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ABSTRACT

Agents that can autonomously navigate the web through a graphical user inter-
face (GUI) using a unified action space (e.g., mouse and keyboard actions) can
require very large amounts of domain-specific expert demonstrations to achieve
good performance. Low sample efficiency is often exacerbated in sparse-reward
and large-action-space environments, such as a web GUI, where only a few actions
are relevant in any given situation. In this work, we consider the low-data regime,
with limited or no access to expert behavior. To enable sample-efficient learning,
we explore the effect of constraining the action space through intent-based affor-
dances – i.e., considering in any situation only the subset of actions that achieve
a desired outcome. We propose Code as Generative Affordances (CoGA), a
method that leverages pre-trained vision-language models (VLMs) to generate
code that determines affordable actions through implicit intent-completion func-
tions and using a fully-automated program generation and verification pipeline.
These programs are then used in-the-loop of a reinforcement learning agent to re-
turn a set of affordances given a pixel observation. By greatly reducing the number
of actions that an agent must consider, we demonstrate on a wide range of tasks in
the MiniWob++ benchmark that: 1) CoGA is orders of magnitude more sample ef-
ficient than its RL base agent, 2) CoGA’s programs can generalize within a family
of tasks, and 3) CoGA performs better or on par compared with behavior cloning
when a small number of expert demonstrations is available.

1 INTRODUCTION

Reinforcement learning (RL) is a powerful paradigm to train agents for sequential decision-making
by interacting with an environment. In environments where data collection and human annotation
is time-consuming and costly, the sample efficiency of an agent is critical. Despite its great poten-
tial and success in multiple domains like Chess and Go, RL algorithms can suffer from significant
challenges in being sample efficient. In real-world environments with sparse reward and large action
spaces where only a small subset of actions are relevant in a given situation (e.g., GUI-based web
navigation, recommendation systems), this issue is exacerbated.

To address this challenge, a popular approach is to leverage expert trajectories with behavior cloning
(BC) (e.g., Shaw et al. (2023a)). State-of-the-art methods require thousands to millions of such
demonstrations. However, this comes with major limitations including computational costs and the
burden of gathering domain-specific expert demonstrations. Moreover, BC suffers from an imitation
gap (Ross & Bagnell (2010)) and rarely surpasses its training data. In contrast, RL has the potential
to gather new data and learn from interaction. Yet, RL methods alone struggle to bridge the gap to
expert performance in many tasks, particularly with large action spaces and sparse reward. In this
regard, we here focus on reducing the complexity of the action space. Progress towards improving
the performance and sample efficiency of RL agents is complimentary to methods such as Shaw
et al. (2023a), with potential to further the RL fine-tuning component.

In the context of RL, Khetarpal et al. (2020) defined affordances (Gibson, 1977) as actions that com-
plete intended consequences (i.e., intents). Intent-based affordances help prune the action space,
guiding RL agents toward effective actions, reducing sample complexity, and mitigating naive ex-
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Figure 1: Overview of our method, CoGA. The VLM processes available task descriptions and
example observations to extract relevant intents (e.g., “click on a tab”) and object template images
(e.g., every tab), which are then used to generate code that returns a set of affordable actions. The
generated code is validated by a critique model. The set of affordances are then used to mask the
action space of the RL agent.

ploration. To bridge the gap towards or beyond expert performance in the low-data regime, focusing
on learning with limited to no access to expert demonstrations, we investigate the use of affordances
to improve the sample efficiency of RL.

However, the specification of intents and intent-completion functions is non-trivial and remains an
open problem. For instance, hand-designing them can be limited in environments where intents
are not obvious and require substantial effort and domain knowledge. We address this challenge by
leveraging pre-trained large vision-language models (VLMs) to discover intents and the correspond-
ing actions they afford.

Given their multimodal reasoning capabilities, pre-trained VLMs are well-suited to enhance RL
agents operating with image-based observations. Although querying a VLM directly for affordances
based on visual observations (Qian et al., 2024) or making the VLM itself be the agent is possible, it
is computationally and financially expensive. We use VLMs to generate functions that return afford-
able actions through implicit intent-completion, requiring a robust code generation and verification
pipeline. While prior work (Venuto et al. (2024)) focused on high-level tasks like sub-task reward
functions, our prompting and verification approach ensures reliable low-level affordance specifica-
tion. The generated code is used in the RL training and inference loop for pruning the action space,
thus improving the agent’s sample efficiency.

Our framework Code as Generative Affordances (CoGA), demonstrates strong sample efficiency
and success rates on a series of MiniWob++ (Shi et al. (2017); Liu et al. (2018)) tasks. We demon-
strate the following claims (Sec. 4.3):

1. CoGA is orders of magnitude more sample efficient than its RL base agent.
2. CoGA’s generated affordance scripts can generalize within the same family of tasks.
3. CoGA performs better or on par compared to a reference BC agent when only a limited

number of expert demonstrations are available.
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2 BACKGROUND

Reinforcement Learning. An RL agent learns to interact with an environment, through a sequence
of actions, in order to maximize its expected long-term reward (Sutton & Barto, 2018). This inter-
action is typically formalized using the framework of Markov Decision Processes (MDPs). A finite
MDP is a tuple M = ⟨S,A, r, P, γ⟩, where S is a finite set of states, A is a finite set of actions,
r : S × A → R is the reward function, P : S × A → Dist(S) is the environment’s transition
dynamics, mapping state-action pairs to a probability distribution over next states, Dist(S), and
γ ∈ (0, 1) is a discount factor. At each time step t, the agent observes a state st ∈ S and takes an
action at ∈ A drawn from a policy π : S → Dist(A).

Q-learning. Further, a value function of a policy π is defined as the expectation of long-term return
(i.e., the cumulative discounted reward received from a given state) obtained by executing π, defined
as: V π(s) = E[

∑∞
t=0 γ

tr(st, at)|s0 = s, at ∼ π(·|st),∀t]. The action-value function is defined as
Qπ(s, a) = r(s, a) + γ

∑
s′ P (s′|s, a)V π(s′). In Q-learning (Watkins & Dayan, 1992), the optimal

action-value function Q∗ corresponds to the optimal policy π∗: Q∗ = maxπ Q
π(s, a). The optimal

policy π∗ can be obtained by acting greedily with respect to Q∗. In complex environments, the Q-
value function can be approximated using a neural network, referred to as Deep Q-learning (DQN)
(Mnih et al., 2013).

Vision-Language Models. VLMs are pre-trained transformers that integrate visual and textual data,
enabling multi-modal reasoning. These models consist of three core components: a vision module to
process images, a text module for language inputs, and a fusion mechanism —often utilizing cross-
modal attention— to link visual and textual embeddings. Models like CLIP (Radford et al., 2021)
and UNITER (Chen et al., 2020) have demonstrated impressive performance in tasks such as scene
description and image-text matching. These models leverage contrastive learning or transformer-
based architectures to align images and text in a shared embedding space. More recent, larger
models such as GPT-4 (OpenAI et al., 2023) showcase exceptional performance across a range of
tasks with increasing complexity.

Intents, Intent Completion, and Affordances. The concept of intent refers to the desired out-
come associated with an action (Gibson, 1977). Intents are abstract representations of goal states,
guiding an agent’s decision-making. In RL, affordances are the state-action pairs that can com-
plete these intents, effectively reducing the action space by focusing only on relevant actions in a
given state (Khetarpal et al., 2020). Concretely, an intent-completion function considers a transi-
tion (st, at, st+1) and set of intentions, and predicts the likelihood of the transition (st, at, st+1)
to complete the respective intentions above a certain threshold. Thus, affordances can be inferred
through the intent-completion function. In this work, we posit that a VLM can predict the likelihood
of achieving an intended consequence for a given state and an action, which can lead to relevant
affordances. Specifically, we leverage the VLM to 1) specify the relevant intents for a task (e.g.,
“click tab”), 2) infer implicit intent-completion functions by iteratively building its understanding
of the task, and 3) generate affordances as code by implicitly using its inferred intent-completion
functions (see Sec. 3).

3 COGA: CODE AS GENERATIVE AFFORDANCES

We now present our approach, CoGA, which leverages pre-trained VLMs to gen-
erate code for determining affordable actions given an image observation (see
determine affordable actions(obs) in Figure 2). These generated functions re-
turn a set of affordable actions which can be used to prune the action space in reinforcement
learning. This task not only requires high-level reasoning, but also the ability to correctly infer and
detect the low-level affordable actions (i.e., affordable action types and pixel coordinates here) in
each and every observation through the generated code.

CoGA proposes a modular prompting pipeline (see Figure 2 and Appendix A) which builds on
that of Venuto et al. (2024). Concretely, CoGA consists of three key components: a) a modular
code generation pipeline that focuses on extracting the correct set of intents and relevant objects
given a task and an image observation, and generates functions that return the set of affordable
actions given an observation, b) a verification pipeline that leverages another VLM for critiquing
the generated code to improve it, the final code (to be used in RL) is selected based on ground
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Figure 2: Prompting pipeline to generate affordance scripts that return the set of affordable actions.

truth test cases, c) using the generated code from steps (a) and (b) in RL. The first two stages
are tightly coupled whereby the generated code is judged by another critique VLM to improve it
further if necessary. This pipeline alleviates the need for expensive VLM inference calls during the
reinforcement learning stage.

3.1 GENERATING AFFORDANCES AS CODE.

As shown in Figure 2, the first step in generating functions to determine affordances is to infer
relevant high-level intents in a task (e.g., “click tab”, “click submit”). For every inferred intent, the
VLM (GPT-4o) is prompted to detect the relevant objects. These objects correspond to the affordable
pixel actions and need to be dynamically detected for every observation through the generated script.
To do so, we use off-the-shelf object detection methods that do not require additional training, as in
Venuto et al. (2024). However, unlike Venuto et al. (2024), we resort to template image matching as
we found it to be more robust for detecting complex and granular objects (e.g., cartoon trash cans)
than edge and color detection methods used by their generated reward functions.

Inferring Intents. The process starts by prompting the VLM to build context about the environment.
We first show it a randomly sampled observation, the specified goal and example instructions of the
task given by the environment, and then ask it to identify the salient objects in the image, followed
by the relevant intents for the task type. It is important to distinguish between intents and goals, as a
goal is related to directly solving the task by completing a given instruction (e.g., “click on Tab 2”),
whereas an intent is related to solving the type of task more broadly (e.g., “click on a tab”).

Detecting Visual Affordances. Once the relevant intents are discovered, the VLM is prompted to
name the relevant objects to each intent. For every named object, we follow an automated tem-
plate image extraction process. The VLM is shown a coordinate-system-based gridded image and
is required to specify the bounding box coordinates of the respective objects on the gridded image.
The prompting pipeline then queries pre-written code to crop and save the objects using their deter-
mined bounding box coordinates. The saved template images are then used in a pre-written template
matching script using OpenCV. The template images are derived from 5 randomly sampled observa-
tions to maximize generalization across the observation space. Additionally, to avoid discrepancies
in color (e.g., a circle is always a circle regardless of its color), we perform template image matching
between the grayscaled template images and observation images.

Determining Affordable Actions. Once the affordable objects are detected, the VLM is asked to
develop 4 strategies in sequence using chain-of-thought prompting (Wei et al., 2023) before writing
the function that returns the affordable actions at a given observation: 1) a step-by-step strategy for
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determining which intent to use for a given observation, 2) a step-by-step strategy for determining
which actions are affordable for a given observation and for each respective intent, 3) a step-by-
step strategy for combining the intents and their corresponding set of affordable actions for a given
observation, 4) an outline of the script to determine affordances using code comments. Finally, the
VLM is asked to write code to implement its strategy for selecting the required intents and their
corresponding set of affordable actions for a given observation by filling in the outline of comments
with code. As such, the VLM uses the extracted template images and template matching script as
needed to detect the affordable pixel actions (e.g., tabs). The generated code returns the affordable
actions (both action types and their correspoding pixel actions) for a given observation.

3.2 VERIFICATION PIPELINE

For each task, we verify scripts using a critique VLM and ground truth test cases from five random
samples with manually annotated affordances. Scripts are executed to detect errors and assess preci-
sion and recall against predicted and ground truth affordances. If execution errors occur, the critique
VLM reviews them and provides feedback similar to Wang et al. (2023). Else, the critique VLM
is shown 2 of the 5 randomly sampled observations to assess script quality and provides feedback.
The feedback is used by the critique VLM to regenerate the code. The process repeats up to three
times unless the critique VLM approves the code earlier (as further iterations show no empirical
gains). In addition, we log the mean precision and recall over the 5 manual test cases. Note that the
critique VLM does not have access to the ground truth affordances in test cases. We run the pipeline
a maximum of 3 times and retain the best performing scripts across runs and critique iterations.

3.3 USING THE GENERATED AFFORDANCE SCRIPTS IN RL

The generated affordance scripts are queried in the training and inference loops of the RL agent to
obtain sets of affordable actions. As shown in Figure 1, the predicted set of affordable actions are
used to create a hard mask over actions (i.e., the probability of sampling unaffordable actions is 0).
Thus, CoGA’s success strongly depends on the quality of the generated scripts, which in turn depend
on the success of the object detection methods used. If the predicted affordances have low recall,
CoGA would fail. In such a case, using soft masking during training where unaffordable actions
are assigned low probability would allow CoGA to slowly catch up to the RL baseline, ultimately
lagging in sample efficiency. This limitation is further discussed in Section 6.1. It is worth noting
that the generated affordances can be used in either value-based or policy gradient RL.

4 EXPERIMENTS

4.1 MINIWOB++

MiniWoB++ (Shi et al., 2017; Liu et al., 2018) consists of a collection of web-based graphical
user interface (GUI) tasks, where the goal is to complete tasks by interacting with a simulated
webpage. The tasks vary in complexity, ranging from simple actions like clicking a button, to more
complex ones like completing a form, or navigating through a series of web elements. Each task
is defined by an HTML structure, and the agent’s observation consists of a rendered screenshot of
the webpage. We use the MiniWob++ environment and action space defined in Shaw et al. (2023a).
The action space consists of action types (e.g., click, begin drag) and (x,y) pixel coordinates.
The affordances are on both action types and pixel coordinates. Every pixel observation is 160x210
pixels, which we divide into 32 bins as in Shaw et al. (2023a). We discard text entry tasks, and
therefore the type and keyboard actions. Concretely, this results in a full action space of 4x1024.

The rewards are in (−1, 1). Positive rewards are assigned only upon successfully completion, and
negative rewards (success of 0) are assigned otherwise (i.e., sparse rewards). As in prior works, we
discount positive rewards by the number of steps to complete the task to encourage faster completion.

4.2 METHODS.

Reinforcement Learning (RL) Agent. We use a DQN agent that is built on a convolutional neural
network (CNN) backbone for encoding the pixel observations. Additionally, for every observation,
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we encode the task instruction using Sentence-BERT (SBERT) (Reimers & Gurevych, 2019) as
shown in Figure 1. To maintain learning stability, we specifically use a double DQN (van Hasselt
et al., 2015) and prioritized experience replay (Schaul et al., 2016). All the following baselines build
on top the RL base agent. See Appendix C for hyperparameter details.

CoGA. During training and inference, the generated affordance script is queried. The returned
set of affordable actions are used to mask the action space accordingly, from which the agent can
sample. Note that as we are using a double DQN agent, we also apply the affordance masks during
bootstrapping from ot+1, where o denotes the obersvation.

Behavioral Cloning (BC) Agent. Due to limited resources and closed-source expert demonstra-
tions performed on the environment we used, we perform behavioral cloning on expert demonstra-
tions that we collected using rollouts from the Pix2Act model (Shaw et al., 2023a). We filter the
trajectories achieving a reward of less than 0.8.

It should be noted that while many state-of-the-art prior works (Shaw et al., 2023b) on MiniWob++
use large amounts of expert demonstrations, our work focuses on leveraging pre-trained founda-
tion models particularly in the low-data regime with no or limited access to expert demonstrations.
Hence, the comparison with BC is limited to scenarios that use only a few expert demonstrations.

4.3 RESULTS

All RL and CoGA results are reported over 3 seeds.

CoGA’s Affordance Scripts are Intuitive, (mostly) Accurate and Precise. We evaluate the qual-
ity of the generated affordance scripts qualitatively and quantitatively. Qualitatevely, we observe
that the returned affordable actions are intuitive (Figure 3 left). This is emphasized in instruction-
dependent tasks such as click-test-2 and click-tab (Figure 3 left - middle and right). In
click-test-2 the instruction (e.g., goal) is to either click on button ONE or TWO. However, the
intent is to “click a button”, in which case clicking any of the two buttons is affordable, and the
policy is learnt over these affordances.

Figure 3: Left: Examples of returned affordances for three tasks (left to right): click-test,
click-test-2, click-tab Right: F1-score across tested tasks. We observe that most gener-
ated affordance scripts have a high F1-score, implying wide and precise coverage of ground truth
affordances.

Quantitavely, we measure the quality of the generated affordance scripts using precision and recall
and aggregate them through an F1-score (Figure 3 right). We define precision as the rate of predicted
affordances that have at least one match in the set of ground truth affordances (i.e., identical action
type and a corresponding pixel intersection over union (IoU)>0). We define recall as the rate of
ground truth affordances that have at least one match in the set of predicted affordances (i.e., identi-
cal action type and a corresponding pixel area IoU>0). As seen in Figure 3 (right), most scripts have
high coverage and precision over the set of ground truth affordances. For those with low precision
but high recall, the affordance set would include more affordable actions than in the ground truth
affordance set. In this regard, in the worst case, CoGA performs on par to the RL base agent.

CoGA is Orders of Magnitude More Sample Efficient than its RL Base agent.

We investigate the effect of constraining the action space using the affordances returned by the gen-
erated affordance scripts on the agent’s sample efficiency. Following a hyperparameter search (see
Appendix C), we report the best evaluation success rates at 1000 steps for the RL agent and CoGA
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Figure 4: Left: Evaluation success rates at 1000 steps shown for the RL agent and CoGA across
tasks. We observe that CoGA is up to 10 times more sample efficient than the RL baseline early
in training at only 1000 steps. Right: Evaluation success rate curves shown for the RL agent and
CoGA on count-sides (left) and click-test-2 (right)

on 23 tasks. Due to computational constraints, we chose to evaluate on the tasks which had affor-
dance scripts with a high F1-score, and a few with relatively lower scores to investigate the effect of
subpar affordance scripts (e.g., use-slider). As illustrated in Figure 4 (left), CoGA enables up to
10x sample efficiency gains over the RL agent early in training at only 1000 steps, and considerable
gains on most tasks when affordance scripts have a high F1-score. Sample efficiency curves are
shown in Figure 4 (right) on count-sides and click-test-2 for illustration purposes.

CoGA’s Affordance Scripts can Generalize within the Same Family of Tasks. We define a
family of tasks as tasks with the same affordances, but different optimal policies. For instance,
click-test-2 (Figure 3 left middle) and click-button-sequence have an identical GUI.
However, in the former, the task is to learn to click on either button ONE or TWO, whereas in the
latter, the task is to click on button ONE then TWO. Thus, we hypothesize that affordances should
generalize within the same family of tasks. We compare the best evaluation success rates obtained
by using a task’s originally generated affordance script (e.g., click-button-sequence) and
its relative’s generated affordance script (e.g., click-test-2). For reference, we also include the
RL base agent’s performance on the generalization task considered.

Table 1: Generalization evaluation mean success rates with standard deviation across 3 seeds. We
report the evaluation success rate of the task using its originally generated affordance script (CoGA-
o) and its transfer affordance script (CoGA-t). As a reference, we also include the performance of
the RL agent each task.

Task RL (SR %) CoGA-o (SR %) CoGA-t (SR %)

click-button-sequence 4.00± 1.00 14.33± 1.15 23.67± 1.53

focus-text-2 52.30± 41.28 100.00± 0.00 96.67± 4.93

click-checkboxes-large 0.00± 0.00 0.33± 0.58 0.33± 0.58

In Table 1, we observe that a generated affordance script indeed generalizes to its relative tasks.
Interestingly, we see that using the generated script of a task’s relative can sometimes outperform
using a task’s original script (e.g., click-button-sequence).

CoGA Performs Better or On Par Compared to its Behavioral Cloning Base Agent when a Lim-
ited Number of Expert Demonstrations are Available. We consider the low-data regime where a
limited number of expert demonstrations are available. With expert demonstrations available, a nat-
ural baseline to consider is behavioral cloning. We thus evaluate a BC agent’s performance across
data regimes (namely, 10, 50, 200, and 1000 expert demonstrations) compared to the RL base agent
and CoGA with only self-collected data. We consider the best evaluation success rates for every
baseline across a hyperparameter search (see Appendix C) and over a training period of 48 hours
for the RL agent and CoGA, and 30 epochs for the BC agent. As shown in Figure 5 (right), CoGA
performs better on average than the BC baseline with up to 200 expert trajectories, beyond which the
BC baseline outperforms. However, the RL baseline only outperforms the BC baseline trained on 10
expert demonstrations. Note that we only consider the tasks on which we were able to collect expert
trajectories from using the Pix2Act model. These results demonstrate the impact of constraining
the action space using affordances on an agent’s performance. Particularly, by combining a limited
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number of expert data and CoGA, one could expect significant boosts in performance that potentially
match that of a BC+RL agent using higher expert data regimes.

Figure 5: Right: Evaluation success rates across tasks and expert data regimes of the behavioral
cloning agent, the RL agent, and CoGA. Left: Mean of evaluation success rates across tasks and
expert data regimes of the behavioral cloning agent, the RL agent, and CoGA.

5 RELATED WORK

MiniWob++. MiniWoB was introduced by Shi et al. (2017) and extended to MiniWob++ (Liu
et al., 2018) through additional tasks. It is a benchmark for web-based GUI tasks to train agents
to interact with webpages using a mouse and keyboard. Tasks range in complexity, from simple
button clicks, to sequential and partially-observable form-completion. To tackle this challenging
benchmark consisting of sparse rewards and a large action space, prior works have investigated
visual- and structured-based approaches.

Shi et al. (2017) investigate DOM and pixel observation inputs using a convolutional neural network
(CNN), an attention mechanism, and an average of 200 human demonstrations per task to train a BC
policy followed by RL. CC-Net (Humphreys et al., 2022) extends this approach by increasing the
amount of expert demonstrations to a total of 2.4 million and scaling the model architecture. Due to
limited availability of DOM elements, Pix2Act (Shaw et al., 2023b) considers pixel-only observa-
tions. It uses a transformer base model that was pre-trained to map screenshots to HTML structures
and approximately 1 million expert demonstrations. They first fine-tune their model using BC, fol-
lowed by RL through Monte Carlo Tree Search. Pix2Act thus achieves comparable performance
to CC-Net with only pixel-based inputs. More recently, Cheng et al. (2024) employ pre-training to
ground large VLMs to GUI coordinates and use them as the computer-using agent.

Other approaches have considered language-based methods through webpage structural information.
Liu et al. (2018) propose workflow-guided exploration (WGE) by using expert demonstrations to
learn high-level “workflows” that constrain the allowable actions at each time step. The agent then
learns to select appropriate actions within the workflow through RL. Although similar to CoGA in
constraining the action space and minimizing the amount of expert demonstration required, WGE
relies on DOM inputs and parametric learning of the workflows. In contrast, Kim et al. (2023)
employ a large language model (LLM) as the agent using HTML code as input. By prompting the
LLM to recursively criticize and improve (RCI) its output and using 2-3 in-context demonstrations,
RCI outperforms Pix2Act’s state-of-the-art.

Our method seeks to explore the low expert data regime from pixel-only observations. While pre-
vious work has considered using the VLM as the agent due to its powerful prior knowledge, its
ability to map webpages to pixel coordinates is limited and requires fine-tuning (Cheng et al., 2024).
Additionally, VLM agents are significantly computationally and financially demanding. We argue
that only selected prior knowledge of the VLM is relevant for a web agent. Therefore, we propose
to distill the relevant information from the VLM through code as affordances that can be used to
constrain and guide the exploration of the action space.

VLMs for Affordances. VLMs have been used to infer affordances by leveraging their ability to
reason about visual and textual information. By leveraging a visual question-answering prompting
technique, MOKA (Liu et al., 2024) and KAGI (Lee et al., 2024) employ VLMs to predict key-
point and waypoint affordances from pre-marked visual observations to guide open-world robotics.
VoxPoser (Huang et al., 2023) uses LLMs to infer affordances for open-world robotic manipulation
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given free-form language. They leverage LLMs to write code that interacts with a VLM to compose
3D value maps for grounding the agent’s observation space. Our method is complementary to pre-
vious work. As detailed in Sec. 3, we build upon their successes to infer affordances by the VLM
using pre-marked observations and code.

Code Generation for Reinforcement Learning. Recent works have investigated the role of code
generation by foundation models for improving RL sample efficiency. Liang et al. (2023) introduced
a paradigm to prompt LLMs to generate structured programs as policies for RL agents. Although
they do not use VLMs directly, they leverage perception and control APIs within the generated
code for embodied control. Code as Reward (Venuto et al., 2024) proposes using VLMs to define
intrinsic reward functions as code, improving exploration in RL. Similarly, the EUREKA model (Ma
et al., 2024) uses LLMs to generate and iteratively improve reward functions as code, outperforming
human-engineered rewards. Octopus (Yang et al., 2024) uses a VLM for code in planning and
manipulation. Likewise, Voyager (Wang et al., 2023) leverages LLM to generate code as actions,
and VoxPoser (Huang et al., 2023) enables LLMs for code that interacts with a VLM and ground the
agent’s observation space through inferred affordances.

6 DISCUSSION

6.1 LIMITATIONS AND FAILURE MODES

Our method is not without limitations. We now discuss the array of limitations and also highlight
failure modes to highlight the scope for improvements along the following dimensions.

1) VLM Pixel Mapping. VLMs struggle to parse an image into pixel coordinates (Cheng et al.,
2024). To mitigate this, we superimposed a coordinate system onto an observation when showing it
to the VLM for template extraction. However, the VLM faced limitations in specifying exact coor-
dinates, which affects the quality of templates. Consequently, this can decrease recall and precision.

2) Template Matching. Template matching is limited to detecting isomorphic objects across ob-
servations. Although this can be mitigated by lowering the matching threshold – which the VLM
self-iterates based on the critique’s feedback –, it is particularly a limitation in text-based objects. To
this end, we experimented with optical character recognition (OCR) (e.g., pytesseract), but due
to inconsistent OCR, we excluded most tasks with varying text-based observations from our work.

3) VLM Code Generation. The recall and precision of the predicted affordances depend on the cor-
rectness of the generated code. Given perfect templates but incorrect reasoning about the affordable
action types and their associated affordable actions, affordances would be compromised. We miti-
gated this issue through sequential chain-of-thought (Wei et al., 2023) prompting and by using the
critique VLM. However, this limitation may be more significant in complex tasks requiring scripts to
select relevant intents and affordances from multiple context-dependent options (e.g., generic email
tasks). Finally, an important limitation was the amount of time taken to generate code for tasks that
contained a larger number of objects that could be affordances (e.g., drag-shapes).

4) VLM Code Verification. We manually labeled five test cases to assess code quality. While
manual test creation is common, exploring the VLM’s ability to generate its own test cases is worth-
while. The critique VLM is not always reliable and may mislabel high-recall, high-precision code
as ”failed.” This issue could be mitigated by a self-improving approach, allowing the VLM to learn
from its misclassifications based on manual test results. Additionally, token-rate limits restricted
further iterations of the code, limiting refinement based on VLM feedback. This was the case for
tasks like use-spinner, use-spinner-2, use-slider, and others (see Appendix D).

6.2 FUTURE WORK

Given perfect affordances, CoGA’s performance is limited to the strength of the RL base agent
(e.g., network architecture, RL algorithm, hyperparameter sweeps), particularly in tasks that require
sequential decision-making over multiple steps and are partially observable. We particularly note
this in tasks like click-checkboxes, click-checkboxes-large, and email-inbox
for example. A promising direction for future work is to augment more competent RL agents with
CoGA, as our method is complimentary to any RL algorithm.
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A PROMPTING PIPELINE FOR GENERATING INTENTS AND THE INITIAL
AFFORDANCE SCRIPT

• This is an image of a web environment. The agent is the cursor. It can click anywhere on the
screen. There may also be other relevant objects that the agent can interact with. The task
is to {task description}, but note that the task’s specific utterances can vary. Here are some
examples: {example utterances}. Can you give a list of the most important elements in this
image, ensuring it applies to all the utterances above, not just the specific instance? Give
me a list of elements and concise names with description. Do not include the background.

• Based on your description of these elements in the environment, what do you think the
agent affords in this environment? The final goal completion and reading the instruction are
not affordances. This list should be concise and only contain affordances that are actionable
directly by the agent. If multiple affordances can be combined, please combine them into
one modular affordance. Please only return a python list of affordance names.

• For each affordance:
– what are the most relevant objects that you need to identify in this environment to

check if the affordance is possible? Give me the minimum list concisely but precisely.
Do not give a generic answer such as ’shapes’. Please end your answer by returning a
python list of object names. Ensure that the object name does not contain any spaces.
The cursor should not be in the list.

• For each object {obj}, for each gridded image:
– Explain to a 5 year old step by step how to visually identify a {obj} in such an image.
– Look at the image grid and find the {obj}. Return the bounding box coordinates as

[x left, y upper, x left+width, y upper+height] where width and height describe the
size of the box.Ensure that 0¡=x¡=160 and 0¡=y¡=210. Return only the list.

– The template image for an instance of {obj} has been saved in {template path}. You
can use this template image for {obj} detection using template matching when needed.

• Here is a script that can be used for object detection using template matching. It will be
referred to as match template.You can use it with the template paths, but do not modify it.
Here is the script:
def match template(image array, template path, save path):

# The main image is provided as an array
main image = image array
template image path = template path
# Load the template image in grayscale
template image = cv2.imread(template image path,

cv2.IMREAD GRAYSCALE)
if main image.ndim == 3 and main image.shape[2] == 3:

main image gray = cv2.cvtColor(main image,
cv2.COLOR RGB2GRAY)

else:
main image gray = main image

main image rgb = cv2.cvtColor(main image gray,
cv2.COLOR GRAY2RGB)

w, h = template image.shape[1], template image.shape[0]
result = cv2.matchTemplate(main image gray,

template image, cv2.TM CCOEFF NORMED)
threshold = 0.5
locations = np.where(result >= threshold)
bounding boxes = []
for pt in zip(*locations[::-1]):

bounding box = (pt[0], pt[1], pt[0] + w, pt[1] + h)
bounding boxes.append(bounding box)
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cv2.rectangle(main image rgb, (pt[0], pt[1]), (pt[0]
+ w, pt[1] + h), (0, 255, 0), 2)

result image path = f’matched templates/save path’
cv2.imwrite(result image path, main image rgb)
print(f"Number of matches found: {len(bounding boxes)}")
return bounding boxes

• Write a step-by-step strategy for determining which affordance to use at a given state of the
environment. If multiple affordances apply, your strategy should return them in hierarchical
order. Please do not write any code yet. Reading the instruction should not be part of the
strategy.The strategy should be independent of the instruction. Make sure your strategy is
as specific as possible and that it can generalize to all possible states that the agent can be
in.

• For each affordance:
– Write a step-by-step strategy for determining which action(s) is/are affordable at a

given state for the intent of aff by examining a current state image. You should
return the set of affordable actions to complete the intent of {aff}. Please do not
write any code yet. Make sure your strategy is as specific as possible. When decid-
ing on actions, note that CLICK COORDS and DBLCLICK COORDS automatically
move the cursor and perform the click action, so there is no need to separately use
MOVE COORDS before them The possible actions are: action set. This list contains
both action names and their textual descriptions. You should refer to actions by their
names in all responses. The PRESS KEY action type issues a key combination. Each
key combination in the allowed keys config follow the rules: Modifiers are specified
using prefixes ’C-’ (Control), ’S-’ (Shift), ’A-’ (Alternate), or ’M-’ (Meta). Printable
character keys (a, 1, etc.) are specified directly. Shifted characters (A, !, etc.) are
equivalent to ’S-’ + non-shifted counterpart. Special keys are enclosed in ’¡. . . ¿’. The
list of valid names is specified inminiwob.constants.WEBDRIVER SPECIAL KEYS.
Example valid key combinations:’7, ’Enter, ’C-S-ArrowLeft’. To specify relevant x,y
coordinates for a selected action, you can use the template matching script for the
relevant objects.

• Write a step-by-step strategy for combining the intents and their corresponding set of af-
fordable actions at a given state. After writing your strategy, write an outline of a code
using comments. The purpose of the affordable actions returned by the code should not be
to solve the task specified in the instruction, but to just help give a prior to an RL agent to
learn how to solve the task by helping it narrow down its exploration space. You should
return a set of affordable actions to complete the selected intent. This script should not
require any other input than the image.

• Write code to implement your strategy for selecting the required affordance and its corre-
sponding set of affordable actions at a given state. First write an outline of the code with
comments, then write the filled in code. The purpose of the affordable actions returned by
the code should not be to solve the task specified in the instruction, but to just help give
a prior to an RL agent to learn how to solve the task by helping it narrow down its explo-
ration space, wihtout telling it the exact solution. You can use the object ID scripts and
match template if needed, but do not modify them. If you use the match template, make
sure to use all of the templates inthe required template’s path. The template paths available
are: {template paths}. Make sure your implementation can generalize to all possible states
that the agent can be in and pay close attention to what you have written in the steps. You
should return a set of affordable actions to complete the selected affordance. This script
should not require any other input than the image. The script should be fully executable as
is, and should not have placeholder values or pseudocode. It should also be robust to any
detection imperfections. Make sure that the coordinate affordances returned are those of the
bounding box around the relevant object in the form of [x left,y up,x right,y down]. The
returned affordances should be a list of dictionaries with the format ’action’: action name,
’coords’: [x left,y up,x right,y down]. x and y should not be the centers. The action name
should be exactly as specified in the list of actions. The function that returns the affordable
actions must be called ’determine affordable actions(image)’, where the image is a numpy
array. Do not change the function’s signature, use it as is. The template paths to use must be
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instantiated inside the function. Ony return the code. DO NOT INCLUDE AN EXAMPLE
USAGE.

B PROMPTING PIPELINE FOR CODE REVIEW & REGENERATION

• For up to 3 times, terminating early if the code is verified as correct:

– (Critique VLM) This is an image of a web environment. The agent is the cursor. It can
click anywhere on the screen. There may also be other relevant objects that the agent
can interact with. The task is to {task description}, but note that the task’s specific
utterances can vary. Here are some examples: example utterances. Do not output
anything yet.

– The code is executed on 2 example observations for error handling. If the code runs
smoothly:

* (Critique VLM) Please review this code and find problems with it, if any. The
affordable actions returned by this code on the first image are: {actions 1}. The
affordable actions returned by this code on the second image are: {actions 2}.
The purpose of the affordable actions returned by the code should not be to solve
the task specified in the instruction, but to just help give a prior to an RL agent to
learn how to solve the task by helping it narrow down its exploration space, without
telling it the exact solution. Please think about whether these returned affordable
actions are suitable for each test case image provided. If the affordable actions
are suitable, please only return a string Status: Pass, Reasoning: step-by-step rea-
soning for why the actions are correct. Else, only return Status: Fail, Reasoning:
step-by-step reasoning for why the actions are incorrect, Critique: Point-based
feedback on how to solve the issues found in the code (MUST NOT BE JSON).
Do not modify the code yet.

– However, if there is an error in the code:

* (Critique VLM) Please review this code as it is throwing this error: {error trace}.
Only return {Status: Fail, Reasoning: step-by-step reasoning for why the code
is failing, Critique: Point-based feedback on how to solve the issues found in
the code} (MUST NOT BE JSON). Do not modify the code yet. The deter-
mine affordable actions function must only take the image as argument.

– (Code Regeneration VLM) Based on the issues you have found in the code, please
improve your code. You should only rewrite the code. Do not mention anything else
in your answer. DO NOT INCLUDE EXAMPLE USAGE.

C HYPERPARAMETER SEARCH DETAILS

The hyperparameters used consistently across all tasks are summarized in Table 2.

Hyperparameter Value
Learning rate (lr) 1× 10−5

Clipping threshold (clip) 1.0
Epsilon decay (eps decay) 5000

Batch size (batch size) 64
Initial epsilon (eps start) 0.6

Replay buffer size (buffer size) 40000
Number of timesteps per update (n timesteps) 50

Discount factor (γ) 0.9
Target network update parameter (τ ) {1× 10−5, 1× 10−6, 1× 10−7}

Table 2: Hyperparameters used across tasks.

A search was conducted on the target network update parameter (τ ), as it exhibited significant vari-
ability across tasks and had a notable influence on performance. The considered values for τ were
1× 10−5, 1× 10−6, and 1× 10−7.
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For tasks that did not reach an optimal success rate (100%), an additional hyperparameter search
was performed. This focused on increasing the batch size (batch size) to 128 and 256 with τ to
1 × 10−5 and 1 × 10−6, buffer size = 10000, eps decay = 10000, eps start = 0.3. This
refinement aimed to enhance convergence in suboptimal tasks.

For the RL and CoGA agents, we used a prioritized replay buffer with parameters α = 0.6 and
β = 0.4. All agents use a CNN with five convolutional layers (32, 64, 128, 256, 512 filters, kernel
size 3x3, stride 1, padding 1), each followed by batch normalization and ReLU activation, with max-
pooling (2x2, stride 2) after the second, fourth, and fifth layers. The extracted features are flattened
and passed through two fully connected layers (1024, 384 neurons, ReLU activations), of which the
first fully connected layer’s features are concatenated with the SBERT instruction embeddings. The
model outputs Q-values for 4 action types and a discretized pixel coordinates (32 x 32 bins outputs).
We report results over seeds {0, 1, 2}.

D EXAMPLE GENERATED AFFORDANCE SCRIPTS & TEMPLATES

We here show 5 examples of generated affordance scripts and corresponding templates. The first 3
are successful examples, and the later 2 are examples of limitations and failure modes (as shown by
the F1-scores in Figure 3 right).

E NUMBER OF RUNS & CODE GENERATION ITERATIONS ACROSS TASKS

Task Number of VLM Runs Number of Code Generation Iterations in the Best Run
Click-test 1 1
Click-tab 2 2
Circle-center 1 1
Click-test-2 1 2
Focus-text-2 1 2
Focus-text 1 2
Count-sides 1 1
Identify-shapes 1 1
Click-checkboxes 1 1
Click-color 2 1
Tic-tac-toe 3 2
Click-button-sequence 1 2
Click-dialog 2 2
Click-dialog-2 1 3
Click-option 1 2
Unicode-test 3 2
Click-button 3 2
Click-widget 3 2
Email-inbox-important 3 3
Grid-coordinate 2 1
Click-collapsible-nodelay 2 1
Click-shades 3 1
Count-shape 3 2
Use-slider-2 3 1
Use-slider 3 3
Use-spinner 3 3

Table 3: Number of Runs and Number of Code Generation Iterations in the Best Run across tasks.
The former represents the total Visual Language Model executions per task, while the latter denotes
the number of code generation iterations in the most successful execution.
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click-test click-tab count-sides use-slider use-spinner

import cv2
import numpy as np

def match_template(image_array, template_path, 
save_path):
    main_image = image_array
    template_image_path = template_path
    template_image = cv2.imread(template_image_path, 
cv2.IMREAD_GRAYSCALE)
    
    if main_image.ndim == 3 and main_image.shape[2] == 
3:
        main_image_gray = cv2.cvtColor(main_image, 
cv2.COLOR_RGB2GRAY)
    else:
        main_image_gray = main_image

    main_image_rgb = cv2.cvtColor(main_image_gray, 
cv2.COLOR_GRAY2RGB)
    w, h = template_image.shape[1], 
template_image.shape[0]
    result = cv2.matchTemplate(main_image_gray, 
template_image, cv2.TM_CCOEFF_NORMED)
    threshold = 0.7
    locations = np.where(result >= threshold)

    bounding_boxes = []

    for pt in zip(*locations[::-1]):
        bounding_box = (pt[0], pt[1], pt[0] + w, pt[1] 
+ h)
        bounding_boxes.append(bounding_box)
        cv2.rectangle(main_image_rgb, (pt[0], pt[1]), 
(pt[0] + w, pt[1] + h), (0, 255, 0), 2)

    result_image_path = 
f'matched_templates/{save_path}'
    cv2.imwrite(result_image_path, main_image_rgb)

    return bounding_boxes

def determine_affordable_actions(image):
    # Step 1: Define template paths
    template_paths = [
        './templates/click-
test_button_test_case_1_template.png',
        './templates/click-
test_button_test_case_2_template.png'
    ]

    # Step 2: Detect buttons using template matching
    all_bounding_boxes = []
    for i, template_path in enumerate(template_paths):
        bounding_boxes = match_template(image, 
template_path, f'result_{i}.png')
        all_bounding_boxes.extend(bounding_boxes)

    # Step 3: Assess object state and determine 
affordable actions
    affordable_actions = []
    for box in all_bounding_boxes:
        x_left, y_up, x_right, y_down = box
        # Assuming the button is visible and accessible
        affordable_actions.append({'action': 
'CLICK_COORDS', 'coords': [x_left, y_up, x_right, 
y_down]})

    # Step 4: Return the set of affordable actions
    return affordable_actions

import cv2
import numpy as np

def match_template(image_array, template_path, save_path):
    main_image = image_array
    template_image_path = template_path
    template_image = cv2.imread(template_image_path, 
cv2.IMREAD_GRAYSCALE)
    
    if main_image.ndim == 3 and main_image.shape[2] == 3:
        main_image_gray = cv2.cvtColor(main_image, 
cv2.COLOR_RGB2GRAY)
    else:
        main_image_gray = main_image

    main_image_rgb = cv2.cvtColor(main_image_gray, 
cv2.COLOR_GRAY2RGB)
    w, h = template_image.shape[1], template_image.shape[0]
    result = cv2.matchTemplate(main_image_gray, 
template_image, cv2.TM_CCOEFF_NORMED)
    threshold = 0.7
    locations = np.where(result >= threshold)

    bounding_boxes = []

    for pt in zip(*locations[::-1]):
        bounding_box = (pt[0], pt[1], pt[0] + w, pt[1] + h)
        bounding_boxes.append(bounding_box)
        cv2.rectangle(main_image_rgb, (pt[0], pt[1]), (pt[0] + 
w, pt[1] + h), (0, 255, 0), 2)

    result_image_path = f'matched_templates/{save_path}'
    cv2.imwrite(result_image_path, main_image_rgb)

    return bounding_boxes

def determine_affordable_actions(image):
    # Step 1: Define template paths
    template_paths = [
        './templates/click-tab_Tab1_test_case_1_template.png',
        './templates/click-tab_Tab1_test_case_2_template.png',
        './templates/click-tab_Tab1_test_case_3_template.png',
        './templates/click-tab_Tab1_test_case_4_template.png',
        './templates/click-tab_Tab1_test_case_5_template.png',
        './templates/click-tab_Tab2_test_case_1_template.png',
        './templates/click-tab_Tab2_test_case_2_template.png',
        './templates/click-tab_Tab2_test_case_3_template.png',
        './templates/click-tab_Tab2_test_case_4_template.png',
        './templates/click-tab_Tab2_test_case_5_template.png',
        './templates/click-tab_Tab3_test_case_1_template.png',
        './templates/click-tab_Tab3_test_case_2_template.png',
        './templates/click-tab_Tab3_test_case_3_template.png',
        './templates/click-tab_Tab3_test_case_4_template.png',
        './templates/click-tab_Tab3_test_case_5_template.png'
    ]

    # Step 2: Initialize list for affordable actions
    affordable_actions = []

    # Step 3: Perform template matching for each template
    for template_path in template_paths:
        bounding_boxes = match_template(image, template_path, 
'result.png')
        
        # Step 4: Determine actions based on bounding boxes
        for box in bounding_boxes:
            action = {
                'action': 'CLICK_COORDS',
                'coords': [box[0], box[1], box[2], box[3]]
            }
            affordable_actions.append(action)

    # Step 5: Return the set of affordable actions
    return affordable_actions

import cv2
import numpy as np

def match_template(image_array, template_path, save_path):
    main_image = image_array
    template_image_path = template_path

    template_image = cv2.imread(template_image_path, 
cv2.IMREAD_GRAYSCALE)
    
    if main_image.ndim == 3 and main_image.shape[2] == 3:
        main_image_gray = cv2.cvtColor(main_image, 
cv2.COLOR_RGB2GRAY)
    else:
        main_image_gray = main_image

    main_image_rgb = cv2.cvtColor(main_image_gray, 
cv2.COLOR_GRAY2RGB)
    
    w, h = template_image.shape[1], template_image.shape[0]
    
    result = cv2.matchTemplate(main_image_gray, 
template_image, cv2.TM_CCOEFF_NORMED)
    
    threshold = 0.5
    locations = np.where(result >= threshold)

    bounding_boxes = []

    for pt in zip(*locations[::-1]):
        bounding_box = (pt[0], pt[1], pt[0] + w, pt[1] + h)
        bounding_boxes.append(bounding_box)
        cv2.rectangle(main_image_rgb, (pt[0], pt[1]), 
(pt[0] + w, pt[1] + h), (0, 255, 0), 2)

    result_image_path = f'matched_templates/{save_path}'
    cv2.imwrite(result_image_path, main_image_rgb)

    return bounding_boxes

def determine_affordable_actions(image):
    # Step 1: Define template paths
    template_paths = [
        './templates/count-sides-
NumberButtons_test_case_1_template.png',
        './templates/count-sides-
NumberButtons_test_case_2_template.png',
        './templates/count-sides-
NumberButtons_test_case_3_template.png',
        './templates/count-sides-
NumberButtons_test_case_4_template.png',
        './templates/count-sides-
NumberButtons_test_case_5_template.png'
    ]

    # Step 2: Initialize list for storing bounding boxes
    all_bounding_boxes = []

    # Step 3: Use template matching to find NumberButtons
    for i, template_path in enumerate(template_paths):
        bounding_boxes = match_template(image, 
template_path, f"output_image_{i}.png")
        all_bounding_boxes.extend(bounding_boxes)

    # Step 4: Determine affordable actions
    affordable_actions = []

    if all_bounding_boxes:
        for box in all_bounding_boxes:
            action = {'action': 'CLICK_COORDS', 'coords': 
list(box)}
            affordable_actions.append(action)
    else:
        affordable_actions.append({'action': 'NONE', 
'coords': []})

    # Step 5: Return the set of affordable actions
    return affordable_actions

import cv2
import numpy as np

def match_template(image_array, template_path):
    main_image = image_array
    template_image = cv2.imread(template_path, cv2.IMREAD_GRAYSCALE)
    
    if main_image.ndim == 3 and main_image.shape[2] == 3:
        main_image_gray = cv2.cvtColor(main_image, cv2.COLOR_RGB2GRAY)
    else:
        main_image_gray = main_image

    w, h = template_image.shape[1], template_image.shape[0]
    result = cv2.matchTemplate(main_image_gray, template_image, 
cv2.TM_CCOEFF_NORMED)
    threshold = 0.5
    locations = np.where(result >= threshold)

    bounding_boxes = []

    for pt in zip(*locations[::-1]):
        bounding_box = (pt[0], pt[1], pt[0] + w, pt[1] + h)
        bounding_boxes.append(bounding_box)

    return bounding_boxes

def determine_affordable_actions(image):
    slider_handle_templates = [
        './templates/use-
slider_SliderHandle_test_case_1_template_runNum_3.png',
        './templates/use-
slider_SliderHandle_test_case_2_template_runNum_3.png',
        './templates/use-
slider_SliderHandle_test_case_3_template_runNum_3.png',
        './templates/use-
slider_SliderHandle_test_case_4_template_runNum_3.png',
        './templates/use-slider_SliderHandle_test_case_5_template_runNum_3.png'
    ]
    slider_track_templates = [
        './templates/use-slider_SliderTrack_test_case_1_template_runNum_3.png',
        './templates/use-slider_SliderTrack_test_case_2_template_runNum_3.png',
        './templates/use-slider_SliderTrack_test_case_3_template_runNum_3.png',
        './templates/use-slider_SliderTrack_test_case_4_template_runNum_3.png',
        './templates/use-slider_SliderTrack_test_case_5_template_runNum_3.png'
    ]
    submit_button_templates = [
        './templates/use-
slider_SubmitButton_test_case_1_template_runNum_3.png',
        './templates/use-
slider_SubmitButton_test_case_2_template_runNum_3.png',
        './templates/use-
slider_SubmitButton_test_case_3_template_runNum_3.png',
        './templates/use-
slider_SubmitButton_test_case_4_template_runNum_3.png',
        './templates/use-slider_SubmitButton_test_case_5_template_runNum_3.png'
    ]

    slider_handle_coords = []
    for template in slider_handle_templates:
        slider_handle_coords.extend(match_template(image, template))

    slider_track_coords = []
    for template in slider_track_templates:
        slider_track_coords.extend(match_template(image, template))

    submit_button_coords = []
    for template in submit_button_templates:
        submit_button_coords.extend(match_template(image, template))

    actions = []

    if slider_handle_coords and slider_track_coords:
handle = slider_handle_coords[0]

        track = slider_track_coords[0]
        actions.append({'action': 'MOUSEDOWN_COORDS', 'coords': handle})
        actions.append({'action': 'MOUSEUP_COORDS', 'coords': track})

    if submit_button_coords:
        button = submit_button_coords[0]
        actions.append({'action': 'CLICK_COORDS', 'coords': button})

    return actions

import cv2
import numpy as np

def match_template(image_array, template_path, save_path):
    main_image = image_array
    template_image = cv2.imread(template_path, cv2.IMREAD_GRAYSCALE)
    
    if main_image.ndim == 3 and main_image.shape[2] == 3:
        main_image_gray = cv2.cvtColor(main_image, cv2.COLOR_RGB2GRAY)
    else:
        main_image_gray = main_image

    main_image_rgb = cv2.cvtColor(main_image_gray, cv2.COLOR_GRAY2RGB)
    w, h = template_image.shape[1], template_image.shape[0]
    result = cv2.matchTemplate(main_image_gray, template_image, 
cv2.TM_CCOEFF_NORMED)
    threshold = 0.5
    locations = np.where(result >= threshold)

    bounding_boxes = []

    for pt in zip(*locations[::-1]):
        bounding_box = (pt[0], pt[1], pt[0] + w, pt[1] + h)
        bounding_boxes.append(bounding_box)
        cv2.rectangle(main_image_rgb, (pt[0], pt[1]), (pt[0] + w, pt[1] + h), 
(0, 255, 0), 2)

    result_image_path = f'matched_templates/{save_path}'
    cv2.imwrite(result_image_path, main_image_rgb)

    return bounding_boxes

def get_spinner_value(image):
    return 0

def get_cursor_position(image):
    return (0, 0)

def determine_affordable_actions(image):
    spinner_arrows_templates = [
        './templates/use-spinner_SpinnerArrows_test_case_1_template_runNum_1.png',
        './templates/use-spinner_SpinnerArrows_test_case_2_template_runNum_1.png',
        './templates/use-spinner_SpinnerArrows_test_case_3_template_runNum_1.png',
        './templates/use-spinner_SpinnerArrows_test_case_4_template_runNum_1.png',
        './templates/use-spinner_SpinnerArrows_test_case_5_template_runNum_1.png'

    ]
    submit_button_templates = [
        './templates/use-spinner_SubmitButton_test_case_1_template_runNum_1.png',
        './templates/use-spinner_SubmitButton_test_case_2_template_runNum_1.png',
        './templates/use-spinner_SubmitButton_test_case_3_template_runNum_1.png',
        './templates/use-spinner_SubmitButton_test_case_4_template_runNum_1.png',
        './templates/use-spinner_SubmitButton_test_case_5_template_runNum_1.png'

    ]

    spinner_arrows_coords = []
    for template in spinner_arrows_templates:
        spinner_arrows_coords.extend(match_template(image, template, 
"spinner_arrows_result.png"))

    submit_button_coords = []
    for template in submit_button_templates:
        submit_button_coords.extend(match_template(image, template, 
"submit_button_result.png"))

    current_value = get_spinner_value(image)
    desired_value = 0
    cursor_position = get_cursor_position(image)

    if current_value != desired_value:
        intent = "adjust_spinner_value"
    else:
        intent = "click_submit"

    affordable_actions = []

    if intent == "adjust_spinner_value":
        for coords in spinner_arrows_coords:

x1, y1, x2, y2 = coords
            if not (x1 <= cursor_position[0] <= x2 and y1 <= 
cursor_position[1] <= y2):
                affordable_actions.append({'action': 'CLICK_COORDS', 'coords': 
list(coords)})

    elif intent == "click_submit":
        for coords in submit_button_coords:

x1, y1, x2, y2 = coords
            if not (x1 <= cursor_position[0] <= x2 and y1 <= 
cursor_position[1] <= y2):
                affordable_actions.append({'action': 'CLICK_COORDS', 'coords': 
list(coords)})

    return affordable_actions

Figure 6: Example scripts across 3 successful tasks (click-test, click-tab, count-sides) and 2 unsuc-
cessful tasks (use-slider, use-spinner).

Figure 7: Example template images across 3 successful tasks (click-test, click-tab, count-sides) and
2 unsuccessful tasks (use-slider, use-spinner).
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