Neural SDEs as a Unified Approach to
Continuous-Domain Sequence Modeling

Anonymous authors

Abstract

Inspired by the ubiquitous use of differential equations to model continuous dy-
namics across diverse scientific and engineering domains, we propose a novel
and intuitive approach to continuous sequence modeling. Our method interprets
time-series data as discrete samples from an underlying continuous dynamical
system, and models its time evolution using Neural Stochastic Differential Equation
(Neural SDE), where both the flow (drift) and diffusion terms are parameterized
by neural networks. We derive a principled maximum likelihood objective and
a simulation-free scheme for efficient training of our Neural SDE model. We
demonstrate the versatility of our approach through experiments on sequence mod-
eling tasks across both embodied and generative Al|'l Notably, to the best of our
knowledge, this is the first work to show that SDE-based continuous-time modeling
also excels in such complex scenarios, and we hope that our work opens up new
avenues for research of SDE models in high-dimensional and temporally intricate
domains.

1 Introduction

Sequence modeling is a fundamental task in ar-

tificial intelligence, underpinning a wide range Fokker—Planck equation

of applications from natural language process- @ ==V [, 05 8] + 5V ¥ - [Golox G (x,)80, 1]

ing to time-series analysis [Sutskever, 2014} i ' 3

Graves and Graves, 2012} [Graves| 20T3]. Tnre- Leaming: Lo it Gt)i
cent years, advances in sequence modeling have

led to breakthroughs across multiple domains. mference: Sample fiom conditional Forward simulation
Models like Generative Pre-trained Transform- i tvae = SDEsolvella 1, Gobx. 1)
ers (GPT) [Radford et al.’ 2019’ Brown, 2020] Embodied AL X; = [observations, states, actions, ...]

have revolutionized language generation, while Generative Al X; = [image frames, audio frames, ...]

diffusion models have achieved state-of-the-art pjoure 1: A new paradigm for continuous-

rqsults in areas such as image and video gener- gomain sequence modeling using SDEs. Rather
ation [Ho et al., 2020, |Song and Ermon, 2019, than modeling conditional densities directly, our
Song et al., 2021} [Ho et al.} 2022]. These suc- approach represents dynamics using SDEs. The
cesses underscore the importance of effective Rokker-Planck equation provides the theoretical
sequence modeling techniques in the develop- {jink by describing the evolution of the probabil-
ment of advanced Al systems, both for discrete jry density. This framework unifies embodied and
and continuous data. generative Al under the same modeling paradigm.

Auto-regressive models have been the dominant

approach for sequence modeling of discrete variables. This method has proven highly effective for
tasks like language generation, where data is naturally discrete and sequential. However, extending
auto-regressive models to continuous data is less straightforward. Continuous data often represent

!Codes and demos are accessible from our project website: https://neuralsde.github.io/,

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://neuralsde.github.io/

smooth, time-evolving dynamics that are not naturally segmented into discrete tokens. Tokenizing
continuous data can introduce quantization errors and obscure important information such as the
closeness between states induced by the distance metric of the continuous state space [Argall et al.|
2009\ ILi et al L |2024]]. To model such data effectively, it’s essential to preserve their inherent continuity
and stochasticity.

Recent methods like diffusion models [Ho et al.l [2020| [Song et all [2021] and flow matching
frameworks [Lipman et al., 2022] have made significant progress in handling continuous variables
by leveraging stochastic processes. These approaches transform a simple initial distribution into
a complex target distribution through a series of learned transformations, effectively capturing the
data distribution in continuous spaces. However, in the context of sequence modeling, this iterative
approach can be less natural and computationally intensive, which often involves a high transport cost
and requires many iterative steps to produce satisfactory results [Tong et al.,[2023] [Kornilov et al.
2024]). In contrast, a more intuitive and efficient strategy is to model the sequence by directly learning
the transitions between consecutive states, reflecting the inherent temporal continuity of the data.

These limitations highlight the need for sequence models designed specifically for continuous data,
capable of capturing both the deterministic trends and stochastic fluctuations of the underlying
dynamics without relying on extensive iterative transformations.

Differential Equations as a Unifying Framework. In many real-world applications, continuous
dynamical systems are naturally described by ordinary or stochastic differential equations. From
physical processes like fluid flow and orbital mechanics [Gianfelici, 2008, [Harier et al., | 2000] to
robotic control and autonomous systems [Zhu, [2023]], the underlying dynamics are often given—or
well approximated—by state-space differential equations that evolve continuously in time.

By leveraging Neural Stochastic Differential Equations (Neural SDEs) [Kong et al.| 2020, |[Kidger
et al.,|2021a]], we propose a method that models the time evolution of continuous systems directly.
This approach maintains the intrinsic continuity of the data and provides a more natural representation
of continuous-time processes compared to traditional discrete-time or tokenization-based methods.
In summary, the contributions of this paper include:

* A novel Neural SDE framework for continuous sequence modeling utilizing a simulation-
free maximum-likelihood method with a decoupled two-stage optimizer, eliminating the
costly forward simulations required in traditional gradient estimation.

* Significant improvements in inference efficiency due to directly modeling continuous-time
dynamics—rather than discretely transitioning from Gaussian noise as in diffusion and flow
matching approaches—leading to substantially fewer function evaluations (NFEs).

* Empirical validations demonstrating our method’s unique advantages, including modeling
of multi-modal distributions, robustness to irregular dynamics and natural temporal interpo-
lation, while achieving performance comparable to baselines across diverse tasks such as
imitation learning and video prediction.

2 Backgrounds

In this section, we provide an overview of foundational concepts relevant to our approach. We begin
with diffusion models and their extension to continuous stochastic differential equations (SDEs). We
then discuss the flow matching and stochastic interpolant frameworks, which are instrumental in
formulating our method. Finally, we introduce Neural SDEs and highlight the challenges associated
with their training.

2.1 Diffusion Models and Their SDE Formulation

Diffusion models have become a cornerstone in generative modeling, achieving remarkable success
in generating high-fidelity images and other data types [Ho et al., 2020} |Song et al., 2021]]. At their
core, these models involve a forward process that gradually adds noise to the data and a reverse
process that reconstructs the data by denoising.

2.1.1 Discrete Diffusion Models

In the discrete setting, the forward diffusion process is defined over discrete time steps, where
Gaussian noise is incrementally added to the data. The reverse process involves learning to denoise
the corrupted data to recover the original data distribution. This is typically achieved by training a
neural network to predict the noise added at each step, using a mean squared error loss between the
predicted and true noise.

2.1.2 Continuous SDE Formulation

The continuous-time formulation of diffusion models represents the forward and reverse processes as
solutions to SDEs.

The forward diffusion process is defined by the SDE:
dx; = £(x, t)dt + g(t)dw,, 1)

where x; € R? is the data at time t € [0, 7], f(x;,) is the flow coefficient, g(t) is the diffusion
coefficient, and w, is a standard Wiener process.

In the case of the Variance Preserving (VP) SDE [Song et al., [2021]], which corresponds to the
discrete diffusion model with a variance schedule g;, the flow and diffusion coefficients are pre-
defined functions given by:

E(xi,0) = — 5%, 9(t) = VB @

Here, 5(t) is a continuous-time version of the noise schedule from the discrete model.

2.1.3 Reverse SDE and Score Function

To generate data samples, we consider the reverse-time SDE that has the same marginal distribution
as the forward SDE:

dx¢ = [f(x¢,t) — g% (t) Vi, log i (x¢)] dt + g(t)dwy, 3
where ¢;(x;) is the marginal distribution of x; at time ¢, and W, is a reverse-time Wiener process.

The term Vy, log q;:(x;) is the score function, representing the gradient of the log probability density
at time ¢.

In practice, since g;(x;) is unknown, the score function is approximated by a neural network sg(x¢, t),
trained to minimize the score-matching objective which corresponds to the denoising objective in the
discrete formulation:

Escore =K, [A(t)]ExO [Hsﬁ'(xtv t) - vXt 10g q(xt | XO)H2H) 4
where x is the original data sample, x; is obtained by solving the forward SDE starting from xg,
A(t) is a weighting function, and g(x; | xg) is the transition kernel of the forward SDE. In the case of
linear Gaussian transition as in Eq. (2), Vi, log ¢(x: | x¢) has a simple closed-form solution which
is proportional to the sampled noise.

2.2 Flow Matching and Stochastic Interpolants

Instead of learning SDEs, Flow matching and Stochastic Interpolants provide frameworks for learning
a diffusion-free ordinary differential equation (ODE) for generative modeling.

2.2.1 Interpolative Approach

Both flow matching [Lipman et al.,[2022]] and stochastic interpolants [[Albergo et al.l 2022] rely on
constructing an interpolant between a simple base distribution po(x) and a target distribution p; (x).
The interpolant is defined as a time-dependent process x; that smoothly transitions from xg ~ pg to
X1 ~ pp ast goes from 0 to 1.

An example of a stochastic interpolant is:
x; = a(t)xo + B(t)x1 + o(t)€,)
where «(t) and 3(t) are deterministic scalar functions satisfying a(0) = 1, (1) = 0, 5(0) = 0,
) is

B(1) = 1, o(t) controls the magnitude of the stochastic component, and £ ~ A(0,T) is standard
Gaussian noise.

2.2.2 Simulation-Free Training Objective

The key idea is to learn a vector field vy (x;, ¢) such that the time derivative of the interpolant matches
the vector field:

dx; = vg(xy, t)dt. (6)
The training objective minimizes the expected squared difference between the model’s vector field
and the true time derivative of the interpolant:

dx
Lom = E, {EXD,XI,e {HV@(W) - dtt”2” ' N

Because x; and % can be computed analytically from (3), training does not require simulating the

dynamics of x;.

2.3 Neural Stochastic Differential Equations

Neural Stochastic Differential Equations (Neural SDEs) [Li et al.,[2020a, Kidger et al.,|2021b|] extend
Neural ODE:s [Chen et al., |2018]] by incorporating stochastic components into the system dynamics.
A Neural SDE models the evolution of a stochastic process as:

dXt = f9 (Xt, t)dt + Gg (Xt, t)dwt, (8)
where fy and G¢ are neural networks parameterized by 6 .

Training Neural SDEs involves computing gradients of a loss function with respect to the parameters
6 . A common approach is the adjoint sensitivity method [Li et al.l 2020b]], which computes these
gradients by solving an adjoint SDE backward in time alongside the forward simulation. While this
method is memory-efficient, it poses computational challenges:

* Computational Overhead: Simulating both the forward and backward SDEs increases
computational cost.

* Numerical Stability: Backward integration through stochasticity can introduce numerical
instability, as stochastic differential equations are less straightforward to reverse due to their
inherent randomness.

These challenges motivate the exploration of alternative training methods that can efficiently handle
Neural SDEs without the need for backward simulation through stochastic processes.

2.4 Connections and Motivations

The continuous SDE formulation of diffusion models and the flow matching framework provide
powerful tools for modeling data distributions through stochastic processes. However, these methods
often assume fixed diffusion coefficients or rely on extensive iterative computations. While Neural
SDEs have been employed for continuous sequence modeling [Oh et al.| 2024} Tzen and Raginsky,
2019]], gradient computation under these formulations typically incurs a cost that scales linearly
with the number of simulation steps. This results in significant overhead for high-dimensional
data or models with large parameter counts, as most existing differentiation methods for Neural
SDEs—including pathwise automatic differentiation [Tzen and Raginskyl 2019, [Li et al.| |2020b],
adjoint sensitivity analysis[Li et al., 2020b, [Blasingame and Liul 2024]], and likelihood-ratio-based
estimators[Glynn, [1990]—require full forward (and sometimes backward) integration of the SDE per
training sample.

Our approach leverages Neural SDEs’ ability to model both drift and diffusion—faithfully capturing
intrinsic data uncertainty and stochasticity—while adopting the simulation-free training paradigm
pioneered by flow matching (which itself is derived from an optimal-transport control formulation, not
likelihood). Crucially, we re-derive this flow regression from a maximum-likelihood (ML) objective
and extend it with a decoupled two-stage optimizer: first fitting the flow via our ML-driven flow-
matching analogue, then separately estimating diffusion coefficients through a residual log-likelihood
objective. This two-stage scheme entirely avoids forward SDE unrolling.

By formulating the problem as learning the parameters of an SDE that describes the evolution of
continuous sequences, we directly model the time dynamics without the need for discretization or
high transport costs associated with iterative methods.

3 Our Approach

We introduce a Neural SDE framework to model continuous-time sequences, capturing both deter-
ministic trends and stochastic fluctuations inherent in the data. Our model learns a time-invariant
SDE of the form:

dxy = f(x¢)dt + g(x¢) © dwy, ©)

Our goal is to learn f and g from data such that the SDE accurately represents the underlying
continuous-time dynamics observed in the sequences.

Compared with the general SDE (Eq. [8), we are making two key modeling choices:

1. Time-Invariant System: The flow and the diffusion function are implicit function of
time through the dependency on the state vector, because many real-world systems exhibit
dynamics that are consistent over time [Zhul [2023| |Slotine et al.,[1991]]. Modeling these
systems with a time-invariant SDE simplifies the learning task and captures the essential
state-dependent dynamics without unnecessary complexity.

2. Diagonal Diffusion Matrix: For computational tractability, we use a diagonal diffusion
matrix:
g(x¢) = diag (01(x¢), 02(x¢), - .., 0a(xt)) (10)
instead of a full matrix. This implies that the stochastic components affecting each state
dimension are independent. The diagonal assumption simplifies calculations, particularly
the inversion and determinant of the covariance matrix during training, leading to more
efficient optimization. Moreover, in many practical applications, the noise affecting different
state variables can be reasonably considered uncorrelated [[Gardiner, 2009, |(Oksendall 2013].

3.1 Negative Log-Likelihood Derivation

Using Euler-Maruyama discretization (detailed in Appendix [A) and the resulting Gaussian transition
probability (Appendix[B), the negative log-likelihood (NLL) for a single transition segment simplifies
to:

A 1
(£ Gx) =) © gx) |24t + 5 log det g(x,)g(x:) T

1
2
1 filxe) — 32\ ? 1<
:52 <ai(xt)At> At; + 5210g0?(xt), (11)

i=1

where Ax = x4 Ar — X, and we have omitted constant terms that do not depend on the modeling
parameters.

This loss function consists of:

* Prediction Error Term (first): Measures how well the flow function f(x;) matches the
observed state changes Ax. Note that this term is scaled by inverse of diffusion term g(x;),
which is absent in Flow-Matching methods. The intuition is that a mismatch between the
flow and the observed state change can be attributed to either an inaccurate flow prediction
or the intrinsic uncertainty of the process measured by the diffusion term.

* Complexity Penalty Term (second): The logarithmic determinant term regularizes overly
large diffusion coefficients, preventing the model from assigning high uncertainty indiscrim-
inately.

Given a trajectory of observed data points {x, }7_, at times {¢; }2_,, we can aggregate the single-
segment losses to obtain the total loss:
N-1 N-1
L=- Z log p(x¢,., | X¢,,) = Ly, - (12)
k=0 k=0
Unlike Auto-regressive models where x;, , , needs to be conditioned on all the previous states, here in

our model the conditional distribution is simply between consecutive steps due to the the markovian
property of the SDE.

3.2 Training Strategy: Decoupled Optimization of Flow and Diffusion

The first term in Eq. depends on both f and g, we empirically observe that joint training is
susceptible to getting stuck at local minimum. To enhance training stability and interpretability, we
derive a decoupled optimization scheme for the flow f and the diffusion term g.

We notice that Eq. (IT)) can be analytically minimized w.r.t. g by setting

2(x,) = 02(x;) = [f Ar) 13
g2x0) = o205 = (filx) = 57) 13

Plugging Eq. (I3) back to Eq. (1)) and discarding constant terms, we get the following simplified
objective for the flow term

ol _lil fi(xy) — % : (14)
Xt~ 9 < og | JilX¢ Al .

Likewise, the constraint Eq. suggests the following objective for the diffusion term

L Ap\ 2 2
Lit:22<0?(xt)_<fi(xt)_ At-l> Ati>) (15)

i=1

This objective suggests that the diffusion coefficients are matching the residual error of the flow
prediction. Similarly, the training objective for the whole trajectory can be obtained by aggregating
all the segments as in Eq. (12).

3.3 Implications of the Simplified Flow Objective

The logarithmic-squared flow loss (Eq. provides two primary benefits: (i) scale invariance across
different dimensions, which eliminates the need for manually tuning per-dimension loss weights—a
property particularly valuable in multi-modal settings where each modality may have distinct units or
dynamic ranges; and (ii) robustness to large errors due to sub-linear growth, allowing the model to
handle high-variance data by naturally increasing the learned diffusion term rather than incurring
large penalties. A detailed analysis and discussion appear in Appendix [C]

3.4 Implementation Details

Our main derivation thus far focuses on the theoretical formulation. In practice, we make several
additional choices to improve training stability and performance. For example, we employ data
interpolation between observed time steps, noise injection for regularization, and an optional
denoiser network for improving inference-time trajectory likelihood. We also discuss how we handle
the numerical stability of the logarithmic loss and datasets without explicit time. Full details about
these implementation aspects are provided in Appendix

4 Experiments

In this section, we empirically evaluate the capabilities of Neural SDE across three distinct sequence
modeling tasks: (1) a 2D Bifurcation task designed to assess multi-modal trajectory generation, (2)
the Push-T imitation learning task, and (3) video prediction on standard benchmark datasets. Details
about the setup are provided in the Appendix

4.1 2D Branching Trajectories

Accurately capturing multi-modal distributions is crucial for sequence modeling tasks. To evaluate
the ability of our model to capture multi-modal distributions, we designed a simple 2D trajectory
generation task, where the ground truth trajectories exhibit a Y-shaped bifurcation pattern.

In Appendix Figure] shows the generated trajectories for our approach and diffusion/flow-
matching approaches at both low and high densities (number of steps per trajectory). At the low
density, all three models successfully capture the bimodal distribution, producing trajectories that

KTH
?
JEDI
SSIM

L
\‘
PSNR

(
\ﬁ

—— Neural SDE - e e i
Flow Matching 10°

10" 107
E————
— PFI
10*
10°
g 2

10t 10° 107 10° 107 10 100 107
NFE NFE NFE NFE

|

CLEVRER
SSIM

Figure 2: Inference Efficiency. The plots show the performance of Neural SDE, Flow Matching, and
PFI on the KTH and CLEVRER datasets, measured by the metrics FVD, JEDI, SSIM, and PSNR,
with respect to the number of function evaluations (NFE). Lower FVD and JEDI and higher SSIM
and PSNR indicate better performance. To control the NFEs of PFI and Neural SDE, we use fixed
step sizes. All metrics are estimated by sampling 256 test video sequences (with replacement), and
the evaluation procedure is repeated 4 times. We report the mean performance across the 4 runs,
along with the 95% confidence interval bands.

branch as expected. However, a significant difference occurs at the high density. While Neural SDE
still captures the two branches, DDIM and Rectified Flow fail. We speculate that this degradation in
performance for DDIM and Rectified Flow at higher density is due to covariate-shift.

To verify, we show the contribution of different components within our model in Figure [5] Comparing
with the Flow and Flow+Diffusion plots, we see that the addition of the diffusion term introduces
stochasticity into the trajectories, leading to branching. The Flow+Denoiser+Diffusion plot shows
that incorporating the denoiser effectively mitigates covariate-shift.

4.2 Push-T

To evaluate the effectiveness of our
Neural SDE in imitation learning, we Method LSTM-GMM _IBC BET DP NSDE
employ the Push-T task. Details etho -

about the setup are provided in ap- TAC?T 0.67 090 079 095 092
pendix [E.2]

Results Table [1| shows the perfor-
mance of our Neural SDE compared
to the Diffusion Policy baseline. Our
model achieves competitive perfor-
mance, demonstrating its effective-
ness in policy learning. This is notable given that SDEs often assume some level of smoothness in
the underlying dynamics, while imitation learning often involves non-smooth dynamics. To further
investigate the ability of our model to handle trajectories with sharp transitions, we visualize a
representative push-T trajectory in Figure[6] This figure shows that Neural SDE can effectively model
such non-smooth behavior, demonstrating its robust sequence-modeling capability.

Table 1: Target area coverage (TAC) comparison on
PushT. Baseline results (trained on a Transformer backbone)
are from [Chi et al.| [2023]]. Neural SDE uses an MLP com-
posed of four residual blocks, each containing two linear
layers with a skip connection.

4.3 Video Prediction

To assess our model’s ability to learn complex temporal dynamics, we evaluate its performance on
two video prediction benchmarks: the KTH|Schuldt et al.|[2004] dataset and the CLEVRER [Yi et al.
2019] dataset. Details about the setup are provided in appendix [E.3]

Quantitative Comparison and Inference Efficiency Our Neural SDE model achieves comparable
results to the Flow Matching [Lipman et al.l 2022] and Probabilistic Forecasting with Interpolants
(PFD) [Chen et al.||[2024] baselines across multiple metrics, including FVD |Unterthiner et al.| [2019],
JEDI [Bicsi et al}2023]] , SSIM [Wang et al.| |2004]], and PSNR [Hore and Zioul 2010]], on the KTH
and CLEVRER datasets. One of the most compelling advantages of our method is its inference
efficiency. Figure[2]shows the relationship between the number of function evaluations (NFE) and
performance metrics. Our approach significantly outperforms the baselines in efficiency, requiring
only 2 steps to achieve results comparable to Flow Matching and PFI, which typically need 5 to 20
steps to generate future frames of reasonable quality. This substantial reduction in NFE highlights the

intrinsic efficiency of directly modeling continuous-time dynamics, making it an appealing solution
to sequence modeling tasks of high computational complexity.

Temporal Resolution and Implicit Interpola-
tion Our Neural SDE approach also offers an 0o e

appealing capability of improving temporal reso- - L= (525 %N-as
lution without incurring additional training cost. \

As demonstrated in Appendix |F, Neural SDEs

can generate coherent intermediate frames be-
tween two consecutive frames in the original
dataset. In contrast, flow-based methods like
Flow Matching are limited to generating frames
at the specific temporal resolution defined by ot

the training data, requiring retraining or ad hoc

interpolation techniques to achieve higher frame
rates. This "free" interpolation capability under- 16~ 10° 100 107
scores the power of modeling video as a contin- Model Parameters (Million)

uous process. Figure 3: Scaling law of Neural SDE with U-ViT
backbone on the CLEVRER dataset. The Pear-
son correlation coefficient (—0.9988) indicates
a strong power-law relationship, suggesting that
increasing model size leads to improved perfor-
mance.

Validation NLL
°
5

Scalability Analysis We further investigated the
scalability of our Neural SDE model by ana-
lyzing the relationship between model size and
validation loss. Following the methodology in
[Kaplan et al., 2020, Tian et al.| | 2024]], we varied
the depth and hidden dimensions of the U-ViT
backbone used in our model, resulting in models ranging from 0.13 million to 113.44 million
parameters, see Appendix |H|for detail.

Figure [3]shows the scaling behavior of our model. We observe a clear power-law relationship between
the number of model parameters and the validation loss. This scaling behavior suggests that our
Neural SDE architecture can leverage larger model capacities to achieve better video prediction
performance.

5 Related Works

A large class of related works are bridging-based generative models, including diffusion approaches
[Ho et al., 2020, |Song et al., 2021]], flow-based or flow-matching frameworks [Dinh et al.l 2016,
Ho et al., 2019, Kobyzev et al., [2020| Lipman et al.| 2022, Hu et al., 2024]], stochastic interpolants
[Albergo et al., 2022 (Chen et al.| {2024} |Albergo et al., 2023]], and Schrodinger bridges [De Bortoli
et al, 2021} Liu et al) 2023]. Despite varying details, these methods commonly start from a
simple (often Gaussian) prior distribution and transport it to the target data distribution via learned
transformations. This “from-noise-to-data” perspective has driven state-of-the-art results in static,
unpaired data domains (e.g., image generation). However, two main issues arise when directly
applying such frameworks to continuous time-series: (1) they generally unroll samples all the
way from an uninformative prior, incurring large transport costs for dense or high-dimensional
sequences; and (2) they often treat time as a “pseudo-time” schedule (e.g., noise levels) rather than
the actual chronological axis of the system. As a result, bridging-based methods can be less intuitive
and potentially suboptimal for tasks where the true temporal progression—and possibly irregular
sampling—is essential.

Meanwhile, Neural SDE approaches [Kong et al.,[2020; Li et al.;,|2020a, |[Kidger et al.|[2021a} Liu et al.,
2020, Park et al., 2021} [Djeumou et al., |2023| Tzen and Raginsky, 2019} |Oh et al.,|2024] have emerged
to incorporate Brownian noise into Neural ODEs, targeting time-series forecasting or sporadic data
interpolation. For example, SDE-Net [Kong et al., [2020] and Neural SDE [Li et al.| [2020a] inject
noise into network layers for uncertainty estimation or robustness, while others develop specialized
SDE solvers or variational methods to handle irregular temporal observations [Kidger et al.,|2021al
Liu et al., [2020, |Oh et al.| 2024]]. Although conceptually related, these works often employ complex
training objectives (e.g., forward-backward SDE solves or Bayesian evidence bounds) and focus on
low-dimensional time-series datasets rather than more complex tasks as imitation learning or video
prediction.

By contrast, our Neural SDE framework adopts a direct maximum-likelihood approach for learning
continuous-time dynamics from observed consecutive states. Rather than bridging data from a
simple noise prior, each pair of adjacent observations is treated as a sample from an underlying
SDE, bypassing the overhead of unrolling from isotropic noise. This design both respects real time
evolution—via Flow and diffusion that capture deterministic trends and random fluctuations—and
streamlines conditional modeling, since every transition likelihood is straightforwardly evaluated in
a Markovian manner. Consequently, our method is more natural for embodied and generative Al,
where continuous trajectories must be modeled reliably, yet classical bridging-based methods may be
unnecessarily complex and less aligned with genuine temporal structure.

6 Limitations and Future Work

Our formulation rests on a time invariant Markov assumption: the transition kernel p(z1ya¢|2:)is
time-independent, so past influences are encoded only through the current state. It can miss long-
range non-Markovian dependencies; on KTH, for instance, visually similar clips occasionally trigger
unintended action switches. Moving forward, relaxing this assumption by introducing time-varying
dynamics or slower-evolving latent variables could provide the model with a memory mechanism to
better capture long-horizon dependencies. Second, we model diffusion coefficients with a diagonal
covariance for tractability; this excludes cross-dimensional noise correlations and may under-represent
uncertainty in coupled systems. Exploring richer noise models such as full or low-rank covariance
structures could allow the model to represent inter-variable stochastic coupling without sacrificing
efficiency. Third, the weighting coefficient « in the denoiser network is manually selected per dataset,
adding another hyperparameter. Automating the selection of « either by learning it directly from data
or adapting it dynamically—could eliminate manual tuning and improve generalization across tasks.

7 Conclusions

We have presented a novel Neural SDE framework for continuous-domain sequence modeling,
offering an alternative to existing bridging-based approaches such as diffusion and flow-matching
methods. By learning both drift and diffusion terms via a direct maximum likelihood objective,
our method naturally captures the stochastic and deterministic components of time-evolving data.
Moreover, the Markovian formulation circumvents the need for iterative unrolling from a simple
noise prior, thus reducing transport costs and simplifying inference.

Through experiments on multiple domains, we demonstrated that Neural SDEs (1) faithfully model
multi-modal distributions, (2) handle sharp or irregular dynamics, (3) generate high-quality pre-
dictions with few inference steps, and (4) offer “free” temporal interpolation beyond the training
schedule. Our analysis also highlights key properties such as the scale invariance of the log-flow loss
and the interpretability gained by explicitly modeling diffusion.

Looking ahead, an interesting extension would be to incorporate additional conditional variables
for capturing longer histories, rather than the current approach of augmenting only the latest state.
This could improve performance in tasks requiring extended temporal memory. Another promising
direction involves tackling noisy actions in real-world embodied Al by focusing on state or observation
transitions paired with a learned inverse-dynamics model—alleviating the need for accurately recorded
actions. We hope this work stimulates further study into Neural SDEs as a unified, principled approach
to continuous-domain sequence modeling, bridging the gap between traditional differential equation
frameworks and modern machine learning techniques.

References

Michael S. Albergo, Gurtej Kanwar, and Phiala E. Shanahan. Building normalizing flows with
stochastic interpolants. In International Conference on Machine Learning, pages 213-224. PMLR,
2022.

Michael S Albergo, Mark Goldstein, Nicholas M Boffi, Rajesh Ranganath, and Eric Vanden-Eijnden.
Stochastic interpolants with data-dependent couplings. arXiv preprint arXiv:2310.03725, 2023.

Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
from demonstration. Robotics and Autonomous Systems, 57(5):469-483, 2009.

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
words: A vit backbone for diffusion models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 22669-22679, 2023.

Mustafa Bayram, Tugcem Partal, and Gulsen Orucova Buyukoz. Numerical methods for simulation
of stochastic differential equations. Advances in Difference Equations, 2018:1-10, 2018.

Lucian Bicsi, Bogdan Alexe, Radu Tudor Ionescu, and Marius Leordeanu. Jedi: Joint expert
distillation in a semi-supervised multi-dataset student-teacher scenario for video action recognition.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 953-962,
2023.

Zander W. Blasingame and Chen Liu. Adjointdeis: Efficient gradients for diffusion models. In
A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors,
Advances in Neural Information Processing Systems, volume 37, pages 2449-2483. Curran As-
sociates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/04badd3b048315c8c3alcal7eff723d7-Paper-Conference.pdf,

Tom B. et al. Brown. Language models are few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, pages 1877-1901, 2020.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. In Advances in Neural Information Processing Systems, volume 31, pages 6571-6583,
2018.

Yifan Chen, Mark Goldstein, Mengjian Hua, Michael S Albergo, Nicholas M Boffi, and Eric Vanden-
Eijnden. Probabilistic forecasting with stochastic interpolants and follmer processes. arXiv preprint
arXiv:2403.13724,2024.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The
International Journal of Robotics Research, page 02783649241273668, 2023.

Aram Davtyan, Sepehr Sameni, and Paolo Favaro. Efficient video prediction via sparsely conditioned
flow matching. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 23263-23274, 2023.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrodinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34:17695-17709, 2021.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Franck Djeumou, Cyrus Neary, and Ufuk Topcu. How to learn and generalize from three minutes
of data: Physics-constrained and uncertainty-aware neural stochastic differential equations. 7th
Conference on Robot Learning, 2023.

Crispin Gardiner. Stochastic methods, volume 4. Springer Berlin Heidelberg, 2009.

Francesco Gianfelici. Numerical solutions of stochastic differential equations (kloeden, pk and platen,
e.; 2008)[book reviews]. IEEE Transactions on Neural Networks, 19(11):1990-1991, 2008.

Peter W Glynn. Likelihood ratio gradient estimation for stochastic systems. Communications of the
ACM, 33(10):75-84, 1990.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850,
2013.

Alex Graves and Alex Graves. Long short-term memory. Supervised sequence labelling with
recurrent neural networks, pages 37-45, 2012.

Ernst Harier, Christian Lubich, and Gerhard Wanner. Geometric numerical integration. Structure-
Preserving Algorithms for Ordinary, 2000.

10

https://proceedings.neurips.cc/paper_files/paper/2024/file/04badd3b048315c8c3a0ca17eff723d7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/04badd3b048315c8c3a0ca17eff723d7-Paper-Conference.pdf

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving flow-
based generative models with variational dequantization and architecture design. In International
conference on machine learning, pages 2722-2730. PMLR, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems, volume 33, pages 6840—6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in Neural Information Processing Systems, 35:8633-8646,
2022.

Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th international
conference on pattern recognition, pages 2366-2369. IEEE, 2010.

Xixi Hu, Bo Liu, Xingchao Liu, and Qiang Liu. Adaflow: Imitation learning with variance-adaptive
flow-based policies. arXiv preprint arXiv:2402.04292, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Patrick Kidger, James Foster, Xuechen Chen Li, and Terry Lyons. Efficient and accurate gradients
for neural sdes. Advances in Neural Information Processing Systems, 34:18747-18761, 2021a.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural sdes as infinite-dimensional
gans. In International Conference on Machine Learning, pages 5453—-5463. PMLR, 2021b.

Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduction and

review of current methods. IEEE transactions on pattern analysis and machine intelligence, 43
(11):3964-3979, 2020.

Lingkai Kong, Jimeng Sun, and Chao Zhang. Sde-net: Equipping deep neural networks with
uncertainty estimates. arXiv preprint arXiv:2008.10546, 2020.

Nikita Kornilov, Petr Mokrov, Alexander Gasnikov, and Alexander Korotin. Optimal flow matching:
Learning straight trajectories in just one step. arXiv preprint arXiv:2403.13117, 2024.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. In Advances in Neural Information Processing Systems
(NeurIPS), 2024. Spotlight Presentation.

Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David Duvenaud. Scalable gradients
for stochastic differential equations. In International Conference on Artificial Intelligence and
Statistics, pages 3870-3882. PMLR, 2020a.

Xuechen Li, Ting-Kam Leonard Wong, Ricky TQ Chen, and David Duvenaud. Scalable gradients
for stochastic differential equations. In International Conference on Artificial Intelligence and
Statistics, pages 3870-3882. PMLR, 2020b.

Yaron Lipman, Matthew Tancik, and Jiajun Lu. Flow matching for generative modeling. arXiv
preprint arXiv:2210.02747, 2022.

Guan-Horng Liu, Arash Vahdat, De-An Huang, Evangelos A Theodorou, Weili Nie, and Anima
Anandkumar. 12sb: Image-to-image schrodinger bridge. arXiv preprint arXiv:2302.05872, 2023.

Yingru Liu, Yucheng Xing, Xuewen Yang, Xin Wang, Jing Shi, Di Jin, and Zhaoyue Chen. Learning
continuous-time dynamics by stochastic differential networks. arXiv preprint arXiv:2006.06145,
2020.

YongKyung Oh, Dong-Young Lim, and Sungil Kim. Stable neural stochastic differential equations in
analyzing irregular time series data. International Conference on Learning Representations, 2024.

Bernt Oksendal. Stochastic differential equations: an introduction with applications. Springer
Science & Business Media, 2013.

11

Sung Woo Park, Kyungjae Lee, and Junseok Kwon. Neural markov controlled sde: Stochastic
optimization for continuous-time data. In International Conference on Learning Representations,

2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners, 2019. URL
https://cdn.openai.com/better-language-models/language_models_are_
unsupervised_multitask_learners.pdfl Technical report, OpenAl.

Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing human actions: a local svm
approach. In Proceedings of the 17th International Conference on Pattern Recognition, 2004.
ICPR 2004., volume 3, pages 32-36. IEEE, 2004.

Jean-Jacques E Slotine, Weiping Li, et al. Applied nonlinear control, volume 199. Prentice hall
Englewood Cliffs, NJ, 1991.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems, volume 32, pages 1195-1205, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021.

I Sutskever. Sequence to sequence learning with neural networks. arXiv preprint arXiv:1409.3215,
2014.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. arXiv preprint arXiv:2404.02905, 2024.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. arXiv preprint arXiv:2302.00482, 2023.

Belinda Tzen and Maxim Raginsky. Neural stochastic differential equations: Deep latent gaussian
models in the diffusion limit. arXiv preprint arXiv:1905.09883, 2019.

Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphaé¢l Marinier, Marcin Michalski, and
Sylvain Gelly. Fvd: A new metric for video generation. 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. /EEE transactions on image processing, 13(4):600-612,
2004.

Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and Joshua B
Tenenbaum. Clevrer: Collision events for video representation and reasoning. International
Conference on Learning Representations, 2019.

Quanxin Zhu. Nonlinear systems. MDPI-Multidisciplinary Digital Publishing Institute, 2023.

A Euler-Maruyama Discretization

To work with discrete data, we discretize the continuous SDE using the Euler-Maruyama method
[Bayram et al.| 2018]]. Over a small time interval At, the discretized SDE approximates the evolution
of x; as:

Xepae = X+ £(x) At + g(x¢) © Awy, (16)

where Aw; = w;,a; — Wy is the increment of the Wiener process over At. Since Aw; ~
N (0, At1,), the stochastic term introduces Gaussian noise with covariance proportional to At.

12

https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

B Transition Probability

Under this discretization, the conditional distribution of the next state x; A; given the current state
X, is Gaussian:

p(Xerat | xt) = N (Xepaes iy, Be), 17)
where:
py =x¢ + f(xp)At, 3 = g(xt)g(xt)TAt. (18)
Under the diagonal form of g(x;), the covariance matrix 3J; simplifies to:
3 = diag (U%(xt), o2(Xt), ..., O’?l(XtD At. (19)

This probabilistic description allows us to compute the likelihood of observed data under our model.

C Implications of the Simplified Flow Objective
The simplified flow objective in Eq. introduces two key advantages:

Scale-Invariance: The logarithmic squared loss imparts a scale-invariant property to the objective
function. Specifically, scaling each dimension of the flow function f;(x;) and the observed rate Az

At;
by independent positive constants ¢; adds only a constant term to the loss:
d 2
1 Az,
£f == 1 2 filxe) — =2
* 2 7:21 [Og (C’L <f (Xt) Atl) >]
d 2
1 Az;
> log ¢2 + log (fi(xe) — A”;) . (20)

The additive constants log c? do not affect optimization with respect to model parameters. This
property is particularly beneficial when dealing with multi-modal data where different dimensions
have varying units or scales—as in embodied Al scenarios involving diverse physical quantities. It
eliminates the need for manual weighting or scaling of loss terms across dimensions.

Robustness to Large Errors The logarithmic function grows sub-linearly, making the loss function
more tolerant of large errors compared to a standard squared loss. This aligns with the model’s
treatment of uncertainty via the diffusion term g(x;) . Larger discrepancies between the predicted
flow and observed changes are accommodated as increased stochasticity rather than penalized heavily.
This characteristic enables the model to handle systems with inherent variability more effectively,
without being unduly influenced by outliers or noise.

D Implementation Details

Algorithm Overview Our Neural SDE learning algorithm consists of the following high-level
steps:

Algorithm 1 Neural SDE Learning Algorithm

Require: Dataset of transition tuples D = {xy,, X, ., }1*4
Require: Initialized neural networks: flow f(x;6;), diffusion o?(x;6,), and optional denoiser
d(x;0a)
Ensure: Trained parameters 6, 6,4, 04
1: for each mini-batch transitions in D do

2: Interpolate between observed states to obtain x,

3: Add noise to interpolated states: X, = X, + 7

4: Update flow network parameters ¢, using the flow loss (Eq

5: Update diffusion network parameters 0, using the diffusion loss (Eq

6: (Optional) Update denoiser network parameters 6, using the denoising score matching loss
(Eqf22)

7: end for

13

State Interpolation for Training To augment the training data and improve generalization, we
interpolate between observed discrete states, similar to techniques used in flow matching and diffusion
models. For each pair of consecutive observed states x;, and x;,_ ,, we sample intermediate times
T € [tg, tx+1] uniformly and generate linearly interpolated states x.. This strategy can be interpreted
as using a modified discretization scheme that introduces additional evaluation points without
altering the order of discretization error inherent in the Euler—-Maruyama method. By incorporating
interpolated states, we effectively increase the diversity of training samples and encourage the model
to capture the underlying continuous dynamics more accurately.

Noise Injection Inspired by the stochastic interpolants framework [Albergo et al., |2022], we
add random noise to the interpolated states during training. Specifically, we perturb the states
with Gaussian noise: X, = x, + 1, where n ~ A(0,02I). This can be seen as modifying the
discretization scheme to account for stochastic variability, while maintaining the same order of
discretization error. Noise injection acts as an implicit regularizer, enhancing the model’s robustness
to data perturbations and encouraging the diffusion function g(x;) to account for intrinsic uncertainty
in the data.

Incorporating a Denoiser Network To ensure that the inferred trajectories remain close to high-
probability regions of the data distribution, we integrate a denoiser network into the model. Specifi-
cally, we augment the flow function with an estimate of the score function trained via denoising score
matching, leading to the modified SDE:

dx; = (f(Xt) +aVy, logp(xt)) dt + g(x¢)dwy. 21

Here, we learn a denoiser network d(x;) to approximate Vy, log p(x;) by training on the denoising
score matching (DSM) objective:

Losw(d) = E sopp, [Hd(x+e)—§”2}, 22)
e~N(0,0%1)

where € is an isotropic Gaussian perturbation of variance o2. The denoiser thus learns to predict
the direction pointing back toward the unperturbed sample, which acts as an approximation to the
true score V log p(x). During inference, adding « d(x;) to the Flow term helps guide trajectories
toward regions of higher data density.

Remark on a:: Note that o need not be a fixed constant; it can be a learnable function of the current
state x. In principle, one might choose a/(x;) = 3 g(x:) g(x¢) " (or a scaled variant thereof) to
partially or fully cancel the diffusion in the Fokker—Planck equation, balancing the expansive effect of
diffusion with contraction toward high-density regions. We discuss this balance further in Section(l}

Desingularization of the Flow Loss The logarithmic squared loss in the flow objective (Eq.[14)
has a singularity when the residual approaches zero. This singularity corresponds to a degenerate
Gaussian distribution and can lead to overfitting of the flow network to the observed state changes.
To mitigate this issue and enhance numerical stability, we introduce a positive regularizer € into the

loss function:
1 Az; >
) . _ ¢
Ll 5 igzl log (fz(xt) A7) +4]. (23)

This desingularization constant § can be interpreted as a smooth transition parameter between the
logarithmic square loss (§ = 0) and the standard square loss (§ = +00).

Handling Datasets Without Explicit Time When dealing with datasets that lack explicit time
information, we introduce a uniform, manually selected time step, At¢. In our experiments, we set
At = 1, effectively scaling the observed changes to a suitable range where the machine learning
models can converge more efficiently. This choice of At influences the magnitude of the learned
flow (f) and diffusion (g) terms. Specifically, for a scaling At — AAt, it is straightforward to derive
from Eq. and that the optimal flow and diffusion follow the corresponding scaling f — §
g — %. is scaling, however, does not affect the underlying dynamics captured by the Neural

SDE. As proven in the subsequent section, the model’s inference results are invariant to the manually
chosen At. In this sense, At can be regarded as a virtual time unit which is not crucial for the learned
dynamics. This property allows for training models on data without precise temporal labels.

14

Proof: Temporal Scale Invariance of SDE Numerical Simulation

Consider a data-driven Stochastic Differential Equation (SDE):
dX = f(X)dt + ¢g"(X)dW, (24)

where:

+ X € RP is the state variable

o f9:RP — RP is the parameterized drift term

o g7 : RP — RP*D ig the parameterized diffusion term

* dW is a D-dimensional Wiener process increment
Theorem 1 (Numerical Simulation Temporal Scale Invariance). For any scaling factor A\ > 0, let:
1

~ 1
i=f1 9= —~9 (25)
fa i\ far» 9a \/ng
Then the scaled SDE: _
dX = fO(X)(\dt) + 7 (X)dW (26)
has Euler-Maruyama discretization statistically equivalent to the original SDE.
Proof. Original discretization (At,,)
Xip1 = Xi + fO(Xp) Aty + g7 (Xi)V/ At Zy 27)
Scaled discretization (A\A{Z,, 1)
Xipr = X+ (XD AL + 57 (Xp) VAN Z, (28)
1 1
= Xi+ 3 (XDOA) + g (X0 VAR Z (29)
= X; + fOX0) At + ¢ (X)) VAt Zy (30)
This recovers the original discretization exactly, proving statistical equivalence. ll O

E Additional Experimental Details.

Our experiments were performed using a server on Ubuntu 22.04 LTS and 8 NVIDIA A800 80GB
GPUs. The source code can be accessed at https://github. com/NeuralSDE/NeuralSDE!

E.1 2D Branching Trajectories

Multi-modal Distribution

Data DDIM Rectified Flow Neural SDE

Density=1

Density=10 #——5 —T _

Figure 4: Trajectory generation on a Y-shape Bifurcation (multi-modal Distribution). We
compare our proposed Neural SDE approach with DDIM and Rectified Flow at two different densities
(number of steps per trajectory). At a lower density, all models successfully generate bi-modal
trajectories. At a higher density, DDIM and Rectified Flow fail due to covariate-shift, while Neural
SDE:s still accurately captures both branches.

15

https://github.com/NeuralSDE/NeuralSDE

Ablation Study

Effect of Diffusion

Flow+Denoiser+Diffusion Flow+Denoiser Flow+Diffusion Flow
vighm 1000
FIow+DenowserH
L kot ol Skl kX e~ S
Denoiser
—>
Drift
ow ol i : s -
Difusion Steps —_— @ @0~ o @@

Intensity
Effect of Denoiser

Figure 5: Ablation Study of the Neural SDE Components on the Y-shape Bifurcation Task (high
density). We visualize the learned vector fields with different combinations of the Flow, Diffusion,
and Denoiser terms. The scale of vector fields is scaled for visual clarity. The Flow term alone
captures the general direction but lacks stochasticity. Adding Diffusion introduces stochasticity
but fails to reach the bifurcation point accurately due to covariate-shift. The Denoiser effectively
mitigates covariate-shift. As a result, the full model (Flow+Denoiser+Diffusion) accurately models
the multi-modal distribution.

Experiment Setup

To illustrate our method, we construct a simple synthetic dataset where the trajectory follows a
piecewise constant velocity field: For time ¢ < 4.5, the velocity is defined by a magnitude » and an

angle 0; = 0°:
=] =[] =

After t > 4.5, the trajectories diverge, following one of two paths with angle 6, = 30°:

T = [t - [

We generated datasets with two different densities. For the low density (visualized with density = 1),
we sampled 100 data points. For the high density (density = 10), we sampled 1000 points.We
trained Neural SDE, along with DDIM and Rectified Flow baselines, using the same MLP architecture
to ensure a fair comparison. For each model and density configuration, we generated 10 independent
trajectories.

Network Architecture and Training Details

For the flow, diffusion, and denoiser networks, we employ three identical MLPs. The input state x; is
first transformed into a latent representation via a linear embedding layer. The main body of each
network consists of five pre-activation residual blocks: each block applies LayerNorm and ReLLU
between two linear layers (hidden dimension 128), then adds its input to the block output before the
final nonlinearity. After the residual stack, a final linear layer projects features to the output dimension;
for the diffusion network, this output is then passed through a Tanh nonlinearity—separating rare non-
zero responses from the mass of zeros—linearly rescaled to the target logit interval, and exponentiated
to ensure positive, sharply peaked local values while preserving near-zero predictions elsewhere.

All models are trained for 200 epochs using the Adam optimizer. The initial learning rate is set to
2 x 10~* for the flow and denoiser networks, and 4 x 10~° for the diffusion network. No weight
decay is applied. A ReduceLROnPlateau scheduler is employed for all networks, with a patience of
10 epochs and a decay factor of 0.5. The learning rate is reduced down to a minimum of 1 x 107> for
the flow and denoiser networks, and 1 x 10~ for the diffusion network. During denoiser training,
Gaussian noise with a standard deviation of 0.1 is added to the input.

E.2 Push-T

Non-Smooth Trajectory

16

Start

End

Figure 6: Non-Smooth Trajectory Generation. A Push-T trajectory generated by our Neural SDE,
showcasing its ability to handle drastic changes in direction.

Experiment Setup This benchmark, initially proposed by Florence et al. and subsequently utilized
by Chen et al. [Chi et al., [2023]], requires controlling a circular end-effector to push a T-shaped block
to a target location. The task inherently involves non-smooth trajectories due to intermittent contact
and changes in contact dynamics, providing a challenging scenario for sequence modeling. For our
evaluation, the agent receives as input the pose of the T-shaped block (represented by 1 keypoint and
1 angle) and the end-effector’s location.

To cast imitation learning as sequence generation, we treat the expert demonstrations as sequences
of states and actions. For the Diffusion Policy (DP) baseline [Chi et al.| [2023|], the input consists of
T, = 2 observations and 7T}, noisy actions, predicting a sequence of T,, = 16 actions, from which
T, = 8 actions are used for execution. Our Neural SDE (NSDE) model concatenates the current
observation and action as the state and predicts a sequence of future states. From this predicted
sequence, T, = 4 actions are extracted and executed. We report results from the average of 200
environment initislization.

Network Architecture

In this experiment, we use the same residual MLP architecture for the flow, diffusion, and denoiser
modules as the 2-D case. Unless otherwise specified, we set the number of residual blocks to 4, the
hidden dimension to 1024.

All networks are trained for 500 epochs using the Adam optimizer with a batch size of 512 and an
initial learning rate of 2.5 x 10~*. Distinct Lo regularization values are applied to each network:
2.4 x 1075 for the flow network, 3.5 x 10~% for the denoiser, and 1.7 x 10~* for the diffusion
network. A ReduceLROnPlateau scheduler is used for all models, with a patience of 20 epochs,
a decay factor of 0.5, and a minimum learning rate of 1 x 1075, During the training of denoiser
Gaussian noise with a standard deviation of 0.02 is added to the input.

17

E.3 Video Prediction

Method FVD| JEDi| SSIM? PSNR{
KTH

Neural SDE 37751 £20.57 1.31+£0.08 0.81=£0.15 27.89+8.62
Flow Matching 313.82+17.16 1.14+0.05 0.82+0.14 28.75+6.96

PFI 31249+12.64 1.16£0.06 0.82+0.14 28.49+6.88
RIVER 198.13+£10.76 0.54+0.056 0.88+0.11 31.73+6.42
CLEVRER

Neural SDE 126.73 £11.29 1.06 £0.06 0.95+0.04 34.29 +8.49
Flow Matching 99.63 £3.78 0.78 £0.07 0.95£0.04 35.18 £8.58
PFI 100.31 £5.51 0.84+£0.06 0.95£0.04 34.95+8.53
RIVER 134.89 +£14.93 1.09+0.07 0.92+0.05 30.49+7.71

Table 2: Performance Comparison of Video Prediction on KTH and CLEVRER. Lower FVD and
JEDi are better, while higher SSIM and PSNR are better. All metrics are computed by evaluating on
20 independent test sets, each containing 256 video sequences randomly sampled with replacement.
We report the mean and standard deviation across the 20 evaluations. For PFI, Flow Matching, and
RIVER, we use 100 steps, while for Neural SDE, we use adaptive step sizes with approximately 17
steps on average.

Experiment Setup and Evaluation Protocol

We evaluate our method on two datasets. The KTH dataset encompasses human actions performed
in various real-world settings, while the CLEVRER dataset features complex interactions between
simple 3D shapes governed by physical laws. For both datasets, we condition on the first 4 frames
and generate 36 future frames for KTH and 12 for CLEVRER.

To ensure a fair comparison and address inconsistencies in prior work, we adopt a unified evaluation
protocol as recommended by Unterthiner et al. [Unterthiner et al., 2019], due to the sensitivity of FVD
to sample size. Specifically, for each dataset, we sample 256 test videos, generate one completion
per video, compute the Fréchet Video Distance (FVD) against a resampled set of 256 real videos,
repeat this process 20 times, and report the mean. Prior studies have reported widely varying FVD
scores for the same model on the same dataset—for example, Chen et al. report 41.88 for RIVER on
KTH][Chen et al.}2024], while Davtyan et al. report 180 [Davtyan et al.l 2023]]—despite using the
same codebase and evaluation size. For consistency, we also re-evaluate RIVER using our protocol
to provide a direct point of comparison.

Network Architecture

For the autoencoder, we use the pretrained VQGAN model provided in the repositoryﬂ which encodes
each video frame into a latent space with 4 channels. For the flow, diffusion, and denoiser networks,
we adopt a U-VIiT architecture based on the RIVER codebase. All three models share the same core
design, which we now detail for the vector field regressor with implicit time.

We implement the network as a U-ViT [Bao et al., [2023]], whose full architecture is identical across
datasets. Unlike RIVER, we omit both the explicit time input ¢ , the time distance k£ — 7 and its
associated context frame x ., retaining only the state input x;. Although including ¢, ¥ — 7, and x -
can improve empirical performance, these modifications do not follow directly from a maximum-
likelihood formulation, so we consider them nonfundamental and exclude them.

The state x; is first mapped into the model’s latent space via a linear embedding layer. After this
projection, the core of the network consists of 13 standard ViT blocks. We introduce four “long”
skip connections that bridge the outputs of the first four blocks directly into the inputs of the final
four blocks: at each connection point, we concatenate the feature maps channel-wise and then re-
project them into the ViT hidden size. Inside each block, a LayerNorm precedes both the multi-head

*https://github.com/araachie/river

18

self-attention module [Vaswani et al.l 2017 and the following feed-forward network. Every block
employs a hidden dimension of 768 and uses eight attention heads.

All networks are trained for 300k steps with AdamW, using a learning rate of 1 x 10~%, weight
decay of 5 x 10~%, a 5000-step linear warm-up, and a square-root decay schedule thereafter. During
denoiser training, Gaussian noise (std = 0.1) is added to the input.

Implementation Details

We implemented Flow Matching [Lipman et al.l|2022]] and Probabilistic Forecasting with Interpolants
(PFI) [Chen et al., 2024]E] In the original PFI paper, the sparse conditioning mechanism from RIVER
is retained—yielding performance close to RIVER. To ensure an fair comparison, we remove this
sparse condition in our PFI implementation. In table[2] we provide a detailed comparison. For readers
interested in the effect of sparse conditioning, we also report RIVER’s results under our unified
evaluation protocol; comparing those to Flow Matching highlights the effect of sparse conditioning.

In the following, we describe how each variant modifies the original RIVER inputs:

* RIVER: takes the reference frame x (an interpolation of the frame x; immediately preced-
ing the predicted frame x4 1and Gaussian noise), time s, a context frame z, (sampled from
the past), and the interval &k — 7, with s € [0, 1], as input.

* Flow Matching: removes the context inputs 7 and k — 7, yielding inputs (x5, s).
* NSDE: removes k — 7, x, and s, replacing the discrete reference with a continuous state
interpolation
xr=(k+1-t)zr+ (t—k)zps1, telkk+1].
* PFI: also removes k — 7 and z, but employs a stochastic interpolant
I¥ = ag op+Bs py1 V505 21, s =1—s, By =52, 0y =1-s, 2, ~N(0,14), s€]0,1].

All other architectural choices (U-ViT blocks, training hyperparameters, etc.) remain as described
above.

In order to provide sufficient motion information for each object, all methods concatenate 4 frames to
construct the state X; and generate the next frame autoregressively. If only a single frame is used, we
find that the motion direction of objects cannot be determined, and as a result, the objects tend to
remain stationary.
Xy = [m, Ti—ar, Te—2at, Te—3a¢]-
At each training step, the model sees a pair of consecutive states (Xt, Xy At). Under the Neural
SDE framework, we aim to estimate
% o Xepar— Xy
a At
However, since X; itself encapsulates multiple consecutive frames, a naive method would be to
predict all four finite differences:

1
At ($t+At — Tty Tt — Tt—Aty; Lt—At — Lt—2At, Lt—2At — xt73At>-
Unfortunately, this can encourage a “shortcut” solution: the last three differences are merely trivial
subtractions of already-visible inputs, allowing the network to ignore the first (crucial) term and

simply copy known differences.

To avoid this pitfall and foster better generalization, we only predict the first difference,
Tr+Ar — Tt
At ’
and rely on simple algebraic subtraction for the remaining terms:
(2)

Ty =Ty — Tt—At,

j:(?’)—x —
t = Tt—At — Tt—2At,

Y

&M =

= Tt—2At — Tt—3At-

3 All methods were adapted from the code of RIVER [Davtyan et al.,[2023]. The official video-prediction
code for PFI has not been released, so we re-implemented it from the paper’s descriptions.

19

In other words, our flow network f(-) directly learns only the 559) component. By doing so, the

model cannot simply “memorize” those last three differences; it must genuinely learn to predict
how the next frame (z;4.¢) evolves from the current frame (z;). This design choice improves
generalization, as it enforces non-trivial predictions of future data rather than letting the network
exploit short-term historical redundancy.

Inference-Time Construction (Euler-Maruyama Step).

At inference time, we approximate each SDE step from ¢ to ¢ + At using a single Euler—Maruyama
update:

Tgrar = Ty + Atf(Xt) + \/th(Xt) ¢

where ¢ ~ N(0,I). Once 41 A is computed, the state X; o, is updated by shifting:

Xirar = [$t+At7 Tty Tt—At, xt—2At]-

This procedure respects the continuous-time Markov property, ensuring that newly generated frames
emerge directly from the learned SDE dynamics rather than from extraneous predictions of already-
known differences. In doing so, the model achieves more robust performance for trajectory or video
frame generation.

F High Temporal Resolution Video

Ground
Truth

Flow
Matching

Neural
SDE
S
>
=0 t=1 t=2 t=3

Ground
Truth
Flow
Matching
Neural
SDE
S
>
t=1 t=2 =3 t=4

Figure 7: High Temporal Resolution Video Generation. This figure compares ground truth video
frames with predictions from Flow Matching and our Neural SDE (NSDE) model. The ground truth
frames are subsampled by a factor of 5, in order to reduce the computational cost of training. The top
half of the figure shows a sequence where, in the ground truth, a yellow cylinder and a blue sphere
move towards each other, appear to make contact, then move apart. Flow Matching’s prediction
shows the blue sphere moving towards the yellow cylinder but moving away before contact appears
to occur, indicating a potential skipped frame. NSDE accurately captures the approaching, contacting,
and separating motion of the two objects. The bottom half of the figure shows a sequence where, in
the ground truth, a blue cylinder and a silver sphere move toward each other. Both the Ground Truth
and Flow Matching show the objects moving towards each other and then separating, but missing
the contact frame because of the subsampling. NSDE is able to generate intermediate frames that
display the contact, demonstrating its capacity for generating videos at high temporal resolution
even with relatively sparse training data. For more examples, please check out our project website

https://neuralsde.github.io/.

Obtaining and training on data at high temporal resolution can be expensive. In this section, we
investigate the ability of our Neural SDE model to generate videos at a high temporal resolution,
even when trained on sparse, subsampled data. Figure[7]presents a visual comparison of our model’s
performance against a baseline, demonstrating our model’s capacity to generate intermediate frames.

20

https://neuralsde.github.io/
https://neuralsde.github.io/

G Ablation Study

Method FVD, JEDi| SSIM? PSNR?
KTH
Neural SDE 39575 £ 23.03 1.325+0.102 0.807 +£0.148 27.55+ 8.44
w/o Denoiser 408.91+£23.90 1.1554+0.080 0.828 +£0.137 28.80 £ 7.37
w/o Noise Injection ~ 470.46 &£ 20.65 1.7224£0.090 0.787 £ 0.158 26.30 = 8.98
CLEVRER
Neural SDE 128.07 £ 14.30 1.172+£0.101 0944 £0.043 33.78 +9.19
w/o Denoiser 139.98 £ 12.76 1.437+£0.068 0.936 £ 0.048 32.63 +9.19

w/o Noise Injection 153.72 £20.11 1.334 £0.105 0.936 £0.046 32.82+9.01
Table 3: Ablation Study on Denoiser Network and Noise Injection. Lower FVD and JEDi are
better, while higher SSIM and PSNR are better. All metrics are computed by evaluating on 20
independent test sets, each containing 256 video sequences randomly sampled with replacement. We
report the mean and standard deviation across the 20 evaluations.

In Table [3] we present the performance of the Neural SDE model when removing the denoiser
network and the noise injection, evaluated on two video prediction datasets. The results demonstrate
that both components are crucial for achieving better performance.

H Validation Loss for Scaling Experiment

We evaluated the validation performance on the CLEVRER dataset using the reduced loss functionE]
defined in Equation (31]), with the desingularization constant 6 = 0.001 factored out:

1 L& Azl ’
L= WZZIOg fi(x]) — AtZ +6 | —log(d). (31
j=1i=1

I Guiding Diffusion with a Score Function: Balancing Expansion and
Contraction

In many bridging-based generative frameworks, one introduces a score function term to the drift of
an SDE, effectively “counteracting” some portion of the diffusion. Concretely, consider modifying
our baseline SDE

dX; = f(Xy)dt + G(X;) dW,

to

where V Inp(t, X,) is the score function, and a(X;) can be chosen as a state-dependent matrix (e.g.
a diagonal function of G). In particular, one may set

a(Xy) = 2 G(Xy) G(Xy) "

to fully cancel the diffusion operator in the corresponding Fokker—Planck equation (under idealized
conditions). However, this extreme choice is generally not mandatory; partial or approximate
cancellation can also be beneficial.

Balancing Expansion and Contraction. From the perspective of the probability density p(¢,x),
each step in (32)) comprises:

* Diffusion, via G, which tends to spread or “expand” the distribution.

*See [Kaplan et al.}2020] for detailed explanation.

21

* Score-based drift, via «(x) V In p, which pulls trajectories toward higher-density regions,
acting as an “anti-diffusion” force.

By tuning «(x) appropriately, we can strike a balance between these opposing effects, preventing
the distribution from diverging (if diffusion is too large) or collapsing into a narrow region (if
anti-diffusion is too strong).

Implications for Model Design. This idea underlies many score-based generative models:

* Adaptive Anti-Diffusion: Rather than using a constant c, we can learn a network that predicts
a(x) based on local properties of G(x) and the data distribution.

» Control Over Sampling Dynamics: By partially canceling diffusion, the model can sample
more efficiently—avoiding many small, iterative denoising steps—yet still capture multi-
modal or uncertain behaviors where non-zero stochasticity is essential.

Hence, the controlled interplay between diffusion and a learned score function can yield flexible,

stable, and computationally efficient continuous-time modeling—particularly useful for complex or
high-dimensional tasks in embodied Al and generative pipelines.

22

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction clearly state our main contributions.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In section 6

23

Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

 If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: In Appendix A, B, C, D and Section 3
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: In Appendix D, E and Section 4
Guidelines:

* The answer NA means that the paper does not include experiments.

24

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: In Appendix E, we provide the github link of code
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: In Appendix D, E, F and Section 4
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: In Appendix E and Section 4
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In Appendix E
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

26

9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics and confirm that our
research fully complies with its guidelines.

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: Our work focuses on theoretical and algorithmic contributions to continuous-
time sequence modeling and does not discuss societal impact in the paper. We acknowledge
that even foundational research can have downstream applications with societal implications,
such as synthetic media generation or decision-making systems. We plan to include a
discussion of these aspects in future versions.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

27

https://neurips.cc/public/EthicsGuidelines

12.

13.

Answer: [NA]

Justification: Our paper does not release any model or dataset that poses a risk for mis-
use. The work focuses on theoretical and empirical aspects of continuous-time sequence
modeling.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in this paper are publicly available and cited with their original
sources. The terms of use and licenses are respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

28

paperswithcode.com/datasets

14.

15.

16.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [TODO]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [TODO]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: [TODO]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

29

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Backgrounds
	Diffusion Models and Their SDE Formulation
	Discrete Diffusion Models
	Continuous SDE Formulation
	Reverse SDE and Score Function

	Flow Matching and Stochastic Interpolants
	Interpolative Approach
	Simulation-Free Training Objective

	Neural Stochastic Differential Equations
	Connections and Motivations

	Our Approach
	Negative Log-Likelihood Derivation
	Training Strategy: Decoupled Optimization of Flow and Diffusion
	Implications of the Simplified Flow Objective
	Implementation Details

	Experiments
	2D Branching Trajectories
	Push-T
	Video Prediction

	Related Works
	Limitations and Future Work
	Conclusions
	Euler–Maruyama Discretization
	Transition Probability
	Implications of the Simplified Flow Objective
	Implementation Details
	Additional Experimental Details.
	2D Branching Trajectories
	Push-T
	Video Prediction

	High Temporal Resolution Video
	Ablation Study
	Validation Loss for Scaling Experiment
	Guiding Diffusion with a Score Function: Balancing Expansion and Contraction

