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Abstract

Remote sensing pansharpening aims to recon-
struct spatial-spectral properties during the fu-
sion of panchromatic (PAN) images and low-
resolution multi-spectral (LR-MS) images, finally
generating the high-resolution multi-spectral (HR-
MS) images. In the mainstream modeling strate-
gies, i.e., CNN and Transformer, the input im-
ages are treated as the equal-sized grid of pixels
in the Euclidean space. They have limitations
in facing remote sensing images with irregular
ground objects. Graph is the more flexible struc-
ture, however, there are two major challenges
when modeling spatial-spectral properties with
graph: 1) constructing the customized graph struc-
ture for spatial-spectral relationship priors; 2)
learning the unified spatial-spectral representa-
tion through the graph. To address these chal-
lenges, we propose the spatial-spectral heteroge-
neous graph learning network, named HetSSNet.
Specifically, HetSSNet initially constructs the het-
erogeneous graph structure for pansharpening,
which explicitly describes pansharpening-specific
relationships. Subsequently, the basic relationship
pattern generation module is designed to extract
the multiple relationship patterns from the hetero-
geneous graph. Finally, relationship pattern ag-
gregation module is exploited to collaboratively
learn unified spatial-spectral representation across
different relationships among nodes with adaptive
importance learning from local and global per-
spectives. Extensive experiments demonstrate the
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significant superiority and generalization of Het-
SSNet.

1. Introduction
With the increasing demand of earth observation and mon-
itoring, existing optical satellites (e.g., GaoFen-2, Quick-
Bird) can simultaneously record bundled low-resolution
multispectral (LR-MS) and high-resolution panchromatic
(PAN) images from the same scene (Ma et al., 2025b;a).
Due to physical limitations of existing satellite sensors, the
recorded LR-MS image usually includes rich spectral prop-
erty but relatively sparse spatial property, while their cor-
responding PAN image contains abundant spatial property
but sparse spectral property. Since the remote sensing im-
age with rich spatial-spectral properties, i.e., high-resolution
multispectral (HR-MS) image, are crucial for practical appli-
cations (Li et al., 2022; Han et al., 2024; Asokan & Anitha,
2019; Cheng & Han, 2016; Li et al., 2022), pansharpen-
ing technique, which could obtain the HR-MS image by
reconstructing spatial-spectral properties during the fusion
of the recorded PAN and LR-MS images, has been widely
explored (Xing et al., 2023).

Conventional pansharpening methods include component
substitution (CS) approaches (Carper et al., 1990), multi-
resolution analysis (MRA) methods (Khan et al., 2008), and
variational optimization (VO) methods (Deng et al., 2019).
These methods only have the ability of shallow non-linear
representation; therefore, it is difficult to achieve a good per-
formance of spatial and spectral properties reconstruction.
Recently, pansharpening has witnessed significant progress
with the development of deep learning. However, it is taken
for granted that the mainstream learning-based models pro-
pose to process the input LR-MS and PAN images as a regu-
lar grid of pixels in the Euclidean space, i.e., treat all pixels
of LR-MS and PAN images features in a fairly rigid manner.
For example, in the CNN-based methods (e.g., DCFNet (Wu
et al., 2022) and MDCUN (Yang et al., 2022)), each pixels
of PAN and LR-MS images is rigidly designated to commu-
nicate with its nearest neighbors; in the Transformer-based
model (e.g., HyperTransfromer (Bandara & Patel, 2022) and
CTINN (Zhou et al., 2022b)), all pixels of LR-MS and PAN
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images are assigned to equal-sized attention grids for atten-
tion operations, trying to model all potential relationships
between PAN and LR-MS images.

Remote sensing images consist of relatively stable ground
objects, such as oceans, forests, buildings, and streets,
etc. (Duan et al., 2024). Since these ground objects are usu-
ally not quadrate whose shape is irregular, the commonly-
used grid structures in the modeling architecture like CNN
and Transformer are redundant and inflexible to process
them. In contrast, the graph structure is the more flexible
topology (Han et al., 2022) to represent complex relation-
ships (i.e., graph edges) between different attributes (i.e.,
graph nodes). However, there are two challenges to model
spatial-spectral relationships with graph: (i) designing the
customized graph structure in non-Euclidean space, which
describes pansharpening-specific relationships priors, i.e.,
spatial relationship of PAN image, the intra-spectra rela-
tionship of LR-MS image, and the spectral relationship
between LR-MS and PAN images, as analyzed in Sec. B of
Appendix; (ii) modeling spatial and spectral relationships
with one graph structure, which facilitates maintaining the
balance of reconstructed spatial-spectral properties.

To address the aforementioned challenges, we propose
the spatial-spectral heterogeneous graph learning network
(HetSSNet) for remote sensing pansharpening that learns
unified spatial-spectral relationships with one customized
graph. Specifically, the spatial-spectral heterogeneous graph
is first constructed for pansharpening, named HetSS-Graph,
which consists of multiple heterogeneous nodes and edges,
allowing the provided spatial-spectral relationship priors to
be clearly described in the HetSS-Graph. Then, we design
the basic relationship pattern generation module to extract
the multiple spatial-spectral relationship patterns between
nodes in HetSS-Graph. From the local and global perspec-
tives, we design the spatial-spectral relationship aggrega-
tion module, which can aggregate the local information
with adaptive importance learning of all basic relationship
patterns, as well as learn global relevant information ac-
cording to the similarity of global-wise relationship pat-
terns between graph nodes. HetSSNet presents the first
exploration in learning unified representations from multi-
ple pansharpening-specific relationships for spatial-spectral
properties reconstruction.

• We construct the first spatial-spectral heterogeneous
graph structure, for remote sensing pansharpening. To
the best of our knowledge, it’s the first attempt for the
potential of modeling pansharpening-specific spatial-
spectral relationships in non-euclidean space.

• We customize a basic relationship generation module,
for extracting multiple base spatial-spectral relation-
ship patterns.

• Based on the extracted base relationship patterns,
we propose the relationship pattern aggregation mod-
ule from the local and global perspectives, so that
our model adaptively learn unified representation for
spatial-spectral properties reconstruction.

• Extensive experimental results on three datasets show
that our HetSSNet not only achieves favorable perfor-
mance against previous SOTA approaches, but also
generalizes well in real-world full-resolution scenes.

2. Related Work
2.1. Learning-based pansharpening method

In recent years, deep learning have dominated the remote
sensing pansharpening community. These techniques lever-
age the powerful feature learning and nonlinear fitting ca-
pabilities inherent in neural networks, significantly outper-
forming traditional approaches. The focus of pansharpening
is to model the spatial-spectral relationship during the fusion
of PAN and LR-MS images. Recently, CNN-based models
like PanNet (Yang et al., 2017), SRPPNN (Cai & Huang,
2020; Li et al., 2024; 2023a;b)and DCFNet (Wu et al., 2022)
treat PAN and LR-MS images as a regular grid of pixels. In
Transfromer-based models like HyperTransfromer (Bandara
& Patel, 2022) and CTINN (Zhou et al., 2022a), all pixels of
feature maps extracted from PAN and LR-MS images are as-
signed to equal-sized attention grids for attention operations,
trying to model all potential relationships between PAN and
LR-MS images. Since the CNN and Transformer rigidly
model relationships in Euclidean space, it is sub-optimal for
remote sensing images with irregular objects. Graph is the
more flexible modeling structure. In this paper, we construct
the first spatial-spectral heterogeneous graph for pansharp-
ening, which models the spatial-spectral relationships in
non-Euclidean space.

2.2. Graph Representation Learning

GCN eases the assumption of prior conditions, which takes
the research object as the node and the correlation or simi-
larity between objects as the edge. It can deal with complex
paired interactions and integrate global spatial data, make
full use of the internal relations between objects, and mine
invisible relations between objects. In recent years, the
graph convolution theory has developed rapidly. It has not
only been widely applied to various high-level vision tasks,
such as action recognition (Zhao et al., 2019) and semantic
segmentation (Li et al., 2020), (Qi et al., 2017), but also
started to be used to solve low-level vision tasks, such as
image inpainting (Wadhwa et al., 2021), image deraining
(Fu et al., 2021), and image denoising (Valsesia et al., 2019).
Furthermore, dual GCNs (Zhang et al., 2019) with different
mapping strategies become popular. Bandara et al. (Bandara

2



HetSSNet: Spatial-Spectral Heterogeneous Graph Learning Network for Panchromatic and Multispectral Images Fusion

Figure 1. The overview of HetSSNet. Our HetSSNet consists of three components: spatial-spectral heterogeneous graph construction,
basic relationship pattern generation and relationship pattern aggregation. According to the provided relationship priors, we construct the
spatial-spectral heterogeneous graph structure in non-Euclidean space. Based on the constructed graph, we generate a series of basic
spatial-spectral relationship pattern matrices, and finally aggregate these basic relationship patterns from the local and global perspectives.

et al., 2022) proposed spatial and interaction space graph
reasoning to extract roads from aerial images. As far as we
know, GCN is currently used for very little hyperspectral
imagery. Qin et al. (Qin et al., 2018) and Wan et al. (Wan
et al., 2019) have related work, but it is limited to the task of
hyperspectral image classification (Hong et al., 2020; 2021;
Kang et al., 2020). Recently, GPCNet (Yan et al., 2022)
uses two independent GCN to directly model the spatial and
spectral relationships of LR-MS and PAN image features’
combination. In fact, it only uses GCN to model global
relationships in Euclidean space. Our method designs graph
structures in non-European space for pansharpening, and
uses GCN to learn the graph node representations from both
local and global perspectives.

3. Method
3.1. Problem Definition

Definition 1 (Attributed Multiplex Heterogeneous Graph).
Given the defined graph G = (V,E,U), where V is a set of
nodes, E is a set of observed edges. With the consideration
of node and edge heterogeneity, we define the node type
and edge type mapping functions as ϕ: V → O and ψ:
E → R, where O and R denote the set of all node types
and the set of all edge types, respectively. Each node v ∈ V
belongs to a particular node type, and each edge e ∈ E is
categorized into a specific edge type. if the U is the matrix
that consists of node attribute features for all nodes, where
each row is the associated node feature vector of node vi,

and |O|+ |R| > 2, and there exist different types of edges
between same node pairs, the graph is called as Attributed
multiplex heterogeneous graph.

Definition 2 (Basic Relationship Pattern). The basic relation-
ship pattern between two node types Oi and Oj in the het-

erogeneous graph is defined as Oi

[r1]&[r2]&···&[r|R|]−−−−−−−−−−−−→ Oj

which describes the complex relationships between two
nodes, where [·] denotes optional, and at least one relation
ri exists. Notice that for a heterogeneous graph with R
relationships, it can generate up to 2|R| − 1 basic relation-
ship patterns. Taking the our constructed HetSS-Graph in
Fig. 1 as an example, it has three types of edges, so it could
generate up to 7 basic relationship patterns.

Based on the above definitions, we formally defined our
studied problem for multiplex spatial-spectral relationships
learning over the constructed heterogeneous graph.

3.2. Overall Architecture

As illustrated in Fig. 1, we present the details of our HetSS-
Net with the overall architecture. Particularly, our HetSSNet
consists of three key components: (i) spatial-spectral het-
erogeneous graph construction module (ii) Basic relation-
ship pattern generation module, (iii) Relationship pattern
aggregation module. Spatial-spectral heterogeneous graph
(HetSS-Graph) structure is first constructed which explicitly
describes the provided relationships priors for pansharpen-
ing. Basic relationship pattern generation module is used to

3



HetSSNet: Spatial-Spectral Heterogeneous Graph Learning Network for Panchromatic and Multispectral Images Fusion

extract all basic spatial-spectral relationship patterns from
the constructed heterogeneous graph, so as to make full use
of the multiple spatial-spectral relationships in the hetero-
geneous graph. Relationship pattern aggregation module
is designed to collaboratively learn node representations
across different spatial-spectral relationships among nodes
with adaptive importance learning from the local and global
perspectives, finally fuse them to obtain the final output
representation.

3.3. Spatial-Spectral Heterogeneous Graph
Construction

The spatial-spectral heterogeneous graph structure (HetSS-
Graph) is denoted as the attributed multiplex heterogeneous
graph, which consists of multiple heterogeneous nodes and
edges, explicitly describing pansharpening-specific relation-
ship priors, i.e., spatial relationship of PAN image, intra-
spectra relationship of LR-MS image and spectral relation-
ship between PAN and LR-MS images, as shown in Fig. 1.

Node in HetSS-Graph 1) The first type. Given a PAN
image P ∈ RH×W×1, we divide it into N overlapping
patches. By transforming each patch of PAN image into
a feature vector xi ∈ Rd, we have XP = [x1, x2, · · ·, xN ]
where d is the feature dimension and i = 1, 2, · · ·, N . These
features could be viewed as a set of unordered nodes which
are denoted as VP = {v1, v2, · · ·, vN}. 2) The second type.
Given a LR-MS image L ∈ RH×W×4, we also divide it
into N overlapping patches. For the LR-MS image patch
Ni ∈ RH

N ×W
N ×4, we transform each spectral band into a

feature vector ybi ∈ Rd, b = 1, 2, 3, 4, and we have Yi ={
y1i , y

2
i , · · ·, y4i

}
where d is the feature dimension and i =

1, 2, · · ·, N . These features can be viewed as the second type
of nodes which are denoted as VL =

{
v1i , v

2
i , · · ·, v4i

}
.

Edge in HetSS-Graph 1) The first type. For the first type
of node vi, we use the k-nearest neighbor algorithm to find
k nodes that have the most similar features to that node, and
connect edges between node vi and these neighboring nodes
set N (vi), and add the first type of edge directed from vj
to vi for all N (vi). The first type of edge establishes the
spatial relationship of PAN image. 2) The second type. For
the second type of node vbi , we find its k nearest neighbors
N

(
vbi
)

and add the second type of edge directed from vbj
to vbi for all N (vi). The second type of edge establishes
the intra-spectra relationship of LR-MS image. 3) The third
type. Given the first type of node vi and the second type
of node vbi , we add the third type of edge directed from
vbi for all N

(
vbi
)

to vi for all N (vi). The third type of
edge establishes the spectral relationship between LR-MS
image and PAN image. In particular, the each added edge is
measured by cosine similarity.

3.4. Basic Relationship Pattern Generation Module

To make full use of the complex spatial-spectral relation-
ships between nodes in the constructed heterogeneous graph,
we first design a basic relationship pattern generation mod-
ule that could directly extract all the basic spatial-spectral
relationship pattern matrices from the constructed HetSS-
Graph.

We first decouple the heterogeneous graph according to
the type of edges. Let {Ar ∈ R5n×5n|r = 1, 2, 3} de-
note the basic adjacency matrices, where n is the number
of all nodes in the graph. Then, each adjacency matrix
and a corresponding logical variable (i.e., 0 or 1) are oper-
ated with the XNOR to generate 3 intermediate matrices
{Âr ∈ R5n×5n|r = 1, 2, 3}. Here, a logical variable of 1
is taken if the relation represented by the adjacency matrix
is preserved in the basic spatial-spectral relationship pat-
tern, and 0 otherwise. Finally, the intermediate matrices are
bitwise AND operated to obtain the basic spatial-spectral
relationship pattern matrices. That is, these relations corre-
sponding to a logical variable value of 1 are retained in the
final basic spatial-spectral relationship pattern. Notice that
if a zero matrix is obtained, then this basic spatial-spectral
relationship pattern does not exist in the graph. By adjusting
the logical variables, all the basic spatial-spectral relation-
ship pattern matrices {Ãr ∈ R5n×5n|r = 1, 2, ..., 7} can
be obtained.

3.5. Relationship Pattern Aggregation Module

To automatically capture local information and global rele-
vant information across different complex relationship pat-
tern between nodes, we design the relationship pattern ag-
gregation module from the local and global perspective.

Local-wise Aggregation. The overall process of local-wise
aggregation is shown in the Fig. 1. After obtaining basic
spatial-spectral relationship patterns, the local-wise aggrega-
tion aims to aggregate features from the complex structures
among nodes from the local perspective by differentiating
each basic spatial-spectral relationship pattern with different
importance.

Specifically, the local-wise aggregation first uses a set of
learnable weight parameters αr to aggregate basic spatial-
spectral relationship patterns as:

ÃLocal =

N∑
r=1

αrÃr, (1)

where N is the number of obtained basic spatial-spectral
relationship patterns. Then we feed the aggregated matrix
Ãl into the graph convolution network (GCN). Following
MHGCN (Yu et al., 2022b), our convolution also adopts the
idea of simplifying GCN, that is, no nonlinear activation
function is used. The single-layer GCN can effectively learn
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the node representation that contains interaction information
in all basic spatial-spectral relationship patterns. The l-layer
node representation could been denoted as:

Hl
Local = ÃLocal ·U ·W1

Local · · ·Wl
Local︸ ︷︷ ︸

l

,
(2)

where U is the node attribute matrix, where each row is
the associated node feature vector of VP and VL. Wi

Local

is the learnable weights of ith layer, i = 1, 2, · · ·, l. We
finally fuse outputs of all layers to obtain the local-wise
node representation as:

HLocal =
1

l

l∑
i=1

Hl
Local. (3)

Global-wise Aggregation. The purpose of global-wise
aggregation is to aggregate the features between nodes from
the global perspective based on the similarity of global
spatial-spectral relationship patterns between nodes. The
overall process of global-wise aggregation is shown in the
Fig. 1.

Specifically, we first generate the matrix to represent the
global spatial-spectral relationship pattern of nodes based
on the obtained basic spatial-spectral relationship patterns.
In particular, we first add the rows to get a column vector
for each basic spatial-spectral relationship pattern matrix.
Here, each column vector describes the number of corre-
sponding basic spatial-spectral relationship patterns of all
nodes relative to all other nodes. Because different basic
spatial-spectral relationship patterns may have different con-
tributions to the similarity when calculating the similarity
of global spatial-spectral relationship patterns, we use a set
of learnable weights βi to concatenate pattern-specific col-
umn vectors to obtain the global spatial-spectral relationship
pattern matrix B ∈ Rn×N as:

Bm(i) =

|V|∑
j=1

Ãm(i,j), (4)

B = Concat (B1 · · ·BN) · △β , (5)

where Bm is the column vector corresponding to the
m-th basic spatial-spectral relationship pattern, △β =
Diag(β1, β2, · · · , βN) is the learnable diagonal matrix.
Then we multiply the global spatial-spectral relationship
pattern matrix by its transpose and normalize it to obtain the
global spatial-spectral relationship pattern similarity matrix:

ÃGlobal = normalize(B ·BT ). (6)
Intuitively, the more similar the global spatial-spectral rela-
tionship pattern of two nodes is, the greater their weight in
the similarity matrix is. Next, we input the global spatial-
spectral relationship pattern similarity matrix into the GCN
for information aggregation, so as to obtain the node repre-
sentation from the global spatial-spectral relationship pat-

tern similarities:
Hl

Global = ÃGlobal ·U ·W1
Global · · ·Wl

Global︸ ︷︷ ︸
l

.
(7)

The last layer output Hl
Global is denoted as the global node

representation HGlocal.

The Final Output. Contrastive learning has demonstrated
its superiority in various graph learning tasks. Inspired by
that, we propose to use contrastive learning to empower the
representation learning ability of the model that maximizes
the agreement of node representations learned from a local
perspective and a global perspective.

Lcl = −
∑
i∈V

log
exp (s(HLocal,i,HGlobal,i)/τ)∑
j∈V exp(s(HLocal,i,HGlobal,j)/τ)

,

(8)

where H∗,i is the local-wise/global-wise node representa-
tion of the i-th node, s(·, ·) denotes the cosine similarity
function, and τ is the tunable temperature hyperparameter
to adjust the scale for softmax. This contrastive learning
allows the local spatial-spectral relationship pattern and
global spatial-spectral relationship pattern to collaboratively
supervise each other, which enhances the node representa-
tion learning. Eventually, we use the outputs of both the
local-wise aggregation and the global-wise aggregation to
obtain the final node representation H ∈ Rn×d through the
average pooling operation for downstream tasks as:

H =
1

2
(HLocal +HGlobal). (9)

3.6. Optimization

We adopt the L1 loss function, which ensures that the net-
work output H is as close as possible to the corresponding
ground truth image GT.

L1 = ∥H −GT∥1 (10)

Finally, we integrate L1 loss with our contrastive learning
loss to optimize our model jointly:

L = L1 + γLcl (11)
where γ is the hyperparameter for tuning the importance of
contrastive learning.

4. Experiments
4.1. Dataset and Benchmark

1) Dataset: We conduct experiments using the widely recog-
nized WorldView-3, QuickBird and GaoFen-2 datasets (Ma
et al., 2024). The WorldView-3 dataset consists of instances
acquired by the sensor aboard the WorldView-3 satellite.
This sensor captures data which covers wavelengths from
0.4 to 1 µm, with a spatial resolution of 1.24 m. The Quick-
Bird dataset consists of instances acquired by the sensor

5



HetSSNet: Spatial-Spectral Heterogeneous Graph Learning Network for Panchromatic and Multispectral Images Fusion

Datasets GaoFen-2 QuickBird WorldView-3

Raw image 7 5 3
Bit depth 11 10 10

Training set 35725 12119 11856
Testing set 3370 356 3639

LR-MS image size 32× 32× 4 32× 32× 4 32× 32× 4
PAN image size 128× 128× 1 128× 128× 1 128× 128× 1

Target HR-MS image size 128× 128× 4 128× 128× 4 128× 128× 4

Table 1. The detailed dataset information (GaoFen-2, WorldView-
3 and QuickBird).

aboard the QuickBird satellite. This sensor captures data
across four spectral bands, covering wavelengths from 0.45
to 0.9 µm, with a spatial resolution of 2.4 m. The images in
the GaoFen-2 dataset are collected by the sensor onboard the
GaoFen-2 satellite, which records data across four spectral
bands within the wavelength range of 0.45− 0.89 µm. Ad-
ditionally, this sensor provides a spatial resolution of 3.2m.
The data generation process adheres strictly to Wald’s proto-
col (Wald et al., 1997), with comprehensive details provided
in (Deng et al., 2022). As shown in Tab. 1, we present the
detailed information of traning dataset and testing dataset in
the experiment.

2) Benchmark: We compare our method with the follow-
ing two groups of methods: (1) Learning-based methods:
SRPPNN (Cai & Huang, 2020), DCFNet (Wu et al., 2022),
CTINN (Zhou et al., 2022b), Hyperfomer (Bandara & Patel,
2022), SFIINet (Zhou et al., 2022c), BiMPan (Hou et al.,
2023), MDCUN (Yang et al., 2022), MSDDN (He et al.,
2023), LGTEUN (Li et al., 2023c), FAMENet (Xuanhua
et al., 2024), GPCNet (Yan et al., 2022), FusionMamba
(Peng et al., 2024), WINet (Tan et al., 2024) and HFIN
(Zhang et al., 2024). (2) Traditional methods: SFIM (Liu,
2002), GS (Sandhu et al., 2021) and BROVEY (Gillespie
et al., 2003). All comparison methods are re-trained on
the adopted datasets, without directly using the experi-
mental details in the original articles. A description of all
comparison methods could be shown in the appendix.

4.2. Evaluation Metrics

Following previous studies on pansharpening, five image
quality assessment metrics (Yang et al., 2023) are employed
for evaluation on reduced-resolution images, including spec-
tral angle mapper (SAM), dimensionless global error in
synthesis (ERGAS), the structural similarity (SSIM), the
peak signal-to-noise ratio (PSNR), and the spatial corre-
lation coefficient (SCC) (Zhou et al., 1998). Specifically,
PSNR measures the ratio between peak signal and noise in
the image, reflecting the distortion level of the fusion result.
SSIM and SCC effectively measure the spatial similarity of
the results. SAM and ERGAS are used to measure angular
and dynamic range differences between the fused image and
the ground truth image, respectively. Additionally, to further

assess the generalization ability of our method, we test it on
the corresponding full-resolution real-world scene. Since
there are not GT images available for the full-resolution
dataset, we use three non-reference metrics to evaluate the
performance of the model: Spectral Distortion Index (Dλ),
Spatial Distortion Index (Ds), and No-Reference Quality
(QNR) (Alparone et al., 2008). Dλ concerns spectral shifts
between LR-MS and fused HR-MS images, while Ds con-
siders spatial disparities between PAN and HR-MS images.
QNR is a composite metric measuring spatial and spectral
deviations. In these metrics, ideal values for SAM, ERGAS,
Ds, and Dλ are 0, while higher values indicate better model
performance for the remaining metrics.

4.3. Training Details

During the training of our networks on the Wordview-3,
QuickBird, and GaoFen-2 datasets, the number of iterations
is set to 30000, 28000, and 28000, respectively . The Adam
optimizer with β1 = 0.9 and β2 = 0.999 is employed for
the optimization, and the batch size is set as 4. Our proposed
method is trained for 30000 iterations. The initial learning
rate is set to 1× 10−4, and decays by 0.85 after every 3000
iterations. Additionally, all the experiments are conducted
in the PyTorch framework with four NVIDIA RTX A6000
GPUs.

4.4. Experiment Results

In Tab. 2, we report the average evaluation metrics of our
proposed method and other selected algorithms on the three
datasets, i.e., WorldView-3, QuickBird, and GaoFen-2. The
best and second-best results are highlighted in boldface and
underlined, respectively. It is evident that our method out-
performs previous methods in almost all metrics across all
three datasets. In particular, all the evaluation metrics of
the learning-based methods significantly outperform the tra-
ditional methods on the three adopted datasets, which is
consistent with the subjective analysis mentioned above and
aligns with our understanding. This is because traditional
methods are often based on hand-crafted designs, limiting
the capability to reconstruct spatial-spectral properties for
target HR-MS images. The experimental results also demon-
strate that HetSS-Graph excels in spatial texture reconstruc-
tion and spectral fidelity, as evidenced by its minimum SAM
value and maximum SSIM and PSNR values. Specifically,
CNN and Transfromer methods (e.g., DCFNet and Hyper-
Transformer) generally perform poorly on the QuickBird
dataset, which is because the rigid modeling architecture
limits their ability to handle complex and irregular objects
in remote sensing images; GPCNet directly use GCNs to
model spatial/spectral relationship between PAN and LR-
MS images features, breaking the balance between spectral
property recovery and spatial property reconstruction. Our
HetSSNet designs the graph structure in the Non-euclidean
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WorldView-3 QuickBird GaoFen-2
PSNR↑ SSIM↑ SAM ↓ ERGAS ↓ SCC↑ PSNR↑ SSIM↑ SAM↓ ERGAS ↓ SCC↑ PSNR↑ SSIM↑ SAM↓ ERGAS ↓ SCC↑

SFIM 30.982 0.749 0.076 6.497 0.821 33.463 0.818 0.036 3.071 0.792 37.840 0.917 0.042 3.836 0.806
BROVEY 30.857 0.761 0.086 5.506 0.819 30.109 0.837 0.077 2.473 0.739 36.046 0.902 0.036 2.261 0.835
GS 35.143 0.807 0.078 5.409 0.825 32.454 0.767 0.033 2.198 0.751 38.328 0.930 0.037 2.826 0.852

SRPPNN 38.642 0.887 0.066 5.244 0.904 33.966 0.886 0.082 2.840 0.875 40.918 0.961 0.036 2.683 0.911
DCFNet 34.429 0.862 0.098 6.373 0.568 34.661 0.912 0.072 2.573 0.848 47.055 0.988 0.027 1.270 0.912
CTINN 39.497 0.889 0.063 5.064 0.962 35.705 0.898 0.038 2.422 0.922 46.875 0.987 0.023 1.302 0.960
SFIINet 39.026 0.885 0.064 5.248 0.643 34.459 0.893 0.041 2.811 0.912 47.195 0.988 0.022 1.267 0.980
Hyperformer 34.121 0.843 0.098 6.356 0.867 34.374 0.869 0.072 2.555 0.914 45.499 0.981 0.034 1.584 0.959
MDCUN 39.929 0.892 0.056 4.864 0.970 36.070 0.891 0.036 2.377 0.910 48.668 0.991 0.018 1.068 0.986
BiMPan 38.955 0.879 0.069 5.253 0.925 37.162 0.919 0.032 2.045 0.931 45.901 0.984 0.026 1.465 0.974
LGTEUN 40.124 0.895 0.055 4.791 0.974 35.911 0.924 0.045 2.170 0.950 48.283 0.992 0.022 1.126 0.979
MSDDN 35.127 0.840 0.085 6.232 0.766 34.751 0.872 0.038 2.538 0.935 39.902 0.942 0.039 2.883 0.886
FAMENet 37.219 0.883 0.071 5.737 0.902 37.218 0.929 0.030 1.996 0.953 42.983 0.981 0.017 1.013 0.978
GPCNet 38.821 0.883 0.062 5.242 0.909 33.972 0.889 0.076 2.835 0.889 40.926 0.967 0.032 2.671 0.923
FusionMamba 38.727 0.872 0.069 5.437 0.934 34.021 0.881 0.047 2.931 0.904 46.242 0.976 0.027 1.278 0.972
WINet 39.781 0.887 0.056 4.769 0.969 37.209 0.927 0.032 2.212 0.931 49.405 0.984 0.016 0.968 0.977
HFIN 32.126 0.837 0.083 6.627 0.837 33.616 0.811 0.050 3.174 0.869 41.938 0.966 0.039 2.534 0.894

HetSSNet 40.623 0.905 0.054 4.741 0.972 37.228 0.931 0.029 2.022 0.951 49.541 0.994 0.015 0.955 0.990

Table 2. The average quantitative results of reduced-resolution scenes over three datasets. Best results are highlighted in boldface, the
second best one is underlined.

space, and learns a unified representation of spatial-spectral
properties in the graph structure, achieving competitive re-
sults in all indicators.

The subjective evaluation results are shown in Fig. 2 for the
WorldView-3 dataset, using Red-Green-Blue bands com-
position for presentation. The first two rows present the
pan-sharpened images, while the third and fourth rows dis-
play the mean square error (MSE) maps between the pan-
sharpened images and the HR-MS images. As evident from
the results, our HetSSNet is capable of restoring more re-
alistic textures than existing pansharpening methods and
markedly retain the spectral property of ground objects. The
traditional methods, i.e., SFIM, BROVEY, and GS struggle
to represent details satisfactorily, leading to blurred building
edges and spectral distortion. Similarly, the learning-based
methods face challenges in generating sharp and clear tex-
tures as well. For instance, SRPPNN and MSDDN produce
results with notable color inconsistency. Although MDCUN
and FAMENet produce visually more promising results,
their error values are still higher than ours. The HetSS-
Net generates results that are closer to the target HR-MS
images with higher perceptual quality and lower reconstruc-
tion errors. The visualization results on the QuickBird and
GaoFen-2 scenes are shown in Sec. D of Appendix.

To demonstrate the generalization capability of the proposed
method, we conduct quantitative evaluations of our pre-
trained model on 20 unseen full-resolution (real-world) im-
ages, the corresponding results are presented in Sec. D of
Appendix.

Model PSNR ↑ SAM ↓ SSIM ↑ QNR ↑ Ds ↓
(a) 48.212 0.035 0.976 0.841 0.137
(b) 48.923 0.023 0.981 0.852 0.121
(c) 48.536 0.027 0.972 0.843 0.139
(d) 49.221 0.019 0.991 0.857 0.112

Ours 49.541 0.015 0.994 0.860 0.107

Table 3. Ablation study of base relationship pattern extraction and
relationship pattern aggregation.

4.5. Ablation Studies

To evaluate the effectiveness of each component of our
model, we further conduct the ablation studies on the
GaoFen-2 dataset.

Basic relationship pattern generation module. As shown
in Tab. 3, in Model (a), we replace the basic relationship
pattern generation module with the meta-path sampling strat-
egy (Fu et al., 2020). In Model (b), we replace the basic
relationship pattern generation module with the decoupled
adjacency matrices (Yu et al., 2022a). Compared Model
(a) and Model (b), the performance of our HetSSNet drops
significantly on the GaoFen-2 dataset. This also demon-
strates the contribution of the proposed relationship pattern
generation module to the model performance improvement.

Relationship pattern aggregation module. As shown in
Tab. 3, in Model (c), we remove the local-wise relation-
ship pattern aggregation module, that is, only global-wise
relationship pattern aggregation module is kept. In Model

7



HetSSNet: Spatial-Spectral Heterogeneous Graph Learning Network for Panchromatic and Multispectral Images Fusion

SFIM BROVEY GS SRPPNN DCFNet CTINN ARFNet Hyperformer

SFIINet MDCUN LGTEUN MSDDN FAMENet GPCNet Ours GT

SFIINet MDCUN LGTEUN MSDDN FAMENet GPCNet Ours GT

SFIM BROVEY GS SRPPNN DCFNet CTINN ARFNet Hyperformer

Figure 2. Qualitative results of reduced-resolution scene on the WorldView-3 dataset. Top group: the fused results. Bottom group: the
error between fused results and reference.

(d), we only keep the local-wise relationship pattern ag-
gregation module. Model (c) performs the worst and is
significantly worse than Model (d). Local-wise aggrega-
tion is to aggregate local feature information, which is the
intrinsic attribute of node representation and thus plays a
decisive role in graph learning. Global-wise aggregation can
pass feature information between nodes based on the sim-
ilarity of spatial-spectral relationship patterns, effectively
supplementing global relevant information to facilitate node
representation. Model (c) and Model (d) are worse than
the our method, which verifies that both play an important
role in node representation learning of the HetSSNet for
spatial-spectral properties reconstruction.

The number of aggregation layer. As shown in Tab. 4,
firstly, the performance of HetSSNet increases with the
increasing number of layers. When the number of layers
reaches 2 to 3, the model has a significant performance drop
on several metrics. It should be emphasized that the purpose
of this work is not to solve the over-smoothing problem
of GCN, but to aggregate the relevant global information
more effectively. Thus, even when the number of layers
is set too small, e.g., 2, our model can also learn global
spatial-spectral relationship to improve model performance.

Effect of hyperparameter γ. From Tab. 5, we can find that
our HetSS-Graph achieves the best performance on almost
all datasets when γ falls near 0.03. The model performance
is improved on all datasets when γ increases from 0 to 0.03,
indicating that contrastive learning can effectively coordi-

Layer PSNR ↑ SAM ↓ SSIM ↑ QNR ↑ Ds ↓
l = 1 47.683 0.041 0.967 0.836 0.145
l = 2 49.541 0.015 0.994 0.860 0.107
l = 3 49.227 0.018 0.991 0.856 0.112
l = 4 49.104 0.024 0.986 0.851 0.119

Table 4. Ablation study of aggregation layer.

γ PSNR ↑ SAM ↓ SSIM ↑ QNR ↑ Ds ↓
0 48.559 0.036 0.981 0.842 0.129

0.01 49.541 0.015 0.994 0.860 0.107
0.5 49.103 0.018 0.988 0.852 0.112
1 48.629 0.028 0.987 0.845 0.125

Table 5. Ablation study of the hyperparameter γ shown in Eq. 11.

nate the node representation learning of the two aggregation
modules in HetSSNet for improving graph node representa-
tion performance. When γ is set too large (e.g., γ = 1), it
will affect the importance of the L1 loss in the model learn-
ing, and thus damaging the reconstruction performance.

5. Conclusion
This paper presents HetSSNet, a novel spatial-spectral
heterogeneous graph learning network dedicated to learn-
ing unified spatial-spectral representation for pansharpen-

8



HetSSNet: Spatial-Spectral Heterogeneous Graph Learning Network for Panchromatic and Multispectral Images Fusion

ing. We first construct the first spatial-spectral hetero-
geneous graph structure to explicitly describe different
pansharpening-specific relationship priors. Based on the
constructed heterogeneous graph structure, we propose the
base relationship pattern generation module to extract mul-
tiple spatial-spectral relationship patterns. Furthermore, we
propose an relationship pattern aggregation module to learn
local-wise and global-wise information among nodes Ex-
perimental results show that our HetSSNet outperforms
existing SOTA methods and especially excels in reconstruct-
ing spatial-spectral properties. In the future, we will focus
on evaluating our method under more challenging satellite
image scenarios, e.g., there are fast-moving objects in the
scenarios.
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A. Appendix Outline
In this supplementary material, we provide more details of our HetSSNet as follows:

• Sec. B conducts detailed analysis and reveals the complex relationship priors for pansharpening, as illustrated in Fig. 3
and Fig. 4,

• Sec. C describes more details about each benchmark.

• Sec. D reports more quantitative and visual results, i.e., visual results on reduced-resolution scene, quantitative results
on full-resolution dataset, quantitative results on eight-band WorldView-3 dataset and visual results on full-resolution
scene.

• Sec. E reports complexity analysis of our HetSSNet.

B. Pansharpening-specific relationship priors
In this section, we reveal a spatial property-related relationship prior (Prior 1) and a spectral property-related relationship
prior (Prior 2), as illustrated in Fig. 3 and Fig. 4. This analysis is performed on the widely-used GaoFen-2 dataset, which
have 38645 sets of PAN, LR-MS and corresponding HR-MS (GT) images.

Prior 1: In order to reconstruct spatial property for target HR-MS image, spatial relationship of PAN need to be modeled.

Analysis 1: Fig. 3 compares the spatial distribution histograms between PAN image and GT image in terms of
each of their spectral band, as well as LR-MS image and their GT images in terms of spectral band. As shown in
each sub-graph of Fig. 3, the correlation coefficient measures the correlation between the two histograms, which
is obtained by the EMD distance. From the first and second rows, we could obtain that the spatial distribution of
PAN is more similar to the spatial distribution of GT image’s each spectral band. Here, the spectral band is defined
as bandi, where i = 1, 2, 3, 4. For example, the correlation coefficient between the PAN image and GT image’s
band1 is 0.423, while the correlation coefficient between LR-MS’s band1 and GT’s band1 is 0.023. Similar results
can be found for the remaining sub-graph of Fig. 3. Compared by LR-MS image, the spatial distribution of PAN
image is much more similar to the spatial distribution of its target HR-MS (GT) image. Thus, we obtain the conclusion
that only modeling spatial relationship of PAN image could reconstruct required spatial property for the target HR-MS image.

Figure 3. The spatial distribution comparison between LR-MS/PAN and GT (target HR-MS) in terms of each spectral band. The band
illustrated in the figure refers to the spectral band. The correlation coefficient represents the correlation between the two distribution
curves, and the larger the value, the greater the correlation.

Prior 2: In order to reconstruct spectral property for target HR-MS image, intra-spectra relationship of LR-MS, as well as
the spectral relationship between PAN and LR-MS images, needs to be modeled.
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Analysis 2: Here, we investigate the correlation between the LR-MS’ spectral bands and the correlation between the GT’s
spectral bands. Fig. 4 visualizes their correlation and compares the distribution histograms between spectral bands (band1 vs.
band2, band2 vs. band3 and band3 vs. band4) of the paired LR-MS and GT images. It can be observed that the distribution
correlation between the LR-MS’s spectral bands and distribution correlation between the GT’s spectral bands is largely
different. For example, the correlation coefficient between the GT’s band3 and GT’s band4 is 0.641, while the correlation
coefficient between the LR-MS’s spectral bands (band3 vs. band4) is 0.263. Similar results can be found for the remaining
sub-graph of Fig. 4. The above analysis shows that it is sub-optimal that model only the LR-MS’s spectral relationship.
Thus, to reconstruct spectral property for target HR-MS image, the spectral relationship of LR-MS, as well as the spectral
relationship between PAN and LR-MS images, needs to be modeled.

Figure 4. The distribution comparison between LR-MS’s spectral bands, and the pixel distribution comparison between GT’s spectral
bands. The band illustrated in the figure denotes the spectral band. The correlation coefficient represents the correlation between the two
distribution curves, and the larger the value, the greater the correlation.

C. The benchmarks
SRPPNN proposes a pansharpening algorithm based on a deep convolutional neural network. It extracts intrinsic spatial
details from multispectral images through a super-resolution process and combines progressive pansharpening and a
high-pass residual module to enhance the spatial resolution of the images.

DCFNet is a dynamic cross-feature fusion network based on convolutional neural networks. It employs three parallel
branches (high, medium, and low resolutions) for feature fusion to generate high-resolution multispectral images with
enhanced spatial resolution and complete spectral information.

CTINN builds the Transformer-CNN dual-branch network, which uses CNN and Transformer to simultaneously extract the
local and global features of PAN and LR-MS images’ combination.

Hyperformer is based on transformer architecture and adopts the stacked multi-head attention to model the spatial
dependencies between LR-MS and PAN image features.

SFIINet uses cascaded spatial and channel attention mechanisms to fuse local-global features encoded by two CNN-based
branches.

BiMPan is based on CNN, and it introduces a bidomain modeling approach for pansharpening, combining local feature
extraction in the spatial domain with global detail reconstruction in the Fourier domain to enhance the spatial resolution of
multispectral images.

MDCUN is an interpretable deep neural network that formulates the pan-sharpening problem as a variational model
minimization task. It employs a CNN-based iterative algorithm to construct the model, searching for similarities between
long-range patches. Additionally, it combines PAN images with each band of MS images to selectively provide high-

13



HetSSNet: Spatial-Spectral Heterogeneous Graph Learning Network for Panchromatic and Multispectral Images Fusion

frequency details.

MSDDN is a method based on CNN that enhances the effect of pansharpening by integrating multi-scale information from
both the spatial domain and the frequency domain. Specifically, it employs a spatial guidance sub-network to learn local
spatial information and a frequency guidance sub-network to learn global frequency-domain information.

LGTEUN is an interpretable deep unfolding network that alternately completes data updates in each iterative stage through
a CNN-based data module and a Transformer-based prior module.

FAMENet is implemented based on CNN, where the Adaptive Frequency Separation Prediction Module utilizes the discrete
cosine transform to achieve frequency separation by predicting a frequency mask. The Sub-Frequency Learning Expert
Module is responsible for reconstructing high-frequency and low-frequency information. The Expert Mixture Module
dynamically weights the high-frequency and low-frequency information described above.

GPCNet is implemented based on graph convolutional networks and enhances the model’s representation capability by
introducing asynchronous knowledge distillation. Specifically, it employs the spatial GCN module to capture global spatial
information in the image, the spectral band GCN module to capture the global correlation of spectral features and enhance
spectral fidelity, and the atrous spatial pyramid module to learn multi-scale feature information.

Ours

ARFNet        SFIM BROVEY

MSDDN

DCFNet CTINN Hyperformer

SFIINet MDCUN LGTEUN FAMENet

GS

GPCNet

SRPPNN

GT

ARFNet        SFIM BROVEY DCFNet CTINN HyperformerGS SRPPNN

OursMSDDNSFIINet MDCUN LGTEUN FAMENet GPCNet GT

Figure 5. Qualitative results of reduced-resolution scene on the QuickBird dataset. Top group: the fused results. Bottom group: the error
between fused results and reference.

D. More quantitative and visualization results
As shown in Fig. 5 and Fig. 6, we present the visualization results of the QuickBird and GaoFen-2 datasets.

We present the results on the eight-band worldView-3 dataset, and the results prove that our method has obtained promising
results, as shown in Tab. 7. To demonstrate the generalization capability of the proposed method, we conduct quantitative
evaluations of our pre-trained model on 20 unseen full-resolution (real-world) images for each of the GaoFen-2, WorldView-
3, and QuickBird datasets. Tab. 6 presents the results, and the best and second-best results are highlighted in boldface
and underlined, respectively. We could see that the deep learning-based techniques still perform favorably against their
traditional counterparts. In addition, our proposed framework achieves the optimal outcomes for all indexes, confirming its
superior generalization capability compared to both traditional and deep learning-based pansharpening methods.

Additionally, we conduct qualitative analysis on the real-world scene of GaoFen-2 dataset. The visual comparison of
several methods on a representative full-resolution test scene has been illustrated in Fig. 7. From the figure, it is evident
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ARFNet        SFIM BROVEY DCFNet CTINN HyperformerGS SRPPNN

OursMSDDNSFIINet MDCUN LGTEUN FAMENet GPCNet GT

ARFNet        SFIM BROVEY DCFNet CTINN HyperformerGS SRPPNN

OursMSDDNSFIINet MDCUN LGTEUN FAMENet GPCNet GT

Figure 6. Qualitative results of reduced-resolution scene on the GaoFen-2 dataset. Top group: the fused results. Bottom group: the error
between fused results and reference.

that traditional methods either suffer severe blurring, such as SFIM and GS, or exhibit pronounced spectral distortions,
as seen with BROVEY. Even though deep learning has brought some spatial detail improvements to pansharpening
models, modeling spectral properties has been a challenge for these models, exemplified by ARFNet, HyperTransformer,
and MSDDN. Compared with the these CNN and Transformer-based methods, our method models the spatial-spectral
relationship based on a non-Euclidean graph structure, which has advantages in reconstructing the spatial-spectral properties
of complex objects. Overall, our method demonstrates outstanding performance in both quantitative and qualitative
experiments on the full-resolution dataset, indicating its strong generalizability.

Figure 7. Visual comparison on the GaoFen-2 full-resolution scene, with some details magnified for better comparison.

E. Complexity Analysis
The time complexity of aggregating all basic spatial-spectral relationship patterns is O(Nn2), and the time complexity of
graph convolution is O(n2dl+nmd+nd2(l−1)), so the total time complexity of local-wise aggregation is O(n2(N+dl)+
nmd+nd2(l−1)). The global-wise aggregation first calculates the global-wise spatial-spectral relationship pattern similarity
matrix, and the time complexity isO(n2N). The time complexity of the graph convolution is alsoO(n2dl+nmd+nd2(l−1)),
and thus the overall time complexity is O(n2(N+ dl) + nmd+ nd2(l − 1)). Lastly, the time complexity of contrastive
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Method GaoFen-2 WorldView-3 QuickBird
Dλ↓ Ds↓ QNR↑ Dλ↓ Ds↓ QNR↑ Dλ↓ Ds↓ QNR↑

SFIM 0.082 0.159 0.821 0.137 0.421 0.683 0.219 0.496 0.672
BROVEY 0.138 0.261 0.739 0.136 0.417 0.689 0.226 0.516 0.651
GS 0.074 0.246 0.703 0.141 0.407 0.676 0.231 0.526 0.632
SRPPNN 0.077 0.116 0.817 0.128 0.319 0.757 0.159 0.362 0.700
DCFNet 0.073 0.115 0.839 0.092 0.277 0.774 0.198 0.332 0.723
CTINN 0.072 0.114 0.834 0.072 0.114 0.834 0.133 0.338 0.732
ARFNet 0.081 0.129 0.817 0.230 0.372 0.709 0.210 0.397 0.652
SFIINet 0.068 0.112 0.847 0.094 0.271 0.706 0.141 0.337 0.732
Hyperformer 0.075 0.119 0.823 0.222 0.357 0.775 0.201 0.420 0.653
MDCUN 0.065 0.110 0.850 0.088 0.257 0.783 0.138 0.339 0.730
LGTEUN 0.063 0.121 0.841 0.091 0.254 0.785 0.137 0.336 0.737
MSDDN 0.069 0.112 0.858 0.149 0.353 0.710 0.149 0.353 0.710
FAMENet 0.071 0.153 0.821 0.094 0.259 0.779 0.141 0.339 0.730
GPCNet 0.072 0.113 0.820 0.116 0.312 0.759 0.144 0.338 0.726
Ours 0.061 0.107 0.860 0.085 0.252 0.792 0.130 0.328 0.742

Table 6. The average results on the real-world full-resolution scenes from GaoFen-2, WorldView-3, and QuickBird datasets. The best
results are highlighted in boldface, the second best one is underlined.

learning is O(n2d). Therefore, the total time complexity of our HetSSNet is O((N+ dl)n2 + (m+ d2(l − 1))n).

Method PSNR ↑ SSIM ↑ SCC ↑ SAM ↓ ERGAS ↓
SFIM 21.415 0.542 0.721 0.115 8.855
BROVEY 22.506 0.547 0.733 0.571 8.233
GS 28.417 0.693 0.812 0.102 6.799
SRPPNN 30.304 0.918 0.956 0.078 3.188
DCFNet 30.624 0.924 0.958 0.072 3.092
CTINN 31.856 0.952 0.960 0.066 2.742
SFIINet 30.597 0.924 0.956 0.074 3.080
Hyperformer 29.943 0.913 0.945 0.081 3.426
MDCUN 31.299 0.953 0.956 0.066 2.930
BiMPan 30.419 0.941 0.952 0.069 2.912
LGTEUN 32.219 0.955 0.950 0.061 2.629
MSDDN 30.850 0.926 0.955 0.073 2.995
FAMENet 30.990 0.929 0.954 0.070 2.953
GPCNet 30.543 0.922 0.955 0.077 3.105
Ours 32.589 0.958 0.963 0.059 2.524

Table 7. Comparison of different methods on eight-band WorldView-3 dataset

The input of local-wise spatial-spectral relationship pattern aggregation includes matrices composed of various basic spatial-
spectral relationship patterns and attribute matrix U ∈ Rn×m, and the weight vector and matrices contain α1:N,W1

Local ∈
Rm×d and Wl

Local ∈ Rd×d, and thus the space complexity of local-wise spatial-spectral relationship pattern aggregation
is O(n2N + nm + md + d2(l − 1) + N). Similarly, the input of the global-wise spatial-spectral relationship pattern
aggregation includes matrix B ∈ Rn×N and adjacency matrix ÃGlobal ∈ Rn×n, and the weight vector and matrices
contain β1:N,W1

Global ∈ Rm×d and Wl
Global ∈ Rd×d, and thus the space complexity of global-wise spatial-spectral

relationship pattern aggregation is O(nN+ n2 +md+ d2(l − 1) + N). Therefore, the total space complexity of HetSSNet
is O(Nn2 + (m+ N)n+md+ d2(l − 1) + N).
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