framework SIREN, which tackles object-level OOD detection with a
distance-based approach. SIREN mitigates the key shortcoming of the previous output-based OOD
detection approach, and explores a new vMF loss to shape representations for OOD detection. To the
best of our knowledge, SIREN makes the first attempt to employ vMF-based learning and inference
for OOD detection. SIREN establishes competitive performance on challenging object-level OOD
detection tasks, evaluated broadly under both the recent detection transformers and CNN-based
models. Our in-depth ablations provide further insights on the efficacy of SIREN. We hope our work
inspires future research on OOD detection with representation shaping.

Broader Impacts

Our project aims to improve the reliability and safety of modern machine learning models. Our study
can lead to direct benefits and societal impacts, particularly for safety-critical applications such as
autonomous driving. Our study does not involve any human subjects or violation of legal compliance.
We do not anticipate any potentially harmful consequences to our work. Through our study and
releasing our code, we hope to raise stronger research and societal awareness towards the problem of
out-of-distribution detection in real-world settings.
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