
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CRACKING THE CODE OF ACTION: A GENERATIVE
APPROACH TO AFFORDANCES FOR REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Agents that can autonomously navigate the web through a graphical user inter-
face (GUI) using a unified action space (e.g., mouse and keyboard actions) can
require very large amounts of domain-specific expert demonstrations to achieve
good performance. Low sample efficiency is often exacerbated in sparse-reward
and large-action-space environments, such as a web GUI, where only a few actions
are relevant in any given situation. In this work, we consider the low-data regime,
with limited or no access to expert behavior. To enable sample-efficient learning,
we explore the effect of constraining the action space through intent-based affor-
dances – i.e., considering in any situation only the subset of actions that achieve
a desired outcome. We propose Code as Generative Affordances (CoGA), a
method that leverages pre-trained vision-language models (VLMs) to generate
code that determines affordable actions through implicit intent-completion func-
tions and using a fully-automated program generation and verification pipeline.
These programs are then used in-the-loop of a reinforcement learning agent to re-
turn a set of affordances given a pixel observation. By greatly reducing the number
of actions that an agent must consider, we demonstrate on a wide range of tasks in
the MiniWob++ benchmark that: 1) CoGA is orders of magnitude more sample ef-
ficient than its RL base agent, 2) CoGA’s programs can generalize within a family
of tasks, and 3) CoGA performs better or on par compared with behavior cloning
when a small number of expert demonstrations is available.

1 INTRODUCTION

Reinforcement learning (RL) is a powerful paradigm to train agents for sequential decision-making
by interacting with an environment. In environments where data collection and human annotation
is time-consuming and costly, the sample efficiency of an agent is critical. Despite its great poten-
tial and success in multiple domains like Chess and Go, RL algorithms can suffer from significant
challenges in being sample efficient. In real-world environments with sparse reward and large action
spaces where only a small subset of actions are relevant in a given situation (e.g., GUI-based web
navigation, recommendation systems), this issue is exacerbated.

To address this challenge, a popular approach is to leverage expert trajectories with behavior cloning
(BC) (e.g., Shaw et al. (2023a)). State-of-the-art methods require thousands to millions of such
demonstrations. However, this comes with major limitations including computational costs and the
burden of gathering domain-specific expert demonstrations. Moreover, BC suffers from an imitation
gap (Ross & Bagnell (2010)) and rarely surpasses its training data. In contrast, RL has the potential
to gather new data and learn from interaction. Yet, RL methods alone struggle to bridge the gap to
expert performance in many tasks, particularly with large action spaces and sparse reward. In this
regard, we here focus on reducing the complexity of the action space. Progress towards improving
the performance and sample efficiency of RL agents is complimentary to methods such as Shaw
et al. (2023a), with potential to further the RL fine-tuning component.

In the context of RL, Khetarpal et al. (2020) defined affordances (Gibson, 1977) as actions that com-
plete intended consequences (i.e., intents). Intent-based affordances help prune the action space,
guiding RL agents toward effective actions, reducing sample complexity, and mitigating naive ex-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

A
ffo

rd
an

ce

m
as

ki
ng

SBERT

CNN

“Click on
Tab #1”

No gradient flow

Action type
(e.g., CLICK)

Pixel
coordinates
(X, Y)

def determine_affordable_actions(observation)
</>

{affordances}

Code generation (prior to training)

Task description

intents
(e.g., click
on a tab)

object template
images

VLM VLM
Critique

VLM

script
</>

observation action

Web environment

RL Agent

reward

reviews +
regenerates

script
</>
(x3)

Figure 1: Overview of our method, CoGA. The VLM processes available task descriptions and
example observations to extract relevant intents (e.g., “click on a tab”) and object template images
(e.g., every tab), which are then used to generate code that returns a set of affordable actions. The
generated code is validated by a critique model. The set of affordances are then used to mask the
action space of the RL agent.

ploration. To bridge the gap towards or beyond expert performance in the low-data regime, focusing
on learning with limited to no access to expert demonstrations, we investigate the use of affordances
to improve the sample efficiency of RL.

However, the specification of intents and intent-completion functions is non-trivial and remains an
open problem. For instance, hand-designing them can be limited in environments where intents
are not obvious and require substantial effort and domain knowledge. We address this challenge by
leveraging pre-trained large vision-language models (VLMs) to discover intents and the correspond-
ing actions they afford.

Given their multimodal reasoning capabilities, pre-trained VLMs are well-suited to enhance RL
agents operating with image-based observations. Although querying a VLM directly for affordances
based on visual observations (Qian et al., 2024) or making the VLM itself be the agent is possible, it
is computationally and financially expensive. We use VLMs to generate functions that return afford-
able actions through implicit intent-completion, requiring a robust code generation and verification
pipeline. While prior work (Venuto et al. (2024)) focused on high-level tasks like sub-task reward
functions, our prompting and verification approach ensures reliable low-level affordance specifica-
tion. The generated code is used in the RL training and inference loop for pruning the action space,
thus improving the agent’s sample efficiency.

Our framework Code as Generative Affordances (CoGA), demonstrates strong sample efficiency
and success rates on a series of MiniWob++ (Shi et al. (2017); Liu et al. (2018)) tasks. We demon-
strate the following claims (Sec. 4.3):

1. CoGA is orders of magnitude more sample efficient than its RL base agent.
2. CoGA’s generated affordance scripts can generalize within the same family of tasks.
3. CoGA performs better or on par compared to a reference BC agent when only a limited

number of expert demonstrations are available.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 BACKGROUND

Reinforcement Learning. An RL agent learns to interact with an environment, through a sequence
of actions, in order to maximize its expected long-term reward (Sutton & Barto, 2018). This inter-
action is typically formalized using the framework of Markov Decision Processes (MDPs). A finite
MDP is a tuple M = ⟨S,A, r, P, γ⟩, where S is a finite set of states, A is a finite set of actions,
r : S × A → R is the reward function, P : S × A → Dist(S) is the environment’s transition
dynamics, mapping state-action pairs to a probability distribution over next states, Dist(S), and
γ ∈ (0, 1) is a discount factor. At each time step t, the agent observes a state st ∈ S and takes an
action at ∈ A drawn from a policy π : S → Dist(A).

Q-learning. Further, a value function of a policy π is defined as the expectation of long-term return
(i.e., the cumulative discounted reward received from a given state) obtained by executing π, defined
as: V π(s) = E[

∑∞
t=0 γ

tr(st, at)|s0 = s, at ∼ π(·|st),∀t]. The action-value function is defined as
Qπ(s, a) = r(s, a) + γ

∑
s′ P (s′|s, a)V π(s′). In Q-learning (Watkins & Dayan, 1992), the optimal

action-value function Q∗ corresponds to the optimal policy π∗: Q∗ = maxπ Q
π(s, a). The optimal

policy π∗ can be obtained by acting greedily with respect to Q∗. In complex environments, the Q-
value function can be approximated using a neural network, referred to as Deep Q-learning (DQN)
(Mnih et al., 2013).

Vision-Language Models. VLMs are pre-trained transformers that integrate visual and textual data,
enabling multi-modal reasoning. These models consist of three core components: a vision module to
process images, a text module for language inputs, and a fusion mechanism —often utilizing cross-
modal attention— to link visual and textual embeddings. Models like CLIP (Radford et al., 2021)
and UNITER (Chen et al., 2020) have demonstrated impressive performance in tasks such as scene
description and image-text matching. These models leverage contrastive learning or transformer-
based architectures to align images and text in a shared embedding space. More recent, larger
models such as GPT-4 (OpenAI et al., 2023) showcase exceptional performance across a range of
tasks with increasing complexity.

Intents, Intent Completion, and Affordances. The concept of intent refers to the desired out-
come associated with an action (Gibson, 1977). Intents are abstract representations of goal states,
guiding an agent’s decision-making. In RL, affordances are the state-action pairs that can com-
plete these intents, effectively reducing the action space by focusing only on relevant actions in a
given state (Khetarpal et al., 2020). Concretely, an intent-completion function considers a transi-
tion (st, at, st+1) and set of intentions, and predicts the likelihood of the transition (st, at, st+1)
to complete the respective intentions above a certain threshold. Thus, affordances can be inferred
through the intent-completion function. In this work, we posit that a VLM can predict the likelihood
of achieving an intended consequence for a given state and an action, which can lead to relevant
affordances. Specifically, we leverage the VLM to 1) specify the relevant intents for a task (e.g.,
“click tab”), 2) infer implicit intent-completion functions by iteratively building its understanding
of the task, and 3) generate affordances as code by implicitly using its inferred intent-completion
functions (see Sec. 3).

3 COGA: CODE AS GENERATIVE AFFORDANCES

We now present our approach, CoGA, which leverages pre-trained VLMs to gen-
erate code for determining affordable actions given an image observation (see
determine affordable actions(obs) in Figure 2). These generated functions re-
turn a set of affordable actions which can be used to prune the action space in reinforcement
learning. This task not only requires high-level reasoning, but also the ability to correctly infer and
detect the low-level affordable actions (i.e., affordable action types and pixel coordinates here) in
each and every observation through the generated code.

CoGA proposes a modular prompting pipeline (see Figure 2 and Appendix A) which builds on
that of Venuto et al. (2024). Concretely, CoGA consists of three key components: a) a modular
code generation pipeline that focuses on extracting the correct set of intents and relevant objects
given a task and an image observation, and generates functions that return the set of affordable
actions given an observation, b) a verification pipeline that leverages another VLM for critiquing
the generated code to improve it, the final code (to be used in RL) is selected based on ground

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Reviews and
improves
the code.
(up to 3x)

What are
possible intents?

What are the key
elements for
every intent?

• Click on an option

• Click on “submit”

What are their
coordinates?

Use to extract object
template images.

Given these intents
and template images,
write a script to
determine affordable
actions.

5 example observations

1

2
3

4

5

x3

The various
options and
the submit
button

Draft

script

</>

imp ort cv 2

imp ort num py as np

def mat ch_tem plate(im age, t emplat e):

res ult = cv2.ma tchTem plate(mai n_imag e_gray,

tem plate_ image, c v2.TM_ CCOEFF _NORME D)

S pecify a thr eshold to id entify match es

thr eshold = 0.5

loc ations = np. where(re sult > = thre shold)

bou nding_ boxes = []

for pt in zip(* locati ons[::-1]) :

bou nding_ box = (pt[0], pt[1] , pt[0] + w, pt[1] + h)

bou nding_ boxes. append(bou nding_ box)

ret urn bou nding_ boxes

def det ermine _affor dable_ action s(obs):

opt ion_bo x_temp lates=[…]

sub mit_bu tton_t emplat es=[…]

aff ordabl e_acti ons = []

I dentif y Opti on Box es

opt ion_bo xes = []

for tem plate_ path in opt ion_bo x_temp lates:

opt ion_bo xes.ex tend(mat ch_tem plate(im age,

tem plate_ path, sav e_path))

I dentif y Subm it But ton

sub mit_bu ttons = []

for tem plate_ path in sub mit_bu tton_t emplat es:

sub mit_bu ttons. extend(mat ch_tem plate(im age,

tem plate_ path, sav e_path))

D etermi ne the state of ea ch obj ect

uns electe d_opti on_box es = [box fo r box in opt ion_bo xes

if not is_ select ed(bo x)]

cli ckable _submi t_butt ons = [box fo r box in

sub mit_bu ttons if is_ clicka ble(bo x)]

D etermi ne aff ordabl e acti ons fo r cli ck_opt ion_bo x

int ent

for box i n uns electe d_opti on_box es:

aff ordabl e_acti ons.ap pend({' action ’:

'CLI CK_COO RDS’,' coords': box})

if req uires_ double _click(bo x):

aff ordabl e_acti ons.ap pend({' action ’:

'DBL CLICK_ COORDS ’,'coo rds': box})

D etermi ne aff ordabl e acti ons fo r cli ck_sub mit_bu tton

int ent

for box i n cli ckable _submi t_butt ons:

aff ordabl e_acti ons.ap pend({' action ’:

'CLI CK_COO RDS’,' coords': box})

if req uires_ double _click(bo x):

aff ordabl e_acti ons.ap pend(

{'act ion':' DBLCLI CK_COO RDS’,' coords': box})

R eturn the se t of a fforda ble ac tions

ret urn aff ordabl e_acti ons

Figure 2: Prompting pipeline to generate affordance scripts that return the set of affordable actions.

truth test cases, c) using the generated code from steps (a) and (b) in RL. The first two stages
are tightly coupled whereby the generated code is judged by another critique VLM to improve it
further if necessary. This pipeline alleviates the need for expensive VLM inference calls during the
reinforcement learning stage.

3.1 GENERATING AFFORDANCES AS CODE.

As shown in Figure 2, the first step in generating functions to determine affordances is to infer
relevant high-level intents in a task (e.g., “click tab”, “click submit”). For every inferred intent, the
VLM (GPT-4o) is prompted to detect the relevant objects. These objects correspond to the affordable
pixel actions and need to be dynamically detected for every observation through the generated script.
To do so, we use off-the-shelf object detection methods that do not require additional training, as in
Venuto et al. (2024). However, unlike Venuto et al. (2024), we resort to template image matching as
we found it to be more robust for detecting complex and granular objects (e.g., cartoon trash cans)
than edge and color detection methods used by their generated reward functions.

Inferring Intents. The process starts by prompting the VLM to build context about the environment.
We first show it a randomly sampled observation, the specified goal and example instructions of the
task given by the environment, and then ask it to identify the salient objects in the image, followed
by the relevant intents for the task type. It is important to distinguish between intents and goals, as a
goal is related to directly solving the task by completing a given instruction (e.g., “click on Tab 2”),
whereas an intent is related to solving the type of task more broadly (e.g., “click on a tab”).

Detecting Visual Affordances. Once the relevant intents are discovered, the VLM is prompted to
name the relevant objects to each intent. For every named object, we follow an automated tem-
plate image extraction process. The VLM is shown a coordinate-system-based gridded image and
is required to specify the bounding box coordinates of the respective objects on the gridded image.
The prompting pipeline then queries pre-written code to crop and save the objects using their deter-
mined bounding box coordinates. The saved template images are then used in a pre-written template
matching script using OpenCV. The template images are derived from 5 randomly sampled observa-
tions to maximize generalization across the observation space. Additionally, to avoid discrepancies
in color (e.g., a circle is always a circle regardless of its color), we perform template image matching
between the grayscaled template images and observation images.

Determining Affordable Actions. Once the affordable objects are detected, the VLM is asked to
develop 4 strategies in sequence using chain-of-thought prompting (Wei et al., 2023) before writing
the function that returns the affordable actions at a given observation: 1) a step-by-step strategy for

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

determining which intent to use for a given observation, 2) a step-by-step strategy for determining
which actions are affordable for a given observation and for each respective intent, 3) a step-by-
step strategy for combining the intents and their corresponding set of affordable actions for a given
observation, 4) an outline of the script to determine affordances using code comments. Finally, the
VLM is asked to write code to implement its strategy for selecting the required intents and their
corresponding set of affordable actions for a given observation by filling in the outline of comments
with code. As such, the VLM uses the extracted template images and template matching script as
needed to detect the affordable pixel actions (e.g., tabs). The generated code returns the affordable
actions (both action types and their correspoding pixel actions) for a given observation.

3.2 VERIFICATION PIPELINE

For each task, we verify scripts using a critique VLM and ground truth test cases from five random
samples with manually annotated affordances. Scripts are executed to detect errors and assess preci-
sion and recall against predicted and ground truth affordances. If execution errors occur, the critique
VLM reviews them and provides feedback similar to Wang et al. (2023). Else, the critique VLM
is shown 2 of the 5 randomly sampled observations to assess script quality and provides feedback.
The feedback is used by the critique VLM to regenerate the code. The process repeats up to three
times unless the critique VLM approves the code earlier (as further iterations show no empirical
gains). In addition, we log the mean precision and recall over the 5 manual test cases. Note that the
critique VLM does not have access to the ground truth affordances in test cases. We run the pipeline
a maximum of 3 times and retain the best performing scripts across runs and critique iterations.

3.3 USING THE GENERATED AFFORDANCE SCRIPTS IN RL

The generated affordance scripts are queried in the training and inference loops of the RL agent to
obtain sets of affordable actions. As shown in Figure 1, the predicted set of affordable actions are
used to create a hard mask over actions (i.e., the probability of sampling unaffordable actions is 0).
Thus, CoGA’s success strongly depends on the quality of the generated scripts, which in turn depend
on the success of the object detection methods used. If the predicted affordances have low recall,
CoGA would fail. In such a case, using soft masking during training where unaffordable actions
are assigned low probability would allow CoGA to slowly catch up to the RL baseline, ultimately
lagging in sample efficiency. This limitation is further discussed in Section 6.1. It is worth noting
that the generated affordances can be used in either value-based or policy gradient RL.

4 EXPERIMENTS

4.1 MINIWOB++

MiniWoB++ (Shi et al., 2017; Liu et al., 2018) consists of a collection of web-based graphical
user interface (GUI) tasks, where the goal is to complete tasks by interacting with a simulated
webpage. The tasks vary in complexity, ranging from simple actions like clicking a button, to more
complex ones like completing a form, or navigating through a series of web elements. Each task
is defined by an HTML structure, and the agent’s observation consists of a rendered screenshot of
the webpage. We use the MiniWob++ environment and action space defined in Shaw et al. (2023a).
The action space consists of action types (e.g., click, begin drag) and (x,y) pixel coordinates.
The affordances are on both action types and pixel coordinates. Every pixel observation is 160x210
pixels, which we divide into 32 bins as in Shaw et al. (2023a). We discard text entry tasks, and
therefore the type and keyboard actions. Concretely, this results in a full action space of 4x1024.

The rewards are in (−1, 1). Positive rewards are assigned only upon successfully completion, and
negative rewards (success of 0) are assigned otherwise (i.e., sparse rewards). As in prior works, we
discount positive rewards by the number of steps to complete the task to encourage faster completion.

4.2 METHODS.

Reinforcement Learning (RL) Agent. We use a DQN agent that is built on a convolutional neural
network (CNN) backbone for encoding the pixel observations. Additionally, for every observation,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

we encode the task instruction using Sentence-BERT (SBERT) (Reimers & Gurevych, 2019) as
shown in Figure 1. To maintain learning stability, we specifically use a double DQN (van Hasselt
et al., 2015) and prioritized experience replay (Schaul et al., 2016). All the following baselines build
on top the RL base agent. See Appendix C for hyperparameter details.

CoGA. During training and inference, the generated affordance script is queried. The returned
set of affordable actions are used to mask the action space accordingly, from which the agent can
sample. Note that as we are using a double DQN agent, we also apply the affordance masks during
bootstrapping from ot+1, where o denotes the obersvation.

Behavioral Cloning (BC) Agent. Due to limited resources and closed-source expert demonstra-
tions performed on the environment we used, we perform behavioral cloning on expert demonstra-
tions that we collected using rollouts from the Pix2Act model (Shaw et al., 2023a). We filter the
trajectories achieving a reward of less than 0.8.

It should be noted that while many state-of-the-art prior works (Shaw et al., 2023b) on MiniWob++
use large amounts of expert demonstrations, our work focuses on leveraging pre-trained founda-
tion models particularly in the low-data regime with no or limited access to expert demonstrations.
Hence, the comparison with BC is limited to scenarios that use only a few expert demonstrations.

4.3 RESULTS

All RL and CoGA results are reported over 3 seeds.

CoGA’s Affordance Scripts are Intuitive, (mostly) Accurate and Precise. We evaluate the qual-
ity of the generated affordance scripts qualitatively and quantitatively. Qualitatevely, we observe
that the returned affordable actions are intuitive (Figure 3 left). This is emphasized in instruction-
dependent tasks such as click-test-2 and click-tab (Figure 3 left - middle and right). In
click-test-2 the instruction (e.g., goal) is to either click on button ONE or TWO. However, the
intent is to “click a button”, in which case clicking any of the two buttons is affordable, and the
policy is learnt over these affordances.

Figure 3: Left: Examples of returned affordances for three tasks (left to right): click-test,
click-test-2, click-tab Right: F1-score across tested tasks. We observe that most gener-
ated affordance scripts have a high F1-score, implying wide and precise coverage of ground truth
affordances.

Quantitavely, we measure the quality of the generated affordance scripts using precision and recall
and aggregate them through an F1-score (Figure 3 right). We define precision as the rate of predicted
affordances that have at least one match in the set of ground truth affordances (i.e., identical action
type and a corresponding pixel intersection over union (IoU)>0). We define recall as the rate of
ground truth affordances that have at least one match in the set of predicted affordances (i.e., identi-
cal action type and a corresponding pixel area IoU>0). As seen in Figure 3 (right), most scripts have
high coverage and precision over the set of ground truth affordances. For those with low precision
but high recall, the affordance set would include more affordable actions than in the ground truth
affordance set. In this regard, in the worst case, CoGA performs on par to the RL base agent.

CoGA is Orders of Magnitude More Sample Efficient than its RL Base agent.

We investigate the effect of constraining the action space using the affordances returned by the gen-
erated affordance scripts on the agent’s sample efficiency. Following a hyperparameter search (see
Appendix C), we report the best evaluation success rates at 1000 steps for the RL agent and CoGA

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: Left: Evaluation success rates at 1000 steps shown for the RL agent and CoGA across
tasks. We observe that CoGA is up to 10 times more sample efficient than the RL baseline early
in training at only 1000 steps. Right: Evaluation success rate curves shown for the RL agent and
CoGA on count-sides (left) and click-test-2 (right)

on 23 tasks. Due to computational constraints, we chose to evaluate on the tasks which had affor-
dance scripts with a high F1-score, and a few with relatively lower scores to investigate the effect of
subpar affordance scripts (e.g., use-slider). As illustrated in Figure 4 (left), CoGA enables up to
10x sample efficiency gains over the RL agent early in training at only 1000 steps, and considerable
gains on most tasks when affordance scripts have a high F1-score. Sample efficiency curves are
shown in Figure 4 (right) on count-sides and click-test-2 for illustration purposes.

CoGA’s Affordance Scripts can Generalize within the Same Family of Tasks. We define a
family of tasks as tasks with the same affordances, but different optimal policies. For instance,
click-test-2 (Figure 3 left middle) and click-button-sequence have an identical GUI.
However, in the former, the task is to learn to click on either button ONE or TWO, whereas in the
latter, the task is to click on button ONE then TWO. Thus, we hypothesize that affordances should
generalize within the same family of tasks. We compare the best evaluation success rates obtained
by using a task’s originally generated affordance script (e.g., click-button-sequence) and
its relative’s generated affordance script (e.g., click-test-2). For reference, we also include the
RL base agent’s performance on the generalization task considered.

Table 1: Generalization evaluation mean success rates with standard deviation across 3 seeds. We
report the evaluation success rate of the task using its originally generated affordance script (CoGA-
o) and its transfer affordance script (CoGA-t). As a reference, we also include the performance of
the RL agent each task.

Task RL (SR %) CoGA-o (SR %) CoGA-t (SR %)

click-button-sequence 4.00± 1.00 14.33± 1.15 23.67± 1.53

focus-text-2 52.30± 41.28 100.00± 0.00 96.67± 4.93

click-checkboxes-large 0.00± 0.00 0.33± 0.58 0.33± 0.58

In Table 1, we observe that a generated affordance script indeed generalizes to its relative tasks.
Interestingly, we see that using the generated script of a task’s relative can sometimes outperform
using a task’s original script (e.g., click-button-sequence).

CoGA Performs Better or On Par Compared to its Behavioral Cloning Base Agent when a Lim-
ited Number of Expert Demonstrations are Available. We consider the low-data regime where a
limited number of expert demonstrations are available. With expert demonstrations available, a nat-
ural baseline to consider is behavioral cloning. We thus evaluate a BC agent’s performance across
data regimes (namely, 10, 50, 200, and 1000 expert demonstrations) compared to the RL base agent
and CoGA with only self-collected data. We consider the best evaluation success rates for every
baseline across a hyperparameter search (see Appendix C) and over a training period of 48 hours
for the RL agent and CoGA, and 30 epochs for the BC agent. As shown in Figure 5 (right), CoGA
performs better on average than the BC baseline with up to 200 expert trajectories, beyond which the
BC baseline outperforms. However, the RL baseline only outperforms the BC baseline trained on 10
expert demonstrations. Note that we only consider the tasks on which we were able to collect expert
trajectories from using the Pix2Act model. These results demonstrate the impact of constraining
the action space using affordances on an agent’s performance. Particularly, by combining a limited

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

number of expert data and CoGA, one could expect significant boosts in performance that potentially
match that of a BC+RL agent using higher expert data regimes.

Figure 5: Right: Evaluation success rates across tasks and expert data regimes of the behavioral
cloning agent, the RL agent, and CoGA. Left: Mean of evaluation success rates across tasks and
expert data regimes of the behavioral cloning agent, the RL agent, and CoGA.

5 RELATED WORK

MiniWob++. MiniWoB was introduced by Shi et al. (2017) and extended to MiniWob++ (Liu
et al., 2018) through additional tasks. It is a benchmark for web-based GUI tasks to train agents
to interact with webpages using a mouse and keyboard. Tasks range in complexity, from simple
button clicks, to sequential and partially-observable form-completion. To tackle this challenging
benchmark consisting of sparse rewards and a large action space, prior works have investigated
visual- and structured-based approaches.

Shi et al. (2017) investigate DOM and pixel observation inputs using a convolutional neural network
(CNN), an attention mechanism, and an average of 200 human demonstrations per task to train a BC
policy followed by RL. CC-Net (Humphreys et al., 2022) extends this approach by increasing the
amount of expert demonstrations to a total of 2.4 million and scaling the model architecture. Due to
limited availability of DOM elements, Pix2Act (Shaw et al., 2023b) considers pixel-only observa-
tions. It uses a transformer base model that was pre-trained to map screenshots to HTML structures
and approximately 1 million expert demonstrations. They first fine-tune their model using BC, fol-
lowed by RL through Monte Carlo Tree Search. Pix2Act thus achieves comparable performance
to CC-Net with only pixel-based inputs. More recently, Cheng et al. (2024) employ pre-training to
ground large VLMs to GUI coordinates and use them as the computer-using agent.

Other approaches have considered language-based methods through webpage structural information.
Liu et al. (2018) propose workflow-guided exploration (WGE) by using expert demonstrations to
learn high-level “workflows” that constrain the allowable actions at each time step. The agent then
learns to select appropriate actions within the workflow through RL. Although similar to CoGA in
constraining the action space and minimizing the amount of expert demonstration required, WGE
relies on DOM inputs and parametric learning of the workflows. In contrast, Kim et al. (2023)
employ a large language model (LLM) as the agent using HTML code as input. By prompting the
LLM to recursively criticize and improve (RCI) its output and using 2-3 in-context demonstrations,
RCI outperforms Pix2Act’s state-of-the-art.

Our method seeks to explore the low expert data regime from pixel-only observations. While pre-
vious work has considered using the VLM as the agent due to its powerful prior knowledge, its
ability to map webpages to pixel coordinates is limited and requires fine-tuning (Cheng et al., 2024).
Additionally, VLM agents are significantly computationally and financially demanding. We argue
that only selected prior knowledge of the VLM is relevant for a web agent. Therefore, we propose
to distill the relevant information from the VLM through code as affordances that can be used to
constrain and guide the exploration of the action space.

VLMs for Affordances. VLMs have been used to infer affordances by leveraging their ability to
reason about visual and textual information. By leveraging a visual question-answering prompting
technique, MOKA (Liu et al., 2024) and KAGI (Lee et al., 2024) employ VLMs to predict key-
point and waypoint affordances from pre-marked visual observations to guide open-world robotics.
VoxPoser (Huang et al., 2023) uses LLMs to infer affordances for open-world robotic manipulation

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

given free-form language. They leverage LLMs to write code that interacts with a VLM to compose
3D value maps for grounding the agent’s observation space. Our method is complementary to pre-
vious work. As detailed in Sec. 3, we build upon their successes to infer affordances by the VLM
using pre-marked observations and code.

Code Generation for Reinforcement Learning. Recent works have investigated the role of code
generation by foundation models for improving RL sample efficiency. Liang et al. (2023) introduced
a paradigm to prompt LLMs to generate structured programs as policies for RL agents. Although
they do not use VLMs directly, they leverage perception and control APIs within the generated
code for embodied control. Code as Reward (Venuto et al., 2024) proposes using VLMs to define
intrinsic reward functions as code, improving exploration in RL. Similarly, the EUREKA model (Ma
et al., 2024) uses LLMs to generate and iteratively improve reward functions as code, outperforming
human-engineered rewards. Octopus (Yang et al., 2024) uses a VLM for code in planning and
manipulation. Likewise, Voyager (Wang et al., 2023) leverages LLM to generate code as actions,
and VoxPoser (Huang et al., 2023) enables LLMs for code that interacts with a VLM and ground the
agent’s observation space through inferred affordances.

6 DISCUSSION

6.1 LIMITATIONS AND FAILURE MODES

Our method is not without limitations. We now discuss the array of limitations and also highlight
failure modes to highlight the scope for improvements along the following dimensions.

1) VLM Pixel Mapping. VLMs struggle to parse an image into pixel coordinates (Cheng et al.,
2024). To mitigate this, we superimposed a coordinate system onto an observation when showing it
to the VLM for template extraction. However, the VLM faced limitations in specifying exact coor-
dinates, which affects the quality of templates. Consequently, this can decrease recall and precision.

2) Template Matching. Template matching is limited to detecting isomorphic objects across ob-
servations. Although this can be mitigated by lowering the matching threshold – which the VLM
self-iterates based on the critique’s feedback –, it is particularly a limitation in text-based objects. To
this end, we experimented with optical character recognition (OCR) (e.g., pytesseract), but due
to inconsistent OCR, we excluded most tasks with varying text-based observations from our work.

3) VLM Code Generation. The recall and precision of the predicted affordances depend on the cor-
rectness of the generated code. Given perfect templates but incorrect reasoning about the affordable
action types and their associated affordable actions, affordances would be compromised. We miti-
gated this issue through sequential chain-of-thought (Wei et al., 2023) prompting and by using the
critique VLM. However, this limitation may be more significant in complex tasks requiring scripts to
select relevant intents and affordances from multiple context-dependent options (e.g., generic email
tasks). Finally, an important limitation was the amount of time taken to generate code for tasks that
contained a larger number of objects that could be affordances (e.g., drag-shapes).

4) VLM Code Verification. We manually labeled five test cases to assess code quality. While
manual test creation is common, exploring the VLM’s ability to generate its own test cases is worth-
while. The critique VLM is not always reliable and may mislabel high-recall, high-precision code
as ”failed.” This issue could be mitigated by a self-improving approach, allowing the VLM to learn
from its misclassifications based on manual test results. Additionally, token-rate limits restricted
further iterations of the code, limiting refinement based on VLM feedback. This was the case for
tasks like use-spinner, use-spinner-2, use-slider, and others (see Appendix D).

6.2 FUTURE WORK

Given perfect affordances, CoGA’s performance is limited to the strength of the RL base agent
(e.g., network architecture, RL algorithm, hyperparameter sweeps), particularly in tasks that require
sequential decision-making over multiple steps and are partially observable. We particularly note
this in tasks like click-checkboxes, click-checkboxes-large, and email-inbox
for example. A promising direction for future work is to augment more competent RL agents with
CoGA, as our method is complimentary to any RL algorithm.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. Uniter: Universal image-text representation learning. 2020.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong
Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents, 2024. URL https:
//arxiv.org/abs/2401.10935.

James J Gibson. The theory of affordances. Hilldale, USA, 1(2), 1977.

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
Composable 3d value maps for robotic manipulation with language models, 2023. URL https:
//arxiv.org/abs/2307.05973.

Peter C Humphreys, David Raposo, Toby Pohlen, Gregory Thornton, Rachita Chhaparia, Alistair
Muldal, Josh Abramson, Petko Georgiev, Alex Goldin, Adam Santoro, and Timothy Lillicrap. A
data-driven approach for learning to control computers, 2022. URL https://arxiv.org/
abs/2202.08137.

Khimya Khetarpal, Zafarali Ahmed, Gheorghe Comanici, David Abel, and Doina Precup. What
can i do here? a theory of affordances in reinforcement learning. In International Conference on
Machine Learning, pp. 5243–5253. PMLR, 2020.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks,
2023. URL https://arxiv.org/abs/2303.17491.

Olivia Y. Lee, Annie Xie, Kuan Fang, Karl Pertsch, and Chelsea Finn. Affordance-guided reinforce-
ment learning via visual prompting, 2024. URL https://arxiv.org/abs/2407.10341.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control, 2023.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration, 2018. URL https://arxiv.
org/abs/1802.08802.

Fangchen Liu, Kuan Fang, Pieter Abbeel, and Sergey Levine. Moka: Open-world robotic manipula-
tion through mark-based visual prompting, 2024. URL https://arxiv.org/abs/2403.
03174.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models, 2024. URL https://arxiv.org/abs/2310.12931.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013. URL
https://arxiv.org/abs/1312.5602.

OpenAI, :, Josh Achiam, and et al. Gpt-4 technical report, 2023.

Shengyi Qian, Weifeng Chen, Min Bai, Xiong Zhou, Zhuowen Tu, and Li Erran Li. Affordancellm:
Grounding affordance from vision language models, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks, 2019. URL https://arxiv.org/abs/1908.10084.

Stephane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Yee Whye
Teh and Mike Titterington (eds.), Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research,
pp. 661–668, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL https:
//proceedings.mlr.press/v9/ross10a.html.

10

https://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2307.05973
https://arxiv.org/abs/2307.05973
https://arxiv.org/abs/2202.08137
https://arxiv.org/abs/2202.08137
https://arxiv.org/abs/2303.17491
https://arxiv.org/abs/2407.10341
https://arxiv.org/abs/1802.08802
https://arxiv.org/abs/1802.08802
https://arxiv.org/abs/2403.03174
https://arxiv.org/abs/2403.03174
https://arxiv.org/abs/2310.12931
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1908.10084
https://proceedings.mlr.press/v9/ross10a.html
https://proceedings.mlr.press/v9/ross10a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay, 2016.
URL https://arxiv.org/abs/1511.05952.

Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang Hu, Urvashi
Khandelwal, Kenton Lee, and Kristina Toutanova. From pixels to ui actions: Learning to follow
instructions via graphical user interfaces, 2023a. URL https://arxiv.org/abs/2306.
00245.

Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang Hu, Urvashi
Khandelwal, Kenton Lee, and Kristina N Toutanova. From pixels to ui actions: Learning to follow
instructions via graphical user interfaces. Advances in Neural Information Processing Systems,
36:34354–34370, 2023b.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits:
An open-domain platform for web-based agents. In Doina Precup and Yee Whye Teh (eds.),
Proceedings of the 34th International Conference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pp. 3135–3144. PMLR, 06–11 Aug 2017. URL
https://proceedings.mlr.press/v70/shi17a.html.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning, 2015. URL https://arxiv.org/abs/1509.06461.

David Venuto, Sami Nur Islam, Martin Klissarov, Doina Precup, Sherry Yang, and Ankit Anand.
Code as reward: Empowering reinforcement learning with vlms, 2024.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models,
2023.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Jingkang Yang, Yuhao Dong, Shuai Liu, Bo Li, Ziyue Wang, Chencheng Jiang, Haoran Tan, Jiamu
Kang, Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. Octopus: Embodied vision-language
programmer from environmental feedback, 2024. URL https://arxiv.org/abs/2310.
08588.

11

https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/2306.00245
https://arxiv.org/abs/2306.00245
https://proceedings.mlr.press/v70/shi17a.html
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2310.08588
https://arxiv.org/abs/2310.08588

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A PROMPTING PIPELINE FOR GENERATING INTENTS AND THE INITIAL
AFFORDANCE SCRIPT

• This is an image of a web environment. The agent is the cursor. It can click anywhere on the
screen. There may also be other relevant objects that the agent can interact with. The task
is to {task description}, but note that the task’s specific utterances can vary. Here are some
examples: {example utterances}. Can you give a list of the most important elements in this
image, ensuring it applies to all the utterances above, not just the specific instance? Give
me a list of elements and concise names with description. Do not include the background.

• Based on your description of these elements in the environment, what do you think the
agent affords in this environment? The final goal completion and reading the instruction are
not affordances. This list should be concise and only contain affordances that are actionable
directly by the agent. If multiple affordances can be combined, please combine them into
one modular affordance. Please only return a python list of affordance names.

• For each affordance:
– what are the most relevant objects that you need to identify in this environment to

check if the affordance is possible? Give me the minimum list concisely but precisely.
Do not give a generic answer such as ’shapes’. Please end your answer by returning a
python list of object names. Ensure that the object name does not contain any spaces.
The cursor should not be in the list.

• For each object {obj}, for each gridded image:
– Explain to a 5 year old step by step how to visually identify a {obj} in such an image.
– Look at the image grid and find the {obj}. Return the bounding box coordinates as

[x left, y upper, x left+width, y upper+height] where width and height describe the
size of the box.Ensure that 0¡=x¡=160 and 0¡=y¡=210. Return only the list.

– The template image for an instance of {obj} has been saved in {template path}. You
can use this template image for {obj} detection using template matching when needed.

• Here is a script that can be used for object detection using template matching. It will be
referred to as match template.You can use it with the template paths, but do not modify it.
Here is the script:
def match template(image array, template path, save path):

The main image is provided as an array
main image = image array
template image path = template path
Load the template image in grayscale
template image = cv2.imread(template image path,

cv2.IMREAD GRAYSCALE)
if main image.ndim == 3 and main image.shape[2] == 3:

main image gray = cv2.cvtColor(main image,
cv2.COLOR RGB2GRAY)

else:
main image gray = main image

main image rgb = cv2.cvtColor(main image gray,
cv2.COLOR GRAY2RGB)

w, h = template image.shape[1], template image.shape[0]
result = cv2.matchTemplate(main image gray,

template image, cv2.TM CCOEFF NORMED)
threshold = 0.5
locations = np.where(result >= threshold)
bounding boxes = []
for pt in zip(*locations[::-1]):

bounding box = (pt[0], pt[1], pt[0] + w, pt[1] + h)
bounding boxes.append(bounding box)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

cv2.rectangle(main image rgb, (pt[0], pt[1]), (pt[0]
+ w, pt[1] + h), (0, 255, 0), 2)

result image path = f’matched templates/save path’
cv2.imwrite(result image path, main image rgb)
print(f"Number of matches found: {len(bounding boxes)}")
return bounding boxes

• Write a step-by-step strategy for determining which affordance to use at a given state of the
environment. If multiple affordances apply, your strategy should return them in hierarchical
order. Please do not write any code yet. Reading the instruction should not be part of the
strategy.The strategy should be independent of the instruction. Make sure your strategy is
as specific as possible and that it can generalize to all possible states that the agent can be
in.

• For each affordance:
– Write a step-by-step strategy for determining which action(s) is/are affordable at a

given state for the intent of aff by examining a current state image. You should
return the set of affordable actions to complete the intent of {aff}. Please do not
write any code yet. Make sure your strategy is as specific as possible. When decid-
ing on actions, note that CLICK COORDS and DBLCLICK COORDS automatically
move the cursor and perform the click action, so there is no need to separately use
MOVE COORDS before them The possible actions are: action set. This list contains
both action names and their textual descriptions. You should refer to actions by their
names in all responses. The PRESS KEY action type issues a key combination. Each
key combination in the allowed keys config follow the rules: Modifiers are specified
using prefixes ’C-’ (Control), ’S-’ (Shift), ’A-’ (Alternate), or ’M-’ (Meta). Printable
character keys (a, 1, etc.) are specified directly. Shifted characters (A, !, etc.) are
equivalent to ’S-’ + non-shifted counterpart. Special keys are enclosed in ’¡. . . ¿’. The
list of valid names is specified inminiwob.constants.WEBDRIVER SPECIAL KEYS.
Example valid key combinations:’7, ’Enter, ’C-S-ArrowLeft’. To specify relevant x,y
coordinates for a selected action, you can use the template matching script for the
relevant objects.

• Write a step-by-step strategy for combining the intents and their corresponding set of af-
fordable actions at a given state. After writing your strategy, write an outline of a code
using comments. The purpose of the affordable actions returned by the code should not be
to solve the task specified in the instruction, but to just help give a prior to an RL agent to
learn how to solve the task by helping it narrow down its exploration space. You should
return a set of affordable actions to complete the selected intent. This script should not
require any other input than the image.

• Write code to implement your strategy for selecting the required affordance and its corre-
sponding set of affordable actions at a given state. First write an outline of the code with
comments, then write the filled in code. The purpose of the affordable actions returned by
the code should not be to solve the task specified in the instruction, but to just help give
a prior to an RL agent to learn how to solve the task by helping it narrow down its explo-
ration space, wihtout telling it the exact solution. You can use the object ID scripts and
match template if needed, but do not modify them. If you use the match template, make
sure to use all of the templates inthe required template’s path. The template paths available
are: {template paths}. Make sure your implementation can generalize to all possible states
that the agent can be in and pay close attention to what you have written in the steps. You
should return a set of affordable actions to complete the selected affordance. This script
should not require any other input than the image. The script should be fully executable as
is, and should not have placeholder values or pseudocode. It should also be robust to any
detection imperfections. Make sure that the coordinate affordances returned are those of the
bounding box around the relevant object in the form of [x left,y up,x right,y down]. The
returned affordances should be a list of dictionaries with the format ’action’: action name,
’coords’: [x left,y up,x right,y down]. x and y should not be the centers. The action name
should be exactly as specified in the list of actions. The function that returns the affordable
actions must be called ’determine affordable actions(image)’, where the image is a numpy
array. Do not change the function’s signature, use it as is. The template paths to use must be

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

instantiated inside the function. Ony return the code. DO NOT INCLUDE AN EXAMPLE
USAGE.

B PROMPTING PIPELINE FOR CODE REVIEW & REGENERATION

• For up to 3 times, terminating early if the code is verified as correct:

– (Critique VLM) This is an image of a web environment. The agent is the cursor. It can
click anywhere on the screen. There may also be other relevant objects that the agent
can interact with. The task is to {task description}, but note that the task’s specific
utterances can vary. Here are some examples: example utterances. Do not output
anything yet.

– The code is executed on 2 example observations for error handling. If the code runs
smoothly:

* (Critique VLM) Please review this code and find problems with it, if any. The
affordable actions returned by this code on the first image are: {actions 1}. The
affordable actions returned by this code on the second image are: {actions 2}.
The purpose of the affordable actions returned by the code should not be to solve
the task specified in the instruction, but to just help give a prior to an RL agent to
learn how to solve the task by helping it narrow down its exploration space, without
telling it the exact solution. Please think about whether these returned affordable
actions are suitable for each test case image provided. If the affordable actions
are suitable, please only return a string Status: Pass, Reasoning: step-by-step rea-
soning for why the actions are correct. Else, only return Status: Fail, Reasoning:
step-by-step reasoning for why the actions are incorrect, Critique: Point-based
feedback on how to solve the issues found in the code (MUST NOT BE JSON).
Do not modify the code yet.

– However, if there is an error in the code:

* (Critique VLM) Please review this code as it is throwing this error: {error trace}.
Only return {Status: Fail, Reasoning: step-by-step reasoning for why the code
is failing, Critique: Point-based feedback on how to solve the issues found in
the code} (MUST NOT BE JSON). Do not modify the code yet. The deter-
mine affordable actions function must only take the image as argument.

– (Code Regeneration VLM) Based on the issues you have found in the code, please
improve your code. You should only rewrite the code. Do not mention anything else
in your answer. DO NOT INCLUDE EXAMPLE USAGE.

C HYPERPARAMETER SEARCH DETAILS

The hyperparameters used consistently across all tasks are summarized in Table 2.

Hyperparameter Value
Learning rate (lr) 1× 10−5

Clipping threshold (clip) 1.0
Epsilon decay (eps decay) 5000

Batch size (batch size) 64
Initial epsilon (eps start) 0.6

Replay buffer size (buffer size) 40000
Number of timesteps per update (n timesteps) 50

Discount factor (γ) 0.9
Target network update parameter (τ) {1× 10−5, 1× 10−6, 1× 10−7}

Table 2: Hyperparameters used across tasks.

A search was conducted on the target network update parameter (τ), as it exhibited significant vari-
ability across tasks and had a notable influence on performance. The considered values for τ were
1× 10−5, 1× 10−6, and 1× 10−7.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

For tasks that did not reach an optimal success rate (100%), an additional hyperparameter search
was performed. This focused on increasing the batch size (batch size) to 128 and 256 with τ to
1 × 10−5 and 1 × 10−6, buffer size = 10000, eps decay = 10000, eps start = 0.3. This
refinement aimed to enhance convergence in suboptimal tasks.

For the RL and CoGA agents, we used a prioritized replay buffer with parameters α = 0.6 and
β = 0.4. All agents use a CNN with five convolutional layers (32, 64, 128, 256, 512 filters, kernel
size 3x3, stride 1, padding 1), each followed by batch normalization and ReLU activation, with max-
pooling (2x2, stride 2) after the second, fourth, and fifth layers. The extracted features are flattened
and passed through two fully connected layers (1024, 384 neurons, ReLU activations), of which the
first fully connected layer’s features are concatenated with the SBERT instruction embeddings. The
model outputs Q-values for 4 action types and a discretized pixel coordinates (32 x 32 bins outputs).
We report results over seeds {0, 1, 2}.

D EXAMPLE GENERATED AFFORDANCE SCRIPTS & TEMPLATES

We here show 5 examples of generated affordance scripts and corresponding templates. The first 3
are successful examples, and the later 2 are examples of limitations and failure modes (as shown by
the F1-scores in Figure 3 right).

E NUMBER OF RUNS & CODE GENERATION ITERATIONS ACROSS TASKS

Task Number of VLM Runs Number of Code Generation Iterations in the Best Run
Click-test 1 1
Click-tab 2 2
Circle-center 1 1
Click-test-2 1 2
Focus-text-2 1 2
Focus-text 1 2
Count-sides 1 1
Identify-shapes 1 1
Click-checkboxes 1 1
Click-color 2 1
Tic-tac-toe 3 2
Click-button-sequence 1 2
Click-dialog 2 2
Click-dialog-2 1 3
Click-option 1 2
Unicode-test 3 2
Click-button 3 2
Click-widget 3 2
Email-inbox-important 3 3
Grid-coordinate 2 1
Click-collapsible-nodelay 2 1
Click-shades 3 1
Count-shape 3 2
Use-slider-2 3 1
Use-slider 3 3
Use-spinner 3 3

Table 3: Number of Runs and Number of Code Generation Iterations in the Best Run across tasks.
The former represents the total Visual Language Model executions per task, while the latter denotes
the number of code generation iterations in the most successful execution.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

click-test click-tab count-sides use-slider use-spinner

import cv2
import numpy as np

def match_template(image_array, template_path,
save_path):
 main_image = image_array
 template_image_path = template_path
 template_image = cv2.imread(template_image_path,
cv2.IMREAD_GRAYSCALE)

 if main_image.ndim == 3 and main_image.shape[2] ==
3:
 main_image_gray = cv2.cvtColor(main_image,
cv2.COLOR_RGB2GRAY)
 else:
 main_image_gray = main_image

 main_image_rgb = cv2.cvtColor(main_image_gray,
cv2.COLOR_GRAY2RGB)
 w, h = template_image.shape[1],
template_image.shape[0]
 result = cv2.matchTemplate(main_image_gray,
template_image, cv2.TM_CCOEFF_NORMED)
 threshold = 0.7
 locations = np.where(result >= threshold)

 bounding_boxes = []

 for pt in zip(*locations[::-1]):
 bounding_box = (pt[0], pt[1], pt[0] + w, pt[1]
+ h)
 bounding_boxes.append(bounding_box)
 cv2.rectangle(main_image_rgb, (pt[0], pt[1]),
(pt[0] + w, pt[1] + h), (0, 255, 0), 2)

 result_image_path =
f'matched_templates/{save_path}'
 cv2.imwrite(result_image_path, main_image_rgb)

 return bounding_boxes

def determine_affordable_actions(image):
 # Step 1: Define template paths
 template_paths = [
 './templates/click-
test_button_test_case_1_template.png',
 './templates/click-
test_button_test_case_2_template.png'
]

 # Step 2: Detect buttons using template matching
 all_bounding_boxes = []
 for i, template_path in enumerate(template_paths):
 bounding_boxes = match_template(image,
template_path, f'result_{i}.png')
 all_bounding_boxes.extend(bounding_boxes)

 # Step 3: Assess object state and determine
affordable actions
 affordable_actions = []
 for box in all_bounding_boxes:
 x_left, y_up, x_right, y_down = box
 # Assuming the button is visible and accessible
 affordable_actions.append({'action':
'CLICK_COORDS', 'coords': [x_left, y_up, x_right,
y_down]})

 # Step 4: Return the set of affordable actions
 return affordable_actions

import cv2
import numpy as np

def match_template(image_array, template_path, save_path):
 main_image = image_array
 template_image_path = template_path
 template_image = cv2.imread(template_image_path,
cv2.IMREAD_GRAYSCALE)

 if main_image.ndim == 3 and main_image.shape[2] == 3:
 main_image_gray = cv2.cvtColor(main_image,
cv2.COLOR_RGB2GRAY)
 else:
 main_image_gray = main_image

 main_image_rgb = cv2.cvtColor(main_image_gray,
cv2.COLOR_GRAY2RGB)
 w, h = template_image.shape[1], template_image.shape[0]
 result = cv2.matchTemplate(main_image_gray,
template_image, cv2.TM_CCOEFF_NORMED)
 threshold = 0.7
 locations = np.where(result >= threshold)

 bounding_boxes = []

 for pt in zip(*locations[::-1]):
 bounding_box = (pt[0], pt[1], pt[0] + w, pt[1] + h)
 bounding_boxes.append(bounding_box)
 cv2.rectangle(main_image_rgb, (pt[0], pt[1]), (pt[0] +
w, pt[1] + h), (0, 255, 0), 2)

 result_image_path = f'matched_templates/{save_path}'
 cv2.imwrite(result_image_path, main_image_rgb)

 return bounding_boxes

def determine_affordable_actions(image):
 # Step 1: Define template paths
 template_paths = [
 './templates/click-tab_Tab1_test_case_1_template.png',
 './templates/click-tab_Tab1_test_case_2_template.png',
 './templates/click-tab_Tab1_test_case_3_template.png',
 './templates/click-tab_Tab1_test_case_4_template.png',
 './templates/click-tab_Tab1_test_case_5_template.png',
 './templates/click-tab_Tab2_test_case_1_template.png',
 './templates/click-tab_Tab2_test_case_2_template.png',
 './templates/click-tab_Tab2_test_case_3_template.png',
 './templates/click-tab_Tab2_test_case_4_template.png',
 './templates/click-tab_Tab2_test_case_5_template.png',
 './templates/click-tab_Tab3_test_case_1_template.png',
 './templates/click-tab_Tab3_test_case_2_template.png',
 './templates/click-tab_Tab3_test_case_3_template.png',
 './templates/click-tab_Tab3_test_case_4_template.png',
 './templates/click-tab_Tab3_test_case_5_template.png'
]

 # Step 2: Initialize list for affordable actions
 affordable_actions = []

 # Step 3: Perform template matching for each template
 for template_path in template_paths:
 bounding_boxes = match_template(image, template_path,
'result.png')

 # Step 4: Determine actions based on bounding boxes
 for box in bounding_boxes:
 action = {
 'action': 'CLICK_COORDS',
 'coords': [box[0], box[1], box[2], box[3]]
 }
 affordable_actions.append(action)

 # Step 5: Return the set of affordable actions
 return affordable_actions

import cv2
import numpy as np

def match_template(image_array, template_path, save_path):
 main_image = image_array
 template_image_path = template_path

 template_image = cv2.imread(template_image_path,
cv2.IMREAD_GRAYSCALE)

 if main_image.ndim == 3 and main_image.shape[2] == 3:
 main_image_gray = cv2.cvtColor(main_image,
cv2.COLOR_RGB2GRAY)
 else:
 main_image_gray = main_image

 main_image_rgb = cv2.cvtColor(main_image_gray,
cv2.COLOR_GRAY2RGB)

 w, h = template_image.shape[1], template_image.shape[0]

 result = cv2.matchTemplate(main_image_gray,
template_image, cv2.TM_CCOEFF_NORMED)

 threshold = 0.5
 locations = np.where(result >= threshold)

 bounding_boxes = []

 for pt in zip(*locations[::-1]):
 bounding_box = (pt[0], pt[1], pt[0] + w, pt[1] + h)
 bounding_boxes.append(bounding_box)
 cv2.rectangle(main_image_rgb, (pt[0], pt[1]),
(pt[0] + w, pt[1] + h), (0, 255, 0), 2)

 result_image_path = f'matched_templates/{save_path}'
 cv2.imwrite(result_image_path, main_image_rgb)

 return bounding_boxes

def determine_affordable_actions(image):
 # Step 1: Define template paths
 template_paths = [
 './templates/count-sides-
NumberButtons_test_case_1_template.png',
 './templates/count-sides-
NumberButtons_test_case_2_template.png',
 './templates/count-sides-
NumberButtons_test_case_3_template.png',
 './templates/count-sides-
NumberButtons_test_case_4_template.png',
 './templates/count-sides-
NumberButtons_test_case_5_template.png'
]

 # Step 2: Initialize list for storing bounding boxes
 all_bounding_boxes = []

 # Step 3: Use template matching to find NumberButtons
 for i, template_path in enumerate(template_paths):
 bounding_boxes = match_template(image,
template_path, f"output_image_{i}.png")
 all_bounding_boxes.extend(bounding_boxes)

 # Step 4: Determine affordable actions
 affordable_actions = []

 if all_bounding_boxes:
 for box in all_bounding_boxes:
 action = {'action': 'CLICK_COORDS', 'coords':
list(box)}
 affordable_actions.append(action)
 else:
 affordable_actions.append({'action': 'NONE',
'coords': []})

 # Step 5: Return the set of affordable actions
 return affordable_actions

import cv2
import numpy as np

def match_template(image_array, template_path):
 main_image = image_array
 template_image = cv2.imread(template_path, cv2.IMREAD_GRAYSCALE)

 if main_image.ndim == 3 and main_image.shape[2] == 3:
 main_image_gray = cv2.cvtColor(main_image, cv2.COLOR_RGB2GRAY)
 else:
 main_image_gray = main_image

 w, h = template_image.shape[1], template_image.shape[0]
 result = cv2.matchTemplate(main_image_gray, template_image,
cv2.TM_CCOEFF_NORMED)
 threshold = 0.5
 locations = np.where(result >= threshold)

 bounding_boxes = []

 for pt in zip(*locations[::-1]):
 bounding_box = (pt[0], pt[1], pt[0] + w, pt[1] + h)
 bounding_boxes.append(bounding_box)

 return bounding_boxes

def determine_affordable_actions(image):
 slider_handle_templates = [
 './templates/use-
slider_SliderHandle_test_case_1_template_runNum_3.png',
 './templates/use-
slider_SliderHandle_test_case_2_template_runNum_3.png',
 './templates/use-
slider_SliderHandle_test_case_3_template_runNum_3.png',
 './templates/use-
slider_SliderHandle_test_case_4_template_runNum_3.png',
 './templates/use-slider_SliderHandle_test_case_5_template_runNum_3.png'
]
 slider_track_templates = [
 './templates/use-slider_SliderTrack_test_case_1_template_runNum_3.png',
 './templates/use-slider_SliderTrack_test_case_2_template_runNum_3.png',
 './templates/use-slider_SliderTrack_test_case_3_template_runNum_3.png',
 './templates/use-slider_SliderTrack_test_case_4_template_runNum_3.png',
 './templates/use-slider_SliderTrack_test_case_5_template_runNum_3.png'
]
 submit_button_templates = [
 './templates/use-
slider_SubmitButton_test_case_1_template_runNum_3.png',
 './templates/use-
slider_SubmitButton_test_case_2_template_runNum_3.png',
 './templates/use-
slider_SubmitButton_test_case_3_template_runNum_3.png',
 './templates/use-
slider_SubmitButton_test_case_4_template_runNum_3.png',
 './templates/use-slider_SubmitButton_test_case_5_template_runNum_3.png'
]

 slider_handle_coords = []
 for template in slider_handle_templates:
 slider_handle_coords.extend(match_template(image, template))

 slider_track_coords = []
 for template in slider_track_templates:
 slider_track_coords.extend(match_template(image, template))

 submit_button_coords = []
 for template in submit_button_templates:
 submit_button_coords.extend(match_template(image, template))

 actions = []

 if slider_handle_coords and slider_track_coords:
handle = slider_handle_coords[0]

 track = slider_track_coords[0]
 actions.append({'action': 'MOUSEDOWN_COORDS', 'coords': handle})
 actions.append({'action': 'MOUSEUP_COORDS', 'coords': track})

 if submit_button_coords:
 button = submit_button_coords[0]
 actions.append({'action': 'CLICK_COORDS', 'coords': button})

 return actions

import cv2
import numpy as np

def match_template(image_array, template_path, save_path):
 main_image = image_array
 template_image = cv2.imread(template_path, cv2.IMREAD_GRAYSCALE)

 if main_image.ndim == 3 and main_image.shape[2] == 3:
 main_image_gray = cv2.cvtColor(main_image, cv2.COLOR_RGB2GRAY)
 else:
 main_image_gray = main_image

 main_image_rgb = cv2.cvtColor(main_image_gray, cv2.COLOR_GRAY2RGB)
 w, h = template_image.shape[1], template_image.shape[0]
 result = cv2.matchTemplate(main_image_gray, template_image,
cv2.TM_CCOEFF_NORMED)
 threshold = 0.5
 locations = np.where(result >= threshold)

 bounding_boxes = []

 for pt in zip(*locations[::-1]):
 bounding_box = (pt[0], pt[1], pt[0] + w, pt[1] + h)
 bounding_boxes.append(bounding_box)
 cv2.rectangle(main_image_rgb, (pt[0], pt[1]), (pt[0] + w, pt[1] + h),
(0, 255, 0), 2)

 result_image_path = f'matched_templates/{save_path}'
 cv2.imwrite(result_image_path, main_image_rgb)

 return bounding_boxes

def get_spinner_value(image):
 return 0

def get_cursor_position(image):
 return (0, 0)

def determine_affordable_actions(image):
 spinner_arrows_templates = [
 './templates/use-spinner_SpinnerArrows_test_case_1_template_runNum_1.png',
 './templates/use-spinner_SpinnerArrows_test_case_2_template_runNum_1.png',
 './templates/use-spinner_SpinnerArrows_test_case_3_template_runNum_1.png',
 './templates/use-spinner_SpinnerArrows_test_case_4_template_runNum_1.png',
 './templates/use-spinner_SpinnerArrows_test_case_5_template_runNum_1.png'

]
 submit_button_templates = [
 './templates/use-spinner_SubmitButton_test_case_1_template_runNum_1.png',
 './templates/use-spinner_SubmitButton_test_case_2_template_runNum_1.png',
 './templates/use-spinner_SubmitButton_test_case_3_template_runNum_1.png',
 './templates/use-spinner_SubmitButton_test_case_4_template_runNum_1.png',
 './templates/use-spinner_SubmitButton_test_case_5_template_runNum_1.png'

]

 spinner_arrows_coords = []
 for template in spinner_arrows_templates:
 spinner_arrows_coords.extend(match_template(image, template,
"spinner_arrows_result.png"))

 submit_button_coords = []
 for template in submit_button_templates:
 submit_button_coords.extend(match_template(image, template,
"submit_button_result.png"))

 current_value = get_spinner_value(image)
 desired_value = 0
 cursor_position = get_cursor_position(image)

 if current_value != desired_value:
 intent = "adjust_spinner_value"
 else:
 intent = "click_submit"

 affordable_actions = []

 if intent == "adjust_spinner_value":
 for coords in spinner_arrows_coords:

x1, y1, x2, y2 = coords
 if not (x1 <= cursor_position[0] <= x2 and y1 <=
cursor_position[1] <= y2):
 affordable_actions.append({'action': 'CLICK_COORDS', 'coords':
list(coords)})

 elif intent == "click_submit":
 for coords in submit_button_coords:

x1, y1, x2, y2 = coords
 if not (x1 <= cursor_position[0] <= x2 and y1 <=
cursor_position[1] <= y2):
 affordable_actions.append({'action': 'CLICK_COORDS', 'coords':
list(coords)})

 return affordable_actions

Figure 6: Example scripts across 3 successful tasks (click-test, click-tab, count-sides) and 2 unsuc-
cessful tasks (use-slider, use-spinner).

Figure 7: Example template images across 3 successful tasks (click-test, click-tab, count-sides) and
2 unsuccessful tasks (use-slider, use-spinner).

16

	Introduction
	Background
	CoGA: Code as Generative Affordances
	Generating Affordances as Code.
	Verification Pipeline
	Using the Generated Affordance Scripts in RL

	Experiments
	MiniWoB++
	Methods.
	Results

	Related Work
	Discussion
	Limitations and Failure Modes
	Future Work

	Prompting Pipeline for Generating Intents and the initial Affordance Script
	Prompting Pipeline for Code Review & Regeneration
	Hyperparameter Search Details
	Example Generated Affordance Scripts & Templates
	Number of Runs & Code Generation Iterations Across Tasks

