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ABSTRACT

For groups of autonomous agents to achieve a particular goal, they must engage in
coordination and long-horizon reasoning. However, designing reward functions to
elicit such behavior is challenging. In this paper, we study how self-supervised goal-
reaching techniques can be leveraged to enable agents to cooperate. The key idea is
that, rather than have agents maximize some scalar reward, agents aim to maximize
the likelihood of visiting a certain goal. This problem setting enables human users
to specify tasks via a single goal state rather than implementing a complex reward
function. While the feedback signal is quite sparse, we will demonstrate that self-
supervised goal-reaching techniques enable agents to learn from such feedback. On
MARL benchmarks, our proposed method outperforms alternative approaches that
have access to the same sparse reward signal as our method. While our method has
no explicit mechanism for exploration, we observe that self-supervised multi-agent
goal-reaching leads to emergent cooperation and exploration in settings where
alternative approaches never witness a single successful trial.1

1 INTRODUCTION

Figure 1: In the multi-agent goal-reaching prob-
lem, a collection of agents cooperates to maximize
the likelihood of visiting a certain state. In this
example, four agents coordinate to control an ant-
like robot; each agent controls one leg (2 joints/leg).
The goal is to coordinate so that the ant moves to
a specific position (×). No rewards are given; no
distance metrics are required.

Reinforcement learning (RL) has the potential
to find novel strategies that solve complex tasks.
From controlling fleets of autonomous vehicles
to swarms of drones (Cao et al., 2012; Baldazo
et al., 2019), cooperative multi-agent RL (Witt et al.,
2020; Oliehoek et al., 2016) has the potential to find
strategies that are more robust, scalable, and efficient
than single-agent strategies. However, finding
novel strategies requires that human users do not
pigeonhole agents into known solutions with dense
rewards. Learning from sparse rewards remains a
key open problem in multi-agent RL.

In the area of single-agent RL, prior work has demon-
strated that agents can learn from sparse rewards —
or no reward at all — by leveraging self-supervised
techniques (Shelhamer et al., 2016; Achiam et al.,
2018; Touati et al., 2022; Ghosh et al., 2021; Eysen-
bach et al., 2019). Goal-reaching is a canonical example: a human user provides the agent with a
goal observation, and the agent attempts to reach that goal as quickly as possible (Kaelbling, 1993;
Boyan & Moore, 1994; Dayan & Hinton, 1992; Dietterich, 1998; Sutton, 1995). As the agent receives
only a sparse reward upon reaching the goal, it is free to explore and experiment with different
strategies for reaching the goal, including strategies that the human designer may not have envisioned.
Importantly, prior work in this area has used self-supervised learning to make such sparse reward
problems tractable (Ding et al., 2019; Kaelbling, 1993; Lin et al., 2019; Sun et al., 2019).

The main aim of this paper is to study how self-supervised RL techniques can enable groups of
agents to cooperate. We will focus on the problem of goal-conditioned multi-agent RL, where a
single observation of a desired outcome specifies the task. This problem statement is appealing

1Project website with code and videos: https://anonymous.4open.science/r/gcrl_marl
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from a practitioner’s perspective (it removes the need for reward design). To study the efficacy of
self-supervised learning, we combine insights from recent work on goal reaching in single-agent
settings (Eysenbach et al., 2022) and independent learning for MARL (IPPO (Witt et al., 2020)). Our
algorithm specifies a shared goal and treats each agent as an independent (self-supervised) learner
(with parameter sharing).

The key contribution of this paper is a demonstration that self-supervised goal-reaching is a tractable
method for solving complex multi-agent tasks. In experiments, our proposed method achieves
substantially higher performance than prior MARL algorithms. All algorithms are given the same
sparse feedback. Ours is the only method to get nonzero reward in four environments, and almost
triples the win-rate in the fifth. We find that our algorithm explores different coordination strategies
over the course of learning, even in settings such as the StarCraft II Multi-Agent Challenge (2s3z,
8m, 6h v 8z, and 3s v 5z), where prior methods never observe a single success.

2 RELATED WORK

Our work builds on prior work in goal-conditioned RL and independent learning for multi-agent
RL (Claus & Boutilier, 1998). In contrast to previous work in unsupervised and sparse-reward MARL,
the bulk of which has focused on task-agnostic skill learning (Jiang et al., 2022; Yang et al., 2023)
and explicit exploration mechanisms (Na & Moon, 2024; Jeon et al., 2022; Liu et al., 2021), our
method learns and explores in a fully end-to-end fashion.

Independent Learning (IL) in MARL. Multi-agent reinforcement learning presents a fundamental
choice for training: should agents learn together or separately? Centralized training approaches
(CTDE) have agents share information during training. Methods like COMA and QMIX give agents
access to the full environment state and let them share their policies and experiences (Claus &
Boutilier, 1998; Foerster et al., 2017; Rashid et al., 2018). After training ends, the agents still
execute independently with only partial observations, but they benefit from the shared learning. Our
approach builds off of independent learning (Tan, 1993) (e.g., IPPO (Witt et al., 2020)), where agents
develop their policies without sharing information with each other. Each agent sees only part of the
environment and cannot observe what other agents are doing or “thinking” during training. Prior work
has shown that Independent PPO outperforms the fully centralized Multi-Agent PPO on complex
StarCraft II benchmarks (Yu et al., 2022) and scales better to larger environments (Witt et al., 2020).

Sparse Reward Methods in MARL. Prior sparse reward methods in MARL typically use intrinsic
motivation and domain-guided search to generate interesting agent behavior in the absence of an
explicit reward signal (Jeon et al., 2022; Liu et al., 2023; 2021; Mahajan et al., 2019; Jo et al., 2024;
Xu et al., 2023b). MASER, for example, generates sub-goals for individual agents from a replay
buffer (Jeon et al., 2022). CMAE instead commands collective goals by searching for infrequently
visited states in projected space to encourage exploration (Liu et al., 2021). LAIES provides intrinsic
motivation for causally-meaningful actions, defined using domain knowledge in the cooperative
setting (Liu et al., 2023). More recently, methods have maximized diversity between successive
joint policies (Xu et al., 2023a) or maintained a set of joint policies that effectively spans large
regions of the environment (Xu et al., 2024). Our method will differ by not requiring domain-specific
knowledge, subgoals, or explicit intrinsic motivation rewards.

Goal-Conditioned Reinforcement Learning. Our work builds on a long line of prior goal-
conditioned RL (GCRL) research (Newell et al., 1959; Kaelbling, 1993; Ghosh et al., 2021), wherein
a reinforcement learning agent attempts to reach a commanded goal state. While sparse, the goal-
conditioned setting is appealing from a user’s perspective because it lifts much of the burden of reward
function design (Hadfield-Menell et al., 2017; Dulac-Arnold et al., 2019): instead of hand-designing
and implementing a reward function, a user simply gives one example of the desired outcome. Prior
self-supervised techniques for goal-reaching can tackle long-horizon sparse-reward problems (Lin
et al., 2019; Eysenbach et al., 2021; Chen et al., 2021; Eysenbach et al., 2022; Andrychowicz et al.,
2017; Liu et al., 2024). Our work extends these self-supervised techniques and observations to the
multi-agent setting. Perhaps the most related work is LAGMA (Na & Moon, 2024), which uses
goal-conditioned trajectories as an intermediate step when maximizing an extrinsic reward; although
our setting will be different as no extrinsic rewards will be provided.

2
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3 MULTI-AGENT RL AS A GOAL-REACHING PROBLEM

This section introduces the formal definition of the multi-agent goal-reaching problem after reviewing
the standard MARL problem

3.1 PRELIMINARIES: MULTI-AGENT RL

We consider a multi-agent RL problem with n agents. At each timestep t, each agent receives a local
observation o(i)t and outputs an action a(i)t . Let s(i)t denote the state of agent i, with observations
generated according to an agent-specific observation function o(i)t ∼ Oi(o

(i)
t | s(i)t ). The environment

transitions according to the stochastic transition function p(s
(1:n)
t+1 | st, a(1:n)t ) with initial state

distribution p0(s
(1:n)
0 ). At each timestep, the agents collectively receive a reward r(o(1:n)t , a

(1:n)
t ).

The overall objective is to maximize the expected discounted sum of these rewards:

max
π(a

(i)
t |o(i)t )

E

[ ∞∑
t=0

γtr(o
(1:n)
t , a

(1:n)
t )

]
. (1)

Following the IPPO paper (Witt et al., 2020), we will treat each agent as an independent policy
π(a

(i)
t | o(i)t ) that takes actions based on its local observation o(i)t . The parameters are shared across

the agents (i.e., each agent has an identical policy). We define a local Q-function for each agent:

Q(o
(i)
t , a

(i)
t ) ≜ E

[ ∞∑
t′=t

γt
′−tr(o

(1:n)
t , a

(1:n)
t ) | o(i)t , a

(i)
t

]
. (2)

Here, the expectation is taken over the future actions of all agents. Our analysis below will make use
of the discounted state occupancy measure (Eysenbach et al., 2022; Puterman, 1994; Liu et al., 2024;
Ho & Ermon, 2016):

ρπγ (sf ) ≜ (1− γ)

∞∑
t=0

γtpπt (st = sf ), (3)

where pπt (st = sf ) represents the probability of the agent being in state sf at time t.

3.2 DEFINING THE MULTI-AGENT GOAL-REACHING PROBLEM

We now define the multi-agent goal-reaching problem, building on the Dec-POMDP formalism
from prior work (Oliehoek et al., 2016; Witt et al., 2020; Jiang et al., 2022; Na & Moon, 2024)
and the GCRL framework (Kaelbling, 1993; Newell et al., 1959; Ghosh et al., 2021). Whereas the
Dec-POMDP is typically defined in terms of a reward function, we will omit the rewards and instead
include a space of goals.

We start by introducing the goals. Let G be a space of goals and let m(1:N)
g : O(1:N) → G be a

mapping from the observation space of all agents to the collective goal space. Goals are defined in
this way because the objective is typically not to reach a particular state, but rather to reach any state
that satisfies a desired property (e.g., any state where the agents have successfully shot a basketball
into a hoop). Let pg(g) denote the distribution over goals used for data collection and evaluation.
Many of our experiments will use pg(g) = δ(g = g∗), a Dirac distribution at one particular goal of
interest (e.g., when all opponents have been defeated). Crucially, this choice of goal distribution
eliminates the need to pre-define or adapt a goal curriculum, as done in prior work (Liu et al., 2021;
Jeon et al., 2022; Na & Moon, 2024).

We command the agents to reach an element of the goal space and consider the objective achieved if
the agents occupy a state that corresponds to the goal. As in the GCRL framework, the optimization
objective is to maximize the probability of reaching the goal state, where the goal is a function of
observations m(1:N)

g (o(1:N)) = g. Note that such mappings from full observations to relevant subsets
of the observation for the goal are standard in problem settings from various prior works (Lin et al.,
2019; Bortkiewicz et al., 2024; Liu et al., 2021). We explore relaxing this setting in Appendix D.2.

3
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To cast the goal-reaching setting as a reinforcement learning problem, we define the reward as

r(o
(1:N)
t , a

(1:N)
t ) =

{
1 if m(1:N)

g (o
(1:N)
t ) = g

0 otherwise
. (4)

As it is currently stated, this reward definition does not make sense in settings with continuous states,
as hitting the goal would be a measure-0 event. Thus, for generality, we define the reward function as
the likelihood of hitting the goal at the next time step:

r(o
(1:N)
t , a

(1:N)
t ) = p(mg(o

(1:N)
t+1 ) = g | o(1:N)

t , a
(1:N)
t ). (5)

These two reward functions are equivalent in expectation and thus result in equivalent optimization
objectives (Eq. 1) (Eysenbach et al., 2022). In summary, the overall objective is:

max
π(a(i)|o(i),g)

Epg(g),π(τ(1:N)|g)

[ ∞∑
t=0

γtr(o
(1:N)
t , a

(1:N)
t )

]
= max
π(a(i)|o(i),g)

Epg(g)[ρ
π
γ (g)] (6)

where τ (i) is the sequence of observations and actions seen by agent i, π(τ (i)|g) is the probability of
sampling such a sequence given policy π and goal g, and ρπγ (g) is the discounted state occupancy
measure (Eq. 3). Intuitively, this objective corresponds to maximizing the time spent in the com-
manded goal g. We note that using such a sparse, task-specific reward function is not new in MARL,
and has been previously considered in a non-goal-conditioned setting (Liu et al., 2021; Xu et al.,
2023b; 2024). However, the approach for solving this problem, which we present in the next section,
differs from prior work by avoiding additional goal search, goal sampling, or use of task-specific goal
knowledge (Jeon et al., 2022; Liu et al., 2023; Xu et al., 2023b).

4 METHOD: INDEPENDENT CRL

We introduce an actor-critic algorithm for multi-agent goal reaching. Following prior work (Witt
et al., 2020; Tan, 1993), we will address the multi-agent setting by learning decentralized policies
and Q-functions.

Critic objective. We will use a variant of contrastive RL (CRL) (Eysenbach et al., 2022) to learn
the Q-function, which is defined using a sparse goal-reaching reward (Eq. 5). CRL is a goal-
conditioned RL (GCRL) method that uses a temporal contrastive objective to learn representations
without requiring an external reward signal. At a high level, the aim of this method is to learn
representations from data which capture the relatedness of state-action pairs and goals in the given
multi-agent environment. The core of this method consists of two learnable encoders ϕ(o, a) and ψ(g)
that capture control-relevant temporal correlations between (o, a) and g. At optimum, the learned
representations parameterize the conditional discounted state occupancy measure ρπ(g | o, a) (Eq.
6); this is our critic in the goal-conditioned setting. Intuitively, these representations should enable
agents to perform exploration directed toward a goal even when that goal has never been achieved.
Note that for environments with discrete actions, we use a variant of the Gumbel-Softmax trick (see
Appendix C). Formally, the (scaled) Q-function can be modeled as the exponential of the distance
between two representations. Formally, we define the distance function as:

fϕ,ψ(o
(i)
t , a

(i)
t , g) = −∥ϕ(o(i)t , a

(i)
t )− ψ(g)∥2.

We learn these representations by optimizing the symmetric InfoNCE loss (Bortkiewicz et al.,
2024; Radford et al., 2021), which reformulates the problem of learning relative probabilities as a
classification task between different distributions. The symmetric InfoNCE loss (Eq. 7) relies on
a batch of samples B with pairs (oi, ai), gi as positive examples and pairs (oi, ai), gj and (oj , aj),
gi as negative examples, where gi are future states encountered after (oi, ai). Upon convergence,
the classifier Cϕ,ψ((o, a), g) = log

(
exp(fϕ,ψ(o,a,g))∑
exp(fϕ,ψ(o,a,g))

)
learns temporal relationships between the

underlying (o, a) and g. The full symmetric InfoNCE loss is as follows:

min
ϕ,ψ

EB

[
−

∑|B|

i=1
log

(
efϕ,ψ(oi,ai,gi)∑K
j=1 e

fϕ,ψ(oi,ai,gj)

)
−

∑|B|

i=1
log

(
efϕ,ψ(oi,ai,gi)∑K
j=1 e

fϕ,ψ(oj ,aj ,gi)

)
+ 0.01 ·R(ϕ, ψ)

]
,

(7)

where R(ϕ, ψ) ≜ log
(∑K

j=1
efϕ,ψ(oi,ai,gj)

)
+ log

(∑K

j=1
efϕ,ψ(oj ,aj ,gi)

)
.

4
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Algorithm 1 Independent CRL is an actor-critic algorithm for multi-agent goal reaching.

Initialize policy πθ(a
(i)
t | o(i)t , g), decentralized critic fϕ,ψ(s

(i)
t , a

(i)
t , g) = ∥ϕ(o(i)t , a

(i)
t ) − ψ(g)∥2, and

replay buffer B.
while not converged do

Sample goal g ∼ pg(g) from the commanded goal distribution pg(g) = δg(g).
Collect episode using (independent) policies π(a(i)t | o(i)t , g).
Store episode {o(1:n)0 , a

(1:n)
0 , o

(1:n)
1 , a

(1:n)
1 , · · · } in buffer B.

Sample observations o(i)t , actions a(i)t , and achieved future goals g(i) from B.
Update critic fϕ,ψ with temporal contrastive learning (Eq. 7).
Update policy πθ(a

(i)
t | o(i)t , g

(i)
t ) to maximize the critic (Eq. 9).

return policy πθ(a
(i)
t | s(i)t , g).

The multi-agent setting involves multiple interacting agents’ states, observations, actions, and goals,
thus admitting many different sampling schemes in the InfoNCE loss. Here, we choose to sample
positive observation-action pairs and goal examples from the experiences of the same randomly-
chosen agent. Negative samples are drawn uniformly at random over all agents’ goals, irrespective of
identity. In other words, the trained critic prioritizes learning features that help agents distinguish
goals encountered in their own futures from the randomly-drawn futures of all agents.

Mathematically, a classifier Cϕ,ψ trained over these distributions converges to an averaged Q-function
over agents (see Eq. 2): C∗

ϕ,ψ((o, a), g) ∝ ρmix
γ (mg(ot+) = g | ot, at), where ρmix

γ denotes the
γ-discounted state occupancy measure (“local critic”) averaged over agents i (“mixed critic”):

ρmix
γ (mg(ot+) = g | ot, at) ≜

1

N

∑
i

ρ(i)γ (mg(o
(i)
t+) = g | o(i)t , a

(i)
t ).

Thus, correctly learning this classifier enables any individual agent to choose actions that maximize
the mixed probability of occupying a goal state, an approximation to the full goal-reaching objective
(Eq. 6). Importantly, we assume that the overall goal g can be approximated as a function of local
observations o(i). While not true in the general MARL setting, we found that this assumption leads
to strong empirical performance in complex collaborative benchmarks.

Actor objective. We use a neural network policy πθ(a
(i)
t | o(i)t , g) that takes individual observations

oit and goal as input. We assume the agents are homogeneous, so the same policy is used for modeling
all agents (i.e., we employ parameter sharing). Non-homogeneous tasks can be made homogeneous
by including the agent index or type as part of the observation space.

Following single-agent CRL methods (Eysenbach et al., 2022), we train the policy by maximizing
the (marginal-weighted) expected critic over states and goals sampled from the replay buffer:

max
π

E
(o

(i)
t ,g(i))∼B

a
(i)
t ∼π(a(i)t |o(i)t ,g(i))

[−∥ϕ(o(i)t , a
(i)
t )− ψ(g(i))∥2]. (8)

The policy should pick actions such that the current state-action pair is close to the goal state in
representation space. Once again, observations and future goals are sampled from the trajectories of
the same randomly-chosen agent, an approximation of the full MARL observations and actions over
all agents. We show that maximizing this objective is equivalent to maximizing a lower bound on the
full contrastive actor objective over all agents; further details are in Appendix E.

4.1 ALGORITHM SUMMARY

We now summarize our complete algorithm, INDEPENDENT CRL, and provide pseudocode in Alg. 1.
Independent CRL works in the online setting, alternating between collecting data and updating the
actor and the critic. In order to update the actor and critic, a batch of state-action pairs are sampled
from the replay buffer. We implement Independent CRL on top of JaxGCRL (Bortkiewicz et al.,
2024). Code to reproduce our experiments is available in a code repository.

5 EXPERIMENTS

In this section, we aim to answer the following questions:

5
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(Q1) Is efficient exploration possible in long-horizon, sparse-reward tasks?
(Q2) How does the performance of Independent CRL compare to hierarchical approaches?
(Q3) How does exploration emerge in our method to solve these sparse learning tasks?
(Q4) How does Independent CRL perform on continuous control tasks, which introduce

complexity in manipulation?
(Q5) Does reframing a goal-reaching task as multi-agent make it harder or easier?

Figure 2: Multi-agent environments. MPE Tag (Rutherford et al.,
2024), SMAX (SMAC) (Rutherford et al., 2024; Samvelyan et al.,
2019), and multi-agent Ant (Rutherford et al., 2024).

We present all results with ±1σ er-
ror bars and average smoothing (to
display 200 data points). The exper-
iments (5 seeds per baseline per ex-
periment) required 0.5-3 hours (ICRL,
IPPO, and MAPPO) and 16 hours
(MASER) per seed on a Tesla V100
GPU (32 GB). All experiments were
run on an internal cluster. See Ap-
pendix A for a summary of all exper-
iments and Appendix B for additional
experimental details.

5.1 LONG-HORIZON COOPERATION

While the agents perform well on didactic multi-particle (MPE) Tag environments where they observe
the goal-state frequently (see Appendix D.1), it is intuitively unclear whether this method should
work on long-horizon tasks where the goal-state is only observed once after many (e.g., 50-100) steps.
Can agents explore effectively for long periods without any feedback?

To answer this question, we evaluate the performance of ICRL on the StarCraft Multi-Agent Challenge
(SMAC), a common benchmark in prior MARL work that pits a team of units against an enemy
team (Samvelyan et al., 2019). For our experiments, we use SMAX, a JAX implementation of a
SMAC-like environment (Rutherford et al., 2024). We test five classic SMAC environments: 3m,
2s3z, 6h v 8z, 8m, 3s v 5z, as well as SMACv2 environments featuring random position and
unit-types. We compare Independent CRL with the multi-agent baselines IPPO and MAPPO, both of
which have been previously found to be effective on a variety of SMAC environments (Yu et al., 2022).

0 10M
0.0

0.3

0.6

M
ea

n 
W

in
 R

at
e 5 Units

0 10M

10 Units

Environment Steps

ICRL (Ours) IPPO MAPPO

Figure 3: We compare ICRL (ours) to IPPO and
MAPPO on the randomized 5-agent and 10-agent
SMACv2 environments. Our approach learns faster than
both baselines, achieving higher asymptotic returns than
IPPO. IPPO’s win rate is effectively zero.

We frame the goal as: reduce the sum of enemy
healths to zero. Mathematically, this means that
mg(o

(i)
t ) is the sum of the enemy healths and

the goal g is the scalar 0. If an enemy is not ob-
served, its full health is added to the sum. To en-
sure fair comparison with our goal-conditioned
method, we provide the reward-driven baselines
with a sparse reward (namely, a reward of 1 is
given upon winning a battle).

We empirically observe (Figure 4) that results
are very inconsistent for the non-goal condi-
tioned methods on the SMAC environments,
which often fail to see a single success through-
out the entirety of a training run. Sometimes,
as we see for MAPPO on the 3m environment,
lucky successes may lead to enough signal to
learn interesting behavior; however, in the absence of dense rewards, we find that their exploration is
very inconsistent. On the other hand, we find that Independent CRL is consistently able to identify
successful policies early on in the training process, suggesting that the use of goal-conditioned
representation learning enables the method to perform effective multi-agent exploration with minimal
supervision (a finding we will later validate qualitatively in Sec. 5.3).

As shown in Figure 3, on the 5-agent and 10-agent SMACv2 environments, we again find that our
method can consistently learn how to coordinate to defeat the enemy, learning more quickly
than both IPPO and MAPPO. While, for the 5-agent environment, MAPPO converges to a more

6
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Figure 4: Efficient learning on the StarCraft Multi-Agent Challenge (SMAX). We compare ICRL (our
method) to IPPO and MAPPO on five settings from the SMAX benchmark. On the 3m setting, our method
achieves a win rate that is ∼ 3× higher than MAPPO, while the IPPO baseline has a win rate of zero. On the
2s3z, 6h v 8z, 8m, and 3s v 5z settings, only our method achieves a non-zero win rate.

successful policy on average, ICRL achieves a higher overall win-rate for the more challenging
10-agent version. We suspect that the inherent stochasticity present in this environment may naturally
encourage agents to explore more widely, leading to the reward-based baselines performing better on
these tasks than in the standard SMAC task. A statistical significance test located in Appendix D.3
shows that the probability of improvement for ICRL compared to MAPPO is on average 94%.

5.2 ARE HIERARCHICAL METHODS NEEDED FOR HIGH PERFORMANCE IN SPARSE-REWARDS?

A long line of prior work suggests that hierarchical approaches–methods that decompose long-horizon
tasks into a sequence of shorter/easier problems–are crucial for solving long-horizon tasks, such as
those in SMAC (Jeon et al., 2022; Liu et al., 2021; Mahajan et al., 2019; Na & Moon, 2024). Indeed,
prior work (Jeon et al., 2022) has found such designs highly effective in the multi-agent setting.
Our next experiment studies whether these design ingredients are required. To do this, we compare
ICRL–which does not include any subgoals or intrinsic rewards–to MASER, a SOTA method that
tackles the challenge of sparse rewards by generating and assigning subgoals.

0 2.5M 5M
Environment Steps

0.4

0.8

M
ea

n 
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 R

at
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ICRL (Ours)
MASER

Figure 5: ICRL (Ours) vs. MASER on SMAC (2s3z),
using sparse rewards. Our method achieves 60% win-
rate by step 5M while MASER’s win-rate is negligible.

For fair comparison, both methods receive the
same sparse rewards (+1 if win, 0 otherwise);
this is a sparser reward than presented in the
original paper, which gives individual enemy re-
ward bonuses and penalties for ally health loss.
Again, for fair comparison, we use feedforward
networks for both methods. As shown in Fig. 5,
ICRL achieves earlier wins with fewer sam-
ples, as well as an asymptotically higher win
rate.

5.3 EMERGENT EXPLORATION

As shown in previous experiments, our method
performs well in long-horizon tasks where there
is no signal until the end of the episode. For
this to occur, agents must explore effectively in
the interim before receiving any signal about which methods actually lead to the goal. How does
exploration occur before the algorithm has even observed a single success? By visualizing learned
policies at various points along training, we can see how exploration emerges in training and what, if
any, unique skills are learned.

Previous work discussed emergent self-directed exploration in the single-agent setting, showing
that giving a single goal leads to effective exploration (Liu et al., 2024). That paper demonstrates
contrastive representations are critical to learning useful skills before a single success is observed (a
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Figure 6: How does ICRL learn to play StarCraft? We visualize the exploration strategies of (Top Row) ICRL
(our method) and (Bottom Row) IPPO on the SMAX (2s3z) environment over 50 million training environment
steps. We observe that the ICRL algorithm explores different coordination strategies over the course of learning.

monolithic critic does not show directed exploration) (Liu et al., 2024). By extension to the multi-
agent setting, we suspect that commanding a single goal to our method also enables such directed
exploration. We empirically find that the learned curriculum of skills from ICRL surpasses subgoal-
generating MASER, mirroring results in the single-agent setting (Liu et al., 2024). We conclude,
similar to previous work (Liu et al., 2024), that emergent exploration occurs under the following
circumstances/conditions: (1) environmental dynamics are learned in contrastive representations and
(2) a single long-horizon goal is commanded for CRL (rather than many human-picked subgoals).

We use the 2s3z environment (Figure 6) to illustrate emergent exploration. Our method learns
basic skills (e.g., movement, attacking) early in training and slowly learns more advanced
strategies, often well before observing a single success. Initially, agents flee from the enemy
units and hit the boundary, where they are eliminated. Later, agents learn to stay still and shoot
the incoming enemy. By 2 million environment steps, before the agents have seen the goal-state
even once, agents have explored various unique strategies. At 4 million steps, we observe common
StarCraft unit micromanagement techniques: units learn unique skills such as “kiting” and focus-fire
(Rutherford et al., 2024). At 8 million steps, agents learn more optimized flocking behaviors and
learn to specialize by their unit type (we explore specialization more in Appendix D.4). Despite
training with shared parameters, the policy network learns unique behaviors (for example, ranged
attacks for the stalker or closer melee for the zealot unit). By the end of training, the agents not only
retain the most successful skills, but also sync movements and focus-fire all at the same target. This
is in contrast to behaviors learned by non-goal conditioned methods such as IPPO, which generally
cannot perform directed exploration without much signal. We observe that IPPO policies remain
qualitatively similar and behave essentially randomly in benchmark training runs.

5.4 TASKS WITH CONTINUOUS ACTIONS

The tasks we have investigated so far have featured straightforward control mechanisms. Many
real-world tasks, however, have an orthogonal dimension of complexity: manipulation of the agent in
the physical world. Multi-Agent MuJuCo factorizes classic control tasks such as ant and half-cheetah,
giving each agent control over only a subset of the available joints and observability of only the
nearest other agents (Peng et al., 2021). Multi-Agent BRAX implements five of the Multi-Agent
MuJuCo tasks (Rutherford et al., 2024); we will use the Ant task (see Fig. 1). We observe our that
method performs well on this task and in Appendix 5.5 we explore how reframing even single-agent
tasks as multi-agent increases performance.

We define the goal as controlling the Ant so that its center of mass is at the desired goal. We define
mg(o

(i)
t ) to extract the Ant’s (x, y) position and sample goals g ∈ R2 uniformly on a disk of radius

10m. The reason we chose this specific distribution is that it is used by the JaxGCRL benchmark
(Bortkiewicz et al., 2024) as the default goal distribution for the Ant task, making for a challenging but
reasonable goal so that agents have to learn a non-trivial walking policy. For evaluation purposes, a
success is measured as a time-step (out of a total 1000) when the agent is within 0.5 meters of the goal.
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Figure 7: Can ICRL solve continuous control tasks?
We compare ICRL (ours) to IPPO for controlling a
4-legged robot: each leg’s joints are controlled by a
separate agent (Rutherford et al., 2024). IPPO makes
no progress, perhaps because the sparse reward signal
makes exploration challenging. Single-agent CRL is
also compared, showing that casting even a single-agent
problem as multi-agent allows the agent to learn faster.

While our method does not require rewards (it
simply maximizes the likelihood of an event),
the baselines use this success metric as a sparse
reward. The results, shown in Figure 7, show
that our method is able to consistently reach
the commanded goal on the sparse reward
setting. IPPO struggles to get non-zero reward,
likely because the sparsity of the task makes
exploration challenging.

5.5 REFRAMING SINGLE-AGENT
PROBLEMS AS MULTI-AGENT PROBLEMS

While multi-agent reinforcement learning
(MARL) is typically viewed as an extension of
single-agent RL—with multi-agent tasks consid-
ered strictly harder versions of their single-agent
counterparts—MARL can also be understood
as making independence assumptions that cre-
ate more structured search spaces. These inde-
pendence structures, which enable more data-
efficient learning and better generalization in
other areas of machine learning (Koller & Friedman, 2009), motivate us to turn the standard MARL
problem on its head: Does treating a single-agent RL problem as a multi-agent problem allow us to
learn more efficiently? We compare our method versus contrastive RL (Eysenbach et al., 2022) on
the same ant task, summarized in Figure 7. This helps answer: Does multi-agent cooperation pose
another challenge on top of goal-conditioned policy learning?

Surprisingly, we observe that Independent CRL initially outperforms CRL. While it may seem that
the factored and partially-observed multi-agent version of the task is necessarily more difficult,
we find this is not the case. It appears that factoring the robot into various independently-controlled
agents actually reduces the hypothesis space: instead of searching over all policies involving eight
joints in the four legs, each agent can focus on controlling just two joints in its corresponding leg.
This would imply trading off low variance (leading to faster learning and convergence) with higher
bias (leading to worse overall performance). We empirically observe this exact trade-off: Independent
CRL starts achieving success in 1 million steps (versus 2 million for CRL) but levels off while CRL
continues improving.

6 CONCLUSION

In this paper, we have studied the problem of goal-reaching in multi-agent settings, a problem
statement designed to lift the human burden of reward engineering. While this problem entails very
sparse feedback, our experiments demonstrate that the proposed method can make progress on solving
these tasks. We do not claim that our method is anywhere near the maximum possible performance,
but rather offer these experiments as evidence that multi-agent goal-reaching is a tractable problem
statement. Our hope is to encourage future work to study this appealing problem setting.

One intriguing observation, which we intend to study in future work, is that our independent CRL
method appears to do effective exploration despite not having an explicit exploration mechanism. The
fact that some prior methods never make any learning progress suggests that the good performance
of our method cannot solely be explained by effective learning from successes, but also must partially
be explained by a capacity to explore. This observation is in line with prior work in the single-agent
setting (Liu et al., 2024), yet, to the best of our knowledge, there is still no theoretical explanation for
why these self-supervised goal-reaching algorithms exhibit “emergent” exploration.

Limitations. Although formulating a problem as goal-reaching allows the task to be specified more
easily via a single goal rather than a reward function, it may not always be clear how to specify
certain tasks as goals. It is also possible for there to be different choices of G and mg that may be
equally valid in expressing the goal, yet result in slightly different learning behaviors. See discussion
in Appendix D.2.
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Reproducibility Statement. All code needed to reproduce our experiments is available in our
anonymous code repository: https://anonymous.4open.science/r/gcrl_marl. Ad-
ditional proofs for theoretical results about our method are available in Appendix E.
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and Benjamin Eysenbach. Accelerating Goal-Conditioned RL Algorithms and Research, November 2024.
URL http://arxiv.org/abs/2408.11052. arXiv:2408.11052 [cs].

Justin Boyan and Andrew Moore. Generalization in reinforcement learning: Safely approximating the value
function. Advances in neural information processing systems, 7, 1994.

Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. An Overview of Recent Progress in the Study of
Distributed Multi-agent Coordination, September 2012. URL http://arxiv.org/abs/1207.3231.
arXiv:1207.3231 [math].

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances
in neural information processing systems, 34:15084–15097, 2021.

Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative multiagent systems.
In Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications
of Artificial Intelligence, AAAI ’98/IAAI ’98, pp. 746–752, USA, 1998. American Association for Artificial
Intelligence. ISBN 0262510987.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In S. Hanson, J. Cowan,
and C. Giles (eds.), Advances in Neural Information Processing Systems, volume 5. Morgan-
Kaufmann, 1992. URL https://proceedings.neurips.cc/paper_files/paper/1992/
file/d14220ee66aeec73c49038385428ec4c-Paper.pdf.

Thomas G. Dietterich. The maxq method for hierarchical reinforcement learning. In Proceedings of the Fifteenth
International Conference on Machine Learning, ICML ’98, pp. 118–126, San Francisco, CA, USA, 1998.
Morgan Kaufmann Publishers Inc. ISBN 1558605568.

Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation learning.
Advances in neural information processing systems, 32, 2019.

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement learning.
arXiv preprint arXiv:1904.12901, 2019.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need: Learning
skills without a reward function. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=SJx63jRqFm.

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. C-learning: Learning to achieve goals via
recursive classification. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=tc5qisoB-C.

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Ruslan Salakhutdinov. Contrastive learning as goal-
conditioned reinforcement learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho
(eds.), Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=vGQiU5sqUe3.

10

https://anonymous.4open.science/r/gcrl_marl
https://arxiv.org/abs/2108.13264
https://arxiv.org/abs/2108.13264
https://ieeexplore.ieee.org/document/8903067
https://ieeexplore.ieee.org/document/8903067
http://arxiv.org/abs/2408.11052
http://arxiv.org/abs/1207.3231
https://proceedings.neurips.cc/paper_files/paper/1992/file/d14220ee66aeec73c49038385428ec4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/d14220ee66aeec73c49038385428ec4c-Paper.pdf
https://openreview.net/forum?id=SJx63jRqFm
https://openreview.net/forum?id=tc5qisoB-C
https://openreview.net/forum?id=tc5qisoB-C
https://openreview.net/forum?id=vGQiU5sqUe3
https://openreview.net/forum?id=vGQiU5sqUe3


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson. Counter-
factual Multi-Agent Policy Gradients, December 2017. URL http://arxiv.org/abs/1705.08926.
arXiv:1705.08926 [cs].

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Manon Devin, Benjamin Eysenbach, and
Sergey Levine. Learning to reach goals via iterated supervised learning. In International Conference on
Learning Representations, 2021. URL https://openreview.net/forum?id=rALA0Xo6yNJ.

Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca Dragan. Inverse reward design.
Advances in neural information processing systems, 30, 2017.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural information
processing systems, 29, 2016.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Jeewon Jeon, Woojun Kim, Whiyoung Jung, and Youngchul Sung. Maser: Multi-agent reinforcement learning
with subgoals generated from experience replay buffer. In International conference on machine learning, pp.
10041–10052. PMLR, 2022.

Yuhang Jiang, Jianzhun Shao, Shuncheng He, Hongchang Zhang, and Xiangyang Ji. Spd:
Synergy pattern diversifying oriented unsupervised multi-agent reinforcement learning. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances
in Neural Information Processing Systems, volume 35, pp. 20661–20674. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
825341ab91db01bf063add41ac022702-Paper-Conference.pdf.

Yonghyeon Jo, Sunwoo Lee, Junghyuk Yeom, and Seungyul Han. Fox: formation-aware exploration in
multi-agent reinforcement learning. In Proceedings of the Thirty-Eighth AAAI Conference on Artificial
Intelligence. AAAI Press, 2024. ISBN 978-1-57735-887-9. doi: 10.1609/aaai.v38i12.29196. URL https:
//doi.org/10.1609/aaai.v38i12.29196.

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, volume 2, pp. 1094–8. Citeseer, 1993.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models - Principles and Techniques. MIT
Press, 2009. ISBN 978-0-262-01319-2. URL http://katalog.bibliothek.uni-wuerzburg.
de/InfoGuideClient.ubwsis/start.do?Login=igubwwww&Language=de&Query=10=
%22BV035758530%22.

Xingyu Lin, Harjatin Singh Baweja, and David Held. Reinforcement learning without ground-truth state. arXiv
preprint arXiv:1905.07866, 2019.

Boyin Liu, Zhiqiang Pu, Yi Pan, Jianqiang Yi, Yanyan Liang, and D. Zhang. Lazy agents: A new perspective on
solving sparse reward problem in multi-agent reinforcement learning. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 21937–
21950. PMLR, 2023.

Grace Liu, Michael Tang, and Benjamin Eysenbach. A Single Goal is All You Need: Skills and Exploration
Emerge from Contrastive RL without Rewards, Demonstrations, or Subgoals, August 2024. URL http:
//arxiv.org/abs/2408.05804. arXiv:2408.05804 [cs].

Iou-Jen Liu, Unnat Jain, Raymond A. Yeh, and Alexander G. Schwing. Cooperative exploration for multi-agent
deep reinforcement learning. ArXiv, abs/2107.11444, 2021. URL https://api.semanticscholar.
org/CorpusID:235619302.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation of
discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent variational
exploration. volume 32, 2019.

Hyungho Na and Il-Chul Moon. Lagma: Latent goal-guided multi-agent reinforcement learning. In International
Conference on Machine Learning, pp. 37122–37140. PMLR, 2024.

Allen Newell, John C Shaw, and Herbert A Simon. Report on a general problem solving program. In IFIP
congress, volume 256, pp. 64. Pittsburgh, PA, 1959.

11

http://arxiv.org/abs/1705.08926
https://openreview.net/forum?id=rALA0Xo6yNJ
https://proceedings.neurips.cc/paper_files/paper/2022/file/825341ab91db01bf063add41ac022702-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/825341ab91db01bf063add41ac022702-Paper-Conference.pdf
https://doi.org/10.1609/aaai.v38i12.29196
https://doi.org/10.1609/aaai.v38i12.29196
http://katalog.bibliothek.uni-wuerzburg.de/InfoGuideClient.ubwsis/start.do?Login=igubwwww&Language=de&Query=10=%22BV035758530%22
http://katalog.bibliothek.uni-wuerzburg.de/InfoGuideClient.ubwsis/start.do?Login=igubwwww&Language=de&Query=10=%22BV035758530%22
http://katalog.bibliothek.uni-wuerzburg.de/InfoGuideClient.ubwsis/start.do?Login=igubwwww&Language=de&Query=10=%22BV035758530%22
http://arxiv.org/abs/2408.05804
http://arxiv.org/abs/2408.05804
https://api.semanticscholar.org/CorpusID:235619302
https://api.semanticscholar.org/CorpusID:235619302


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs, volume 1.
Springer, 2016.

Bei Peng, Tabish Rashid, Christian A. Schroeder de Witt, Pierre-Alexandre Kamienny, Philip H. S. Torr,
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LLM Usage Statement We do not believe that we used LLMs significantly to the extent that they
could be regarded as contributor. We used LLMs for the use of: generating visually-appealing figures,
advice on phrasing for writing of a few sentences, help debugging code, research into finding three
related papers.

A MAIN EXPERIMENTAL RESULTS

Restatement (Experimental Setup). All experiments use sparse 0/1 rewards: +1 when in the
goal state, 0 otherwise. For SMAX environments, the goal is to reduce enemy health to zero. For
continuous control, the goals are spatial positions. We compare against IPPO, MAPPO, and
MASER baselines using identical sparse reward signals.

Table 1 summarizes the main experimental results:

Environment (Metric) Task Approach Result

MPE Tag
(Mean Episode Return)

3 Agents ICRL (Ours) 4704.62 ± 850.18
IPPO (Witt et al., 2020) 3643.21 ± 82.01

6 Agents ICRL (Ours) 16293.59 ± 2204.55
IPPO 5158.75 ± 1759.75

Multi-Agent Control
(Mean Success Rate)

Ant ICRL (Ours) 270.63 ± 30.02
IPPO 6.94 ± 8.94

StarCraft Multi-Agent
Challenge (SMAX)
(Mean Win Rate)

3m
ICRL (Ours) 0.94 ± 0.06
IPPO 0.00 ± 0.00
MAPPO (Yu et al., 2022) 0.36 ± 0.49

2s3z

ICRL (Ours) 0.95 ± 0.02
IPPO 0.00 ± 0.00
MAPPO 0.00 ± 0.00
MASER (Jeon et al., 2022) 0.01 ± 0.02

6h v 8z
ICRL (Ours) 1.00 ± 0.00
IPPO 0.00 ± 0.00
MAPPO 0.00 ± 0.00

8m
ICRL (Ours) 0.84 ± 0.07
IPPO 0.00 ± 0.00
MAPPO 0.00 ± 0.00

3s v 5z
ICRL (Ours) 0.95 ± 0.03
IPPO 0.00 ± 0.00
MAPPO 0.00 ± 0.00

Table 1: Maximum performance across environments. We report episode returns for MPE Tag,
success rate for Multi-Agent Control, and win-rate for SMAX tasks. All values are reported as the
maximum result ±1σ at the timestep the maximum result is achieved.

A.1 ADDRESSING LOW BASELINE PERFORMANCE ON SPARSE REWARDS

To ensure fair comparisons in our goal-conditioned setting (where an agent only gets reward signal
when in the goal state), we give all methods access to the same sparse rewards: +1 if in the goal state
(e.g., win state in SMAX or the goal position in MABRAX Ant) and 0 otherwise.
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The goal-conditioned 0/1 reward specification is a natural choice for any task-specific objective,
where the successful completion of the task is a function of agent observations. Notably, the goal-
conditioned reward does not need any domain-specific knowledge beyond the specification of the task
itself. Unlike LAIES (Liu et al., 2023), we do not need to specify external states in fully cooperative
settings, which would require domain-specific knowledge for different tasks. Furthermore, this 0/1
reward specification is not new and has been previously used to benchmark methods: other papers
such as CMAE (Liu et al., 2021) and LAIES (Liu et al., 2023) also use such a setting for their method
comparisons, and find similarly low performance in their tested baselines (though the compared
methods are different).

To address the concern that the IPPO and MAPPO baselines are not representative of the current
SOTA in sparse reward settings (such as the goal-conditioned setting), we directly compare our
method to MASER (Jeon et al., 2022), a MARL algorithm designed for sparse reward that has
shown superior performance to state-of-the-art MARL algorithms including QMIX (Rashid et al.,
2018), MAVEN (Mahajan et al., 2019), and COMA (Foerster et al., 2017) without further signal
from expert domain knowledge. ICRL outperforms MASER in the 0/1 reward setting (Figure 5).
We believe at least one of the reasons for ICRL’s high relative performance on such sparse-signal
environments is the method’s ability to explore effectively. This emergent exploration is discussed
further in Section 5.3.

B EXPERIMENTAL DETAILS

Restatement (Independent CRL Method). Our method treats each agent as an independent
contrastive learner with shared parameters. The critic learns representations ϕ(o, a) and ψ(g)
using the symmetric InfoNCE loss, while the actor maximizes E[−∥ϕ(o(i)t , a

(i)
t ) − ψ(g)∥2] to

output actions that are close to the goal in representation space.

Code and hyperparameters for reproducing all experiments can be found in a code repository.2 We
highlight some key hyperparameters in Table 2.

Hyperparameter Value
Total Environment Steps 50,000,000
# Epochs 500
# Environments 256 (64)
# Eval Environments 64

Actor LR 3e-4
Critic LR 3e-4
Alpha LR 3e-4

Batch Size 256 (64)
Gamma 0.99
LogSumExp Penalty Coefficient 0.1

Max Replay Size 5,000
Min Replay Size 1,000
Unroll Length 62

Table 2: Independent CRL Hyperparameter Values for the MPE Tag, MABRAX, and SMAX
environments. Note for the 6h v 8z SMAX environments, we needed to reduce environments and
batch size (listed in parentheses) to avoid out-of-memory errors.

We found our method to be fairly robust: we did not perform any hyperparameter tuning across the
various environments. One exception was for the larger SMAX environments, where we reduced the

2https://anonymous.4open.science/r/gcrl_marl
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number of environments and batch size to avoid out-of-memory errors. For all experiments, we test
all algorithms without RNNs. For our SMAX experiments, we use the available action mask for all
algorithms.

C HANDLING DISCRETE ACTIONS

In our experiments, we use both environments with continuous actions and environments with discrete
actions. For the discrete action tasks, we train the policy network with the Straight-Through Gumbel-
Softmax trick (Jang et al., 2016; Maddison et al., 2016) for backpropagating gradients through the
sampling of the discrete action. We make an unconventional choice by parameterizing our critic as
a function of the soft actor output rather than the discrete action itself; empirically, we found that
this slightly speeds up learning for our algorithm. By using the soft outputs in both the forward and
backward pass during actor/critic optimization, we avoid approximating any gradients. Please refer
to the code block below for further clarification.

hard_actions = jax.nn.one_hot(jax.nn.argmax(logits), num_actions)
soft_actions = jax.nn.softmax(logits, axis=-1)

# CRITIC LOSS
loss = critic_loss(obs, soft_actions, achieved_goals) # ours
# loss = critic_loss(obs, hard_actions, achieved_goals) # conventional

# ACTOR LOSS
loss = f(obs, soft_actions, achieved_goals) # ours
# loss = f(obs, (hard_actions - soft_actions).detach() +
# soft_actions, achieved_goals) # conventional

D ADDITIONAL EXPERIMENTS

D.1 DIDACTIC EXPERIMENT: TEAMWORK ON MPE TAG

Our first experiment aims to study whether our algorithm ICRL works at all. To test this, we choose a
simple task where prior methods are known to work.
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3-Agent Tag
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Figure 8: “Tag” as a goal-reaching problem. We com-
pare ICRL (ours) to IPPO on the Multi-Particle Agent
Tag FACMAC Environment, including both the 3-agent
setting (Left) and the 6-agent setting (Right). We observe
that our method learns faster in both settings and reaches
higher asymptotic returns in the 6-agent setting.

In the MPE Tag environment, predator agents
must collide with (or “tag”) a faster prey. The
environment is partially observed: if agents
or landmarks are outside a fixed view radius,
their observation gets masked with a placeholder
value. We use the FACMAC (Factored Multi-
Agent Centralized Policy Gradients) variant,
where the prey uses a simple heuristic policy,
so the environment is a fully cooperative Dec-
POMDP (Rutherford et al., 2024; Peng et al.,
2021). We frame the goal as: set the distance
of the nearest (observed) predator to the prey
to zero. Mathematically, we set mg(o

(i)
t ) as the

distance between the closest predator and prey,
and estimate the goal g equal to the scalar 0. If
the prey is not visible, this is set to an arbitrar-
ily large value. The results are summarized in
Figure 8.

Our results demonstrate that Independent CRL consistently performs well against baseline methods.
On the MPE Tag task, Independent CRL matched or beat the performance of IPPO both quali-
tatively (via interesting formations and strategies) and quantitatively (gaining more rewards at
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its peak). While Independent CRL matched performance on the 3-agent environment, it exceeded
the IPPO baseline on 6 agents, converging to an effective policy much more quickly.

D.2 ROBUSTNESS TO NOT SPECIFYING GOAL-SPACE G AND GOAL-MAPPING mg

Restatement (Multi-Agent Goal-Conditioned RL Problem). We consider a multi-agent RL
problem where agents cooperate to reach a commanded goal state g ∈ G, with mapping
mg : O → G from observations to goals. The goal-conditioned reward is defined as (for
continuous states):

r(o
(1:n)
t , a

(1:n)
t ) = P (mg(o

(1)
t+1) = g | o(1:n)t , a

(1:n)
t ),

with the overall objective being:

max
π(a(i)|o(i),g)

Epg(g),π(τ(1:n)|g)

[ ∞∑
t=0

γtr(o
(1:n
t , a

(1:n)
t )

]

In order to address the concern that picking a goal space G and mapping function mg requires user
specification and, therefore, provides the method additional information, we test our method by using
uninformative and non-task dependent choices of G and mg. We run our ablation experiment for
the SMAX 2s3z environment. Relative to the other tested benchmarks, MPE Tag FACMAC and
MABRAX, the SMAX implementation involves the most nontrivial mg: the mapping computes the
sum over enemy healths, as opposed to a simple observation truncation (MABRAX) or translation of
task reward into goal (MPE Tag). Thus, we believe the results presented here generalize over to other
benchmarks.

We let G = O (the full observation space) and let mg = I (the identity map), and provide the method
a single goal, commanding a state where every enemy health is 0 while filling out the remaining
values using an arbitrary state from a previously collected trajectory. As seen in Figure 9, ICRL
achieves non-trivial performance on this task—in fact, our method performs even better than it did
with a human-selected choice of mg that isolates the enemy’s health. This shows that ICRL is robust
to the choice of mg in a complex cooperative MARL benchmark and, in fact, may not need this
specification at all to complete challenging tasks.
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Figure 9: Specifying mg is not necessary for good performance. ±1σ error bars.
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One hypothesis for why we observe these results is that the full observation provides additional
contextual information that may be relevant to goal-reaching. While a manually-designed mg can
help reduce dimensionality and focus learning on intuitive task-relevant observation features, it may
inadvertently remove information that is useful in learning more complex environmental dynamics
and coordination strategies.

Note that specifying mg naturally reflects that the goal is a property of observations, rather than a
specific observation. For instance, although ICRL only receives a single example of the goal in this
SMAX experiment, that example still overspecifies the goal: the real objective is to eliminate enemies,
not to eliminate enemies and reach a randomly-specified state with goal-irrelevant observations. Thus,
although the results in Figure 9 suggest mg is not necessary for ICRL’s performance, we keep the
goal-mapping function so that our formulation aligns with the nature of real tasks.

D.3 PROBABILITY OF IMPROVEMENT

In order to determine the statistical significance of our results, we use the probability of improvement,
which is the chance that, in a randomly selected environment, a given algorithm performs better than
another (Agarwal et al., 2022). We compute the probability of improvement for ICRL compared to
MAPPO over all SMAX environments using the max win rate across a training run as the measure
of performance, and obtain an estimate of 0.94 with a 95% bootstrapped confidence interval of
[0.85, 0.99]. When using the final episode win rate instead, we obtain an estimate of 0.86 with a
95% bootstrapped confidence interval of [0.73, 0.95]. In both cases, the probability of improvement
compared to IPPO is 1.0.

D.4 DO AGENTS SPECIALIZE?

Given that all agents use identical policy network architectures with unit type as the only distinguish-
ing observation feature, one might expect uniform policy learning across different unit types. Yet
prior research demonstrates that role specialization improves performance in cooperative multi-agent
tasks (Samvelyan et al., 2019; Witt et al., 2020; Yu et al., 2022). Does our method learn to specialize?

2s3z SMACv2 (5 units) SMACv2 (10 units)
0.0
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Figure 10: Agents specialize in SMAC, using infor-
mation about their player type to make decisions.
Win rates decline as unit type information is progres-
sively removed from agent observations: baseline (self +
teammate types), partial ablation (teammate types only),
and full ablation (no type information).

To investigate this, we conduct an ablation study
where we systematically remove unit type in-
formation from agent observations. We com-
pare three conditions: agents observing both
their own and teammates’ unit types (baseline),
agents observing only teammates’ unit types,
and agents observing no unit type information.
If ICRL relies on unit type specialization, we
expect performance to degrade as this informa-
tion is removed. Figure 10 demonstrates this
expected performance decline on 2s3z and
the SMACv2 5-unit and 10-unit environments
(these are the only environments that include
heterogeneous unit types). Interestingly, there
is a significantly smaller drop in performance
when removing an agent’s own unit type from
its observation, implying that information about
the distribution of unit types across teammates is
more relevant to task performance. The 0% win
rate on 2s3z when removing all unit type in-
formation may seem counterintuitive, especially
since the teammate unit type distribution does not provide extra information beyond the agent’s unit
type in this environment. We hypothesize that this outcome arises because the policy network was
only exposed to a single team unit type configuration during training, and thus does not behave as
expected under altered inputs.
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E DETAILS ON SAMPLING SCHEME

Restatement (Actor Objective). The Independent CRL actor objective is as follows:

max
π

E
o
(i)
t ,g(i)∼B

a
(i)
t ∼π(a(i)t |o(i)t ,g(i))

[−∥ϕ(o(i)t , a
(i)
t )− ψ(g(i))∥2]. (9)

where observations and future goals are sampled from the trajectories of the same randomly-
chosen agent.

While the actor objective in Eq. 9 samples local observations, actions, and goals as opposed to
multi-agent observations, actions, and goals, we can still use this objective as a proxy for the full
CRL actor objective.

Concretely, we show here that a modification of Eq. 9 gives a lower bound on the full contrastive
actor objective for a given buffer of multi-agent trajectories B, where the sampled goal is a function
of all agent observations. The following is a generic statement for multi-agent replay buffers of
the form B = {τ (1:N)}, where trajectories are defined over the full multi-agent observation space
O(1:N) = ON and full action space A(1:N) = AN .

Assumption E.1 (Actor independence). The joint policy π takes the form

π(a
(1:N)
t | o(1:N)

t , g) =
∏
i

π(a
(i)
t | o(i)t , g).

In words, each individual agent executes actions based on local observations.

Assumption E.2 (Agent index). Agent index i is included in observation o(i), as is true in empirics.

Lemma E.3. Let a modified version of the Independent CRL actor objective sample goals g that are
a function of all agents’ collective observations o(1:N):

JπICRL, mod ≜ max
π

E
o
(i)
t ,g∼B

a
(i)
t ∼π(a(i)t |o(i)t ,g)

[−∥ϕ(o(i)t , a
(i)
t )− ψ(g)∥2]. (10)

where changes to Independent CRL (ICRL) are highlighted in teal.

We show that the modified ICRL is a lower bound on the full contrastive actor objective Eq. 11:

Jπfull ≜ max
π

E
o
(1:N)
t ,g∼B

a
(1:N)
t ∼π(a(1:N)

t |o(1:N)
t ,g)

[−∥ϕfull(o
(1:N)
t , a

(1:N)
t )− ψfull(g)∥2]. (11)

where ϕfull and ψfull denote the representations learned when sampling concatenated observations
o(1:N) and goals g.

Proof. At convergence of the full InfoNCE loss, the critic ffull(o
(1:N), a(1:N), g) captures the temporal

correlations between multi-agent observations, actions, and goals:

f∗full(o
(1:N), a(1:N), g(1:N)) = −∥ϕ∗full(o

(1:N)
t , a

(1:N)
t )− ψ∗

full(g)∥2 (12)

= log
ρfull(g | o(1:N)

t , a
(1:N)
t )

ρfull(g)
. (13)

To understand Eq. 11 as a mutual information, we can reformulate this objective in terms of
the discounted goal-occupancy measure ρfull

γ (o(1:N), a(1:N), g) induced by the individual policy
π(a(i) | o(i), g). The γ subscript is dropped for simplicity.
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Let G,O(1:N), and A(1:N) denote the random variables describing samples (g, o(1:N)) ∼ B and
a(1:N) ∼ π(· | o(1:N)

t , g). The full actor objective simplifies to a mutual information:

Jπfull ≈ E
o
(1:N)
t ,g∼B

a
(1:N)
t ∼π(·|o(1:N)

t ,g)

[
log

ρfull(g | o(1:N)
t , a

(1:N)
t )

ρfull(g)

]
(14)

= E
o
(1:N)
t ,g∼B

a
(1)
t ∼π(·|o(1)t ,g)...

[
log

ρfull(g | o(1:N)
t , a

(1:N)
t )

ρfull(g)

]
(actor independence)

= I(G;O(1:N), A(1:N)). (15)

We can additionally define O(I) and A(I) as random variables describing samples o(i) ∼ B and
a(i) ∼ π(· | o(i)t , g). The samples (o(i), g) are drawn from the mixed discounted state occupancy
measure ρmix(o(i), g) with random variable (I) denoting the (uniformly sampled) agent index. Then,
the Independent CRL actor objective can be written as

JπICRL, mod ≈ EiEo(i)t ,g∼ρmix(o,g)

a
(i)
t ∼π(·|o(i)t ,g)

[
log

ρmix(g | o(i)t , a
(i)
t )

ρmix(g)

]
(16)

= I(G;O(I), A(I)). (17)

The LB follows from basic information theory inequalities:

Jπfull ≈ I(G;O(1:N), A(1:N)) (18)

≥ 1

N

∑
i

I(G;O(i), A(i)) (DPI)

= I(G;O(I), A(I) | I) (definition)

= I(G;O(I), A(I), I)− I(G; I)︸ ︷︷ ︸
=0, I sampled uniformly at random

(chain rule)

= I(G;O(I), A(I)) (Assump. E.2)
≈ JπICRL, mod (19)

where both π on the LHS and RHS are functions of single observations and goals by the independence
assumption.

Thus, the learned policy maximizes a mutual information that lower bounds the true desired mu-
tual information. One cannot bound any distance between the learned policies without additional
assumptions.

A final caveat is that ICRL does not directly use the collective goal in critic or actor sampling. Rather,
ICRL samples agent-specific goals g(i) as a proxy for the collective goal g. While this leads to
weaker theoretical motivation for the method, this sampling scheme works well empirically in several
challenging collaborative MARL tasks (see Section 5).
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