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Abstract

Deep actor-critic algorithms have reached a level where they influence everyday life. They
are a driving force behind continual improvement of large language models through user
feedback. However, their deployment in physical systems is not yet widely adopted, mainly
because no validation scheme fully quantifies their risk of malfunction. We demonstrate that
it is possible to develop tight risk certificates for deep actor-critic algorithms that predict
generalization performance from validation-time observations. Our key insight centers on the
effectiveness of minimal evaluation data. A small feasible set of evaluation roll-outs collected
from a pretrained policy suffices to produce accurate risk certificates when combined with a
simple adaptation of PAC-Bayes theory. Specifically, we adopt a recently introduced recursive
PAC-Bayes approach, which splits validation data into portions and recursively builds PAC-
Bayes bounds on the excess loss of each portion’s predictor, using the predictor from the
previous portion as a data-informed prior. Our empirical results across multiple locomotion
tasks, actor-critic methods, and policy expertise levels demonstrate risk certificates tight
enough to be considered for practical use.

1 Introduction

Reinforcement learning (RL) is transforming emerging AI technologies. Large language models incorporate
human feedback via RL, thereby continually improving accuracy (Christiano et al., 2017; Ziegler et al., 2019;
DeepSeek-AI et al., 2025). Generative AI is increasingly integrated into agentic workflows to automate
complex decision-making tasks. RL has shown great promise in controlling physical robotic systems. Recent
deep actor-critic algorithms learned to make a legged robot walk after only 20 minutes of outdoor training in
an online mode (Kostrikov et al., 2023). Model-based extensions of actor-critic pipelines can also achieve
sample-efficient visual-control tasks in diverse settings (Hafner et al., 2025; Zhang et al., 2023). Despite
promising results observed in experimental conditions, RL is used far less than classical approaches in physical
robot control. This opportunity has largely been missed because deep RL algorithms are overly sensitive to
initial conditions and can change behavior drastically during training. Embodied intelligent systems pose
a high risk of causing harm when generalization performance differs significantly from observed validation
performance. Predictable generalization performance is even more critical when these systems update their
behavior based on interactions with humans.

There has been an effort to use learning-theoretic approaches to train high-capacity predictors with risk
certificates, i.e., bounds that guarantee a predictor’s generalization performance. Typically, this performance
is estimated from observed validation results, which may be misleading. Probably Approximately Correct
Bayesian (PAC-Bayes) theory (McAllester, 1999; Alquier et al., 2024) provides risk certificates for stochastic
predictors relative to a prior distribution over the hypothesis space. In this framework, the computationally
prohibitive capacity term is reduced to a Kullback-Leibler divergence between the posterior and the prior,
enabling the incorporation of domain knowledge into the analysis. Since stochastic policies are often considered,
relying on PAC-Bayes is a natural choice.

PAC-Bayes is the first and remains the most promising method for providing meaningful risk certificates for
deep neural networks (Dziugaite & Roy, 2017; Pérez-Ortiz et al., 2021; Lotfi et al., 2022). Further studies have
improved the tightness (i.e., precision) of these certificates through the following techniques: (i) pretraining
probabilistic neural networks on held-out data and using them as data-informed priors (Ambroladze et al.,
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Figure 1: The four-step procedure to generate tight risk certificates for deep actor-critic algorithms.

2006; Dziugaite et al., 2021); (ii) using pretrained networks as first-step predictors and developing PAC-Bayes
guarantees on the residual of their predictions, termed the excess loss; and (iii) recursively repeating the first
two steps on multiple data splits, a recent method known as Recursive PAC-Bayes (Wu et al., 2024). The
scope of these developments has thus far been limited to simple classification tasks with feedforward neural
networks. Their application to deep actor–critic algorithms remains open, primarily because mainstream
PAC-Bayes bounds assume i.i.d. datasets, whereas RL assumes a controlled Markov chain.

We present a simple recipe for providing risk certificates for deep, model-free actor–critic architectures. We
find that, contrary to expectations, the three modern PAC-Bayesian learning techniques mentioned above can
successfully handle the high variance of Monte Carlo samples collected by running a pretrained policy network
for multiple episodes in evaluation mode. Our approach proposes self-certified training of probabilistic neural
networks on different splits of an i.i.d. dataset containing return realizations of the policy, computed by
first-visit Monte Carlo and post-processed through a simple thinning approach. We recursively build a
PAC-Bayes bound on the excess losses of these networks, deriving a new adaptation of Wu et al. (2024).
Figure 1 illustrates our risk-certificate generation workflow. We evaluate the approach for several classical
actor–critic agents, PPO (Schulman et al., 2017), SAC (Haarnoja et al., 2018a), and REDQ (Chen et al.,
2021), across three benchmark suites. Our results indicate that the risk certificates become tighter as the
recursion depth increases. The final bounds are sufficiently tight for practical use. Furthermore, the tightness
of the risk certificates is proportional to the policy’s expertise.

2 Background

2.1 The state of the art of model-free deep actor-critic learning

Consider a set of states S an agent may be in and an action space A from which the agent can choose actions
to interact with its environment. Denote by ∆(S) and ∆(A) the sets of probability distributions defined
on S and A, respectively. We define a Markov Decision Process (MDP) (Puterman, 2014) as the tuple
M = ⟨S,A, r, P, P0, γ⟩, where r : S ×A → [0, R] is a bounded reward function, P : S ×A× S → [0, 1] is the
state-transition kernel conditioned on a state-action pair; specifically P (s′|s, a) is the probability distribution of
the next state s′ ∈ S given the current state-action pair (s, a) ∈ S×A. We denote the initial-state distribution
by P0 ∈ ∆(S), the discount factor by γ ∈ (0, 1), and let π : S ×A → [0, 1] be a policy. The goal of RL is
to learn a policy that maximizes the expected discounted return, π∗ := arg maxπ∈ΠEτπ

[
∑∞

t=0 γtr(st, at)].
The expectation is taken with respect to the trajectory τπ := (s0, a0, s1, a1, s2, a2, . . .) of states and actions
generated when a policy π chosen from a feasible set Π is executed. We refer to π∗ as the optimal policy.
The exact Bellman operator for a policy π is defined as

TπQ(s, a) := r(s, a) + γEs′∼P (·|s,a) [Q(s′, π(s′))] (1)

for some function Q : S × A → R. The unique fixed point of this operator is the true action-value
function Qπ, which maps a state-action pair (s, a) to the expected discounted sum of rewards the policy
π collects when executed from (s, a). In other words, the equality TπQ(s, a) = Q(s, a) holds if and only if
Q(s, a) = Qπ(s, a),∀(s, a). Any other Q incurs an error (TπQ(s, a) − Q(s, a))2, called the Bellman error.
Common deep actor-critic methods approximate the true action-value function Qπ by one-step Temporal
Difference (TD) learning that minimizes L(Q, π) := Es∼Pπ

[(TπQ(s, a)−Q(s, a))2] with respect to Q, given
a data set D and Pπ(s′ ∈ A)=Es∼P0

[∑
t>0 P (st ∈ A|s0 = s, π(s))

]
which is defined as the state-visitation

distribution of policy π for some event A that belongs to the σ-algebra of the transition probability distribution.
Because the transition probabilities are unknown, the expectation term in (1) cannot be computed. Instead,
the observed transitions are used to approximate it with a single-sample Monte Carlo estimate, yielding the
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training objective below:

L̃(Q) := Es∼Pπ

[
Es′∼P (·|s,π(s))

[
(r(s, a) + γQ(s′, π(s′))−Q(s, a))2]].

A deep actor-critic algorithm fits a neural-network function approximator Q, referred to as the critic, to a set
of observed tuples (s, a, s′) stored in a replay buffer D by minimizing an empirical estimate of the stochastic
loss: L̂D(Q) := 1/|D|

∑
(s,a,s′)∈D(T̃πQ(s, a, s′)−Q(s, a))2. The critic is subsequently used to train a policy

network, or actor, π′ ← arg maxπ Es∼Pπ
[Q(s, π(s))]. It is common practice to adopt the Maximum-Entropy

Reinforcement Learning approach (Haarnoja et al., 2018a;b) to balance exploration and exploitation, ensuring
effective training. The approach supplements the reward function r(s, a) with a policy-entropy term H[π(·|s)],
scaled by a hyperparameter α ≥ 0, tuned jointly with the actor and critic, i.e., rMaxEnt ≜ r(s, a) + αH[π(·|s)].

Performing off-policy TD learning with deep neural nets is notoriously unstable which is often attributed
to the deadly triad (Sutton & Barto, 2018). The main source of instability is the accumulation of errors
from approximating TπQ by its Monte Carlo estimate. Strategies to improve stability include maintaining
Polyak-updated target networks (Lillicrap et al., 2016) and learning twin critics while using the minimum
of their target-network outputs in Bellman target calculation (Fujimoto et al., 2018). Empirically, training
an ensemble of critic networks in a maximum-entropy setup largely mitigates these stability issues. We
adopt PPO (Schulman et al., 2017), SAC (Haarnoja et al., 2018a), and REDQ (Chen et al., 2021), three
popular actor-critic methods for model-free continuous control, as our representative approaches. This choice
is pragmatic rather than restrictive allowing us to trade the computational cost of a broader exploration of
algorithms for a deeper, more comprehensive empirical evaluation of a single one.

2.2 Developing risk certificates with PAC-Bayes bounds

PAC-Bayes (McAllester, 1999; Alquier et al., 2024) offers a powerful framework for understanding and
controlling the generalization performance of learning algorithms by integrating prior beliefs with information
obtained from data. PAC-Bayesian learning employs modern machine learning techniques to model ρ with
complex function approximators and fit them to data. It has been successfully applied to both image
classification (Dziugaite & Roy, 2017; Wu et al., 2024) and regression tasks (Reeb et al., 2018). Its application
to reinforcement learning has thus far been limited to the design of critic training losses, without rigorous
quantification of the tightness of the performance guarantees (Tasdighi et al., 2024; 2025).

Notation. Let H : X → Y be a set of feasible hypotheses, and let ℓ : Y × Y → [0, 1] be a bounded loss
function.1 Further, let L(h) = E(x,y)∼PD

[ℓ(h(x), y)] denote the expected error, where PD is a distribution
on X × Y. The empirical loss is L̂(h) = 1

N

∑N
i=1 ℓ(h(xi), yi) for a data set D = {(xn, yn) : n ∈ {1, . . . , N}}

of size N with (xn, yn) ∼ PD. P denotes the set of distributions on H. For two distributions ρ, ρ0
on H, the Kullback–Leibler (KL) divergence is defined as KL (ρ ∥ ρ0) ≜ Eh∼ρ [log ρ(h)− log ρ0(h)]. We
use kl (p ∥ q) ≜ p log(p/q) + (1− p) log((1− p)/(1− q)) to denote the KL divergence between two Bernoulli
distributions. We define the upper inverse of kl (· ∥ ·) as kl−1,+(p̂, ε) ≜ max{p : p ∈ [0, 1] | kl (p̂ ∥ p) ≤ ε}
and the lower one as kl−1,−(p̂, ε) ≜ min{p : p ∈ [0, 1] | kl (p̂ ∥ p) ≤ ε}. PAC-Bayesian analysis (McAllester,
1999; Shawe-Taylor & Williamson, 1997) develops bounds on the expected loss Eh∼ρ [L(h)] under a posterior
distribution ρ with respect to a prior distribution ρ0 that hold with high probability. That is, they provide
risk certificates for the generalization error. For brevity, we use Eρ [·] = Eh∼ρ [·] throughout this paper. In
the context of PAC-Bayes, the terms posterior and prior refer to distributions dependent on and independent
of the validation data, respectively. They are not to be interpreted in a Bayesian sense as being linked by a
likelihood.2 The choice of bounds that yields the tightest risk certificates depends on the specific use case;
see, e.g., Alquier et al. (2024) for a recent introduction and a survey of various PAC-Bayesian bounds. Here,
we rely on bounds derived from the kl divergence, as they are tighter than alternatives when no additional
information about the data distribution is available, while noting that the same arguments apply to any other
PAC-Bayesian bound.

1Our discussion generalizes directly to any bounded loss within an interval [a, b] with a, b ∈ R.
2See Germain et al. (2016) for results linking PAC-Bayes and Bayesian inference.
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2.2.1 PAC-Bayes-split-kl bound

Wu & Seldin (2022) introduce a PAC-Bayes bound for random variables that take values in intervals [a, b] by
splitting them into components that individually satisfy the constraints of a kl-inequality (see Lemma A.2).

Define ℓ̃ : Y × Y → [a, b], where a, b ∈ R. For µ ∈ [a, b], define ℓ̃+ = max{0, ℓ̃− µ} and ℓ̃− = max{0, µ− ℓ̃}.
L̃+(h) = E(x,y)∼PD

[ℓ̃+(h(x), y)] and ˆ̃L+(h) = 1
N

∑N
n=1 ℓ̃+(h(xn), yn) are the expected and empirical losses.

L− and ˆ̃L− are defined analogously. We cite the following bound.
Theorem 2.1 (PAC-Bayes-Split-kl inequality (Wu & Seldin, 2022)). Let ℓ̃ and the remaining loss terms be
defined as above. Then, for any ρ0 on H independent of D, any µ ∈ [a, b], and any δ ∈ (0, 1),

∃ρ ∈ P : Eρ[L̃(h)] ≥ µ + (b− µ)kl−1,+
(
Eρ[ ˆ̃L+(h)]

b− µ
,

KL(ρ || ρ0) + ln(4
√

N/δ)
N

)
− (µ− a)kl−1,−

(
Eρ[ ˆ̃L−(h)]

µ− a
,

KL(ρ || ρ0) + ln(4
√

N/δ)
N

)
,

with probability at most δ.

Proof. The theorem follows by applying Lemma A.2 to the decomposition
Eρ[L̃(h)] = µ + Eρ[L̃+(h)]− Eρ[L̃−(h)].

2.2.2 Recursive PAC-Bayes bound

Data-informed prior. The tightness of PAC-Bayesian bounds is governed by the KL divergence between
the posterior ρ and the prior ρ0. The better the prior guess, the tighter the bound. Because the prior must
be independent of the observed data, a common choice is to select a prior as uniform as possible over the
hypothesis space. To improve upon this naive choice, Ambroladze et al. (2006) proposed splitting the observed
data into two disjoint subsets, S0 and S1, i.e., D = S0 ∪ S1, using S0 to infer a data-informed prior and S1 to
subsequently evaluate the bound. This balances the benefit of a better prior with the cost of having fewer
observations to evaluate the bound.

Excess loss. The excess loss Lexc(h) with respect to a reference hypothesis h∗ ∈ H is defined as
Lexc(h) = L(h) − L(h∗). The excess-loss concept allows the expected loss to be decomposed as
Eρ [L(h)] = Eρ [L(h)− L(h∗)] + L(h∗). Using S0 to construct both the prior ρ0 and the reference h∗,
Mhammedi et al. (2019) showed that, assuming L(h∗) is close to L(h), the excess loss has lower vari-
ance and thus yields a more efficient bound, while a bound on L(h∗) is independent of KL (ρ ∥ ρ0) and can
be obtained using standard generalization guarantees.

Recursive PAC-Bayes. Wu et al. (2024) generalized the excess loss further by introducing a scaling factor
κ < 1 to maintain a diminishing effect of recursions: Eρ [L(h)] = Eρ [L(h)− κEρ0 [L(h∗)]] + κEρ0 [L(h∗)].
Here, the first term reflects the excess loss with respect to a scaled version of the expected reference hypothesis
loss under the prior ρ0. The second term, in turn, is an expected loss similar to the one on the left-hand
side of the equation. Instead of adhering to a binary split D = S0 ∪ S1 such that S0 ∩ S1 = ∅, they proposed
extending this decomposition recursively by partitioning D into T disjoint subsets, D =

⋃T
t=1 St, and they

define S≤t =
⋃t

s=1 Ss and S≥t =
⋃T

s=t Ss. Their recursion is given by

Eρt
[L(h)] = Eρt

[
L(h)− κtEρt−1 [L(h)]

]
+ κtEρt−1 [L(h)] , (2)

for t ≥ 2, and κ1, . . . , κT are scaling factors. The distributions ρ1, . . . , ρT ∈ H form a sequence such that ρt

depends solely on S≤t.

While Wu et al. (2024) formulated their final recursive bound directly for a zero-one loss and PAC-Bayes
split-kl bounds (Wu & Seldin, 2022), we present their result first in a general, loss-agnostic form before
constructing a specific bound in the next section.
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Theorem 2.2. (Recursive PAC-Bayes bound.) Let D = S1 ∪ · · · ∪ ST be a disjoint decomposition of the
set of observations D. Let S≤t and S≥t be as defined above, N = |D|, and Nt = |S≥t|. Let κ1, . . . , κT be a
sequence of scaling factors, where κt is allowed to depend on S≤t−1. Let Pt be the set of distributions on H
that are allowed to depend on S≤t, and ρt ∈ Pt. Then, for any δ ∈ (0, 1),

P
(
∃t ∈ [T ], ρt ∈ Pt such thatEρt

[L(h)] ≥ Bt(ρt)
)
≤ δ,

where Bt(ρt) is a generic PAC-Bayesian bound on Eρt
[L(h)] defined recursively as follows.

Bt(ρt) = Et(ρt, κt) + κtBt−1(ρ∗
t−1),

where B1(ρ1) is a PAC-Bayes bound on Eρ1 [L(h)] with an uninformed prior, and Et(ρt, κt) is a PAC-Bayes
bound on the excess loss Eρt

[
L(h)− κtEρ∗

t−1
[L(h′)]

]
.

Proof. Because B1(ρ1) and Et(ρt, κt) are PAC-Bayes bounds by assumption, we have

P (∃ρ1 ∈ P1 : Eρ1 [L(h)] ≥ B1(ρ1)) ≤ δ/T,

and P
(
∃ρt ∈ Pt : Eρt

[
L(h)− κtEρ∗

t−1
[L(h′)]

]
≥ Et(ρt, κt)

)
≤ δ/T for t ∈ {2, . . . , T}.

The claim follows by expected loss decomposition and the recursion.

3 Recursive PAC-Bayesian risk certificates for reinforcement learning

The general recursive PAC-Bayes framework introduced in Section 2.2.2 provides a generic method for
certifying the expected loss of stochastic predictors. To apply this framework to reinforcement learning,
hypotheses, data, and losses are interpreted in terms of policies, evaluation roll-outs, and return prediction.
Obtaining risk certificates involves four steps, following the conceptual structure in Figure 1.

(i) Agent training. An actor–critic algorithm, e.g., REDQ (Chen et al., 2021), is trained until convergence
or until a computational budget is exhausted. The resulting policy π is then fixed. The objective is not to
optimize π further, but to certify its performance.

(ii) Data collection. Execute the frozen policy for Nep episodes in evaluation mode (no exploration noise,
no parameter updates). For each episode, store the trajectory τ and use it to compute discounted returns
Gt =

∑∞
i=t γi−tri for each visited state st. The discounted return is used as the prediction target rather than

an undiscounted sum of rewards. Short-term risks tend to be more relevant for decisions, as longer-term
risks depend on an increasing set of external, often unaccountable, factors. Discounted rewards also serve as
a proxy for lifelong learning and policy evaluation, as they generalize to non-episodic data. Although the
original policy might be trained on discounted returns in step (i), a valid bound can also be constructed by
computing undiscounted rewards from data collected in (ii). As consecutive samples are highly correlated, a
simple thinning strategy, described in the appendix, is applied to better approximate the i.i.d. assumption
required by PAC-Bayes and to form a data set D = {(sn, Gn)}N

n=1. Although a PAC-Bayesian bound tightens
as the number of data points increases, it is observed that even a relatively small number of evaluation
roll-outs is sufficient to obtain tight results.

(iii) Fitting posteriors via recursive training. Partition the data into T disjoint subsets
D = S1 ∪ · · · ∪ ST . Train a sequence of T Bayesian neural networks (BNNs), where the t-th network is
trained on S≤t by minimizing the PAC-Bayes bound Et(ρt, κt) from Theorem 2.2 to infer the posterior ρt

over the BNN parameters. ρt−1 serves as a data-informed prior for t > 1, and an uninformative prior is used
for ρ0. κt = 0.5 is used in this work.

(iv) Risk certificate construction. Apply Theorem 2.2 to construct recursive bounds as follows.
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A bound for B1. As L̂(h) is bounded in [0, B], its expectation is rescaled, and

B1(ρ1) = Bkl−1,+
(
Eρ[L̂(h)]

B
,

KL (ρ1 ∥ ρ∗
0) + ln(2T

√
N/δ)

N

)
,

is chosen, where ρ∗
0 is a data-independent prior distribution on H. Given the result in Theorem A.1, this is a

PAC-Bayesian bound on Eρ1 [L(h)], i.e.,

P
(
∃ρ1 ∈ P1 : Eρ1 [L(h)] ≥ B1(ρ1)

)
≤ δ/T.

A bound for Et. Let Lexc
t (h) = L(h)− κtEρt−1 [L(h′)] ∈ [−κtB, B]. For µ ∈ [−κtB, B], define

Lexc+
t (h) = max{0, Lexc

t (h)− µ} and Lexc−
t (h) = max{0, µ− Lexc

t (h)}, with L̂exc+
t (h) and L̂exc−

t (h) as their
empirical analogues. Set

Et(ρt) = µ + (B − µ)kl−1,+(Eρt
[L̂exc+

t (h)]
/

(B − µ), Ψt

)
− (µ + κtB)kl−1,−(Eρt

[L̂exc−
t (h)]

/
(µ + κtB), Ψt

)
,

where Ψt = KL
(
ρt ∥ ρ∗

t−1
)

+ ln(4T
√

Nt/δ)/Nt, and ρ∗
t−1 is a distribution on H informed by S≤t−1. Via

Theorem 2.1, this is a PAC-Bayesian bound on Eρt [Lexc
t ] that holds with probability at least 1− δ/T , i.e.,

P
(
∃ρt ∈ Pt such that Eρt

[Lexc
t (h)] ≥ Et(ρt)

)
≤ δ/T.

Applying this construction recursively with T steps therefore yields a recursive PAC-Bayesian bound that
holds with probability at least 1− δ.

4 EXPERIMENTS

The aim of our experiments is to address the following questions. Q1 : Can the test-time return of a policy
be predicted with high precision across a range of environments and policies with varying levels of expertise?
Q2 : What is the influence of the structure of a PAC-Bayesian bound? Q3 : How does the validation set size
affect the tightness of the risk certificate guarantee?

4.1 Experiment design

We evaluate our certificate-generation pipeline at an error tolerance of δ = 0.025 on three popular representative
actor-critic algorithms: PPO (Schulman et al., 2017), a classical and still widely used approach due to its
robustness and simplicity despite comparatively low sample efficiency; SAC (Haarnoja et al., 2018a), a strong
off-policy baseline that combines stability with high sample efficiency through entropy-regularized actor-critic
learning; and REDQ (Chen et al., 2021), a more recent method that exemplifies advances in sample efficiency
by leveraging randomized ensembles of Q-functions. Training and hyperparameter details for each method
are provided in the appendix.

Environments. We rely on environments from three benchmarks. All three algorithms are evaluated in
the main paper on three MuJoCo (Todorov et al., 2012) environments: Half-Cheetah, Humanoid, and Hopper,
due to their widespread use in the community and the representative value of the platforms for real-world use
cases. The appendix includes REDQ results on two additional MuJoCo environments and three environments
each from DM-Control (Tassa et al., 2018) another popular locomotion benchmark and MetaWorld (Yu et al.,
2020), which focuses on robotic manipulation.

Data generation. We train each agent for up to 300 000 steps, after which the policy is frozen. The
learned policy is then run in evaluation mode for another 200 episodes, the first half of which are used to fit
the bound, and the remainder serve as a test dataset to evaluate generalization performance. The discounted
return on the test set is predicted by fitting a PAC-Bayes bound using the validation set.
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Policy instances. We define a policy instance as the output of a single policy-training round. In our
experiments, we consider five policy instances, each obtained by training with a different initial seed. Due to
the stochastic nature of initialization and training, each instance follows a unique trajectory. We construct
individual bounds for each instance and account for randomness in the risk-certificate generation process by
repeating the procedure five times for every policy instance. To model policies of varying quality, we evaluate
three training stages of each policy, each reflecting a different level of expertise: Starter, a policy trained for
100 000 steps; Intermediate, trained for 200 000 steps; and Expert, trained for 300 000 steps, after which no
further performance improvements were observed.

Baselines. We design our baselines with the following goals: (i) how well a PAC-Bayes bound predicts
test-time performance, (ii) whether informative priors yield tighter guarantees, (iii) whether the bound
tightens when the recursive scheme is used, and (iv) whether increasing recursion depth improves tightness.
As this is the first work to evaluate generalization bounds tailored to continuous control with deep actor-critics,
there are no existing baselines for comparison. We consider two non-recursive baselines: NonRec-NonInf, a
PAC-Bayes-kl inverse bound (see Theorem A.1) with a non-informative prior that is independent of the training
data, and NonRec-Inf, a data-informed variant in which the dataset is split equally into D = Dprior ∪ Dbound,
allowing the prior to depend on Dprior and the empirical loss to be computed on Dbound. We evaluate our
approach at two recursion depths, T = 2 (Rec T=2 ) and T = 6 (Rec T=6 ), to assess the effect of recursion.

Performance metrics. We evaluate the bounds using three metrics: Normalized bound value: To ensure
comparability across environments with different reward scales, squared discounted return prediction errors
are normalized by the maximum return observed during training. A value close to zero implies the bound
closely follows the actual returns. Tightness: The difference between the predicted bound and the actual test
error; smaller values indicate more accurate estimates of the discounted return prediction error. Correlation:
A linear correlation is expected between the risk certificates and the observed test errors across policy
instances.

We evaluate and compare the final posterior loss ρ on full training data and held-out test data, alongside the
corresponding PAC-Bayes bounds across all methods and environments. To mitigate overfitting common in
continuous-control settings, where consecutive samples are highly correlated, we apply a thinning strategy
that reduces redundancy while preserving data diversity. Full details for each experiment are provided in
Section D. We provide an implementation at anonymous.

4.2 Results

Comprehensive results for every environment, policy instance, and repetition are presented in Section E. The
main text focuses on aggregated results.

Q1: Can the test-time return of a policy be predicted with high precision? Figure 2 presents
scatter plots of all PAC-Bayesian bounds discussed in 4.1, alongside policy instances and repetitions, against
their respective test set errors across environments and levels of policy expertise for REDQ on five MuJoCo
environments. For every bound, the correlation between the bound and the test error increases with policy
expertise. Within a fixed expertise level, the correlation also improves as the bound becomes more advanced,
a trend already evident for noisier starter policies. For example, in the brittle Hopper environment, which
exhibits the weakest correlations overall, moving from NonRec-NonInf to Rec with T = 6 raises the Pearson
correlation from 0.4 to 0.65. At higher expertise levels, the recursive bounds achieve correlations above 0.9
in almost all environments. Overall, there is a strong correlation between bounds and test errors. There is
also increasing scatter as the expertise level decreases. This is expected, as the effects of an unconverged
policy on environment dynamics are less predictable. The bounds therefore provide a reliable prediction of
the test-time return, thereby answering Q1. See the appendix for the corresponding correlation plots for the
other agent and benchmark combinations.

Answer: Bounds and test errors are strongly correlated.
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Figure 2: Correlation between bounds and test errors. PAC-Bayes bounds (x-axis) are plotted axis against true
test errors (y-axis) for REDQ across five MuJoCo environments, policy instances, and repetitions to visualize
correlation. We observe a high correlation, especially as policies improve and bounds become recursive.
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Figure 4: Effect of validation data size on tightness. Bounds for REDQ on Humanoid with an expert policy.

Q2: What is the influence of a PAC-Bayes bound’s structure? In Figure 3 we plot the normalized
bounds aggregated over policy instances and repetitions for each of the three models on three MuJoCo
environments. Data-informed priors usually improve bounds across environments for all policy levels and
actor-critic methods. Introducing recursion further tightens bounds, with deeper recursion generally yielding
the tightest results.

Answer: Bound tightness improves with increasing recursive depth.

Q3: How does the validation set size influence the tightness of the risk certificate guarantee?
Collecting validation data from physical robots is often costly. Hence, the sample efficiency of a risk-certificate
generation pipeline is of particular interest. Figure 4 presents the tightness scores of the bounds across
varying validation set sizes for REDQ in the Humanoid environment, while the test set size is kept fixed.
As expected, larger validation sets yield tighter bounds, with the effect most pronounced for the proposed
recursive bounds. A recursion with depth T = 6 achieves tightness comparable to that of the nonrecursive
bounds while requiring only half as many data points. These findings demonstrate that recursive bounds
substantially improve sample efficiency, addressing Q3.

Answer: Recursion improves sample efficiency.

Local reparameterization improves tightness. To train our model, we use a Bayesian neural network
(BNN) that represents uncertainty by learning distributions over parameters. To our knowledge, prior work on
PAC-Bayesian risk certification with BNNs has relied exclusively on Blundell et al. (2015)’s Bayes by backprop
approach (see, e.g., Pérez-Ortiz et al., 2021). We show in Figure 5 that using the local reparameterization trick
(LRT) (Kingma et al., 2015) to compute the empirical risk term in the bound calculation substantially improves
the tightness of all four evaluated bounds. This effect holds even for the already saturated expert-level policy
in the challenging Humanoid environment. Further details can be found in Section E.

5 Limitations, future work, and broader impact

We restricted our empirical investigation to three actor-critic algorithms on three benchmark suites. This
was a deliberate choice to facilitate interpretation and maintain feasibility. We do not expect meaningful
additional information from extending the same pipeline to additional RL agents and benchmarks. The
next major step would be to implement our pipeline on a physical platform under controlled conditions.
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Figure 5: Local reparameterization trick (LRT). Influence for REDQ on Humanoid with an expert policy.

The applicability of our findings to more advanced control settings, such as sparse-reward scenarios that
require goal-conditioned or hierarchical RL algorithm design, is subject to further investigation. We leave
this enterprise to future work, as deep learning-based solutions for such setups have not yet reached sufficient
maturity to move beyond simulations. Another significant advance would be to proceed from our current
self-certified policy evaluation approach to self-certified policy optimization in an online setting. This would
necessitate training the policy via a PAC-Bayes bound. However, RL is a feedback-loop system in which
ensuring convergence, numerical stability, and optimal trade-offs between exploration and exploitation are
major determinants of stable training. While promising preliminary results exist (Tasdighi et al., 2024; 2025),
the problem is fundamental and requires a dedicated research program—an effort that goes beyond the scope
of a single paper.

Our work contributes to the trustworthy development of agentic AI technologies, thereby promoting their
adoption by society. Public concerns about such technologies will be even more pronounced when they
are deployed on physical systems in direct contact with humans. Thanks to reliable risk certificates, such
safety-critical technologies are likely to receive wider adoption. This, in turn, will further accelerate their
development by expanding the pool of practice and observations.
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A Theory

A.1 PAC-Bayes-kl bound

Assuming the definitions in Section 2.2, we cite the following bound and kl-inequality. See the respective
references for further details.
Theorem A.1 (PAC-Bayes-kl bound (Seeger, 2002; Maurer, 2004)). For any probability distribution ρ0 ∈ P
that is independent of D and any δ ∈ (0, 1), we have

P
(
∃ρ ∈ P : kl

(
Eρ[L̂(h)]∥Eρ [L(h)]

)
≥
(
KL (ρ ∥ ρ0) + ln(2

√
N/δ)

)
/N
)
≤ δ.

Proof. See, e.g., Maurer (2004) for a proof of the bound.

Lemma A.1 (kl-inequality (Langford, 2005; Foong et al., 2021; 2022)). Let Z1, . . . , ZN be i.i.d. random
variables taking values in an interval [0, 1], and let E [Zn] = p for all n. Let their empirical mean be
p̂ = 1

N

∑N
n=1 Zn. Then, for any δ ∈ (0, 1), we have

P
(
kl(p̂∥p) ≥ ln(1/δ)/N

)
≤ δ,

the inverse of which is given by
P
(
p ≥ kl−1,+ (p̂, ln(1/δ)/N)

)
≤ δ,

and
P
(
p ≤ kl−1,− (p̂, ln(1/δ)/N)

)
≤ δ.

Proof. See Langford (2005), Corollary 3.7, for a proof of the bound.

A.2 Split-kl inequality

Let Z ∈ [a, b], with a, b ∈ R, be a random variable, and let p = E [Z]. For µ ∈ [a, b], define
Z+ = max{0, Z − µ} and Z− = max{0, µ−Z} so that Z = µ + Z+−Z−. Let p+ = E [Z+] and p− = E [Z−]
be their respective expectations, and let p̂+ = 1

N

∑N
n=1 Z+

n and p̂− = 1
N

∑N
n=1 Z−

n be their empirical means
for an i.i.d. sample Z1, . . . , ZN .
Lemma A.2 (Split-kl inequality (Wu & Seldin, 2022)). For any µ ∈ [a, b] and δ ∈ (0, 1),

P

(
p ≤ µ + (b− µ)kl−1,+

(
p̂+

b− µ
,

ln(2/δ)
N

)
− (µ− a)kl−1,−

( p̂−

µ− a
,

ln(2/δ)
N

))
≥ 1− δ.

Proof. The lemma follows by applying Lemma A.1 to each of the kl terms and a union bound.

B Related work

Theoretical analysis of reinforcement learning. Exploration in finite-horizon Markov decision processes
(MDPs) has been addressed in several prior works. UCBVI (Azar et al., 2017) offers a simple approach based
on optimism under uncertainty, combining computational efficiency with conceptual clarity for exploration
in finite-horizon MDPs. BayesUCBVI (Tiapkin et al., 2022b) builds on this by introducing a tabular,
stage-dependent, episodic reinforcement learning algorithm that uses a quantile of the posterior distribution
of Q-values for optimism, eliminating the need for explicit bonus terms. However, it remains uncertain
whether the PSRL (Osband et al., 2013) approach can achieve optimal problem-independent regret bounds.
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UCRL2 (Auer et al., 2008), an extension of UCRL (Auer & Ortner, 2006), employs upper confidence bounds
to guide policy selection, encouraging exploration of uncertain state–action pairs and reducing regret over
time, resulting in a near-optimal regret bound that grows logarithmically with the number of episodes.
Agrawal & Jia (2017) propose a PSRL-inspired algorithm for multi-armed bandits, using posterior sampling
to incorporate uncertainty and to form an optimistic policy, achieving near-optimal regret bounds. It remains
unclear whether it can achieve the problem-independent lower bound. OPSRL (Tiapkin et al., 2022a) extends
PSRL by using multiple posterior samples instead of a single one, providing high-probability regret-bound
guarantees and ensuring strong performance.

PAC-Bayes analysis. PAC-Bayesian analysis provides a frequentist framework for integrating prior
knowledge into learning algorithms (Shawe-Taylor & Williamson, 1997; McAllester, 1998; Alquier et al., 2024).
It leverages priors that sustain high confidence during learning (McAllester, 1999; Seeger, 2002; Catoni, 2007;
Thiemann et al., 2017; Rivasplata et al., 2019; Pérez-Ortiz et al., 2021), but the resulting confidence intervals
rely on data excluded from prior formation, making prior data allocation a critical challenge. Strategies for
crafting effective PAC-Bayesian priors address this limitation (Ambroladze et al., 2006; Dziugaite et al., 2021;
Wu et al., 2024).

PAC-Bayesian risk certificate. In recent years, PAC-Bayesian methods have also been used to compress
neural nets (Lotfi et al., 2022) and to provide risk certificates for both uninformed (Dziugaite & Roy, 2017)
and data-informed priors (Dziugaite & Roy, 2018; Dziugaite et al., 2021; Pérez-Ortiz et al., 2021). Reeb et al.
(2018) introduce PAC-Bayesian bounds for Gaussian process-based regression, and an increasing body of
literature now provides risk certificates for deep generative models, such as VAEs (Mbacke et al., 2023b),
GANs (Mbacke et al., 2023a), and contrastive learning frameworks (Nozawa et al., 2020). Hsu et al. (2022) use
PAC-Bayes to provide realistic safety guarantees, focusing primarily on worst-case risk and out-of-distribution
safety.

PAC-Bayesian RL. PAC analysis in RL has led to algorithms that provide formal guarantees on sample
complexity and performance. Strehl et al. (2006) introduced Delayed Q-Learning, an efficient model-free RL
method. Strehl et al. (2009) established PAC bounds for both model-free and model-based methods in finite
MDPs, highlighting sample efficiency. For complex observation spaces, Krishnamurthy et al. (2016) proposed
Least-Squares Value Elimination, extending contextual bandit frameworks to sequential settings with PAC
guarantees. In model-based RL, Dann et al. (2017) introduced the Uniform-PAC framework for finite-state
episodic MDPs, achieving optimal sample complexity and regret bounds. Jiang (2018) improved model-based
efficiency with a polynomial-complexity algorithm. PAC-Bayesian frameworks have also been applied in RL
for policy evaluation and stability. Fard et al. (2011) introduced a PAC-Bayesian method for policy evaluation
with probabilistic guarantees, which was subsequently extended to soft actor–critic approaches (Tasdighi
et al., 2024) and deep exploration with sparse rewards (Tasdighi et al., 2025). These methods are designed
exclusively for policy optimization, using PAC-Bayesian principles as algorithmic guidelines rather than for
reliable risk certificate generation, which is our objective. Both methods employ approximately calculated
PAC-Bayesian bounds without quantifying the resulting approximation errors. While such approximations
are acceptable in policy search contexts, where learning performance is the main concern, they preclude
rigorous analytical statements about test-time performance and therefore cannot support risk certification.
Despite these advancements, the tightness, that is, the quality, of risk certificates remained an open question.

C Algorithms

In this section, two pseudocodes are presented. Algorithm 1 illustrates the overall pipeline of the method,
capturing the main components from policy training to PAC-Bayes bound calculation.

Algorithm 2 presents the Recursive PAC-Bayes framework in detail, outlining the step-by-step calculation
of the recursive bound across different splits of the training data, ultimately yielding the final bound. This
framework supports multiple levels of recursion (e.g., two or six levels in our experiments). Details on the
size of each data split and the selection strategy are provided in Section D.
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Algorithm 1 Predicting Policy Return via PAC-Bayes Bound Fitting
1: Input: Environment, actor-critic algorithm, BNN architecture, PAC-Bayes bounds
2: Output: Predicted test-time discounted returns and PAC-Bayes generalization bounds

Policy Training
3: Train policy π using the REDQ actor-critic algorithm.
4: Save policy parameters after specified training steps.

Data Collection
5: Disable further learning.
6: Execute the saved policy for a few roll-outs and collect data.
7: Split the data into training and test sets.

Bayesian Model Training
8: Initialize a Bayesian neural network (BNN).
9: Train the Bayesian model on the training data using a PAC-Bayes-inspired loss as the training objective.

Bound Construction and Evaluation
10: for each bound type do
11: Specify prior and posterior distributions.
12: Compute the PAC-Bayes bound using model-predicted outputs.
13: end for
14: Return: Model predictions on the test data and bound evaluations on the training data.

D Experimental details

In this section, we present the details and design choices for our environments, dataset, model training, and
the replication of our experimental results. We consider five environments from version ‘v4’ of the MuJoCo
suite (Todorov et al., 2012) (ant, half-cheetah, hopper, walker2d, humanoid), three environments from DM
Control (Tassa et al., 2018) (ball-in-cup, reacher, walker), and three from Meta-World (Yu et al., 2020)
(drawer-open, window-open, reach). All implementations in this work utilize the PyTorch framework (Paszke
et al., 2019), version ‘2.5.1’, and the OpenAI Gym environment (Brockman, 2016), version ‘0.29.0’.

D.1 Specific hyperparameters

For recursive PAC-Bayes, we use κt = 1/2 for all t and study the impact of recursion for data split over
different portions. In our experiments, we set δ = 0.025, following Wu et al. (2024)’s implementation.3

In addition to the primary confidence parameter δ, which controls the overall probability with which the
PAC-Bayes bound holds, we introduce an auxiliary confidence parameter δ′, following Wu et al. (2024). This
parameter accounts for the approximation error introduced when estimating the expected empirical loss
and empirical excess loss via sampling (Pérez-Ortiz et al., 2021), since these quantities lack closed-form
expressions in our setting. Specifically, δ′ ensures that these sample-based estimates are accurate with high
probability. We set δ′ = 0.01, consistent with the choice in the referenced work, and apply a union bound
to combine the confidence levels. As a result, the overall bound holds with probability at least 1− δ − δ′,
covering both the generalization guarantee and the estimation accuracy. This consideration is applied only
during the evaluation phase for estimating the bounds, not during the optimization process.

D.2 Constructing validation and test datasets

Our methodology comprises two phases: training and evaluation. To collect the transition data required for
constructing validation and test datasets, we train an actor-critic agent (SAC, PPO, or REDQ).

3https://github.com/pyijiezhang/rpb
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Algorithm 2 Recursive PAC-Bayes bound loss computation
1: Input: Training dataset split D = S1 ∪ · · · ∪ ST with total size N = |D|, where Nt = |S≥t|; scaling

factors κ1, . . . , κT ; posterior parameters {ρ1, . . . , ρT }; and fixed confidence levels δ, δ′.
2: Calculate the loss for the first portion: L̂(h) ∈ [0, B]

Eρ1 [L̂+(h)] ≤ kl−1,+
(

1
Nt

∑(
max

{
0, L̂(h)− µ

})
,

ln(T/δ′)
Nt

)
.

3: Specify the first portion of the recursive bound:

B1(ρ1) = Bkl−1,+
(
Eρ1 [L̂+(h)]

B
,

KL (ρ1 ∥ ρ∗
0) + ln(2T

√
N/δ)

N

)
.

4: for each portion from t = 2 to the end do
5: Calculate the excess loss:

Lexc
t (h) = L(h)− κtEρt−1 [L(h′)] ∈ [−κtB, B].

6: Then,

Eρt [L̂exc+
t (h)] ≤ kl−1,+

(
1

Nt

∑(
max

{
0, L̂exc

t (h)− µ
})

,
ln(2T/δ′)

Nt

)
,

Eρt
[L̂exc−

t (h)] ≤ kl−1,−
(

1
Nt

∑(
max

{
0, µ− L̂exc

t (h)
})

,
ln(2T/δ′)

Nt

)
.

7: Compute Et(ρt):

Et(ρt) = µ + (B − µ)kl−1,+
(
Eρt

[L̂exc+
t (h)]

B − µ
,

KL
(
ρt ∥ ρ∗

t−1
)

+ ln(4T
√

Nt/δ)
Nt

)
− (µ + κtB)kl−1,−

(
Eρt

[L̂exc−
t (h)]

µ + κtB
,

KL
(
ρt ∥ ρ∗

t−1
)

+ ln(4T
√

Nt/δ)
Nt

)
.

8: Update the bound iteratively:

Bt(ρt) = Et(ρt, κt) + κtBt−1(ρ∗
t−1).

9: t = t + 1
10: end for
11: With probability at least 1− δ,

Eρt [L(h)] ≤ Bt(ρt).
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Training is conducted for 300 000 environment steps, after which the resulting policy is saved as the expert
policy. We also snapshot the policy at 100 000 and 200 000 steps, referring to them as the starter and
intermediate policies, respectively, to enable analysis across varying levels of agent proficiency.

In the evaluation phase, learning is disabled, and the agent is executed with exploration turned off and no
policy updates performed. Using the frozen policy (at each of the three proficiency levels), we collect 100
episodes of state transitions and rewards to construct a validation dataset for fitting the PAC-Bayes bound.
An additional 100 episodes are collected under the same conditions to form the test dataset. This test data is
used to compute a proxy for generalization performance by evaluating the predicted discounted returns of the
frozen policy on previously unseen trajectories.

D.3 Neural network architectures

REDQ agent training. We use an ensemble of ten critic networks and a single actor network. Each neural
network consists of three layers, with layer normalization after each layer to regularize the network, following
the approach of Ball et al. (2023). Additionally, we use the concatenated ReLU activation function (Shang
et al., 2016), which combines the positive and negative parts of two ReLU activations and concatenates them.
This leads to richer feature representations and enables the learning of more complex patterns.

During training, we employ 10 000 warm-up steps without policy updates, during which the agent only
interacts with the environment; during the evaluation phase, we do not use any warm-up steps. We use a
replay ratio (RR) of one in both the training and evaluation phases, which provides training stability and
sample efficiency. We employ the Huber loss in the critic to measure the discrepancy between predicted
Q-values and target Q-values, as it consistently provides performance advantages across various baselines.
Furthermore, the temperature parameter α is automatically tuned during training to regulate policy entropy
and balance exploration and exploitation, following the method introduced by Haarnoja et al. (2018b).

All these architectural and training choices were empirically found to improve the model’s overall performance.
Table 1 summarizes the hyperparameters and network configurations used in our experiments.

PPO agent training. Proximal Policy Optimization is an on-policy algorithm that trains a single actor
network together with a single critic network representing the state-value function. The policy is updated
using a clipped surrogate objective to prevent overly large updates, which improves stability but makes PPO
less sample-efficient than off-policy methods. In our experiments, we followed the standard PPO baseline and
evaluated performance on three widely used MuJoCo environments of varying difficulty and dimensionality:
HalfCheetah, Humanoid, and Hopper. Since PPO typically requires more training to converge, we extended
the training horizon to 1,000,000; 3,000,000; and 5,000,000 steps to obtain starter, intermediate, and expert
policies, respectively. Risk bounds were computed in the same manner as in the REDQ experiments.

SAC agent training. Soft Actor-Critic is an off-policy algorithm that combines a single actor network
with two Q-function critic networks, following the standard practice to mitigate overestimation bias. SAC is
generally more sample-efficient than on-policy methods and stabilizes learning through target networks and
soft updates. We implemented SAC in its canonical form and considered three training levels: 50,000 steps
(starter), 100,000 steps (intermediate), and 1,000,000 steps (expert), using the same environments as above.
The corresponding policies were then evaluated under our PAC-Bayesian risk bounds, consistent with the
REDQ setting.

For both methods, the actor and critic networks follow the same neural network architecture described in
Section D.3 for REDQ.

Bayesian model training. We aim to predict the test-time discounted return of a policy π by fitting a
PAC-Bayes generalization bound using training data. To this end, we use a Bayesian neural network (BNN),
which allows us to capture model uncertainty and compute valid generalization guarantees.

The BNN is a feedforward neural network with two hidden layers and one output layer. Each layer is
implemented as a variational Bayesian linear layer, where weights are modeled as independent Gaussian
distributions with learnable means and variances. ReLU activations are used between layers to introduce
nonlinearity.
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During training, we apply the local reparameterization trick (Kingma et al., 2015), which samples the layer
outputs rather than the weights. This reduces the variance of the gradient estimates, improves training
stability, and reduces computational cost.

We train the BNN using a PAC-Bayes-inspired objective based on McAllester’s bound (McAllester, 1998),
which balances empirical loss and a KL divergence term. The KL term acts as a regularizer that penalizes
deviation from a prior distribution, effectively controlling model complexity. This enables us to compute
reliable generalization bounds and estimate the expected test-time return of the policy. Architectural details
are summarized in Table 1.

D.4 Further details on the bounds

We evaluate two non-recursive baselines and two recursive variants with different depths.

For the uninformed baseline (NonRec-NonInf), we use a PAC-Bayes-kl inverse bound in which the prior is
initialized without dependence on the training data. The posterior is learned using the entire training dataset,
and the bound is evaluated on this full dataset. For the informed case (NonRec-Inf), we split the training
dataset in half: the first half is used to learn a data-informed prior, and the second to learn the posterior,
with both steps minimizing a PAC-Bayes bound. The bound is evaluated using the same subset used to learn
the posterior.

In the recursive settings, we apply these splits iteratively. For example, with recursion depth two, we divide
the data into two 50–50 splits. For deeper recursion with six steps, we split the training set into increasingly
smaller partitions based on the number of episodes [3, 4, 6, 12, 25, 50]. This approach allocates fewer data
points for prior learning early on while reserving more for later refinement, enabling progressively more
targeted fine-tuning.

Like Wu et al. (2024), we apply a relaxation of the PAC-Bayes-kl bound in our experiments by optimizing the
McAllester bound (McAllester, 1998), while the bound evaluation is conducted using the split kl-based bound.
We always utilize a set of factorized Gaussian distributions to represent the priors and posteriors associated
with every trainable parameter within the classifiers. These distributions take the form π = N (w, σI), where
w ∈ Rd is the mean vector and σ denotes the scalar variance parameter. Initially, an uninformed prior
π0 = N (w0, σ0I) is employed, which does not depend on the training data. Here, the mean parameter is
randomly initialized using Kaiming uniform initialization, while the log-variance parameter is initialized to a
fixed value of (-4.6). We train all models using the hyperparameters provided in Table 1, specified with the
header ’PAC-Bayes bound fitting’.

Mitigate sample correlation. To reduce overfitting caused by high correlation among consecutive
samples—where states are highly similar and their associated target values nearly identical—a thinning
strategy is employed. This strategy selectively samples fewer data points to weaken temporal dependence.
Specifically, in environments such as Ant and Half-Cheetah, which tend to produce longer episodes, every
fifth sample is retained. In contrast, for environments with shorter episodes, such as Humanoid, Hopper, and
Walker2d, every third sample is retained. This approach reduces redundancy while ensuring that the dataset
still contains sufficient information for training.

Effect of the local reparameterization trick We incorporate the Local Reparameterization Trick (LRT)
into our variational Bayesian neural network architecture, where, to our knowledge, it has not been used in
previous Bayesian approaches to reinforcement learning. Unlike standard sampling methods that draw one set
of weights per layer and propagate forward, LRT enables sampling at the level of individual pre-activations,
which significantly reduces the variance of gradient estimates during training. This, in turn, leads to more
stable optimization and an improved posterior. To evaluate its impact, we compare the tightness of all our
baselines on the Humanoid environment for two versions of our model, with and without LRT. As shown in
Figure 5, applying LRT consistently yields tighter bounds. Results are aggregated over five policy instances
and five repetitions each, considering only the expert-level policy. In both cases, the results show a clear
improvement. These expert-policy improvements suggest gains at other policy levels as well.
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Table 1: Hyperparameters used in our experiments. This includes both hyperparameters applied to the
Actor-Critic setup in agent training and Bayesian model training for PAC-Bayes bound fitting.

Agent training:
Evaluation episodes (evaluation mode) 1
Evaluation frequency (evaluation mode) 1
Evaluation episodes (training mode) -
Evaluation frequency (training mode) -
Discount factor (γ) 0.99
n-step returns 1 step
Replay ratio 1
Number of critic networks 10
Replay buffer size 100,000
Maximum timesteps∗ 300,000
Number of hidden layers for all networks 2
Number of hidden units per layer 256
Nonlinearity CReLU
Mini-batch size 256
Network regularization method Layer normalization (LN) (Ball et al., 2023)
Actor/critic optimizer Adam (Kingma & Ba, 2015)
Optimizer learning rates (ηϕ, ηθ) 3e-4
Polyak averaging parameter (τ) 5e-3
PAC-Bayes bound fitting:
Number of hidden layers 2
Number of hidden units per layer 256
Nonlinearity ReLU
Network regularization method Layer normalization (LN) (Ball et al., 2023)
BNN optimizer Adam (Kingma & Ba, 2015)
Optimizer learning rate 2e-2
Gradient clipping type max-norm
Gradient clipping threshold 1
Learning rate scheduler StepLR
Learning rate decay factor 0.5
Scheduler step size (epochs) 10
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Figure 6: Bound values. Normalized bound values for REDQ on two MuJoCo environments and all policy
quality levels. Results are aggregated across all seeds and repetitions.
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Figure 7: Bound values. Normalized bound values for REDQ on three DM Control environments and all
policy quality levels. Results are aggregated across all seeds and repetitions.

D.5 Computational requirements

Experiments were conducted on a single computer equipped with a GeForce RTX 4090 GPU, an Intel(R)
Core(TM) i7-14700K CPU (5.6 GHz), and 96 GB of memory. Training five policy instances for REDQ
to convergence in each environment requires approximately 30 minutes per instance, totaling 150 minutes.
Collecting validation and test episodes requires around 20 minutes per policy level, totaling 60 minutes.
Model training and PAC-Bayesian bound computation across five policy instances, five repetitions, four
baselines, and three policies take four minutes per run, totaling approximately 1200 minutes per environment.

E Further results

E.1 Additional REDQ Bounds

We evaluate REDQ on two additional MuJoCo environments (Figure 6), as well as on two further benchmarks-
DM Control (Figure 7) and Meta-World (Figure 8)-and observe consistent qualitative results.
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Figure 8: Bound values. Normalized bound values for REDQ on three Meta-world environments and all
policy quality levels. Results are aggregated across all seeds and repetitions.
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Figure 9: Correlation between bounds and test errors. PAC-Bayes bounds (x-axis) are plotted axis against true
test errors (y-axis) for PPO across three MuJoCo environments, policy instances, and repetitions to visualize
correlation. We observe a high correlation, especially as policies improve and bounds become recursive.

E.2 Correlation plots for PPO and SAC

The corresponding plots to Figure 2 for PPO and SAC are provided in Figure 9 and Figure 10, respectively,
which exhibit a similar correlation structure.

E.3 Tightness of the bounds

Figures 11 to 15 show the tightness of all baselines, measured as the difference between the normalized bound
score and the normalized test error. Values are aggregated across policy instances and repetitions for each
of the five environments, with smaller values indicating tighter bounds. Box plots display the distribution
of these differences: the box covers the interquartile range (25th to 75th percentile), the median is marked
inside, and whiskers extend to points within 1.5 times the interquartile range, illustrating typical variability.
Outliers beyond this range are omitted for clarity. This effectively captures both the central tendency and
the dispersion of the data across policies and methods. The plot indicates that data-informed priors generally
yield tighter bounds, although this effect is less pronounced at the Starter level. Moreover, applying recursion
and increasing its depth further tighten the bounds. The improvements due to recursion are more noticeable
in challenging environments and less so in simpler tasks.

E.4 Validation data size

Figure 16 examines the Pearson correlation between normalized bound scores and normalized test errors
across policy levels and varying validation data sizes for the Humanoid environment—our most challenging
setting due to its high-dimensional state and action spaces. Each heatmap displays a point estimate of these
correlations for all baselines across different validation set sizes for a specific policy, aggregated over policy
instances and repetitions. Although correlations are generally weaker and more variable under the Starter
policy, they tend to improve with stronger policies and larger validation sets for intermediate- and expert-level
policies. Recursive bounds, especially those with greater recursion depth, consistently show stronger positive
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Figure 10: Correlation between bounds and test errors. PAC-Bayes bounds (x-axis) are plotted axis against
true test errors (y-axis) for SAC across three MuJoCo environments, policy instances, and repetitions to
visualize correlation. We observe a high correlation, especially as policies improve and bounds become
recursive.
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Figure 11: (Bound - test) values. Tightness of the bound over all baselines and policy levels considered for
REDQ across five MuJoCo environments. The plots aggregated over policy instances and their repetitions.
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repetitions.
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Figure 13: (Bound - test) values. Tightness of the bound over all baselines and policy levels considered
for REDQ across three Meta-world environments. The plots aggregated over policy instances and their
repetitions.
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Figure 14: (Bound - test) values. Tightness of the bound over all baselines and policy levels considered for
PPO across three MuJoCo environments. The plots aggregated over policy instances and their repetitions.
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Figure 15: (Bound - test) values. Tightness of the bound over all baselines and policy levels considered for
SAC across three MuJoCo environments. The plots aggregated over policy instances and their repetitions.
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correlations. These findings emphasize that both policy strength and validation data size affect the bound’s
ability to predict generalization, with recursion providing the most reliable alignment between bounds and
test errors.
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Table 2: Normalized train error, test error, and bound for REDQ on MuJoCo’s walker2d

(a) Starter policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.150 0.142 0.292 0.103 0.103 0.173 0.182 0.186 0.252 0.158 0.161 0.254 0.097 0.097 0.221
NonRec-Inf 0.283 0.272 0.416 0.104 0.104 0.208 0.183 0.187 0.286 0.236 0.240 0.341 0.096 0.095 0.194
Rec T=2 0.360 0.347 0.475 0.105 0.105 0.210 0.189 0.193 0.292 0.269 0.273 0.369 0.158 0.156 0.245
Rec T=6 0.063 0.059 0.117 0.031 0.030 0.101 0.045 0.047 0.105 0.059 0.061 0.114 0.060 0.060 0.108

(b) Intermediate policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.046 0.046 0.083 0.056 0.056 0.086 0.046 0.046 0.083 0.054 0.054 0.095 0.071 0.069 0.134
NonRec-Inf 0.034 0.034 0.046 0.042 0.042 0.057 0.043 0.043 0.059 0.038 0.038 0.052 0.073 0.072 0.098
Rec T=2 0.037 0.037 0.048 0.032 0.032 0.042 0.033 0.033 0.044 0.042 0.042 0.056 0.063 0.061 0.084
Rec T=6 0.031 0.031 0.040 0.031 0.031 0.042 0.040 0.041 0.057 0.039 0.039 0.052 0.054 0.053 0.072

(c) Expert policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.088 0.086 0.181 0.039 0.040 0.073 0.048 0.048 0.090 0.051 0.051 0.092 0.071 0.071 0.119
NonRec-Inf 0.090 0.091 0.130 0.045 0.047 0.060 0.039 0.039 0.052 0.056 0.056 0.075 0.046 0.046 0.061
Rec T=2 0.084 0.084 0.114 0.039 0.040 0.049 0.040 0.040 0.051 0.043 0.042 0.054 0.064 0.064 0.079
Rec T=6 0.076 0.072 0.106 0.034 0.035 0.043 0.040 0.040 0.050 0.041 0.041 0.053 0.043 0.043 0.053

Table 3: Normalized train error, test error, and bound for REDQ on MuJoCo’s ant

(a) Starter policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.074 0.070 0.143 0.061 0.067 0.147 0.112 0.085 0.177 0.070 0.068 0.124 0.195 0.156 0.281
NonRec-Inf 0.051 0.043 0.080 0.052 0.057 0.073 0.137 0.106 0.216 0.066 0.064 0.094 0.268 0.217 0.309
Rec T=2 0.060 0.053 0.085 0.056 0.060 0.079 0.198 0.160 0.256 0.072 0.071 0.101 0.283 0.230 0.320
Rec T=6 0.049 0.040 0.068 0.048 0.055 0.065 0.078 0.061 0.115 0.063 0.061 0.088 0.103 0.086 0.139

(b) Intermediate policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.057 0.055 0.129 0.070 0.089 0.149 0.046 0.056 0.116 0.046 0.049 0.113 0.055 0.065 0.123
NonRec-Inf 0.053 0.051 0.066 0.069 0.086 0.107 0.051 0.059 0.069 0.036 0.042 0.052 0.038 0.047 0.054
Rec T=2 0.044 0.042 0.053 0.065 0.081 0.098 0.043 0.050 0.056 0.038 0.043 0.055 0.034 0.044 0.047
Rec T=6 0.039 0.038 0.052 0.046 0.049 0.064 0.039 0.041 0.052 0.035 0.040 0.051 0.041 0.043 0.054

(c) Expert policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.039 0.040 0.101 0.053 0.057 0.117 0.042 0.050 0.106 0.058 0.056 0.135 0.052 0.052 0.116
NonRec-Inf 0.041 0.043 0.057 0.046 0.050 0.059 0.039 0.047 0.049 0.053 0.050 0.081 0.037 0.036 0.052
Rec T=2 0.035 0.037 0.050 0.041 0.045 0.049 0.039 0.047 0.049 0.069 0.068 0.098 0.038 0.037 0.049
Rec T=6 0.040 0.040 0.053 0.043 0.044 0.057 0.044 0.043 0.057 0.040 0.038 0.059 0.040 0.040 0.052

E.5 Raw numbers

We include the raw individual values averaged over five repetitions in all scenarios.
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Table 4: Normalized train error, test error, and bound for REDQ on MuJoCo’s cheetah

(a) Starter policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.071 0.072 0.176 0.058 0.058 0.135 0.062 0.062 0.128 0.066 0.065 0.153 0.060 0.061 0.148
NonRec-Inf 0.043 0.043 0.066 0.039 0.039 0.063 0.037 0.037 0.059 0.047 0.047 0.070 0.042 0.042 0.066
Rec T=2 0.042 0.042 0.066 0.044 0.044 0.066 0.037 0.037 0.057 0.051 0.050 0.076 0.039 0.039 0.060
Rec T=6 0.056 0.057 0.081 0.037 0.038 0.059 0.032 0.032 0.053 0.050 0.049 0.074 0.041 0.041 0.062

(b) Intermediate policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.066 0.066 0.149 0.068 0.067 0.152 0.033 0.033 0.093 0.044 0.044 0.117 0.062 0.062 0.148
NonRec-Inf 0.042 0.043 0.060 0.045 0.045 0.063 0.030 0.030 0.044 0.040 0.040 0.058 0.043 0.043 0.063
Rec T=2 0.047 0.047 0.064 0.041 0.041 0.057 0.029 0.029 0.042 0.039 0.039 0.057 0.046 0.046 0.064
Rec T=6 0.046 0.046 0.064 0.046 0.046 0.064 0.032 0.032 0.046 0.039 0.039 0.054 0.046 0.046 0.062

(c) Expert policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.045 0.045 0.107 0.050 0.052 0.124 0.029 0.029 0.070 0.063 0.058 0.136 0.061 0.065 0.140
NonRec-Inf 0.033 0.033 0.046 0.043 0.046 0.063 0.018 0.018 0.027 0.041 0.036 0.050 0.045 0.049 0.061
Rec T=2 0.040 0.040 0.055 0.043 0.046 0.060 0.018 0.018 0.026 0.044 0.038 0.051 0.041 0.045 0.054
Rec T=6 0.037 0.037 0.048 0.045 0.046 0.059 0.021 0.021 0.030 0.042 0.042 0.055 0.046 0.047 0.059

Table 5: Normalized train error, test error, and bound for REDQ on MuJoCo’s humanoid

(a) Starter policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.159 0.157 0.554 0.125 0.129 0.291 0.052 0.053 0.954 0.171 0.169 0.405 0.176 0.171 0.502
NonRec-Inf 0.143 0.142 0.543 0.108 0.108 0.279 0.044 0.043 0.530 0.160 0.161 0.393 0.167 0.161 0.382
Rec T=2 0.147 0.144 0.365 0.125 0.126 0.292 0.051 0.053 0.428 0.166 0.166 0.332 0.172 0.170 0.350
Rec T=6 0.115 0.112 0.289 0.092 0.090 0.216 0.018 0.019 0.191 0.117 0.119 0.255 0.142 0.139 0.306

(b) Intermediate policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.151 0.157 0.418 0.103 0.105 0.241 0.066 0.066 0.130 0.110 0.112 0.322 0.116 0.122 0.343
NonRec-Inf 0.133 0.137 0.366 0.101 0.104 0.201 0.064 0.065 0.131 0.110 0.111 0.260 0.106 0.110 0.310
Rec T=2 0.150 0.153 0.276 0.107 0.110 0.171 0.065 0.066 0.113 0.115 0.117 0.224 0.117 0.119 0.226
Rec T=6 0.117 0.120 0.227 0.080 0.084 0.147 0.046 0.049 0.092 0.094 0.096 0.172 0.082 0.086 0.161

(c) Expert policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.095 0.098 0.268 0.073 0.071 0.177 0.081 0.088 0.244 0.082 0.083 0.261 0.106 0.102 0.284
NonRec-Inf 0.104 0.107 0.229 0.067 0.066 0.153 0.062 0.066 0.188 0.085 0.086 0.217 0.101 0.098 0.241
Rec T=2 0.109 0.114 0.193 0.072 0.071 0.121 0.074 0.077 0.153 0.115 0.115 0.223 0.135 0.128 0.238
Rec T=6 0.102 0.107 0.176 0.067 0.067 0.110 0.076 0.078 0.147 0.091 0.092 0.175 0.101 0.099 0.190
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Table 6: Normalized train error, test error, and bound for REDQ on MuJoCo’s hopper

(a) Starter policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.567 0.569 0.759 0.341 0.320 0.868 0.007 0.007 0.269 0.201 0.187 1.011 0.122 0.122 0.218
NonRec-Inf 0.575 0.577 0.854 0.347 0.326 1.019 0.009 0.009 0.283 0.200 0.186 1.324 0.189 0.189 0.314
Rec T=2 0.580 0.583 0.856 0.346 0.326 1.014 0.009 0.009 0.282 0.200 0.187 1.260 0.261 0.261 0.389
Rec T=6 0.156 0.156 0.321 0.243 0.228 0.803 0.004 0.004 0.399 0.166 0.155 0.859 0.058 0.058 0.123

(b) Intermediate policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.079 0.081 0.181 0.075 0.076 0.165 0.073 0.074 0.197 0.096 0.095 0.233 0.060 0.060 0.155
NonRec-Inf 0.069 0.070 0.109 0.059 0.058 0.087 0.070 0.070 0.117 0.115 0.116 0.260 0.062 0.062 0.096
Rec T=2 0.073 0.074 0.111 0.062 0.062 0.093 0.069 0.069 0.110 0.234 0.233 0.348 0.061 0.061 0.094
Rec T=6 0.064 0.063 0.094 0.054 0.053 0.081 0.061 0.061 0.096 0.071 0.071 0.115 0.059 0.059 0.092

(c) Expert policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.072 0.071 0.184 0.121 0.121 0.241 0.053 0.053 0.100 0.095 0.088 0.207 0.094 0.092 0.210
NonRec-Inf 0.058 0.057 0.089 0.060 0.061 0.091 0.046 0.046 0.068 0.106 0.098 0.244 0.060 0.059 0.095
Rec T=2 0.058 0.058 0.090 0.062 0.062 0.090 0.044 0.044 0.060 0.196 0.181 0.305 0.066 0.065 0.096
Rec T=6 0.056 0.056 0.086 0.061 0.061 0.086 0.040 0.041 0.054 0.058 0.058 0.095 0.057 0.056 0.084

Table 7: Normalized train error, test error, and bound for SAC on MuJoCo’s cheetah

(a) Starter policy

Seed 01 Seed 02 Seed 03
Method Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.066 0.066 0.137 0.062 0.062 0.148 0.086 0.086 0.183
NonRec-Inf 0.077 0.077 0.140 0.050 0.050 0.096 0.069 0.069 0.139
Rec T=2 0.059 0.059 0.107 0.063 0.063 0.112 0.051 0.051 0.088
Rec T=6 0.036 0.036 0.063 0.048 0.049 0.074 0.035 0.035 0.061

(b) Intermediate policy

Seed 01 Seed 02 Seed 03
Method Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.042 0.042 0.080 0.064 0.065 0.155 0.038 0.040 0.143
NonRec-Inf 0.029 0.029 0.044 0.057 0.058 0.113 0.038 0.041 0.062
Rec T=2 0.023 0.023 0.039 0.055 0.056 0.079 0.046 0.048 0.068
Rec T=6 0.020 0.020 0.031 0.051 0.051 0.073 0.031 0.034 0.049

(c) Expert policy

Seed 01 Seed 02 Seed 03
Method Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.042 0.042 0.097 0.401 0.400 0.404 0.305 0.298 0.327
NonRec-Inf 0.034 0.034 0.059 0.401 0.400 0.406 0.109 0.108 0.169
Rec T=2 0.028 0.028 0.045 0.066 0.066 0.113 0.045 0.051 0.071
Rec T=6 0.030 0.030 0.045 0.049 0.049 0.079 0.037 0.037 0.053
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Table 8: Normalized train error, test error, and bound for SAC on MuJoCo’s humanoid

(a) Starter policy

Seed 01 Seed 02 Seed 03
Method Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.248 0.219 3.198 0.240 0.243 1.620 0.194 0.198 2.533
NonRec-Inf 0.167 0.145 2.051 0.741 0.740 1.648 0.219 0.233 2.400
Rec T=2 0.150 0.151 1.049 0.202 0.196 0.610 0.144 0.151 0.873
Rec T=6 0.066 0.053 0.538 0.133 0.126 0.470 0.028 0.028 0.340

(b) Intermediate policy

Seed 01 Seed 02 Seed 03
Method Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.087 0.089 0.332 0.095 0.094 0.435 0.093 0.094 0.372
NonRec-Inf 0.077 0.080 0.278 0.101 0.101 0.391 0.088 0.089 0.304
Rec T=2 0.099 0.100 0.241 0.089 0.088 0.268 0.071 0.072 0.164
Rec T=6 0.083 0.084 0.203 0.090 0.090 0.207 0.079 0.080 0.171

(c) Expert policy

Seed 01 Seed 02 Seed 03
Method Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.360 0.360 0.363 0.152 0.151 0.371 0.353 0.353 0.357
NonRec-Inf 0.360 0.360 0.365 0.103 0.100 0.339 0.353 0.353 0.358
Rec T=2 0.061 0.061 0.127 0.127 0.122 0.288 0.078 0.078 0.168
Rec T=6 0.062 0.062 0.127 0.126 0.122 0.259 0.065 0.065 0.128
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Table 9: Normalized train error, test error, and bound for SAC on MuJoCo’s hopper

(a) Starter policy

Seed 01 Seed 02 Seed 03
Method Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.399 0.402 0.700 0.392 0.391 0.692 0.543 0.542 0.799
NonRec-Inf 0.404 0.407 0.832 0.398 0.398 0.880 0.540 0.540 0.915
Rec T=2 0.379 0.380 0.700 0.374 0.373 0.687 0.456 0.457 0.747
Rec T=6 0.064 0.064 0.244 0.041 0.041 0.208 0.078 0.079 0.220

(b) Intermediate policy

Seed 01 Seed 02 Seed 03
Method Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.100 0.100 0.243 0.080 0.080 0.159 0.109 0.109 0.234
NonRec-Inf 0.065 0.066 0.142 0.055 0.054 0.100 0.052 0.051 0.097
Rec T=2 0.072 0.072 0.117 0.076 0.077 0.105 0.080 0.080 0.121
Rec T=6 0.062 0.063 0.097 0.048 0.047 0.065 0.053 0.053 0.084

(c) Expert policy

Seed 01 Seed 02 Seed 03
Method Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.072 0.074 0.208 0.099 0.090 0.225 0.081 0.078 0.232
NonRec-Inf 0.067 0.068 0.104 0.060 0.057 0.115 0.068 0.066 0.138
Rec T=2 0.072 0.073 0.110 0.057 0.055 0.100 0.073 0.072 0.113
Rec T=6 0.061 0.063 0.088 0.063 0.062 0.099 0.080 0.080 0.122
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Table 10: Normalized train error, test error, and bound for PPO on MuJoCo’s Cheetah

(a) Starter policy

Seed 01 Seed 02 Seed 03
Method Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.166 0.166 0.277 0.074 0.074 0.185 0.087 0.086 0.198
NonRec-Inf 0.057 0.057 0.125 0.090 0.090 0.160 0.078 0.078 0.163
Rec T=2 0.063 0.063 0.119 0.055 0.054 0.111 0.080 0.080 0.146
Rec T=6 0.047 0.047 0.094 0.040 0.040 0.076 0.045 0.045 0.088

(b) Intermediate policy

Seed 01 Seed 02 Seed 03
Method Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.054 0.053 0.137 0.048 0.048 0.103 0.040 0.040 0.086
NonRec-Inf 0.057 0.056 0.096 0.030 0.030 0.060 0.056 0.056 0.110
Rec T=2 0.064 0.063 0.108 0.034 0.034 0.064 0.030 0.030 0.059
Rec T=6 0.042 0.041 0.066 0.023 0.023 0.043 0.025 0.025 0.046

(c) Expert policy

Seed 01 Seed 02 Seed 03
Method Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.065 0.065 0.167 0.063 0.065 0.112 0.041 0.041 0.099
NonRec-Inf 0.052 0.052 0.106 0.042 0.045 0.075 0.046 0.046 0.075
Rec T=2 0.049 0.049 0.081 0.026 0.029 0.050 0.028 0.028 0.049
Rec T=6 0.041 0.041 0.065 0.023 0.025 0.041 0.022 0.022 0.039
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Table 11: Normalized train error, test error, and bound for PPO on MuJoCo’s Humanoid

(a) Starter policy

Seed 01 Seed 02 Seed 03
Method Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.101 0.108 0.262 0.112 0.108 0.324 0.121 0.121 0.299
NonRec-Inf 0.099 0.104 0.266 0.105 0.102 0.336 0.104 0.105 0.259
Rec T=2 0.097 0.103 0.212 0.099 0.097 0.249 0.101 0.100 0.208
Rec T=6 0.053 0.058 0.147 0.055 0.050 0.146 0.052 0.050 0.137

(b) Intermediate policy

Seed 01 Seed 02 Seed 03
Method Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.113 0.112 0.427 0.101 0.102 0.293 0.106 0.103 0.291
NonRec-Inf 0.104 0.103 0.358 0.095 0.097 0.256 0.105 0.101 0.274
Rec T=2 0.106 0.106 0.247 0.098 0.100 0.222 0.108 0.103 0.239
Rec T=6 0.045 0.045 0.122 0.042 0.043 0.115 0.065 0.061 0.170

(c) Expert policy

Seed 01 Seed 02 Seed 03
Method Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.121 0.123 0.535 0.115 0.113 0.377 0.123 0.124 0.373
NonRec-Inf 0.086 0.084 0.385 0.100 0.100 0.346 0.085 0.085 0.267
Rec T=2 0.101 0.102 0.237 0.134 0.131 0.297 0.101 0.103 0.213
Rec T=6 0.050 0.049 0.153 0.051 0.053 0.123 0.045 0.045 0.108
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Table 12: Normalized train error, test error, and bound for PPO on MuJoCo’s Hopper

(a) Starter policy

Seed 01 Seed 02 Seed 03
Method Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.058 0.058 0.103 0.076 0.079 0.187 0.086 0.086 0.141
NonRec-Inf 0.059 0.059 0.130 0.071 0.068 0.124 0.086 0.086 0.168
Rec T=2 0.059 0.060 0.127 0.066 0.065 0.116 0.088 0.088 0.170
Rec T=6 0.011 0.011 0.057 0.062 0.067 0.104 0.013 0.012 0.057

(b) Intermediate policy

Seed 01 Seed 02 Seed 03
Method Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.074 0.075 0.124 0.134 0.134 0.252 0.189 0.184 0.301
NonRec-Inf 0.076 0.076 0.146 0.067 0.064 0.121 0.078 0.080 0.148
Rec T=2 0.077 0.077 0.151 0.076 0.074 0.131 0.075 0.074 0.125
Rec T=6 0.016 0.016 0.065 0.061 0.059 0.108 0.066 0.067 0.112

(c) Expert policy

Seed 01 Seed 02 Seed 03
Method Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.088 0.088 0.137 0.071 0.075 0.144 0.082 0.082 0.178
NonRec-Inf 0.089 0.089 0.158 0.073 0.075 0.135 0.059 0.060 0.101
Rec T=2 0.091 0.091 0.163 0.082 0.086 0.150 0.062 0.062 0.102
Rec T=6 0.024 0.024 0.072 0.056 0.059 0.095 0.052 0.053 0.086

Table 13: Normalized train error, test error, and bound for REDQ on Meta-world’s Drawer open

(a) Starter policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.023 0.023 0.040 0.070 0.070 0.160 0.062 0.062 0.138 0.008 0.008 0.014 0.025 0.025 0.052
NonRec-Inf 0.013 0.013 0.020 0.069 0.069 0.088 0.067 0.068 0.086 0.007 0.007 0.013 0.021 0.021 0.031
Rec T=2 0.014 0.014 0.022 0.063 0.063 0.082 0.055 0.055 0.071 0.009 0.009 0.015 0.023 0.023 0.033
Rec T=6 0.019 0.019 0.030 0.060 0.060 0.075 0.052 0.052 0.066 0.021 0.021 0.029 0.019 0.019 0.028

(b) Intermediate policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.068 0.067 0.128 0.157 0.158 0.243 0.005 0.005 0.010 0.005 0.005 0.009 0.050 0.050 0.089
NonRec-Inf 0.053 0.052 0.066 0.072 0.072 0.185 0.006 0.006 0.010 0.006 0.006 0.010 0.029 0.029 0.040
Rec T=2 0.053 0.052 0.065 0.061 0.061 0.085 0.007 0.007 0.012 0.007 0.007 0.011 0.023 0.023 0.032
Rec T=6 0.049 0.048 0.061 0.066 0.066 0.125 0.016 0.016 0.022 0.014 0.014 0.019 0.022 0.022 0.029

(c) Expert policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.082 0.077 0.154 0.077 0.076 0.151 0.052 0.056 0.109 0.016 0.016 0.031 0.059 0.066 0.091
NonRec-Inf 0.069 0.064 0.083 0.054 0.054 0.068 0.042 0.046 0.058 0.010 0.010 0.017 0.045 0.048 0.065
Rec T=2 0.067 0.063 0.077 0.059 0.059 0.074 0.041 0.046 0.052 0.011 0.011 0.018 0.047 0.051 0.067
Rec T=6 0.068 0.064 0.078 0.050 0.050 0.062 0.042 0.047 0.055 0.012 0.012 0.019 0.044 0.046 0.060
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Table 14: Normalized train error, test error, and bound for REDQ on Meta-world’s Reach hard

(a) Starter policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.006 0.006 0.012 0.007 0.007 0.012 0.003 0.003 0.005 0.231 0.231 0.234 0.234 0.234 0.236
NonRec-Inf 0.005 0.005 0.008 0.005 0.005 0.007 0.002 0.002 0.004 0.231 0.231 0.235 0.234 0.234 0.237
Rec T=2 0.005 0.005 0.008 0.005 0.005 0.007 0.002 0.002 0.004 0.135 0.135 0.163 0.227 0.227 0.232
Rec T=6 0.005 0.005 0.007 0.004 0.004 0.006 0.002 0.002 0.003 0.223 0.223 0.230 0.231 0.231 0.235

(b) Intermediate policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.193 0.193 0.195 0.005 0.005 0.009 0.199 0.199 0.201 0.183 0.183 0.186 0.186 0.186 0.188
NonRec-Inf 0.193 0.193 0.196 0.004 0.004 0.006 0.199 0.199 0.202 0.183 0.183 0.187 0.186 0.186 0.189
Rec T=2 0.041 0.041 0.068 0.004 0.004 0.006 0.196 0.196 0.200 0.024 0.024 0.029 0.025 0.025 0.031
Rec T=6 0.097 0.097 0.115 0.003 0.003 0.005 0.198 0.198 0.201 0.025 0.025 0.032 0.040 0.040 0.057

(c) Expert policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.007 0.007 0.013 0.010 0.010 0.022 0.208 0.208 0.211 0.011 0.011 0.020 0.211 0.211 0.213
NonRec-Inf 0.006 0.006 0.009 0.012 0.012 0.016 0.208 0.208 0.211 0.009 0.009 0.012 0.211 0.211 0.214
Rec T=2 0.005 0.005 0.007 0.011 0.011 0.014 0.203 0.203 0.208 0.008 0.008 0.011 0.207 0.207 0.211
Rec T=6 0.005 0.005 0.007 0.010 0.010 0.014 0.172 0.172 0.182 0.007 0.007 0.010 0.209 0.209 0.213

Table 15: Normalized train error, test error, and bound for REDQ on Meta-world’s Window open

(a) Starter policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.432 0.435 0.439 0.004 0.005 0.007 0.041 0.042 0.066 0.425 0.425 0.432 0.431 0.432 0.438
NonRec-Inf 0.432 0.435 0.441 0.005 0.005 0.008 0.032 0.032 0.042 0.425 0.426 0.435 0.431 0.432 0.442
Rec T=2 0.077 0.076 0.134 0.005 0.005 0.008 0.034 0.034 0.045 0.056 0.056 0.068 0.059 0.059 0.094
Rec T=6 0.073 0.071 0.148 0.010 0.011 0.015 0.033 0.032 0.042 0.054 0.054 0.082 0.059 0.059 0.107

(b) Intermediate policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.066 0.066 0.137 0.209 0.209 0.262 0.440 0.440 0.452 0.001 0.001 0.002 0.066 0.064 0.128
NonRec-Inf 0.050 0.050 0.063 0.345 0.345 0.378 0.440 0.440 0.450 0.001 0.001 0.003 0.073 0.075 0.090
Rec T=2 0.047 0.047 0.059 0.049 0.049 0.059 0.066 0.066 0.133 0.001 0.001 0.003 0.064 0.064 0.081
Rec T=6 0.047 0.047 0.057 0.091 0.091 0.147 0.063 0.063 0.144 0.002 0.002 0.004 0.067 0.066 0.083

(c) Expert policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.041 0.042 0.086 0.001 0.001 0.003 0.445 0.445 0.452 0.001 0.001 0.002 0.073 0.073 0.140
NonRec-Inf 0.032 0.033 0.042 0.002 0.002 0.003 0.445 0.445 0.454 0.002 0.002 0.004 0.054 0.054 0.070
Rec T=2 0.033 0.034 0.043 0.002 0.002 0.004 0.064 0.064 0.118 0.002 0.002 0.004 0.047 0.047 0.057
Rec T=6 0.029 0.030 0.036 0.003 0.003 0.005 0.060 0.059 0.142 0.002 0.002 0.005 0.051 0.051 0.064
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Table 16: Normalized train error, test error, and bound for REDQ on DM Control’s Walker

(a) Starter policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.094 0.094 0.156 0.090 0.089 0.147 0.066 0.066 0.112 0.056 0.056 0.097 0.102 0.102 0.160
NonRec-Inf 0.084 0.084 0.152 0.082 0.082 0.148 0.054 0.054 0.107 0.045 0.045 0.095 0.073 0.072 0.133
Rec T=2 0.089 0.089 0.155 0.081 0.081 0.144 0.058 0.058 0.112 0.052 0.052 0.102 0.081 0.080 0.142
Rec T=6 0.062 0.062 0.117 0.057 0.057 0.107 0.039 0.039 0.084 0.034 0.034 0.077 0.053 0.052 0.101

(b) Intermediate policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.095 0.095 0.153 0.089 0.089 0.146 0.090 0.090 0.139 0.083 0.087 0.131 0.100 0.100 0.160
NonRec-Inf 0.083 0.083 0.142 0.090 0.090 0.149 0.065 0.065 0.118 0.063 0.066 0.112 0.074 0.074 0.136
Rec T=2 0.082 0.081 0.140 0.080 0.080 0.137 0.064 0.064 0.115 0.070 0.074 0.122 0.089 0.088 0.152
Rec T=6 0.062 0.061 0.108 0.058 0.058 0.105 0.046 0.046 0.087 0.045 0.049 0.085 0.056 0.057 0.105

(c) Expert policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.105 0.100 0.164 0.115 0.111 0.177 0.086 0.084 0.133 0.077 0.077 0.119 0.078 0.078 0.125
NonRec-Inf 0.097 0.093 0.168 0.082 0.077 0.130 0.077 0.076 0.130 0.064 0.065 0.116 0.071 0.071 0.122
Rec T=2 0.097 0.092 0.166 0.089 0.085 0.139 0.068 0.066 0.124 0.062 0.062 0.109 0.075 0.075 0.128
Rec T=6 0.069 0.067 0.121 0.060 0.058 0.100 0.052 0.050 0.096 0.046 0.045 0.083 0.054 0.054 0.096

Table 17: Normalized train error, test error, and bound for REDQ on DM Control’s Reacher

(a) Starter policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.213 0.248 0.285 0.208 0.228 0.278 0.186 0.195 0.229 0.174 0.132 0.212 0.185 0.198 0.254
NonRec-Inf 0.201 0.243 0.282 0.199 0.216 0.273 0.188 0.194 0.273 0.172 0.134 0.263 0.165 0.183 0.242
Rec T=2 0.209 0.230 0.283 0.189 0.212 0.272 0.182 0.189 0.264 0.173 0.148 0.254 0.166 0.184 0.234
Rec T=6 0.183 0.218 0.257 0.176 0.200 0.248 0.178 0.183 0.254 0.167 0.138 0.246 0.149 0.209 0.210

(b) Intermediate policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.143 0.129 0.213 0.103 0.125 0.162 0.168 0.198 0.243 0.262 0.264 0.327 0.109 0.103 0.169
NonRec-Inf 0.120 0.091 0.179 0.091 0.121 0.147 0.147 0.177 0.201 0.234 0.234 0.299 0.090 0.084 0.157
Rec T=2 0.117 0.084 0.172 0.092 0.118 0.147 0.147 0.176 0.205 0.235 0.235 0.301 0.091 0.084 0.159
Rec T=6 0.107 0.067 0.158 0.072 0.099 0.120 0.124 0.147 0.175 0.225 0.224 0.287 0.073 0.067 0.140

(c) Expert policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.118 0.121 0.184 0.099 0.122 0.153 0.202 0.180 0.274 0.112 0.143 0.171 0.098 0.108 0.153
NonRec-Inf 0.102 0.107 0.177 0.064 0.099 0.105 0.196 0.174 0.254 0.105 0.148 0.149 0.097 0.113 0.162
Rec T=2 0.104 0.109 0.172 0.073 0.107 0.114 0.197 0.174 0.251 0.104 0.142 0.145 0.090 0.102 0.143
Rec T=6 0.114 0.119 0.229 0.052 0.117 0.087 0.182 0.151 0.236 0.084 0.123 0.118 0.072 0.084 0.119
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Table 18: Normalized train error, test error, and bound for REDQ on DM Control’s Ball-in-cup

(a) Starter policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.082 0.082 0.141 0.090 0.090 0.146 0.087 0.087 0.145 0.081 0.081 0.134 0.075 0.075 0.127
NonRec-Inf 0.065 0.066 0.104 0.072 0.072 0.120 0.077 0.077 0.121 0.066 0.066 0.113 0.066 0.066 0.107
Rec T=2 0.068 0.068 0.109 0.068 0.068 0.106 0.065 0.065 0.106 0.068 0.068 0.109 0.070 0.070 0.109
Rec T=6 0.055 0.055 0.090 0.047 0.047 0.079 0.050 0.050 0.085 0.051 0.051 0.085 0.047 0.048 0.080

(b) Intermediate policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.101 0.101 0.160 0.079 0.079 0.135 0.066 0.066 0.119 0.094 0.093 0.149 0.077 0.076 0.131
NonRec-Inf 0.088 0.087 0.140 0.068 0.068 0.108 0.068 0.068 0.108 0.076 0.075 0.119 0.072 0.071 0.112
Rec T=2 0.081 0.079 0.121 0.068 0.067 0.106 0.070 0.070 0.115 0.082 0.081 0.128 0.092 0.090 0.140
Rec T=6 0.065 0.064 0.101 0.049 0.049 0.080 0.051 0.051 0.085 0.052 0.052 0.085 0.055 0.055 0.088

(c) Expert policy

Seed 01 Seed 02 Seed 03 Seed 04 Seed 05
Method Train Test Bound Train Test Bound Train Test Bound Train Test Bound Train Test Bound
NonRec-NonInf 0.092 0.092 0.140 0.074 0.074 0.125 0.075 0.076 0.126 0.070 0.070 0.124 0.093 0.093 0.142
NonRec-Inf 0.073 0.073 0.116 0.073 0.073 0.118 0.071 0.071 0.117 0.071 0.071 0.116 0.067 0.067 0.109
Rec T=2 0.068 0.068 0.110 0.074 0.074 0.118 0.067 0.067 0.106 0.071 0.071 0.110 0.077 0.077 0.120
Rec T=6 0.052 0.052 0.086 0.054 0.054 0.090 0.052 0.052 0.086 0.053 0.053 0.089 0.050 0.049 0.082
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