
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MODEGPT: MODULAR DECOMPOSITION FOR LARGE
LANGUAGE MODEL COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have significantly advanced AI with their ex-
ceptional performance across a wide range of tasks. However, their extensive
computational requirements restrict their use on devices with limited resources.
While recent compression methods based on low-rank matrices show potential
solutions, they often suffer from significant loss of accuracy or introduce substantial
overhead in parameters and inference time. In this paper, we introduce Modular De-
composition (MoDeGPT), a new, efficient, and structured compression framework
that overcomes these limitations. MoDeGPT jointly decomposes pairs of consecu-
tive subcomponents within Transformer blocks, reduces hidden dimensions through
output reconstruction on a larger structural scale than conventional low-rank meth-
ods, and repurposes three classical matrix decomposition algorithms—Nyström
approximation, CR decomposition, and SVD—to ensure bounded errors in our
novel decomposition approach. Our experiments show that MoDeGPT, without
relying on backward propagation, consistently matches or surpasses the perfor-
mance of prior techniques that depend on gradient information, while achieving a
98% reduction in compute costs when compressing a 13B-parameter model. On
LLaMA-2/3 and OPT models, MoDeGPT retains 90-95% of zero-shot performance
with compression rates of 25-30%. The compression process can be completed on
a single GPU in a few hours, boosting inference throughput by up to 46%.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) (Thoppilan et al., 2022; OpenAI, 2023;
Touvron et al., 2023; Zhang et al., 2022; AI@Meta, 2024) have led to remarkable breakthroughs in
the understanding and generation of natural language. Despite their significant capabilities, these
models are computationally and memory-intensive, posing deployment challenges on resource-limited
devices. To mitigate these challenges, model compression (Gupta & Agrawal, 2022; Zhu et al., 2023)
has emerged as a popular post-training solution, reducing model size and complexity.

Predominant compression techniques encompass model distillation (Sun et al., 2019; 2020; Pan et al.,
2020), pruning (LeCun et al., 1989; Hassibi et al., 1993; Suzuki et al., 2018; Wang et al., 2019b; Zafrir
et al., 2021; Xia et al., 2022; Kurtic et al., 2022; Ma et al., 2023; van der Ouderaa et al., 2023), matrix
decomposition (Hsu et al., 2022; Noach & Goldberg, 2020; Golub & Reinsch, 1971), and quantization
(Gholami et al., 2022; Bai et al., 2020; Frantar et al., 2022; Wang et al., 2023). This study focuses
on matrix decomposition techniques that require minimal computing resources and do not involve
backward propagation as seen in recovery fine-tuning (RFT) or Fisher matrix calculations from Taylor
expansion (Ma et al., 2023; van der Ouderaa et al., 2023). Conventional matrix decomposition such
as SVD typically splits each matrix W ∈ Rd×d into two low-rank matrices W = AB, requiring the
rank less than d/2 to achieve true compression, as shown in Figure 1(b). This stringent requirement
often results in a significant drop in accuracy, necessitating the use of RFT (Hsu et al., 2022). A
novel decomposition approach, SliceGPT (Ashkboos et al., 2024), multiplies the original matrix by
an orthogonal matrix, effectively projecting inputs into a lower-dimensional subspace and reducing
the matrix’s overall dimensionality. However, this approach requires additional adapters to manage
the reduced dimensions; as illustrated in Figure 1(c), adapters Q⊤

i Qj are added to the residual paths
to facilitate this reduction. For a target sparsity s, this introduces additional 2(1− s)2d2 parameters
per layer, which can add up to 10% of additional parameters, significantly offsetting the parameter
savings. In summary, matrix decomposition approaches either (i) discard a large portion of ranks,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Dense Transformer Layer (c) SliceGPT (d) MoDeGPT(ours)

A
ctivation

Decomposition ScopeWeight Matrix Residual Adapter

A
ctivation

Multi-Head Attention

𝐖𝐐𝐖𝐊𝐖𝐕

𝐖𝐎

𝐖𝐔 𝐖𝐃

(b) SVD

MLP

MHA

Multi-Head Attention

𝐖𝐕

A
ctivation

𝐖𝐎

Multi-Head Attention

𝐖𝐕 𝐖𝐊 𝐖𝐐

𝐖𝐔 𝐖𝐃

A
ctivation

Multi-Head Attention

𝐖𝐕Q1
 T 𝐖𝐊Q1

 T 𝐖𝐐Q1
 T

𝐖𝐔Q2
 T 𝐖𝐃Q3

Q1Q2
T

Q2Q3
T

𝐖𝐊 𝐖𝐐

𝐖𝐎

𝐖𝐔 𝐖𝐃

𝐖𝐎Q2

Figure 1: Comparison of Matrix Decomposition-Based Methods for Transformer Compression. (a)
Original transformer layer. (b) SVD applied to each weight matrix separately, resulting in dual matrices. (c)
SliceGPT multiplies each weight matrix by an orthogonal matrix Q, reducing dimensions and introducing
additional adapters. (d) MoDeGPT organizes matrices into modules (highlighted by green boxes) and jointly
decomposes them, producing reduced-size matrices without extra adapters.

or (ii) introduce substantial parameter overheads. These challenges significantly hinder the
effective reduction of parameters without compromising accuracy.

In response to these challenges, we introduce MoDeGPT, which applies matrix decomposition to
multiple matrices jointly, avoiding the dual-matrix structure and extra adapters used in prior methods.
As depicted in Figure 1(d), MoDeGPT elevates the matrix decomposition approach to a modular
level by grouping weight matrices into modules and then applying matrix decomposition jointly
within each module. Unlike SliceGPT, MoDeGPT reduces the intermediate dimensions within each
module rather than between blocks, as illustrated by the matrix shapes in Figure 1(c) and (d). This
crucial difference eliminates the need for adapters while still enabling dimension reduction in the
compressed matrix. Importantly, MoDeGPT establishes a comprehensive mathematical framework
that maps each module’s compression task to one of the three matrix approximation techniques:
CR decomposition (Drineas et al., 2006), singular value decomposition (SVD) (Golub & Reinsch,
1971), and Nyström approximation (Gittens & Mahoney, 2013; Musco & Musco, 2017). These
methods enable MoDeGPT to efficiently compress matrices. In summary, we make the following
contributions:

• We introduce MoDeGPT, a training-free compression method that jointly decomposes
multiple matrices within a module using closed-form expressions. To our knowledge, this is
the first method to apply matrix decomposition at the module level for model compression.

• We extend the theoretical foundations of language model weight decomposition beyond
SVD, introducing a systematic framework for categorizing approximation challenges in
Transformer compression, complete with error guarantees.

• To our knowledge, this is the first demonstration in large language models where a purely
matrix decomposition-based approach achieves state-of-the-art structured compression
efficiency, rivaling the compression rates of semi-structured pruning methods—all without
the need for recovery fine-tuning

• We present a thorough evaluation of MoDeGPT, comparing it against existing methods across
key metrics, including perplexity, downstream accuracy, and real-world speed improvements.
MoDeGPT preserves up to 90% of zero-shot performance with compression rates of up to
30% on LLaMA 2 and 3, significantly outperforming prior approache. Moreover, MoDeGPT
delivers a 46% increase in inference throughput, further enhancing its practical value.

2 BACKGROUND AND RELATED WORK

In this section, we begin by reviewing the existing body of literature related to LLM compression,
highlighting key contributions and methodologies in the field. Subsequently, we examine the standard
components of a transformer decoder layer. Lastly, we delve into the three matrix approximations
employed for our proposed compression across various components in a transformer layer.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.1 RELATED WORKS

Pruning In early pruning methods like magnitude-based tuning, scalability is achieved but often at
the cost of reduced effectiveness in large language models (LLMs) (Hagiwara, 1994; Han et al., 2015;
Li et al., 2017; Frantar & Alistarh, 2023; van der Ouderaa et al., 2023). To address this, the Optimal
Brain Damage (LeCun et al., 1989) and Surgeon frameworks (Hassibi et al., 1993; Yu et al., 2022;
van der Ouderaa et al., 2023) incorporate second-order loss information, improving performance
but requiring substantial computational resources due to Hessian calculations. Recent adaptations,
such as WoodFisher (Singh & Alistarh, 2020), Kronecker factorization (Wang et al., 2019a; van der
Ouderaa et al., 2023), and layer-wise compression (Dong et al., 2017; Frantar & Alistarh, 2022), aim
to streamline these computationally intense methods. Concurrently, several studies have investigated
learnable parameters for pruning in vision and language models (Liu et al., 2017; Huang & Wang,
2018; Xia et al., 2022). However, these techniques generally demand high computational resources
due to intensive backward propagation. Some other approaches have explored feature-mimic-based
methods (An et al., 2024; Ji et al., 2024), but their results do not match the performance of gradient-
based methods like LLM Surgeon (van der Ouderaa et al., 2023). Alternatives like SparseGPT (Frantar
& Alistarh, 2023), Wanda (Sun et al., 2024) and ZeroPruner (Dong et al., 2024), which explore
unstructured and semi-structured pruning, offer scalability but require significant engineering efforts
and often compromise runtime speed. Other research has focused on utilizing layer importance scores
for layer pruning and sparsity distribution, as demonstrated by methods like ShortGPT (Men et al.,
2024), OWL (Yin et al., 2023), LaCo (Yang et al., 2024) and other (Chen et al., 2024). MoDeGPT
proposes a general method to transform any importance score into a sparsity allocation across layers.
In the realm of modern LLM applications, recent advances in compression have introduced innovative
methods such as LLM-Pruner (Ma et al., 2023), LLM Surgeon (van der Ouderaa et al., 2023), and
SliceGPT (Ashkboos et al., 2024), marking significant progress in the field by providing effective
compression techniques for large language models.

Table 1: LLM Compression Comparisons.

Method No Backward
Propagation

No Additional
Parameters

Fully-
Structured

LLM Pruner ✗ ✓ ✓

LLM Surgeon ✗ ✓ ✓

SliceGPT ✓ ✗ ✓

SparseGPT ✓ ✓ semi-
MoDeGPT (ours) ✓ ✓ ✓

Low-Rank Matrix Approximation In related low-rank
matrix techniques for compression, the traditional decom-
position approach substitutes matrices with two low-rank
matrices but retains the original dimensions, which can
limit effectiveness (Noach & Goldberg, 2020; Hsu et al.,
2022; Golub & Reinsch, 1971; Povey et al., 2018; Xu
et al., 2023; Yuan et al., 2023; Wang et al., 2024; Yu &
Wu, 2023; Chen et al., 2021). MoDeGPT improves upon
this by applying low-rank approximation to matrix pairs,
reducing the size of individual matrices and merging the additional matrices from the decomposi-
tions. SliceGPT introduces a technique involving matrix multiplication with orthogonal matrices
derived from PCA to compress weights, which reduces matrix sizes but adds additional parameters
(Ashkboos et al., 2024). In contrast, MoDeGPT compresses without adding parameters by folding
the decomposed matrices back to the original weights. A summary of MoDeGPT’s comparison to
other leading LLM compression methods is provided in Table 1.

2.2 TRANSFORMER ARCHITECTURE

The transformer architecture (Vaswani et al., 2017) consists of multiple decoder layers. A typical
layer such as in LLAMA (Touvron et al., 2023; AI@Meta, 2024) includes two blocks: the Multi-Head
Attention (MHA) and Multi-Layer Perceptron (MLP). Let T , dh, dint, and H denote the sequence
length, hidden dimension, intermediate dimension, and the number of attention heads, respectively,
the formulation of these blocks is as follows:

(MLP block) fMLP(X) =
Type-I

σs(XWU)WD, (1)

(MHA block) fMHA(X) =

H∑
i=1

Softmax

(
Type-II

σr(XWQ,i)σ
⊤
r (XWK,i)

)
Type-III

XWV,iWO,i, (2)

where X ∈ RT×dh is the input matrix, WQ,i,WK,i,WV,i ∈ Rdh×
dh
H ,WO,i ∈ R

dh
H ×dh are the

head-specific query, key, value, and output matrices. The matrices WU ∈ Rdh×dint and WD ∈
Rdint×dh denote up and down matrices, respectively, with σr and σs denoting positional embedding
and nonlinear activation functions. Note that our MLP formulation encompasses the gated MLP: the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

up matrix is defined by the concatenations of the gated and up matrix WU = [W⊤
u ,W⊤

g]⊤, and the
nonlinear function is defined by σs(XWU) := XWu ⊙ σg(XWg), where σg is the gate function.

In the expressions of equation 1 and equation 2, the blocks can be divided into three types of functional
modules, each associated with a pair of matrices:

fType-I(X;WU ,WD) = σs(XWU)WD, fType-II(X;W i
K ,W i

Q) = σr(XWQ,i)σ
⊤
r (XWK,i),

fType-III(X;W i
V ,W

i
O) = XWV,iWO,i,

where X denotes the input and the variables after “;” denote the associated matrices. These three types
are distinguished by varying levels of nonlinearity. We will employ different matrix decomposition
methods for compression based on the optimization tractability of each type.

2.3 LOW-RANK MATRIX APPROXIMATION

The goal of a low-rank approximation method is to approximate a matrix W ∈ Rd1×d2 with two
low-rank matrices A ∈ Rd1×k and B ∈ Rk×d2 . For formalism, we make the following definition:
Definition 1. For a low-rank approximation method M that decomposes a matrix W into A and B,
the approximation matrix is WM = AB and the error relative to W is EM(W) = ∥W −WM∥F .

We review three approximation methods that facilitate our compression algorithms in the next section.

I. Nyström approximation (Gittens & Mahoney, 2013) If W is a positive semidefinite matrix,
let Sk be a k-column selection matrix where each column has a single non-zero element indicating
the selected index, then the corresponding Nyström approximation of W is,

WNys = AB, where A = WSk and B = (S⊤
k WSk)

†S⊤
k W . (3)

II. CR decomposition (Drineas et al., 2006) Assuming W can be factored as W1W2, let Sk be
a k-column selection matrix, the corresponding CR approximation of W is

WCR = AB, where A = W1Sk and B = S⊤
k W2. (4)

III. Singular value decomposition (Golub & Reinsch, 1971) SVD is renowned for yielding the
minimum approximation error when measured in the Frobenius norm. It decomposes W into:

WSVD = AB, where A = Uk and B = ΣkV
⊤
k . (5)

Here, Uk and Vk are matrices containing the top-k left and right singular vectors, respectively, and
Σk is the diagonal matrix consisting of the top-k singular values of W .

3 MODEGPT

Multi-Head Attention

Layernorm

𝐖𝐊 𝐒
Key matrix

𝐒
Query matrix

𝐖𝐐

Value matrix
𝐂-1⁄2 𝐔

Output matrix

𝐕𝐓𝚺

A
ctivation

Up, Gate matrix

𝐒𝐖𝐔

Down matrix
(𝐒𝐓𝐂1⁄2𝐒)+𝐒𝐓𝐂1⁄2 𝐖𝐃

MHA

Type I: Nyström Type II: CR Type III: SVD

Layernorm

Figure 2: The MoDeGPT Framework. MoDeGPT
divides a transformer layer into three distinct colored
modules, each optimizing two matrices using a specific
low-rank approximation method. A twill hatch pattern
represents the dimension reduction.

MoDeGPT introduces a module-level optimiza-
tion that jointly compresses two matrices within
each of our three defined functional modules,
rather than compressing each matrix indepen-
dently as in traditional low-rank approximation
methods. An illustration of MoDeGPT is pre-
sented in Figure 2, where different colors dis-
tinguish the various modules. For each module,
we apply a tailored low-rank approximation to
compress the matrix pair within it. The twill
hatch pattern represents dimension reductions.

In the rest of this section, we first present the
mathematical objective for our approach. Then,
we detail our application of low-rank approxi-
mations for effective compression within each
module. Finally, we introduce a method for as-
signing sparsity levels across different layers
that requires only one forward pass of the model
on the calibration data.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 MODULAR RECONSTRUCTION OBJECTIVE

The objective of MoDeGPT is to jointly optimize two matrices within the module types described in
Sec. 2.2, a process we term modular decomposition, to minimize the modular reconstruction error V :

V ∗ ≜ min
Ŵ1,Ŵ2

N∑
i=1

∥f(Xi;W1,W2)− f(Xi; Ŵ1, Ŵ2)∥2F such that (Ŵ1, Ŵ2) ∈ C, (6)

where Xi ∈ RT×d are samples in the calibration set, and C represents the constrained search space
for compressed matrices that mandates specific structures or dimensions. A key motivation of our
proposed objective is that it expands the search space to include dimension-reduced matrices, thereby
increasing optimization flexibility and enhancing inference speedup in the compressed model. This
contrasts with independent optimization, where each matrix must adhere to the original dimensions.

3.2 ALGORITHMS

Module Type I II III

Weight Matrices up,down,gate key,query value,output

Associated Decomp. Nyström CR SVD

Nonlinearities 1 2 0

Compression Alg. Alg. 1 Alg. 2 Alg. 3

Table 2: Module characteristics and their associated
matrix decompositions.

From LLM compression to matrix decomposition
The core technical contribution of this work is the
establishment of a one-to-one mapping between a
specific type of modular compression problem and
a corresponding matrix decomposition problem. As
outlined in Section 2.2, the modules in the trans-
former architecture can be categorized based on the
number of nonlinear functions they contain: Type I,
II, and III modules contain 1, 2, and 0 nonlinearties,
respectively. For a weight matrix W within a nonlin-
ear function, we compress it into a structured form Ŵ = WSk, where Sk is a k-column selection
matrix to be optimized. This restrictive structural form is a cornerstone of our framework, as it
ensures the tractable optimization of equation 6.

After characterizing the modules and the structure of the compressed matrices, our framework solves
the modular decomposition problem in equation 6 for each module. Since each module contains a
different number of nonlinear functions, the corresponding solutions vary. As we demonstrate in
the subsequent sections, the solutions correspond to Nyström, CR, and SVD for Type I, II, and III
modules, respectively. A summary of this roadmap is provided in Table 2. The detailed connections
are formalized in the following subsections, with detailed proofs included in Appendix A.

TYPE-I COMPRESSION First, we focus on the MLP module. As detailed in Section 2.2, the
matrices W1 and W2 that require compression are WU and WD. Since WU resides within a
nonlinear function σs, we constrain its approximation to the form WUSk for tractable optimization of
equation 6, where Sk is the k-column selection matrix. For WD, we simply ensure that its dimensions
are compatible with WUSk. Our first theorem suggests that when a single column selection matrix is
used, the optimization in equation 6 is closely related to the Nyström approximation of the activation
correlation matrix.

Theorem 1 (MLP compression by Nyström approximation). Let ŴU be searched over the matrix
multiplication form WUSk, where Sk is a k-column selection matrix, and let ŴD be searched over
Rk×dh . The optimal Ŵ ∗

D is then given by: (S⊤
k CσSk)

†S⊤
k CσWD. Using WUSk and Ŵ ∗

D as the
compressed matrices, the Type-I reconstruction error in equation 6 satisfies:

VI ≤ ∥WD∥22 ∥C
−1
σ ∥2E2

Nys(Cσ), (7)

where ENys(Cσ) denotes the Nyström approximation error, defined in Def. 1, relative to the activation
correlation Cσ ≜

∑N
i=1 σ(XiWU)

⊤σ(XiWU), using the same Sk in the compression of WU .

Theorem 1 shows that effective Type-I compression can be achieved through a well-designed Nyström
approximation of Cσ . Thus, we propose Algorithm 1 to control the error as shown below.

Proposition 1 (MLP compression error). Suppose that the rank k and the scores si in Algorithm 1
are chosen such that there exists an error ε > 0 satisfying ε ≥

∑dint

i=k+1 si, then the Type-I modular

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Type-I compression for MLP by Nyström approximation.
1: Input: concatenated up and gated matrices WU ∈ Rdh×dint , down matrix WD ∈ Rdint×dh , activation

correlation Cσ =
∑N

i=1 σ(XiWU)
⊤σ(XiWU), rank k = ⌈(1− sparsity)dint⌉, and ridge intensity λ

2: si← [Cσ(Cσ + λI)−1]ii, for i = 1, . . . , dint ▷ Calculate the ridge leverage score
3: Let Sk ∈ Rdint×k be the matrix that selects the top k columns based on si scores
4: return (WU ,WD)← (WUSk, (S⊤

k CσSk)
†S⊤

k CσWD)

Algorithm 2 Type-II compression for key-query matrices by CR decomposition.
1: Input: head-specific query matrices WQ,j ∈ Rdh×dh/H , key matrices WK,j ∈ Rdh×dh/H ,

query state correlations CQ,j =
∑N

i=1 σr(XiWQ,j)
⊤σr(XiWQ,j), key state correlations CK,j =∑N

i=1 σ(XiWK,j)
⊤σ(XiWK,j), for head j = 1, . . . , H , and rank k = ⌈(1− sparsity)dh/H⌉

2: for j = 1, . . . , H do ▷ Apply compression to each head independently
3: si ← ∥C1/2

Q,j [:, i]∥∥C
1/2
K,j [:, i]∥ ▷ Calculate the norm score

4: Let Sk ∈ Rdh×k be the matrix that selects the top k columns based on si scores
5: (WQ,j ,WK,j)← (WQ,jSk,WK,jSk)

6: return (WQ,WK)← ([WQ,1, . . . ,WQ,H], [WK,1, . . . ,WK,H]) ▷ Concatenate the heads

reconstruction error in equation 6 is bounded by VI ≤ ∥WD∥22∥C−1
σ ∥2 ε2d2

int

k2(1−ε)2

∑dint

i=k+1 σ
2
i (Cσ),

where dint and σi denote the intermediate dimension (i.e., the input dimension of WD) and singular
values, respectively.

TYPE-II COMPRESSION Next, we turn our attention to the Type-II module, which includes the
key-query interactions within the multi-head attention mechanisms. We will apply compression to
each head independently 1. Given that both WQ and WK are embedded with nonlinear functions, for
tractability in the optimization of equation 6, the matrices are compressed using a column selection
matrix: ŴQ = WQSk and ŴK = WKSk, where Sk is a shared k-column selection matrix.
When both two compressed matrices are multiplied by the column selection matrix, the modular
reconstruction problem naturally connects to the CR decomposition of the product of key-query
correlations, as elaborated in the following theorem.

Theorem 2 (Key-Query compression by CR approximation). Let the compressed ŴQ, ŴK to be
the form of WQSk,WKSk, then Type-II reconstruction error in equation 6 has

VII ≤ E2
CR(C

1
2

KC
1
2

Q), (8)

where ECR denotes the CR approximation error, defined in Def. 1, relative to C
1/2
Q C

1/2
K , utilizing

the same Sk in the compression. Here, the matrices CQ ≜
∑N

i=1 σ(XiWQ)
⊤σ(XiWQ) and

CK ≜
∑N

i=1 σ(XiWK)⊤σ(XiWK) denote the correlations of query and key states, respectively.

The preceding theorem indicates that effective compression for the Type-II module can be achieved
using a thoughtfully constructed CR approximation. In response, we present Algorithm 2, which
offers the following guarantees for reconstruction:

Proposition 2 (Key-Query compression error). If we adopt Algorithm 2 then Type-II modular

reconstruction error is bounded by VII ≤
(

dh−k
dh

)2 (∑dh

i=1 σi(CK)
)(∑dh

i=1 σi(CQ)
)

, where σi

denotes the singular values.

TYPE-III COMPRESSION Finally, we focus on the Type-III module, which involves the value-
output matrices. For clarity and simplicity, we omit the head dependency. The module has no nonlinar
function involved f(X) = XŴV ŴO, so we seek general low-rank matrices for compressions:

1Dependency on the head is omitted in the equations for ease of notation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 3 Type-III compression for value-output matrices by SVD.
1: Input: head-specific value matrices WV,j ∈ Rdh×dh/H , output matrices WO,j ∈ Rdh/H×dh for head

j = 1, . . . , H , input correlation C =
∑N

i=1 X
⊤
i Xi, and rank k = ⌈(1− sparsity)dh/H⌉

2: for j = 1, . . . , H do ▷ Apply compression to each head independently
3:

(
U ,Σ,V ⊤)← SV D(C1/2WV,j) ▷ Efficient SVD of C1/2WV,jWO,j (1/2)

4:
(
U ′,Σ′,V ′⊤)← SV D(ΣV ⊤WO,j) ▷ Efficient SVD of C1/2WV,jWO,j (2/2)

5: (WV,j ,WO,j)← (C−1/2UU ′[:, : k], Σ′[: k, : k]V ′[:, : k]⊤)

6: return (WV ,WO)← ([WV,1, . . . ,WV,H], [WO,1, . . . ,WO,H]) ▷ Concatenate the heads

ŴV ∈ Rdh×k, ŴO ∈ Rk×dh such that ŴV ŴO ≈ WV WO. The subsequent theorem reveals that
the reconstruction can be solved optimally by applying the well-known Singular Value Decomposition.

Theorem 3 (Value-Output compression by SVD). If we search ŴV and ŴO over Rdh×k and
Rk×dh , respectively, the optimum in equation 6 is ŴV = C−1/2Uk and ŴO = ΣV ⊤. Here,
UΣV ⊤ and C ≜

∑N
i=1 X

⊤
i Xi are the SVD of C1/2WV WO and input correlation, respectively.

The corresponding Type-III reconstruction error in equation 6 is exactly the SVD approximation error,
defined in Def. 1, relative to C

1
2WV WO:

VIII = E2
SVD(C

1
2WV WO). (9)

Building on the established equivalence to SVD via Theorem 3, we introduce Algorithm 3. This
algorithm guarantees the following:
Proposition 3 (Value-Output compression error). Denote σi as the singular values, Algorithm 3
yields the optimal Type-III modular reconstruction error VIII =

∑d
i=k+1 σ

2
i (C

1
2WV WO).

3.3 GLOBAL SPARSITY ALLOCATION

While MoDeGPT modules are optimized locally, we propose a global optimization strategy that
translates layer importance scores into sparsity allocations across layers. This strategy seeks to
maximize the sum of importance scores, weighted by the parameters retained in each layer. To avoid
the negative effects of excessive sparsity (Yin et al., 2023), we incorporate entropic regularization for
smoothing. The formulation of this constrained optimization problem is as follows:

max
ϕ1:L

L∑
i=1

si(1− ϕi) + εH(ϕi) such that
1

L

L∑
i=1

ϕi = ϕavg, 0 ≤ ϕi ≤ 1, (10)

where ϕi and si represent the sparsity and importance score of layer i, respectively, and ϕavg denotes
the overall target sparsity. For sufficiently large ε, the following theorem demonstrates that the
optimal layer sparsity distribution can be easily computed as:

ϕ = Lϕavg × Softmax(−s/ε). (11)
Theorem 4. For sufficient large ε, (11) is the optimal sparsity allocation in the equation 10.

In our implementations, we adopt the Block Influence (BI) score in Men et al. (2024), which is the
negative correlation between a layer’s input and output defined by: s = 1− Ex⊤

inxout/∥xin∥2∥xout∥2.

4 EXPERIMENTS

4.1 SETUPS

Models We evaluated MoDeGPT on several models that employ a sequential transformer block
structure: OPT (Zhang et al., 2022) across multiple scales (125M, 1.3B, 2.7B, 6.7B), LLAMA-1 at
7B, LLAMA-2 (Touvron et al., 2023) at 7B, 13B, 70B, and LLAMA-3 (AI@Meta, 2024) at 8B.
Implementations and environments We implemented our models using Hugging Face Transform-
ers (Wolf et al., 2019), with correlation computations in FP64. Model compression and performance
testing were conducted on a single NVIDIA A100 80GB GPU, except for the 70B model, which we
used 8 A100 GPUs. Additional details are in Appendix B.2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Datasets Following calibration setups similar to previous works (Frantar et al., 2022; Ashkboos
et al., 2024; Dettmers et al., 2023), we used WikiText-2 (Merity et al., 2016) and Alpaca datasets
(Taori et al., 2023), each with 128 samples of length 2048. Zero-shot performance was assessed using
LM Evaluation Harness (Gao et al., 2021). The complete list of tasks is provided in Appendix B.2.
Baseline comparisons We benchmarked our approach against several baselines. For non-gradient-
based large language model pruning, we compared it with Uniform Pruning, Magnitude Pruning,
SVD, SliceGPT (Ashkboos et al., 2024), ShortGPT (Men et al., 2024), SLEB (Song et al., 2024)
and Optimal Brain Damage (LeCun et al., 1989). For methods involving backward propagation,
our comparisons included LLM-Pruner (Ma et al., 2023) and LLM Surgeon (van der Ouderaa et al.,
2023). Additionally in Appendix B.4, we tested our methods against recent related works based on
reconstruction and decomposition, including feature-mimic compression methods FLAP (An et al.,
2024), Bolaco (Ji et al., 2024), where compressed models replicate the original models’ outputs, as
well as SVD-based methods FWSVD (Hsu et al., 2022), ASVD (Yuan et al., 2023), SVD-LLM (Wang
et al., 2024) that employ variants of singular value decomposition to reduce model size. Finally, we
compared with semi-structured compression methods such as SparseGPT (Frantar & Alistarh, 2023),
Wanda (Sun et al., 2024), and PrunerZero (Dong et al., 2017), which require sparsity patterns (2:4).

4.2 GENERATION PERFORMANCE

Table 3: Perplexity comparisons of structured pruning methods for LLAMA-2 7B and 13B on WikiText-2,
calibrated with 128 sequences of 2048 tokens.

Method No 7B (ppl: 5.12 ↓) LLAMA-2 13B (ppl: 4.57 ↓)
Gradient 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

K-OBD (LeCun et al., 1989) ✗ 5.48 9.14 15.43 28.03 46.64 4.91 6.29 10.08 13.06 16.06
LLM-Pruner (Ma et al., 2023) ✗ 7.11 9.29 13.56 17.90 31.05 5.57 6.67 12.19 19.56 32.20
LLM surgeon (van der Ouderaa et al., 2023) ✗ 5.25 6.18 7.83 10.39 15.38 4.69 5.29 6.21 7.25 9.43

Uniform ✓ 19.09 27.13 46.25 176.24 327.99 13.78 18.18 29.05 45.44 82.60
Magnitude ✓ 861.76 821.34 9623 Overflow Overflow 22.41 320.39 723.60 2105 3004
SVD ✓ Overflow Overflow 52719 51229 Overflow 7655 9919 21248 53672 39521
ShortGPT (Men et al., 2024) ✓ 6.98 14.31 33.21 71.04 268.11 5.40 7.69 30.48 48.83 187.23
SLEB (Song et al., 2024) ✓ 6.05 7.64 11.23 29.10 103.38 5.23 6.31 8.24 11.76 27.67
SliceGPT (Ashkboos et al., 2024) ✓ 6.46 7.68 10.47 15.19 24.82 5.67 6.68 8.68 12.56 20.57
MoDeGPT (ours) ✓ 5.48 6.16 7.51 8.41 11.88 4.83 5.29 6.10 6.95 8.95

We evaluated the generation performance of compressed LLAMA-2 models (7B and 13B) using
the WikiText-2 test split in Table 3, 4 and B.3. Results for OPT and LLAMA-3 8B are included in
Appendices B.1 and B.3. The table distinguishes between compression methods using gradients
(top rows) and those without (bottom rows). Among non-gradient methods, the traditional matrix
decomposition approach using SVD performed the worst. In sharp contrast, MoDeGPT outperformed
all other baselines at various compression rates by jointly applying decomposition to multiple matrices
within a module; it only increased the perplexity by 20% for 20% compression of the 7B model,
which is substantially better than the next best alternative that saw a 50% increase.

Table 4: Comparisons with semi-structured pruning.

Method Structure 40% 50%
SparseGPT (2:4) Semi-structured - 10.17
Wanda (2:4) Semi-structured - 11.02
ZeroPruner (2:4) Semi-structured - 10.52
MoDeGPT (ours) Structured 8.41 11.88

In comparison to gradient-based methods,
MoDeGPT surpassed other structured compres-
sion techniques except for a low compression
rate (20%). This demonstrates that using lo-
cal reconstruction as a proxy for true loss can
achieve state-of-the-art compression. On the
other hand, as shown in Table 4, the state-of-the-
art non-structured methods, Wanda, SparseGPT,
and ZeroPruner, generally outperformed MoDeGPT at 50% compression rate. However, MoDeGPT
with 40% compression achieves a significantly better perplexity (8.41 versus 10.17). The observation
suggests that with a small concession on compression rate, our structured compression can be on par
with the semi-structured method that requires special GPU support for efficient inference.

4.3 ZERO-SHOT PERFORMANCE

We evaluated our method on zero-shot tasks, comparing it to leading baselines in Table 5. Our
method showed superior performance at higher compression rates. The bottom rows indicate that
calibrating with the Alpaca dataset (instead of WikiText-2) significantly improved performance, with

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Zero-shot task performance of compressed LLAMA-2 7B and LLAMA-3 8B.

Model Compress. Method ARC-e ARC-c PIQA WinoG. HellaS. Average

LLAMA-2
7B

0% Dense 74.58 46.25 79.11 69.06 75.99 69.00

30%

ShortGPT (Men et al., 2024) 48.65 32.85 64.31 64.33 56.13 53.25
SliceGPT (Ashkboos et al., 2024) 58.88 33.36 68.55 58.01 49.86 53.73
LLM surgeon (van der Ouderaa et al., 2023) 63.09 36.69 73.56 61.09 60.72 59.03
MoDeGPT (ours) 63.26 38.73 70.40 67.32 63.26 60.78
MoDeGPT-Alpaca (ours) 65.49 39.16 73.34 66.22 65.90 62.02

40%

ShortGPT (Men et al., 2024) 41.16 29.94 60.12 60.46 43.67 47.07
SliceGPT (Ashkboos et al., 2024) 36.49 24.57 54.90 53.43 34.80 40.84
LLM surgeon (van der Ouderaa et al., 2023) 52.31 30.29 69.26 54.38 48.04 50.86
MoDeGPT (ours) 49.45 30.03 64.96 61.96 53.01 51.88
MoDeGPT-Alpaca (ours) 59.76 34.73 70.35 64.40 58.63 57.58

LLAMA-3
8B

0% Dense 77.69 53.58 80.63 72.69 79.16 72.75

25%
ShortGPT-Alpaca (Men et al., 2024) 38.13 31.40 60.94 54.22 31.52 43.24
SliceGPT-Alpaca (Ashkboos et al., 2024) 44.44 29.27 57.56 58.48 41.08 46.17
MoDeGPT-Alpaca (ours) 67.05 41.13 75.52 69.61 66.49 63.96

Table 6: Comparisons of 30% compression on LLAMA-2 70B using 128 wikitext-2 samples for calibration.

Method ↓WikitText-2 ↑ARC-e ARC-c PIQA WinoG. HellaS. BoolQ OBQA MathQA MMLU-ml COPA Lamb. ↑Average.

Dense LLAMA-2 70B 3.12 80.98 57.25 82.75 77.90 83.83 83.79 48.80 38.42 42.86 94.00 79.60 70.02

SliceGPT (Ashkboos et al., 2024) 5.76 67.05 42.06 67.52 71.11 55.57 41.56 40.20 27.87 32.14 82.00 52.03 52.65

ShortGPT (Men et al., 2024) 66.33 60.65 34.47 72.74 64.01 63.80 66.88 34.40 23.05 31.25 75.00 27.01 48.06

SLEB (Song et al., 2024) 5.54 71.97 44.20 77.74 69.38 73.54 67.25 41.80 27.47 32.15 88.00 64.22 59.79

MoDeGPT + OWL sparsity 4.67 76.01 50.34 74.70 72.85 72.43 69.88 44.20 32.26 44.64 87.00 69.61 63.08

MoDeGPT + our sparsity 4.89 77.69 50.94 77.53 76.87 78.16 74.71 45.60 35.04 42.86 89.00 72.17 65.51

MoDeGPT + our sparsity + Alpaca 5.73 78.57 51.54 80.85 77.19 79.60 82.81 46.40 32.83 40.18 94.00 70.72 66.79

a 30% compression resulting in only a 10% accuracy drop. This effect was more pronounced for
LLAMA-13B, as shown in Table 14 in Appendix B.3. We also tested the newer LLAMA-3 8B model,
adapting our algorithm for grouped query attention head dependency as detailed in Appendix B.1.
The performance gap between our method and baselines was notably larger with this model, aligning
with quantization challenges observed in (Huang et al., 2024).

Finally, we compared our method against decomposition and layer-pruning baselines in a large-scale
experiment on the LLAMA-2 70B, as shown in Table 6. Our method demonstrates improved perfor-
mance in larger models, with minimal drops of 4.51% and 3.23% in zero-shot task performance at
30% compression. This is achieved using only 128 samples from WikiText-2 and Alpaca, respectively,
for calibration, without requiring recovery fine-tuning. This result highlights the scalability and
effectiveness of our approach in large models. On the middle two rows, we compared our sparsity
allocation strategy with the recent state-of-the-art OWL method (Yin et al., 2023). While our method
shows a slightly higher perplexity, it consistently achieves superior zero-shot performances. Appendix
B.9 provides additional analysis on the comparisons with OWL.

4.4 COMPUTATION AND THROUGHPUT
Table 7: Compute time.

Model
MoDeGPT (ours) LLM surgeon

Time GPUs Time GPUs

LLAMA-2 7B 4h09m 1xA100 17h08m 4xH100

LLAMA-2 13B 8h26m 1xA100 1d9h26m 8xH100

50% remaining
params

1.0 0.9

0.7

0.8

0.6

0.9

0.6

0.7

0.8

0.9

0.5

0.6

0.7
0.8

0.9

0.5

0.6
0.7

0.8

Throughtput (tokens/sec)

PP
L

(W
ik

iT
ex

t-2
)

Figure 3: PPL vs. throughput.

Table 7 compares the compression costs of MoDeGPT with
LLM surgeon, the best-performing prior work. Given that the
hourly rate for H100 is about twice that of A100 (Lambda,
2024), MoDeGPT offers significant cost savings—97% for the
7B model and 98.5% for the 13B model. Next, we analyze the
trade-off between model performance, measured in perplexity
(on WikiText-2), and throughput (tokens/sec), as illustrated in
Figure 3. For this experiment, we set the sequence length to
256 and measured the average generation time of LLAMA-2 7B
on a single A100 GPU with a batch size of 256. As shown in
the figure, MoDeGPT consistently achieves the best balance be-
tween speedup and accuracy across varying compressed model

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Compression Rate

Pe
rp

le
xi

ty

Figure 4: Module-wise compression.

Type I II III

Parameters MLP K-Q V-O

Method Nyström CR SVD

Size Ratio 66.84% 16.58% 16.58%

Complexity O(d3int) O(d3h/H
2) O(Hd3h)

Effective r 0.094 0.121 0.095

Time 1h13m 0h36m 2h26m

Table 8: Module breakdown statistics.

Block

LLAMA-7B
(model size: 13.81 GiB)

Peak Memory GPU
(GiB) hours

MHA
15.54

2h52m
(+11.5%)

MLP
23.33

1h13m
(+68.9%)

Table 9: Memory utilizations.

sizes, with the relative size ratios annotated next to each point. Notably, at 50% compression,
MoDeGPT achieves a 58% increase in throughput while matching the perplexity performance of the
best competing method at 30% compression. Additional speedup results, including varying batch
sizes and hardware configurations, are provided in Appendix B.14.

4.5 ABLATION STUDY

Figure 5: Impact of calibration size.

Dense

LoCoGPT

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

Sparsity x0.96

x1.29

x1.46
x1.50

x1.58

x1.10
x1.03 x1.07 x1.09

x0.99

x0.72 x0.79 x0.79

x0.91
x1.00

Transform (eq.11)

82%

Score

Figure 6: Score-to-sparsity conversion.

Table 10: Sparsity allocation.

Perplexity↓ Zero-Shot Acc.↑
Dense 5.12 69.00%
Uniform 9.06 53.47%
Sparsity Alloc. 7.51 60.78%

We first analyzed the impact of compression on each module
type within the LLAMA-2 7B model using a single A100 GPU.
As shown in Figure 4 , the majority of perplexity degradation
occurs when the MLP module is compressed. However, af-
ter normalizing by parameter size, i.e., the effective ratio r
in Table 8, it becomes evident that the Type-II module is the
most sensitive to compression. This observation aligns with
our theoretical analysis, which demonstrates that Type-II has
the weakest error bounds, as it is constrained by the complete
spectrum rather than just the residuals (see Propositions 1, 2,
3). In the middle, Table 8 provides a detailed breakdown of the
module-wise compression statistics. Notably, the SVD method
dominates the compression time for the value-output compo-
nents, suggesting that techniques such as SVD approximation
(Yuan et al., 2023) have the potential to reduce overall compres-
sion time. Meanwhile, Table 9 reports memory usage, showing
that MLP compression requires the most memory, as it has the
largest correlation dimension among the modules. Despite this,
all compression tasks only consumed up to 23 GiB of mem-
ory, which is approximately double the model size. A similar
memory consumption pattern for the 13B model is discussed
in Appendix B.8.

Second, we explored the effects of calibration size on a 30%
compressed LLAMA-2 7B model. As shown in Figure 5, increasing the calibration size initially boosts
performance; however, the gains in zero-shot performance diminish for sizes larger than 128.

Lastly, we assessed the effects of sparsity allocation on the same model. Figure 6 displays the score-to-
sparsity mapping outlined in Section 3.3 with ε = 0.1, where darker regions indicate higher sparsity.
Our result suggests that some layers (e.g., layer 26) can eliminate up to 82% of parameters without
a major impact on accuracy. Table 10 shows our global sparsity allocation strategy significantly
outperforms a naive uniform approach, suggesting that our decomposition method can work well
with a simple scoring function for global sparsity assignment.

5 CONCLUSION

In this work, we introduced MoDeGPT, a novel structured compression method that generalizes
matrix decomposition to the modular level, achieving state-of-the-art results for structured model
compression via low-rank decomposition. Our approach has a strong theoretical grounding, offering
bounds on the reconstruction errors for the components in the Transformers. Furthermore, MoDeGPT
stands out by relying solely on forward propagation to achieve comparable or better compression
performance to methods that use the gradients from backward propagation. We believe our novel
methods and findings will inspire more theoretical and algorithmic innovations for training-free
model compression.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

AI@Meta. Llama 3 model card. https://github.com/meta-llama/llama3/blob/main, 2024.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
Mathqa: Towards interpretable math word problem solving with operation-based formalisms.
arXiv preprint arXiv:1905.13319, 2019.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive structured
pruning for large language models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 10865–10873, 2024.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin
King. Binarybert: Pushing the limit of bert quantization. arXiv preprint arXiv:2012.15701, 2020.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Patrick Chen, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh. Drone: Data-aware low-rank
compression for large nlp models. Advances in neural information processing systems, 34:29321–
29334, 2021.

Xiaodong Chen, Yuxuan Hu, and Jing Zhang. Compressing large language models by streamlining
the unimportant layer. arXiv preprint arXiv:2403.19135, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized represen-
tation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen Chu.
Pruner-zero: Evolving symbolic pruning metric from scratch for large language models. arXiv
preprint arXiv:2406.02924, 2024.

Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise
optimal brain surgeon. In Advances in Neural Information Processing Systems, pp. 4857–4867,
2017.

Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algorithms for matrices i:
Approximating matrix multiplication. SIAM Journal on Computing, 36(1):132–157, 2006.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, pp. 8, 2021.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-Power Computer
Vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Alex Gittens and Michael Mahoney. Revisiting the nystrom method for improved large-scale machine
learning. In International Conference on Machine Learning, pp. 567–575. PMLR, 2013.

Gene H Golub and Christian Reinsch. Singular value decomposition and least squares solutions. In
Handbook for Automatic Computation: Volume II: Linear Algebra, pp. 134–151. Springer, 1971.

Manish Gupta and Puneet Agrawal. Compression of deep learning models for text: A survey. ACM
Transactions on Knowledge Discovery from Data (TKDD), 16(4):1–55, 2022.

Masafumi Hagiwara. A simple and effective method for removal of hidden units and weights.
Neurocomputing, 6(2):207–218, 1994.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems, pp. 1135–1143,
2015.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Emma Tang, Dawn Song,
Jacob Steinhardt, and Andy Holzinger. Measuring massive multitask language understanding.
arXiv preprint arXiv:2009.03300, 2020.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. arXiv preprint arXiv:2207.00112, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Wei Huang, Xingyu Zheng, Xudong Ma, Haotong Qin, Chengtao Lv, Hong Chen, Jie Luo, Xiaojuan
Qi, Xianglong Liu, and Michele Magno. An empirical study of llama3 quantization: From llms to
mllms. arXiv preprint arXiv:2404.14047, 2024.

Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks. In
Proceedings of the European conference on computer vision (ECCV), pp. 304–320, 2018.

Yixin Ji, Yang Xiang, Juntao Li, Wei Chen, Zhongyi Liu, Kehai Chen, and Min Zhang. Feature-
based low-rank compression of large language models via bayesian optimization. arXiv preprint
arXiv:2405.10616, 2024.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael
Goin, and Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-order pruning for
large language models. arXiv preprint arXiv:2203.07259, 2022.

Lambda. Lambda cloud. https://lambdalabs.com/, 2024.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. ICLR, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning
efficient convolutional networks through network slimming. In ICCV, 2017.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Mitch Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus
of english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

Shannon McCurdy. Ridge regression and provable deterministic ridge leverage score sampling.
Advances in Neural Information Processing Systems, 31, 2018.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Cameron Musco and Christopher Musco. Recursive sampling for the nystrom method. Advances in
neural information processing systems, 30, 2017.

Matan Ben Noach and Yoav Goldberg. Compressing pre-trained language models by matrix de-
composition. In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 10th International Joint Conference on Natural Language
Processing, pp. 884–889, 2020.

R OpenAI. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2(5), 2023.

Haojie Pan, Chengyu Wang, Minghui Qiu, Yichang Zhang, Yaliang Li, and Jun Huang. Meta-kd: A
meta knowledge distillation framework for language model compression across domains. arXiv
preprint arXiv:2012.01266, 2020.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernandez. The lambada dataset:
Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1525–1534, 2016.

Daniel Povey, Gaofeng Cheng, Yiming Wang, Ke Li, Hainan Xu, Mahsa Yarmohammadi, and
Sanjeev Khudanpur. Semi-orthogonal low-rank matrix factorization for deep neural networks. In
Interspeech, pp. 3743–3747, 2018.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible alternatives:
An evaluation of commonsense causal reasoning. In 2011 AAAI spring symposium series, 2011.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. Advances in Neural Information Processing Systems, 33:18098–18109,
2020.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. Sleb:
Streamlining llms through redundancy verification and elimination of transformer blocks. arXiv
preprint arXiv:2402.09025, 2024.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=PxoFut3dWW.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model
compression. arXiv preprint arXiv:1908.09355, 2019.

Siqi Sun, Zhe Gan, Yu Cheng, Yuwei Fang, Shuohang Wang, and Jingjing Liu. Contrastive distillation
on intermediate representations for language model compression. arXiv preprint arXiv:2009.14167,
2020.

Taiji Suzuki, Hiroshi Abe, Tomoya Murata, Shingo Horiuchi, Kotaro Ito, Tokuma Wachi, So Hirai,
Masatoshi Yukishima, and Tomoaki Nishimura. Spectral pruning: Compressing deep neural
networks via spectral analysis and its generalization error. arXiv preprint arXiv:1808.08558, 2018.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Tycho FA van der Ouderaa, Markus Nagel, Mart Van Baalen, Yuki M Asano, and Tijmen Blankevoort.
The llm surgeon. arXiv preprint arXiv:2312.17244, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong Zhang. Eigendamage: Structured pruning
in the kronecker-factored eigenbasis. ICML, 2019a.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language models.
arXiv preprint arXiv:2310.11453, 2023.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models. arXiv
preprint arXiv:1910.04732, 2019b.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate
models. arXiv preprint arXiv:2204.00408, 2022.

Mingxue Xu, Yao Lei Xu, and Danilo P Mandic. Tensorgpt: Efficient compression of the embedding
layer in llms based on the tensor-train decomposition. arXiv preprint arXiv:2307.00526, 2023.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187, 2024.

14

https://openreview.net/forum?id=PxoFut3dWW

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Mykola Pechenizkiy,
Yi Liang, Zhangyang Wang, and Shiwei Liu. Outlier weighed layerwise sparsity (owl): A missing
secret sauce for pruning llms to high sparsity. arXiv preprint arXiv:2310.05175, 2023.

Hao Yu and Jianxin Wu. Compressing transformers: features are low-rank, but weights are not! In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 11007–11015, 2023.

Xin Yu, Thiago Serra, Srikumar Ramalingam, and Shandian Zhe. The combinatorial brain surgeon:
pruning weights that cancel one another in neural networks. In International Conference on
Machine Learning, pp. 25668–25683. PMLR, 2022.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd: Activation-
aware singular value decomposition for compressing large language models. arXiv preprint
arXiv:2312.05821, 2023.

Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao Shen, and Moshe Wasserblat. Prune once for all:
Sparse pre-trained language models. arXiv preprint arXiv:2111.05754, 2021.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for
large language models. arXiv preprint arXiv:2308.07633, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

SUPPLEMENTARY MATERIAL

CONTENTS

A PROOFS 17

A.1 Proof of Theorem 1 and Proposition 1: MLP Compression with Nyström Approximation 17

A.2 Proof of Theorem 2 and Proposition 2: Key-Query Compression with CR Approxi-
mation . 19

A.3 Proof of Theorem 3 and Proposition 3: Value-Output Compression with SVD . . . 20

A.4 Proof of Theorem 4: Global Sparsity Allocation 20

B ADDITIONAL EXPERIMENTS 22

B.1 Modified Algorithms for Grouped Query Attention 22

B.2 Implementation Details . 22

B.3 Additional Generation and Zero-Shot Experiments 23

B.4 Additional Baseline Comparisons: Feature-Mimic and SVD Approaches 26

B.5 Recovery Fine-tuning . 26

B.6 Experiments with Equal Computational Budgets 27

B.7 Combination of MoDeGPT and SliceGPT . 29

B.8 Compression Time and Memory Consumption . 29

B.9 Global Sparsity Allocation . 29

B.10 Ablation Study on Compression in Each Module 31

B.11 Scalability to Larger Models . 32

B.12 High Compression Rate Experiments . 33

B.13 Sensitivity Analysis of Dfferent Calibration Sets 33

B.14 Additional Speedup Experiments . 33

C Limitations and Broader Impacts 34

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A PROOFS

This section provides proofs for the theorems and propositions in the main text, along with definitions
and assumptions for formalism.

First, we define the following notation.

Definition 2 (Column Selection Matrix). A k-column selection matrix Sk is a matrix with k columns
where each column has a single non-zero element indicating the selected index. For example, S3 =
[[0, 0, 1, 0]⊤, [0, 1, 0, 0]⊤, [0, 0, 0, 1]⊤] is a 3-column selection matrix selecting the third, second, and
fourth columns. An important property is that any matrix right-multiplied by a column selection
matrix will result in a matrix consisting of the selected columns.

Next, we make an assumption regarding the nonlinear functions used in all modules, which is crucial
for validating our algorithms.

Assumption 1. Any column selection matrix S is commutative with the nonlinear functions under
consideration. Specifically, the function σ satisfies the property that σ(X)S = σ(XS) for any X
and any column selection matrix S.

Importantly, Assumption 1 is met by any activation function that operates element-wise on the inputs,
as well as by widely used embedding functions, such as the rotary positional embedding (Su et al.,
2024).

A.1 PROOF OF THEOREM 1 AND PROPOSITION 1: MLP COMPRESSION WITH NYSTRÖM
APPROXIMATION

Theorem 1 (MLP compression can be solved by Nyström approximation). Let ŴU be searched
over the matrix multiplication form WUSk, where Sk is a k-column selection matrix, and let ŴD be
searched over Rk×dh . The optimal Ŵ ∗

D can then be expressed as: (S⊤
k CσSk)

†S⊤
k CσWD. Using

WUSk and Ŵ ∗
D as the compressed matrices, the Type-I reconstruction error in equation 6 satisfies:

VI ≤ ∥WD∥22 E
2
Nys(C

1
2
σ), (12)

where ENys(C
1
2
σ) denotes the Nyström approximation error, defined in Def. 1, relative to the activation

correlation matrix Cσ ≜
∑N

i=1 σ(XiWU)
⊤σ(XiWU), using the same Sk in the compression of

WU .

Proof. Ideally, we want to seek low-rank matrices WU , WD without any constraint; however, the
nonlinearity between the two matrices makes the optimal solution intractable. To overcome the
nonlinearity between the two matrices, we instead restrict the compressed up matrix ŴU to be of the
form WUSk, Sk ∈ Rd×k is a k-column selection matrix and ŴD is a general Rk×d matrix. Plug in
this form, we can simplify equation 6 as

min
Sk,ŴD

N∑
i=1

∥f(Xi)− σ(XiWUSk)ŴD∥2F

(a)
= min

Sk,ŴD

N∑
i=1

∥σ(XiWU)WD − σ(XiWU)SkŴD∥2F

= min
Sk,ŴD

Tr

(
N∑
i=1

σ(XiWU)
⊤σ(XiWU)

(
WD − SkŴD

)(
WD − SkŴD

)⊤)
= min

Sk,ŴD

∥C
1
2
σ

(
WD − SkŴD

)
∥2F , (13)

where Cσ is the empirical correlation matrix of latent features Cσ =
∑N

i=1 σ(XiWU)
⊤σ(XiWU),

and (a) follows from Assumption 1. Setting the gradient of the last expression with respect to ŴD to

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

zero, we obtain the optimal down matrix Ŵ ∗
D =

(
S⊤
k CσSk

)†
S⊤
k CσWD. After Plugging this back

to the objective, we can further simplify the objective into,

min
Sk

∥∥∥(C 1
2
σ −C

1
2
σ Sk

(
S⊤
k CσSk

)†
S⊤
k Cσ

)
WD

∥∥∥2
F

≤ ∥WD∥22 ∥C
− 1

2
σ ∥22 min

Sk

∥∥∥Cσ −CσSk

(
S⊤
k CσSk

)†
S⊤
k Cσ

∥∥∥2
F
= ∥WD∥22 ∥C

−1
σ ∥2E2

Nys(Cσ).

(14)
Now, observe that the error on the right side of equation 14 is proportional to the Nyström matrix
approximation to the matrix Cσ in Definition 1. Hence, the variable Sk can be optimized with any
Nyström approximation algorithm (Gittens & Mahoney, 2013). In this work, we adapt a deterministic
Nyström algorithm, Algorithm 1, that has the theoretical guarantee proved in the next proposition.

Proposition 1. Suppose that the rank k and the scores si in Algorithm 1 are chosen such that there
exists an error ε > 0 satisfying ε ≥

∑dint

i=k+1 si, then the Type-I modular reconstruction error in

equation 6 is bounded by VI ≤ ∥WD∥22∥C−1
σ ∥2 ε2d2

int

k2(1−ε)2

∑dint

i=k+1 σ
2
i (Cσ), where dint and σi denote

the intermediate dimension (i.e., the input dimension of WD) and singular values, respectively.

Proof. Since our column selection is equivalent to applying the deterministic ridge leverage score
sampling (DRLS) to C

1
2
σ (McCurdy, 2018) , Theorem 1 in McCurdy (2018) implies that

(1− ε)Cσ − ϵ

k

∥∥∥(C 1
2
σ)\k

∥∥∥2
F
I ⪯ C

1
2
σ SkS

⊤
k C

1
2
σ ⪯ Cσ (15)

⇒ Cσ ⪯ ϵ

k(1− ε)

∥∥∥(C 1
2
σ)\k

∥∥∥2
F
I+

1

1− ε
C

1
2
σ SkS

⊤
k C

1
2
σ . (16)

Next, we define P = C
1
2
σ Sk(S

⊤
k CσSk)

†S⊤
k C

1
2
σ . We note that P is the projection matrix of the

column space of C
1
2
σ S. Now, we multiply I − P to both sides in the previous inequality to get

(I − P)Cσ(I − P) (17)

⪯ ϵ

k(1− ε)

∥∥∥(C 1
2
σ)\k

∥∥∥2
F
(I − P) +

1

1− ε
(I − P)C

1
2
σ SkS

⊤
k C

1
2
σ (I − P) (18)

⪯ ϵ

k(1− ε)

∥∥∥(C 1
2
σ)\k

∥∥∥2
F
I, (19)

where in the last inequality we use the fact that I−P ⪯ I and that I−P is the orthogonal projection
to the orthogonal complement of the column space C

1
2
σ S so that S⊤C

1
2
σ (I −P) = 0. Now, we have

∥(I − P)C
1
2
σ C

1
2
σ (I − P)∥2 ≤ ε

k(1− ε)

∥∥∥(C 1
2
σ)\k

∥∥∥2
F
=

ε

k(1− ε)

dint∑
i=k+1

σi(Cσ) (20)

⇒ ∥C
1
2
σ (I − P)2C

1
2
σ ∥2 = ∥C

1
2
σ (I − P)C

1
2
σ ∥2 ≤ ε

k(1− ε)

dint∑
i=k+1

σi(Cσ). (21)

Since C
1
2
σ PC

1
2
σ = CσSk

(
S⊤
k CσSk

)†
S⊤
k Cσ , the inequality is equivalent to

∥Cσ −CσS
(
S⊤CσS

)†
S⊤Cσ∥2 ≤ ε

k(1− ε)

dint∑
i=k+1

σi(Cσ). (22)

Finally, we complete the proof by,

E2
Nys(Cσ)

(a)

≤ dint∥Cσ −CσS
(
S⊤CσS

)†
S⊤Cσ∥22

(b)

≤ ε2dint
k2(1− ε)2

(
dint∑

i=k+1

σi(Cσ)

)2

(c)

≤ ε2d2int
k2(1− ε)2

dint∑
i=k+1

σ2
i (Cσ), (23)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

where (a) follows from that∥A∥F ≤
√
d∥A∥2 for any matrix A ∈ Rd×d, (b) from equation 22, and

(c) from Cauchy inequality that (
∑n

i=1 xi)
2 ≤ n

∑n
i=1 x

2
i for any sequence {xi}i.

A.2 PROOF OF THEOREM 2 AND PROPOSITION 2: KEY-QUERY COMPRESSION WITH CR
APPROXIMATION

Theorem 2 (Key-Query compression can be solved by CR approximation). Let the compressed
ŴQ, ŴK to be the form of WQSk,WKSk, then Type-II reconstruction error in equation 6 has

VII ≤ E2
CR(C

1
2

KC
1
2

Q), (24)

where ECR denotes the CR approximation error, defined in Def. 1, relative to C
1/2
Q C

1/2
K , utilizing

the same Sk in the compression. Here, the matrices CQ ≜
∑N

i=1 σ(XiWQ)
⊤σ(XiWQ) and

CK ≜
∑N

i=1 σ(XiWK)⊤σ(XiWK) denote the correlation matrices of query and key states,
respectively.

Proof. Regarding two nonlinear functions satisfying Assumption 1, we propose to optimize the
reconstruction error with compressed key query matrices of the form WKSk,WQSk, where Sk is
some column selection matrix. Now the reconstruction error of this module is

N∑
i=1

∥f(Xi)− σr(XiWQSk)σ
⊤
r (XiWKSk)∥2F

(a)
=

N∑
i=1

∥σr(XiWQ)
(
I − SkS

⊤
k

)
σ⊤
r (XiWK)∥2F

=

N∑
i=1

Tr
((
I − SkS

⊤
k

)
σr(XiWQ)

⊤σr(XiWQ)
(
I − SkS

⊤
k

)
σr(XiWK)⊤σr(XiWK)

)
(b)

≤ Tr

 N∑
i=1

(
I − SkS

⊤
k

)
σr(XiWQ)

⊤σr(XiWQ)
(
I − SkS

⊤
k

) N∑
j=1

σr(XjWK)⊤σr(XjWK)

(c)

≤ Tr
(
CK

(
I − SkS

⊤
k

)
CQ

)
= ∥C

1
2

KC
1
2

Q −C
1
2

KSkS
⊤
k C

1
2

Q∥
2
F = E2

CR(C
1
2

KC
1
2

Q), (25)

where CK =
∑N

i=1 σ(XiWQSk)
⊤σ(XiWQSk), CQ =

∑N
i=1 σ(XiWKSk)

⊤σ(XiWKSk) are
the correlation matrices associated with the outputs of WQ and WK , respectively. Here, (a) follows
from Assumption 1, (b) follows from that

(
I − SkS

⊤
k

)
σr(XiWQ)

⊤σr(XiWQ)
(
I − SkS

⊤
k

)
and

σr(XjWK)⊤σr(XjWK) are positive semidefinite, and (c) follows from that I− SkS
⊤
k ⪯ I. From

the last expression, we observe that the reconstruction is bounded by the CR approximation (Drineas
et al., 2006) to the matrix-product C

1
2

KC
1
2

Q.

Proposition 2. If we adopt Algorithm 2 then Type-II modular reconstruction error is bounded by

VII ≤
(

dh−k
dh

)2 (∑dh

i=1 σi(CK)
)(∑dh

i=1 σi(CQ)
)

, where σi denotes the singular values.

Proof. Our Algorithm 2 is a deterministic variant of Drineas et al. (2006). Recall that

ECR(C
1
2

KC
1
2

Q) = ∥C
1
2

k C
1
2

Q −C
1
2

KSkS
⊤
k C

1
2

Q∥F = ∥
d∑

i=k+1

kiq
⊤
i ∥F , (26)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where ki and qi are the i-th column and i-th row of C
1
2

k and C
1
2
q , respectively. Then,

∥
d∑

i=k+1

kiq
⊤
i ∥F ≤

d∑
i=k+1

∥ki∥2∥qi∥2
(a)

≤

√√√√(d∑
i=k+1

∥ki∥22

)(
d∑

i=k+1

∥qi∥22

)
(27)

(b)

≤ d− k

d

√√√√(d∑
i=1

∥ki∥22

)(
d∑

i=1

∥qi∥22

)
=

d− k

d
∥C

1
2

K∥F ∥C
1
2

Q∥F (28)

=
d− k

d

√√√√(d∑
i=1

σi(CK)

)(
d∑

i=1

σi(CQ)

)
, (29)

where in (a) we use Cauchy-Schwartz inequality and in (b) we use the fact that the column selection
is based on the norm product in Algorithm 2.

A.3 PROOF OF THEOREM 3 AND PROPOSITION 3: VALUE-OUTPUT COMPRESSION WITH SVD

Theorem 3 (Value-Output compression can be solved by SVD). If we search ŴV and ŴO over
Rdh×k and Rk×dh , respectively, the optimum in equation 6 is ŴV = C− 1

2Uk and ŴO = ΣV ⊤.
Here, UΣV ⊤ and C ≜

∑N
i=1 X

⊤
i Xi are the SVD of C

1
2WV WO and input correlation matrix,

respectively. The corresponding Type-III reconstruction error in equation 6 is the SVD approximation
error, defined in Def. 1, relative to C

1
2WV WO:

VIII = E2
SVD(C

1
2WV WO). (30)

Proof. ŴV ∈ Rd×k and ŴO ∈ Rk×d. Plug in f̂(X) = XŴV ŴO into equation 6 and simplify
yields the objective

min
ŴV ,ŴO

N∑
i=1

Tr
(
X⊤

i Xi(WV WO − ŴV ŴO)(WV WO − ŴV ŴO)
⊤
)

= min
ŴV ,ŴO

∥C 1
2WV WO −C

1
2 ŴV ŴO∥2F = E2

SVD(C
1
2WV WO), (31)

where C =
∑N

i=1 X
⊤
i Xi is the input correlation matrix.

Proposition 3. Denote σi as the singular values, Algorithm 3 yields the optimal Type-III modular
reconstruction error VIII =

∑d
i=k+1 σ

2
i (C

1
2WV WO).

Proof. As C
1
2 ŴV ŴO has low rank k, this reconstruction error is upper bounded by the residue

of the spectrum of the matrix C
1
2WV WO, i.e., ESVD ≤

√∑d
i=k+1 σ

2
i (C

1
2WV WO). In fact, the

upper bound is achievable by Algorithm 2 since C
1
2 ŴV ŴO = UkΣkV

⊤
k , which is the optimal

rank k approximation to the matrix C
1
2WV WO.

A.4 PROOF OF THEOREM 4: GLOBAL SPARSITY ALLOCATION

Theorem 4. For sufficient large ε, (11) is the optimal sparsity allocation in the equation 10.

Proof. Consider the relaxed optimization problem

max
ϕ1:L

L∑
i=1

si(1− ϕi) + εH(ϕi) s.t.
1

L

L∑
i=1

ϕi = ϕavg. (32)

Its associated Lagrangian is

L(ϕ1:L, λ) =

L∑
i=1

si(1− ϕi) + εH(ϕi) + λ

(
1

L

L∑
i=1

ϕi − ϕavg

)
. (33)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

To find the optimum, we set the gradient of the Lagrangian to zero, which yields

0 = ∇ϕL(ϕ1:L, λ) = ∇ϕ

(
L∑

i=1

si(1− ϕi)− εH(ϕi)i

)
+ λ∇ϕ

(
1

L

L∑
i=1

ϕi − ϕavg

)
(34)

= ∇ϕ

(
L∑

i=1

si(1− ϕi)− ε

L∑
i=1

ϕi log ϕi

)
+ λ∇ϕ

(
1

L

L∑
i=1

ϕi − ϕavg

)
. (35)

This is equivalent to that, for any j = 1, . . . , L,

0 = ∂ϕj

(
L∑

i=1

si(1− ϕi)− ε

L∑
i=1

ϕi log ϕi

)
+ λ∂ϕj

(
1

L

L∑
i=1

ϕi − ϕavg

)
(36)

= −sj − ε log ϕj − ε+ λ
1

L
. (37)

After rearrangement, we have ϕj = C exp(−sj/ε) for some constant C. On the other hand, ϕj

satisfies the constraint of 1
L

∑L
i=1 ϕi = ϕavg, which implies

L∑
j=1

C exp(−sj/ε) = Lϕavg (38)

⇒ C = Lϕavg/

L∑
j=1

exp(−sj/ε) (39)

⇒ ϕi = Lϕavg exp(−si/ε)/

L∑
j=1

exp(−sj/ε). (40)

Finally, we must verify that for any i = 1, . . . , L, the above expression of ϕi is a valid sparsity
allocation, satisfying ϕi ≤ 1 for sufficiently large ε, to ensure it is also the optimum solution to the
original optimization problem in equation 10. Since ϕi = Lϕavg exp(−si/ε)/

∑L
j=1 exp(−sj/ε) is

a continuous function of ε and lim
ε→∞

ϕi = ϕavg < 1, there must exist some constant Ni such that when
ε ≥ Ni, ϕi is less than 1. Hence, the sparsity allocation is a valid optimal solution to equation 10 if
ε > max(N1, . . . , NL), completing the proof.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B ADDITIONAL EXPERIMENTS

B.1 MODIFIED ALGORITHMS FOR GROUPED QUERY ATTENTION

Some modern LLMs such as Gemma (Team et al., 2024), Llama 3 (AI@Meta, 2024) utilize a shared
key-query strategy to improve inference efficiency. This design adopts the grouped-query attention
(GQA) mechanism (Ainslie et al., 2023) that couples multiple queries and output matrices with shared
keys and values, so compressed key and value matrices also have the constraints of sharing across
different heads. Its mechanism is illustrated as follows.

(GQA)
H/G∑
i=1

∑
j∈Gi

Softmax(σr(XW j
Q)σ

⊤
r (XW i

K)︸ ︷︷ ︸
Type-II

)XW i
V W

j
O︸ ︷︷ ︸

Type-III

, (41)

𝐔

𝐔𝐓

𝐒

𝐒

Grouped Query Attention

Type II

Type III

𝐖𝐐,�

𝐖𝐐,𝐆

𝐖𝐊

𝐖𝐕

𝐖𝐎,�

𝐖𝐎,𝐆

Figure 7: Illustration of Type-II and Type-III modifi-
cations in GQA. In Type-I, the index selection matrix
S is shared among different key projection matrices in
the same group. Similarly, in Type-II, the eigenmatrix
U is shared among different output matrices within the
same group.

where Gi denotes the set of each group and
G = |Gi| is each of its size. We see that
our compressed W i

V , W j
K must be jointly opti-

mized within each group. To address it, we mod-
ify Algorithm 2, 3 by using projection strategies.
In line 3 of Algorithm 2 for Type-II module, we
calculate the group score equal to the square root
of sum of the scores of each head within a group,

i.e., si =

√∑
h∈G ∥C

1
2

h,Q[:, i]∥2∥C
1
2

h,K [:, i]∥2,
where h indicates the head. By doing in this
way, we ensure that the column selection ma-
trix for compressions remains equal within the
group. For grouped Type-III modification, in
line 3 of Algorithm 3, we calculate the SVD
of CWV = UΣV ⊤ and skip the calculation
of W ′

O and the second SVD and then outputs
ŴV = WV Uk, ŴO,j = U⊤

k WO,j ,∀j ∈ Gi.
Since WV is shared within a group, this ensures
that the compressed ŴV is also shared. In Table
15, we apply this modification to a Llama-3 8B
compression.

B.2 IMPLEMENTATION DETAILS

Setup We utilize the HuggingFace generation library (Wolf et al., 2019) to implement our LLM
models and adapt the SliceGPT (Ashkboos et al., 2024) GitHub repository for correlation matrix
estimations. All compression experiments were conducted on a single NVIDIA A100 80GB GPU,
except for the 70B model compressions, which utilized 8 A100 GPUs. The models use the FP16 data
format. Unless otherwise specified, the calibration set consists of a random sample of 128 sequences,
each of length 2048, from WikiText-2, following the common practice in the literature Ashkboos
et al. (2024); van der Ouderaa et al. (2023).

Datasets We consider multiple tasks in LM Evaluation Harness (Gao et al., 2021), including ARC-e,
ARC-c (Clark et al., 2018), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2021), and
HellaSwag (Zellers et al., 2019), OpenBookQA (Mihaylov et al., 2018), MathQA (Amini et al., 2019),
BoolQ (Clark et al., 2019), COPA (Roemmele et al., 2011), MMLU (Hendrycks et al., 2020), and
LAMBADA (Paperno et al., 2016).

Conversion of Layernorm to RMSNorm We adapt SliceGPT (Ashkboos et al., 2024) official code
to implement our compression. As shown in the work, this conversion is an invariant transformation
that preserves the model output. SliceGPT uses this transformation and the orthogonal invariance
property of RMSNorm to slice the weight matrices. On the other hand, MoDeGPT does not reply
on the invariance property. We use the transformation simply for easy adaptation from SliceGPT by
avoiding building all from the scratch. A side benefit is that our work is compatible with SliceGPT

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

where a slicing and our compression can be applied independently. Although our experiments on
OPT and LLAMA do not find clear improvement when incorporating the two (see Table 22), it might
be beneficial for some other LLMs.

Correlation Matrix Estimations Our algorithms utilize various input correlation matrices as
detailed in Algorithms 1, 2, and 3. Following the approach used in SliceGPT (Ashkboos et al.,
2024), we employ the Catcher function to gather empirical data from the calibration set. For matrix
decomposition, we upcast correlation matrices from FP16 to FP64 and then downcast the decomposed
weights back to FP16. Our process sequentially compresses weights across all layers, mirroring
SliceGPT’s method. Additionally, our approach is adaptable to parallel structural models like Phi-2,
showcasing flexibility similar to that demonstrated by SliceGPT.

Matrix Operations We utilize torch.svd and torch.pinv in PyTorch for performing Sin-
gular Value Decomposition (SVD) and computing the Moore-Penrose inverse on tensors of dtype
FP64.

MLP Module Algorithm 1 requires a ridge leverage score parameter λ. We find that the results are
largely insensitive to this parameter; therefore, we simply use λ = 1 across all experiments.

Key-Query Module MoDeGPT reduces the feature dimension in the key-query module. In our
current setup, we store head-dependent index selections, which specify the rows of cosine and
sine matrices in the rotary embedding, using only O(dh) INT8 numbers, together with the reduced
dimension matrices. We’ve observed that this method may slow down generation speed at compression
rates below 10%. A feasible modification is zeroing out columns associated with pruned indices;
however, this increases the memory footprint because the matrices stored do not undergo dimension
reduction. We think there is potential for improvements through enhanced engineering efforts that
could better optimize the balance between memory savings and generation speed.

Value-Output Module Lines 3-5 in Algorithm 3 provide a more computationally efficient imple-
mentation of the SVD of C

1
2WV,jWO,j . Since WV,j and WO,j are thin matrices, applying SVD

directly on their product incurs O(d3h) complexity, while applying SVD to them sequentially incurs
only O(dh × (dh/H)2) computations.

Global Sparsity Allocation To allocate global sparsity, we first calculate the BI scores with a
single forward pass on the calibration set. We then set the sparsity according to a chosen temperature
ε, as detailed in Section 3.3. A high ε leads to a very uniform allocation, while a low value introduces
excessive sparsity in some layers. Empirically, we find that a simple rule of thumb is to choose a
temperature ε that results in maximal layer sparsity around 80%.

Throughput Benchmark We use the official SliceGPT (Ashkboos et al., 2024) codebase to
benchmark the throughput of all methods, with both sequence length and batch size set to 256 and
utilizing KVCache.

B.3 ADDITIONAL GENERATION AND ZERO-SHOT EXPERIMENTS

Generation Performance In Table 11, we compare the perplexity of compressed OPT and LLAMA-
2 7B models on WikiText-2 with other baselines that do not use gradient information. The rightmost
column indicates their computational complexity per layer. We observe that MoDeGPT performs
the best among all structured compression methods, and the 30-40% compressed MoDeGPT models
outperform the 2:4 SparseGPT. Notably, our method shows better performance in LLAMA than in
OPT models. We suspect this is due to the higher nonlinearity, such as RoPE and Gated MLP, adopted
in LLAMA, and that our method favors more nonlinear structures. This table also shows that our
compression is effective on small language models.

Zero-Shot Task Performance In Table 12, we report the zero-shot performance of LLAMA-2 7B,
calibrated with WikiText-2 and the Alpaca dataset, across various compression rates. We observe that
MoDeGPT outperforms LLM Surgeon as the compression rate increases, and the benefits of using the

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 11: Perplexities of none gradient-based structured compression methods on WikiText-2.

Method Compression OPT LLAMA-2 Complexity
125M 1.3B 2.7B 6.7B 7B

Dense 0% 27.65 14.62 12.47 10.86 5.12 -

Sparse GPT 2:4 (Frantar & Alistarh, 2023) 50% 45.07 29.61 14.90 13.00 8.69 O(d3hidden)

10% 767.2 894.4 1229 3464 861.76
Magnitude 20% 4685 1278 2788 16747 821.34 O(d2hidden)

30% 17970 3098 9255 17312 9623

10% 36.29 68.36 20.82 357.61 n/a
SVD 20% 55.48 1023.49 50.01 2387.39 n/a O(d3hidden)

30% 173.77 8851.45 707.17 9448.12 52719

10% 33.3 20.76 17.69 27.2 14259
OBD (LeCun et al., 1989) 20% 94.14 1392 3236 7570 15630 O(Td3hidden)

30% 545.6 2147 7233 7628 21386

10% 34.48 16.58 13.86 11.6 6.46
20% 42.87 19.15 15.86 12.62 7.68

SliceGPT (Ashkboos et al., 2024) 30% 59.87 23.87 19.91 14.19 10.47 O(d3hidden)

40% 102.41 36.2 30.77 17.99 15.19
50% 185.52 66.12 56.99 26.72 24.82

10% 28.06 15.03 12.78 11.17 5.48
20% 29.62 15.98 13.56 11.79 6.16

MoDeGPT 30% 33.27 17.91 14.71 12.67 7.51 O(d3hidden)

(ours) 40% 38.37 21.92 17.43 14.79 8.41
50% 51.81 32.67 24.75 20.39 11.88

Table 12: Downstream zero-shot task performance of LLAMA-2 7B calibrated with 128 samples from WikiText2.

Compression Method ARC-e ARC-c PIQA WinoGrande HellaSwag Average

0% Dense 74.58% 46.25% 79.11% 69.06% 75.99% 69.00%

20%

ShortGPT (Men et al., 2024) 58.33% 38.05% 72.58% 65.51% 65.27% 59.95%
SliceGPT (Ashkboos et al., 2024) 51.47% 31.06% 64.25% 62.74% 49.78% 51.86%
LLM surgeon (van der Ouderaa et al., 2023) 71.36% 41.89% 77.09% 66.30% 71.30% 65.59%
MoDeGPT (ours) 69.07% 42.06% 74.05% 68.03% 69.05% 64.46%
MoDeGPT-Alpaca (ours) 71.71% 41.89% 76.22% 68.19% 69.59% 65.52%

30%

ShortGPT (Men et al., 2024) 48.65% 32.85% 64.31% 64.33% 56.13% 53.25%
SliceGPT (Ashkboos et al., 2024) 44.44% 29.27% 57.56% 58.48% 41.08% 46.17%
LLM surgeon (van der Ouderaa et al., 2023) 63.09% 36.69% 73.56% 61.09% 60.72% 59.03%
MoDeGPT (ours) 63.26% 38.73% 70.40% 67.32% 63.26% 60.78%
MoDeGPT-Alpaca (ours) 65.49% 39.16% 73.34% 66.22% 65.90% 62.02%

40%

ShortGPT (Men et al., 2024) 41.16% 29.94% 60.12% 60.46% 43.67% 47.07%
SliceGPT (Ashkboos et al., 2024) 36.49% 24.57% 54.90% 53.43% 34.80% 40.84%
LLM surgeon (van der Ouderaa et al., 2023) 52.31% 30.29% 69.26% 54.38% 48.04% 50.86%
MoDeGPT (ours) 49.45% 30.03% 64.96% 61.96% 53.01% 51.88%
MoDeGPT-Alpaca (ours) 59.76% 34.73% 70.35% 64.40% 58.63% 57.58%

Table 13: Downstream zero-shot task performance of LLAMA-2 13B calibrated with 128 samples from
WikiText2.

Method Compression ARC-e ARC-c PIQA WinoGrande HellaSwag Average

Dense 0% 77.48% 49.23% 80.47% 72.22% 79.39% 71.76%

SliceGPT (Ashkboos et al., 2024)
20% 55.81% 35.84% 65.83% 67.17% 53.58% 55.65%
30% 45.96% 30.80% 59.63% 61.80% 44.09% 48.46%
40% 38.59% 27.05% 55.98% 56.51% 37.15% 43.06%

MoDeGPT (ours)
20% 74.07% 46.16% 74.53% 70.32% 68.96% 66.81%
30% 71.93% 43.60% 73.94% 71.90% 68.21% 65.92%
40% 62.88% 38.40% 69.10% 67.72% 58.27% 59.27%

Alpaca dataset also grow with higher compression rates. Notably, while ShortGPT performs poorly

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 14: Downstream zero-shot task performance of LLAMA-2 13B calibrated with 128 samples from Alpaca.

Method Compression ARC-e ARC-c PIQA WinoGrande HellaSwag Average

Dense 0% 77.48% 49.23% 80.47% 72.22% 79.39% 71.76%

SliceGPT (Ashkboos et al., 2024)
20% 69.36% 40.70% 74.97% 65.67% 61.01% 62.34%
30% 60.27% 36.18% 69.42% 64.09% 49.74% 55.94%
40% 48.99% 32.51% 63.17% 56.75% 39.85% 48.25%

MoDeGPT (ours)
20% 74.24% 45.90% 78.24% 72.53% 75.78% 69.34%
30% 70.24% 41.47% 77.15% 71.27% 71.84% 66.39%
40% 63.72% 38.82% 71.87% 66.30% 62.10% 60.56%

in generation tasks, it significantly outperforms SliceGPT in zero-shot tasks. Both LLM Surgeon and
MoDeGPT maintain high performance in generation and zero-shot tasks, but our method requires
only 3% of the computational resources compared to LLM Surgeon.

We also test the performance on LLAMA-2 13B using the WikiText-2 calibration set, as shown in
Table 13. Similar to the 7B model, our method excels at higher compression rates (above 20%).
However, at a 40% compression rate, we notice a performance drop in the HellaSwag task compared
to the 30% compression, likely due to inherent biases in our method. Nevertheless, with calibration
from the Alpaca dataset, as shown in Table 14, our method achieves high performance at 20% and
30% compression. Addressing these inherent biases and enhancing performance on the HellaSwag
task is a promising area for future research.

Table 15: Downstream zero-shot task performance of LLAMA-3 8B calibrated with 128 samples from Alpaca.

Method Compression Perplexity ↓ ARC-e ARC-c PIQA WinoGrande HellaSwag Average

Dense 0% 2.98 77.69% 53.58% 80.63% 72.69% 79.16% 72.75%

ShortGPT (Men et al., 2024) 25% 282.56 38.13% 31.40% 60.94% 54.22% 31.52% 43.24%
30% 659.33 36.83% 30.72% 58.98% 54.62% 29.08% 42.04%

SliceGPT (Ashkboos et al., 2024) 25% 3.87 58.88% 33.36% 68.55% 58.01% 49.86% 53.73%
30% 4.52 52.02% 29.18% 64.85% 54.62% 41.38% 48.41%

MoDeGPT (ours) 25% 3.52 67.05% 41.13% 75.52% 69.61% 66.49% 63.96%
30% 3.80 62.75% 38.65% 73.61% 67.25% 62.10% 60.87%

In Table 15, we test our method on LLAMA-3 8B using our modified algorithm tailored for grouped
query attention. As this is a relatively new model, we could only compare results with SliceGPT and
ShortGPT, which already support this model. We observe that compression has a more significant
impact on performance degradation compared to LLAMA-2 for all tested methods. We believe this is
due to denser information encoding in each parameter, making the model more sensitive to weight
changes. However, MoDeGPT maintains approximately 90% performance with 25% compression.
Another interesting observation is that the performance order of ShortGPT and SliceGPT is reversed
for LLAMA-3 compared to LLAMA-2, with ShortGPT’s layer pruning strategy performing much
worse. This suggests fundamental differences between the two models and indicates that LLAMA-3
may require more sophisticated compression techniques.

In Table 17, , we evaluate MoDeGPT on a broader range of tasks to assess its generalizability.
We compare MoDeGPT with two baseline methods: SliceGPT (a decomposition approach) and
ShortGPT (a layer-pruning method), all using 30% compression of LLAMA-2 7B, with calibration
performed on the Alpaca dataset. The top rows of the table show the raw accuracies, while the bottom
rows display the relative degradation compared to the original dense model.

MoDeGPT demonstrates the least degradation across all tasks, with an average drop of only 7.19%,
while the other methods experience drops exceeding 17%. Notably, the degradation is generally
consistent across tasks, except for Lambada and MMLU, which show more significant drops. These
tasks also exhibit the largest degradations in the baseline methods, suggesting they are more sensitive
to compression.

Lambada, in particular, exhibits an extreme degradation in both SliceGPT and ShortGPT (over 40%
for both), making it the most challenging task to maintain accuracy after compression. In contrast,
MoDeGPT shows a relatively small degradation of just 16.8%, almost 25% lower than the other

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 16: Generation samples of LLAMA-2 7B with 30% compression.

Prompt: The universe is the entirety of space, time, matter, and energy that exists.

ShortGPT (Men et al., 2024)

sierpę 2018. The universe is everything that ever did or ever will exist. It includes all the past, all the
present, and all the future. What are the 5 most important things you learned about life? How do you
describe a person in words? Can you be happy with nothing? Is there a word for everything? What is
the meaning of universe? Who is the best person to talk to when you need advice? What is the
meaning of the word universe? What is the meaning of universe according to Godungsseite.
According to Wikipedia, the universe refers to everything that ever existed, continues existence, or
could possibly exist. Thus it includes all the past, all the present, and all the future.

SliceGPT (Ashkboos et al., 2024)

The universe contains many galaxies, stars, planets, other objects such as asteroids, planetary systems.
It has been estimated to contain 100 billion trillion stars. The Sun is a star in the Milky Way galaxy ,
which is one of about 400 billion galaxies in the Milky Way’s vicinity . The Milky Way itself is part
of the Milk Way Group , which includes several smaller groups of galaxies .

MoDeGPT (ours)

The universe is a vast, dynamic, and complex structure that contains many different types of objects,
including stars, galaxies, planets, asteroids, and intergalactic gas clouds. It is also home to life-forms
such as humans, animals, plants, microorganisms, and microscopic organisms. The universe has been
studied by astronomers for centuries, and its size and complexity have been estimated using various
methods. Astronomical observations have revealed that the universe is much larger than previously
thought, with an estimated diameter of approximately 10 billion light years. This means that the
universe is roughly 33 times larger than our solar system. The universe is composed of two main
components: the cosmos and the cosmic void. The cosmos consists of galaxies, which are large
collections of stars and other objects bound together by gravitational forces. The cosmic void, on the
other hand, is a region of space between galaxies that is largely empty of matter.

Table 17: Zero-shot task performance degradation of LLAMA-2 7B, calibrated with 128 samples from the
Alpaca dataset, evaluated across a broader set of tasks.

Method BoolQ PIQA HellaS. WinoG. ARC-e ARC-c OBQA COPA Lamb. MMLU-ml Average

Dense 77.68% 79.05% 76.00% 68.98% 74.58% 46.33% 44.22% 87.00% 73.86% 39.29% 66.70%

SliceGPT (Ashkboos et al., 2024) 61.99% 68.55% 48.69% 59.75% 59.69% 34.47% 31.40% 75.00% 21.02% 23.21% 48.08%

ShortGPT (Men et al., 2024) 62.17% 64.48% 56.15% 64.33% 48.70% 32.59% 32.80% 79.00% 29.03% 24.11% 49.34%

MoDeGPT (ours) 69.76% 73.34% 65.90% 66.22% 65.49% 39.16% 39.00% 87.00% 57.07% 32.14% 59.51%

∆ SliceGPT -15.69% -10.50% -27.31% -9.23% -17.89% -11.86% -12.80% -12.00% -52.84% -16.08% -18.62%

∆ ShortGPT -15.51% -14.57% -19.85% -4.65% -25.88% -13.74% -11.40% -8.00% -44.83% -15.18% -17.36%

∆ MoDeGPT (ours) -7.92% -5.71% -10.10% -2.76% -9.09% -7.17% -5.20% 0% -16.79% -7.15% -7.19%

methods. This hints that MoDeGPT is better at preserving important information, which is crucial
for excelling on more difficult tasks like Lambada.

Finally, we compare the generation quality using samples from the three methods’ generations
for 30% compressed LLAMA-2 7B, as shown in Table 16. ShortGPT produces the lowest quality
generation, while both SliceGPT and MoDeGPT generate high-quality responses, with MoDeGPT
providing more detailed responses than SliceGPT.

B.4 ADDITIONAL BASELINE COMPARISONS: FEATURE-MIMIC AND SVD APPROACHES

In Table 18 and 19, we compare our method against feature-mimic and SVD-based approaches,
respectively. In the former case, we observe that alternative methods generally underperform
compared to state-of-the-art gradient-based techniques like LLM Surgeon, while our approach
achieves comparable or even superior results. In the latter comparison, our advantage is even more
pronounced, which we attribute to our more refined decomposition algorithms, tailored specifically
to different components of the transformer architecture based on their levels of nonlinearity, rather
than relying solely on SVD-based decompositions.

B.5 RECOVERY FINE-TUNING

While MoDeGPT does not require recovery fine-tuning, in this section, we explore how RFT can
further enhance performance. In Table 20, we present recovery fine-tuning results for our method
on LLAMA-2 7B, following the same tuning setting as SliceGPT (Ashkboos et al., 2024). We use a
calibration set of 128 random samples, each 2048 in length, from the Alpaca dataset, and a recovery

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 18: Comparisons of feature-mimic based methods for 30% compression of LLAMA-2 7B and 13B models.

Model Method ARC-e ARC-c PIQA WinoG. HellaS. BoolQ OBQA Average.

LLAMA-2 7B

Dense 74.58 46.25 79.11 69.06 75.99 77.74 44.20 66.70
LLM Pruner (Ma et al., 2023) 61.41 33.96 71.93 58.72 59.49 61.41 36.60 53.52
FLAP (An et al., 2024) 60.65 34.47 72.74 64.01 63.80 66.88 36.40 56.99
Bolaco (5 × 4) (Ji et al., 2024) 65.87 34.30 71.27 64.48 57.85 73.85 37.80 57.92
MoDeGPT (ours) 65.49 39.16 73.34 66.22 65.90 69.76 39.00 59.83

LLAMA-2 13B

Dense 77.48 49.23 80.47 72.22 79.39 80.52 45.20 69.22
LLM Pruner (Ma et al., 2023) 65.45 40.36 75.90 60.22 67.90 62.43 44.60 59.55
FLAP (An et al., 2024) 67.38 38.23 74.81 67.48 70.29 65.54 40.00 60.53
Bolaco (5 × 4) (Ji et al., 2024) 71.76 40.10 74.16 69.06 66.66 75.63 41.60 62.71
MoDeGPT (ours) 70.24 41.47 77.15 71.27 71.84 73.7 41.00 63.81

Table 19: Comparisons with SVD-based methods in LLAMA-1 7B.

Compress. Rate Method WikiText-2 ↓ PTB ↓ ARC-e ARC-c PIQA WinoG. HellaS. MathQA OBQA Avg.

0% Dense 5.68 8.35 73 42 79 70 50 27 34 54

20%

FWSVD (Hsu et al., 2022) 1727 2152 31 23 56 50 26 21 15 32
ASVD (Yuan et al., 2023) 11.14 16.55 53 27 68 64 41 24 25 43
SVD-LLM (Wang et al., 2024) 7.94 16.22 58 29 69 58 43 24 22 44
MoDeGPT (ours) 6.53 39.17 70 36 74 69 50 26 31 51

40%

FWSVD (Hsu et al., 2022) 18156 20990 26 22 53 51 26 21 16 30
ASVD (Yuan et al., 2023) 1407 3292 28 22 55 48 26 19 12 30
SVD-LLM (Wang et al., 2024) 13.11 63.75 42 25 60 58 33 21 19 37
MoDeGPT (ours) 9.39 60.55 58 30 65 64 40 23 22 43

Table 20: Compression and recovery fine-tuning for LLAMA-2 7B using Alpaca dataset

Method Compress. ARC-e ARC-c PIQA WinoGrande HellaSwag Average

Dense 0% 74.58% 46.25% 79.11% 69.06% 75.99% 69.00%

MoDeGPT
RCT-MLP

20% 69.78 % (↓ 1.93%) 44.20% (↑ 2.31%) 76.99% (↑ 0.77%) 66.61% (↓ 1.58%) 69.23% (↓ 0.36%) 65.36% (↓ 0.16%)
30% 64.94% (↓ 0.55%) 42.15% (↑ 2.99%) 73.83% (↑ 0.49%) 66.54% (↑ 0.32%) 67.08% (↑ 1.18%) 62.91% (↑ 0.89%)
40% 59.26% (↓ 0.50%) 37.12% (↑ 2.39%) 72.09% (↑ 1.74%) 64.33% (↓ 0.07%) 60.82% (↑ 2.19%) 58.72% (↑ 1.14%)

MoDeGPT
RCT-ALL

20% 70.45% (↓ 1.26%) 42.92% (↑ 1.03%) 77.20% (↑ 0.98%) 66.30% (↓ 1.89%) 68.07% (↓ 1.52%) 64.99% (↓ 0.53%)
30% 63.38% (↓ 2.11%) 41.47% (↑ 2.31%) 74.81% (↑ 1.47%) 66.06% (↓ 0.16%) 65.64% (↓ 0.58%) 62.27% (↑ 0.25%)
40% 58.42% (↓ 1.34%) 38.23% (↑ 3.50%) 72.03% (↑ 1.68%) 63.61% (↓ 0.79%) 59.55% (↑ 0.92%) 58.34% (↑ 0.76%)

fine-tuning set of 8000 samples, each 1024 in length, employing LoRA (Hu et al., 2021). We use
SliceGPT’s hyperparameters for LoRA, except for the learning rate, which is set to 5× 10−5. The
other primary hyperparameters used are lora_alpha = 10, lora_r = 32, lora_dropout = 0.05, and
batch_size = 3. We evaluate two scenarios: 1) fine-tuning all linear matrices, and 2) tuning only the
MLP.

The green and red indicators in the table denote performance increases or decreases relative to the
compressed model before fine-tuning. Notably, tuning exclusively within the MLP consistently
yields better performance than tuning all parameters. Since we followed the same tuning setting as
SliceGPT (Ashkboos et al., 2024) for a fair comparison, it is likely that better configurations exist
for our method, potentially enhancing performance further. Another key observation is that despite
fine-tuning using 40 times more data than calibration and employing backpropagation, MoDeGPT
without RFT achieves very similar performance. The percentage difference is minimal, suggesting
that using local reconstruction error as the objective is an effective and efficient method with our
compression technique.

The table demonstrates that fine-tuning can slightly improve performance for higher compression
rates, with the most significant increase observed in the ARC-c task. Evaluating the full benefits of
fine-tuning remains a subject for future research.

B.6 EXPERIMENTS WITH EQUAL COMPUTATIONAL BUDGETS

We study the combined effect of compression and recovery fine-tuning for different approaches
with equal computational cost, as shown in Table 21 . In this experiment, we compress LLAMA-2
7B with a 30% compression rate on a single A100 GPU. The model is first compressed using 128

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 21: Compression comparisons with approximately equal computational budgets.

Method Time (Compress / Fine-tune) PPL ARC-e ARC-c PIQA WinoG. HellaS. Average.

SliceGPT 26m / 4h05m 2.59 (3.52) 56.82 (56.69) 38.48 (34.47) 71.82 (68.55) 59.83 (59.75) 59.30 (48.69) 57.26 (53.63)

SLEB 9m / 4h50m 2.67 (4.36) 52.36 (52.36) 34.04 (31.91) 71.00 (69.58) 59.98 (58.17) 60.16 (58.28) 55.51 (54.06)

MoDeGPT 4h09m / 31m 2.70 (3.08) 67.42 (65.49) 40.96 (39.16) 74.10 (73.34) 65.98 (65.49) 66.57 (65.90) 63.01 (62.02)

Table 22: Perplexity performance of SliceGPT + MoDeGPT on LLAMA-2 7B

Slice-MLP-MHA
(%-%-%)

Compression
Rate

WikiText2
Perplexity ↓

MLP Sparsity
Allocation

MHA Sparsity
Allocation

Dense 0% 5.12 - -

20-20-0 19.65% 7.38 ✓ ✗

20-20-0 19.65% 7.33 ✗ ✗

25-25-0 27.38% 8.42 ✓ ✗

30-30-0 34.93% 9.99 ✓ ✗

20-25-0 22.25% 7.70 ✗ ✗

15-30-0 11.77% 7.27 ✗ ✗

10-30-0 9.03% 6.83 ✗ ✗

10-25-25 28.00% 7.31 ✗ ✗

10-30-25 30.91% 7.78 ✗ ✗

20-20-20 29.18% 8.00 ✗ ✗

samples from the Alpaca dataset for calibration, followed by fine-tuning with LoRA on 5k Alpaca
samples. For fair comparisons, we fix the hyperparameters as lora_alpha = 10, lora_r = 32,
and lora_dropout = 0.05. We compare MoDeGPT against SliceGPT and SLEB, which serve as
baselines for decomposition-based and layer-pruning-based approaches, respectively.

Since the methods vary in compression time, we adjust the fine-tuning epochs to equalize the total
time spent across methods. The table reports the time spent in each phase for different methods.
Notably, MoDeGPT has the longest compression time and is therefore fine-tuned for only one epoch.
The table presents zero-shot accuracies both before and after fine-tuning (after/before).

MoDeGPT achieves the highest zero-shot performance across all tasks, excluding perplexity, both
before and after fine-tuning, with its performance advantage primarily arising from the compression
phase. The superior perplexity but lower zero-shot performance of SliceGPT compared to MoDeGPT
underscores the pivotal role of the compression stage, suggesting that an excessive computational
focus on fine-tuning may lead to overfitting.

Lastly, SLEB, despite having the longest fine-tuning time, exhibits smaller improvements than
SliceGPT in zero-shot performances, further emphasizing the pivotal role of the compression phase
in determining the final model’s performance. Moreover, MoDeGPT outperforms the baselines even
without fine-tuning, demonstrating its effectiveness during the compression stage.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

B.7 COMBINATION OF MODEGPT AND SLICEGPT

MoDeGPT is orthogonal to SliceGPT as it reduces dimensions from different sides of a weight matrix.
Figures 1 (c) and (d) provide an illustrative comparison. Combining SliceGPT with MoDeGPT
seems to be a natural extension. To demonstrate their compatibility, we experimented with various
configurations as shown in Table 22. The numbers x-y-z in the leftmost column indicate x% slicing
rate of SliceGPT, and y% and z% compression rates of MoDeGPT in MLP and MHA modules,
respectively. The two rightmost columns test the use of sparsity allocation in the MLP and/or MHA
modules.

Notably, our tests show that applying sparsity allocation with SliceGPT barely improves performance,
consistent with the findings in the SliceGPT paper (Ashkboos et al., 2024). Therefore, we do not use
sparsity allocation for slicing. Compared to the results in Table 3, the combination of SliceGPT and
MoDeGPT does not improve perplexity over pure MoDeGPT. We attribute this to two points: 1. the
significant overhead induced by slicing: to achieve a target compression rate, the model must slice at
a higher rate. 2. the slicing and compression ratio might not be optimal, and it might changes from
layer to layer.

Although we did not make exhaustive search, we believe there is an efficient sparsity allocation for
slicing, and better tuning of the slicing and compression ratios could enhance the performance of the
combined method. We leave this as a topic for future research.

B.8 COMPRESSION TIME AND MEMORY CONSUMPTION

Table 23: Compression computations for calibration set of size 128 in WikiText2.

Model MoDeGPT SliceGPT Ashkboos et al. (2024) LLM surgeon van der Ouderaa et al. (2023)
Time GPUs Time GPUs Time GPUs

LLAMA-2 7B 4h09m 1xA100 80GB 0h26m 1xA100 80GB 17h08m 4xH100 80GB

LLAMA-2 13B 8h26m 1xA100 80GB 0h45m 1xA100 80GB 1d9h26m 8xH100 80GB

Table 24: Memory consumption and compute time of 30% compression for blocks in transformer layers tested
on a single A100 80GB GPU.

Block LLAMA-7B (13.81 GiB) LLAMA-13B (25.92 GiB)
Peak Memory (GiB) GPU hours Peak Memory (GiB) GPU hours

MHA 15.54 (+11.5%) 2h52m 28.60 (+9.4%) 5h04m
MLP 23.33 (+68.9%) 1h13m 41.40 (+54.1%) 3h22m

In Table 23, we compare the compression times of MoDeGPT, SliceGPT, and LLM Surgeon. Since
MoDeGPT and SliceGPT do not leverage gradients, they can compress a model of size 13B using a
single GPU. From previous tables, we observe that while our compute time is longer than SliceGPT,
MoDeGPT achieves significantly better performance. Conversely, our computation time is consider-
ably shorter than LLM Surgeon, yet we achieve comparable performance. Even when equating 1
H100 to 1 A100, our method can save up to 97% of computations. In Table 24, we report the peak
GPU memory usage when compressing LLAMA-2 7B and 13B models on a single A100 GPU. The
primary source of additional memory overhead, beyond the model itself, is the storage of intermediate
activations required for correlation estimation in the MLP. The table shows that this overhead ranges
from approximately 50% to 70%. However, for the 13B model, the peak memory usage remains
under 50% of the total GPU memory capacity.

B.9 GLOBAL SPARSITY ALLOCATION

In Table 25, we report the perplexity and zero-shot performance as we vary the temperature param-
eter in the global sparsity allocation. Initially, the uniform strategy, corresponding to an infinite
temperature, performs significantly worse than our sparsity allocation strategy.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 25: Downstream zero-shot task performance of 30% MoDeGPT on LLAMA-2 7B for varying global rank
temperature.

Method ε Perplexity ↓ ARC-e ARC-c PIQA WinoGrande HellaSwag Average

Dense - 5.12 74.58% 46.25% 79.11% 69.06% 75.99% 69.00%

MoDeGPT (ours)

0.075 7.44 59.72% 37.29% 68.50% 65.90% 61.55% 58.59%
0.1 7.46 63.43% 39.42% 70.78% 65.59% 63.24% 60.49%
0.5 7.03 56.14% 32.34% 67.68% 64.88% 58.01% 55.81%
1 7.25 53.20% 31.06% 66.16% 64.17% 56.66% 54.25%
2 7.35 53.62% 31.06% 65.83% 63.14% 55.98% 53.93%
∞ 9.06 52.36% 30.80% 65.18% 63.69% 55.31% 53.47%

Layer IDLayer ID

Sp
ar

is
ty

Sp
ar

is
ty

M
ea

n
A

cc
ur

ac
y

 εLayer ID

Im
po

rta
nc

e
Sc

or
e

Pe
rp

le
xi

ty

0.075 0.1 0.5 1 2

Figure 8: Dynamic sparsity allocation across layers for LLAMA-2 7B.

For ε = 0.075, this results in extreme sparsity, as shown in Figure 8, and performance begins to
drop. For ε ≥ 1, the allocation becomes too similar to the uniform strategy. In practice, we find
that the ε value that yields a minimum layer allocation around 20% performs exceptionally well. In
Figure 8, left and middle panels, we also observe how the allocation shape for different ε values
corresponds to the importance score in the left figure. For LLMs, both OPT and LLAMA show that
the first and last few layers have significantly higher importance and, therefore, should allocate less
sparsity, as depicted in the figure. On the right of Figure 8, we also show the allocation for different
compression levels. The shape remains similar across different levels using the same ε. For higher
compression rates, the maximum layer sparsity also increases, suggesting that we should increase ε
to avoid extreme sparsity. We report the ranks of the QKV projection matrices across various layers
of compressed LLAMA-2 7B and 70B models, as determined by the global sparsity allocation used
in this study (equation 11), with their distributions visualized in Figure 10.

The ranks were computed using equation 11 with 128 samples from WikiText-2 and ε values of
0.1 and 0.02 for the 7B and 70B models, respectively. These ε values were selected to ensure the
maximum layer sparsity remains around 70–80%, as a 90% sparsity level is often too extreme, based
on our experience from experiments.

Interestingly, we found that the rank distributions exhibit similar shapes across the models, suggesting
a deep connection between the allocation strategy and the LLAMA-2 family architectures.

Global Allocation (Ours) OWL

Figure 9: Layer sparsity distribution comparisons.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 26: Layer ranks for various models.

Model Layer Rank
LLAMA-2 7B 3989, 3886, 3813, 3889, 3750, 3616, 3598, 3612

3625, 3593, 3546, 3660, 3654, 3568, 3575, 3544
3453, 3241, 2997, 2703, 2413, 1741, 1620, 1217
1129, 1254, 1054, 741, 1203, 1363, 2640, 4060

LLAMA-2 70B 8192, 8183, 8186, 8169, 8143, 8103, 8130, 8088
8134, 7983, 7908, 7873, 7957, 8018, 7932, 7968
7772, 8000, 7858, 7784, 7486, 7419, 7079, 7016
7090, 7596, 7214, 6784, 6620, 6556, 6204, 6384
6366, 6762, 6719, 6411, 6472, 6356, 6651, 6918
7138, 6839, 6872, 6112, 6620, 5467, 5042, 5328
4402, 3940, 3563, 3745, 3632, 3076, 2814, 3051
2814, 2622, 3025, 2395, 2189, 2128, 2158, 2128
2248, 2037, 2760, 2947, 2453, 3051, 3152, 3609
3446, 3540, 4148, 4694, 5548, 5994, 7355, 8187

Table 27: Global sparsity allocation comparisons.

Method Sparsity Mean Sparsity Std Perplexity ↓ PIQA HellaS. WinoG. ARC-E ARC-C Average

Uniform Allocation 30% 0% 9.06 65.18 55.31 63.69 52.36 30.80 53.47

Global Sparsity Allocation (Ours) 30% 26.72% 7.51 71.40 63.26 67.32 63.26 38.73 60.79

OWL Yin et al. (2023) 30% 4.46% 6.9 68.17 59.12 65.67 56.9 33.36 56.64

We also compare our global allocation strategy in equation 11 with a state-of-the-art alternative, OWL
(Yin et al., 2023), as shown in Table 27. In this experiment, we compress LLAMA-2 7B using
MoDeGPT with different global sparsity strategies. Despite our method having a higher perplexity,
it consistently achieves better zero-shot performance across all reported tasks. Figure 9 visualizes
the layer sparsity distributions of the two approaches. Unlike OWL, our distribution exhibits much
greater heterogeneity across layers, showing less sparsity in the first and last layers. This figure
suggests that heterogeneity may play a crucial role in structured compression.

Figure 10: Layer Ranks of LLAMA-2 7B and 70B.

B.10 ABLATION STUDY ON COMPRESSION IN EACH MODULE

Impact of Module-Wise Compression on Perplexity. Table 28 presents the perplexity changes
in the LLAMA-2 7B model when compressing each module individually. The rightmost column
shows the normalized slope of perplexity change relative to the parameter size in each module. The
results reveal that the MLP module has the most significant impact on overall performance, likely
due to its containing 66% of the model’s parameters. On the other hand, the slope indicates that the
compression algorithms for Type I and Type III modules perform comparably, while Type II performs

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Table 28: Perplexity of compressed LLAMA-2 7B in each module.

Module
Compression Rate 0% 10% 20% 30% 40% 50% Normalized Slope

Type I: MLP 5.12 5.34 5.68 6.71 7.12 8.24 0.094
Type II: Query, Key 5.12 5.14 5.23 5.43 5.58 6.33 0.121

Type III: Value, Output 5.12 5.16 5.24 5.37 5.62 5.92 0.095

Table 30: Heterogeneous sparsity allocation in modules.

Sparsity (MLP, MHA) Perplexity ↓ ARC-e ARC-c PIQA WinoGrande HellaSwag Average

30%, 30% 7.51 65.49% 39.16% 73.34% 66.22% 65.90% 62.02%

35%, 20% 7.79 60.52% 38.48% 68.82% 65.98% 61.34% 59.03%

25%, 40% 7.14 57.03% 35.15% 70.89% 65.27% 61.63% 57.99%

the worst. This finding aligns with our theoretical results, which suggest that the reconstruction
bounds are weakest in Type III. From a decomposition perspective, the CR approximation is the most
coarse-grained, leading to the least effective compression outcomes.

Table 29: Module-Wise Throughputs of 30%
Compressed LLAMA-2 7B

Module Throughputs (tokens/s)
Type I: MLP 1585

Type II: Query, Key 2136
Type III: Value, Output 2121

Impact of Module-Wise Compression on Throughput.
Table 29 presents the throughputs for the 30% compressed
LLAMA-2 7B across different modules. The results indi-
cate that the compression yields similar speedups for both
Type-II and Type-III modules. This sharp difference in
speedups highlights the potential for uniform compression
across modules, which we leave as a direction for future
research.

Heterogeneous Sparsity Across Modules In our work, we apply nonuniform sparsity across layers
while maintaining uniform sparsity across modules within the same layer. To investigate whether
heterogeneity in module sparsity can enhance performance, we conducted an experiment compressing
LLAMA-2 7B by 30%, with varying sparsity levels in the MLP and MHA blocks. The sparsity
levels were adjusted to ensure the average compression rate remained at 30%.

We tested three configurations: equal sparsity for MLP and MHA, higher sparsity in MLP, and
higher sparsity in MHA. The results are presented in Table 30 . From the table, we observe that
while lower sparsity in MLP yields the best perplexity, it results in the worst zero-shot performance
among the three configurations. Conversely, uniform sparsity across modules outperforms the other
configurations in all tasks, while high and low MLP sparsity each demonstrate strengths in specific
tasks compared to one another. These findings underscore the sensitivity of compression performance
to variations in module sparsity, suggesting that a more sophisticated allocation method may be
necessary to surpass the performance of uniform allocation.

B.11 SCALABILITY TO LARGER MODELS

While our work is tested on a single GPU, it can be extended to multi-GPU setups to compress
larger models, such as those with 70B parameters. To apply our method to larger models, the model
must fit within the GPU memory to perform the forward pass. As shown in Table 24 , memory
utilization is less than twice the model size, so approximately double the model’s size in GPU
memory is expected for running our method. In our compression process, the most computationally
intensive part is the compression of the value-output module, as highlighted in Table 8. Since the
computational complexity of this module scales cubically with the hidden dimension (due to the
SVD in the value-output compression) and is proportional to the number of layers being compressed,
the time required to compress a 70B model using multi-GPUs can be estimated using the following

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

formula:

Compute Time (70B)

= Compute Time (7B) ×
(

hidden dim(70B)
hidden dim(7B)

)3

× layer num(70B)
layer num(7B)

= 4 hours × (8192/4096)3 × (80/32) = 80 hours

For a sanity check, we applied the same formula to estimate the compression time for a 13B model
and obtained an estimate of 9 hours, which aligns closely with our empirical result of 8 hours and 26
minutes, as shown in Table 8.

B.12 HIGH COMPRESSION RATE EXPERIMENTS

Table 31: Perplexity of LLAMA-2 7B Across 10% to 80% Compressions

Compression Rate 0% 10% 20% 30% 40% 50% 60% 70% 80%
Perplexity 5.12 5.48 6.16 7.51 8.41 11.88 26.59 84.22 245.84

We analyzed the perplexity of LLAMA-2 7B at high compression rates, using 128 samples from
WikiText2 for calibration. We observed a significant breakdown point at 50% compression, where the
perplexity increased sharply from 41% to 123%. This indicates the compression limit of our method.

B.13 SENSITIVITY ANALYSIS OF DFFERENT CALIBRATION SETS

In Table 32, we evaluate in-domain and out-of-domain perplexity using different calibration sets:
WikiText2, PTB (Marcus et al., 1993), and Alpaca. Our results indicate that perplexity is minimized
when the model is calibrated with the same dataset as the test set. Notably, when calibrated with
different datasets, the results on Alpaca demonstrate the most consistent performance with the least
variance, while PTB shows the highest variance. Nevertheless, calibration with PTB provides the
most robust results across all three datasets.

B.14 ADDITIONAL SPEEDUP EXPERIMENTS

Dense

LoCoGPT

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

MoDeGPTSliceGPT Dense

Compression Rate
batch size = 64 batch size = 128 batch size = 256 batch size = 512

x0.82

x1.24

x1.42
x1.45 x1.52

x1.06

x1.00
x1.03 x1.05

x0.96

x0.69
x0.76 x0.76

x0.88

x0.97

Figure 11: Throughput benchmarks of compressed LLAMA-2 7B on a single A100 80GB GPU.

Table 33 reports the throughputs and latency on fast and slow parallel computing environments using
NVIDIA A100 and Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50 GHz with 20 cores. The results
indicate that the reduction in computational complexity is proportional to the compression percentage.
While the speedup for single-batch inference is comparable to that of the original model, we observe
significant improvements in speedup for multi-batch inference on the GPU and on the CPU. Therefore,
our method performs optimally when the parallel computing capabilities of the environment are fully
utilized.

In Figure 11, we explored various batch sizes, comparing the throughput of 30% compressed
MoDeGPT with 30% sliced SliceGPT (Ashkboos et al., 2024) and the dense model. We found that
throughput surpassed that of the dense model for batch sizes over 64. Particularly, at batch sizes
exceeding 256, MoDeGPT’s throughput was 1.46 times greater than the dense model, while SliceGPT

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 32: Perplexity results under different calibration datasets.

Calibration Set
Test Set WikiText2 ↓ PTB ↓ Alpaca ↓

WikiText2 6.16 27.69 (+22%) 3.12 (+11%)
PTB 6.99 (+13%) 22.75 3.14 (+12%)

Alpaca 7.64 (+24%) 40.71 (+79%) 2.80

Table 33: Inference speed and computational complexity of the pruned LLAMA-2 7B model.

Method # Parameter
(B)

Memory
(GiB)

Compute Complexity
(GMACs) ↓

Latency CPU
(s/token) ↓

Latency GPU
(s/token) ↓

256-Batch Throughputs
(tokens/s) ↑

Dense 6.74 12.92 425.12 (1.00×) 32.41 (1.00×) 0.035 (1.00×) 1700 (1.00×)

20% SliceGPT 5.45 10.45 339.04 (0.80×) 26.46 (0.82×) 0.037 (1.06×) 1802 (1.06×)
20% MoDeGPT 5.44 10.43 339.34 (0.80×) 22.66 (0.70×) 0.034 (0.97×) 2168 (1.28×)

30% SliceGPT 4.73 9.07 298.36 (0.70×) 25.28 (0.78×) 0.037 (1.06×) 1830 (1.08×)
30% MoDeGPT 4.79 9.07 297.91 (0.70×) 19.20 (0.59×) 0.034 (0.97×) 2521 (1.48×)

40% SliceGPT 4.11 7.88 262.12 (0.62×) 22.68 (0.70×) 0.037 (1.06×) 1839 (1.08×)
40% MoDeGPT 4.14 7.94 256.34 (0.60×) 18.57 (0.57×) 0.036 (1.03×) 2568 (1.51×)

Dense

LoCoGPT

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

Sparsity x0.96

x1.29

x1.46
x1.50

x1.58

x1.10
x1.03 x1.07 x1.09

x0.99

x0.72 x0.79 x0.79

x0.91
x1.00

Transform (eq.11)

82%

Score

Figure 12: Speedup vs. compression.

only achieved 1.07 times the throughput. MoDeGPT’s increased throughput stems from its reduced
matrix size and avoidance of extra adapters in residual paths.

Finally, we benchmark throughput. We set the sequence length to 256 and recorded the average
generation time of LLAMA-2 7B on a single A100 GPU with batch size 256. In Figure 12, SVD
exhibits lower throughput than the uncompressed model due to the doubled amount of matrices
in its decomposed form which makes computation less parallelizable. SliceGPT, while achieving
greater throughput, sees less than a 10% speedup, hindered by additional computations in residual
paths. In contrast, MoDeGPT achieves non-trivial speedups that increase with compression rates;
at 50% compression, it achieves a 58% increase in throughput, significantly surpassing both SVD
and SliceGPT. However, at compression rates below 10%, throughput drops below that of the
uncompressed model. This decrease is attributed to the implementation of the compressed Type-II
module, which needs an optimized kernel to better parallelize the computation of the pruned attention
heads. We leave the implementation of such an optimized computation kernel as future work to
address the corner case.

C LIMITATIONS AND BROADER IMPACTS

Intrinsic Bias Our experiments on zero-shot tasks show that MoDeGPT excels in certain zero-shot
tasks while underperforming in others, indicating an intrinsic bias toward specific tasks. Our current

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

method does not offer a definitive solution to eliminate this bias. Addressing bias removal will be a
critical area for future research.

Overfitting the Reconstruction Loss While MoDeGPT excels in zero-shot tasks by minimizing
local reconstruction error, we noted instances where compressed models, despite achieving lower
perplexity, underperformed in zero-shot tasks. This discrepancy may stem from the models overfitting
local reconstructions to calibration data. Addressing this overfitting remains a challenge for our
method.

Broader Impacts The introduction of Modular Decomposition (MoDeGPT) significantly impacts
the ethical deployment and broader adoption of Large Language Models (LLMs). By minimizing
computational demands, MoDeGPT enables effective deployment on resource-constrained devices,
democratizing access to cutting-edge AI and potentially reducing the technological divide between
large and small entities.

Additionally, MoDeGPT ’s efficiency in using computational resources can decrease energy con-
sumption during AI training and inference, promoting sustainable AI practices and reducing the
environmental impact of large-scale computations. However, the potential for increased misuse of AI
technologies, such as surveillance and disinformation, highlights the need for robust governance and
ethical frameworks.

Ultimately, by maintaining high accuracy while reducing model size, MoDeGPT ensures the reli-
ability of AI applications in critical domains such as healthcare. The development of MoDeGPT
thus promises greater AI accessibility and sustainability, but it also introduces new challenges in
governance and ethical technology use.

35

	Introduction
	Background and Related Work
	Related Works
	Transformer architecture
	Low-rank matrix approximation

	MoDeGPT
	Modular Reconstruction Objective
	Algorithms
	Global Sparsity Allocation

	Experiments
	Setups
	Generation Performance
	Zero-shot performance
	Computation and Throughput
	Ablation study

	Conclusion
	Proofs
	Proof of Theorem 1 and Proposition 1: MLP Compression with Nyström Approximation
	Proof of Theorem 2 and Proposition 2: Key-Query Compression with CR Approximation
	Proof of Theorem 3 and Proposition 3: Value-Output Compression with SVD
	Proof of Theorem 4: Global Sparsity Allocation

	Additional Experiments
	Modified Algorithms for Grouped Query Attention
	Implementation Details
	Additional Generation and Zero-Shot Experiments
	Additional Baseline Comparisons: Feature-Mimic and SVD Approaches
	Recovery Fine-tuning
	Experiments with Equal Computational Budgets
	Combination of MoDeGPT and SliceGPT
	Compression Time and Memory Consumption
	Global Sparsity Allocation
	Ablation Study on Compression in Each Module
	Scalability to Larger Models
	High Compression Rate Experiments
	Sensitivity Analysis of Dfferent Calibration Sets
	Additional Speedup Experiments

	Limitations and Broader Impacts

