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Abstract

Knowledge editing has emerged as an effective
approach for updating large language models
(LLMs) by modifying their internal knowledge.
However, their application to the biomedical
domain faces unique challenges due to the long-
tailed distribution of biomedical knowledge,
where rare and infrequent information is preva-
lent. In this paper, we conduct the first com-
prehensive study to investigate the effective-
ness of knowledge editing methods for editing
long-tail biomedical knowledge. Our results
indicate that, while existing editing methods
can enhance LLMs’ performance on long-tail
biomedical knowledge, their performance on
long-tail knowledge remains inferior to that
on high-frequency popular knowledge, even
after editing. Our further analysis reveals that
long-tail biomedical knowledge contains a sig-
nificant amount of one-to-many knowledge,
where one subject and relation link to multi-
ple objects. This high prevalence of one-to-
many knowledge limits the effectiveness of
knowledge editing in improving LLMs’ un-
derstanding of long-tail biomedical knowledge,
highlighting the need for tailored strategies to
bridge this performance gap'.

1 Introduction

Recently, knowledge editing (Meng et al., 2022a;
Yao et al., 2023) has emerged as a promising ap-
proach to efficiently update large language models
(LLMs) by injecting new knowledge into their in-
ternal knowledge (Touvron et al., 2023; Achiam
et al., 2023). These methods have shown re-
markable performance in enhancing LLMs’ perfor-
mance across several general-domain tasks, such
as question answering (QA) (Huang et al., 2023),
knowledge injection (Li et al., 2024), and knowl-
edge reasoning (Wang et al., 2024a).

'Code and datasets can be found in: https://anonymous.
4open.science/r/edit_bio_long_tail-82BF.
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Figure 1: LLMs often struggle with long-tail biomedical
knowledge, where entities co-occur in a few documents.
Knowledge editing offers a potential solution by inject-
ing this rare information into LLMs, improving their
ability to handle such long-tail knowledge.

While knowledge editing methods have proven
effective in general-domain tasks, their application
to the biomedical domain presents unique chal-
lenges (Wu et al., 2024b). Specifically, real-world
biomedical data often exhibit a long-tailed distri-
bution, with a small amount of popular knowledge
and a large amount of long-tail knowledge that ap-
pears rarely or only once (Wu et al., 2024b; Delile
et al., 2024). For example, the common disease
“Type 1 Diabetes” is mentioned in over 106,138
papers in PubMed (Roberts, 2001), while a rare
disease like “Evans Syndrome” appears in only
about 23 papers (Wei et al., 2013). Recent studies
indicate that the low frequency of knowledge in
the pre-training corpus can hinder LLMs’ under-
standing of this knowledge (Kandpal et al., 2023;
Wu et al., 2024b). Figure 1 illustrates an example
where LLMs struggle with low-frequency biomed-
ical knowledge. This is particularly problematic as
LLMs are increasingly being used by healthcare
professionals, including doctors, to assist in diag-
nosis and treatment recommendations (Tian et al.,
2024). As LLMs become more integrated into clin-
ical practice, their ability to accurately handle rare
but critical biomedical knowledge becomes essen-
tial. This raises a critical question for knowledge
editing in the biomedical domain:

Can knowledge editing methods effectively edit
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large language models to incorporate long-tail
biomedical knowledge?

In this work, we present the first comprehen-
sive study to investigate the effectiveness of knowl-
edge editing for long-tail biomedical knowledge.
We focus on biomedical knowledge represented as
knowledge triples and leverage knowledge prob-
ing (Alghanmi et al., 2021) to evaluate whether
LLMs have effectively acquired this knowledge.
Specifically, knowledge probing is a technique
that queries LLMs to assess their internal factual
knowledge (Meng et al., 2022b). As illustrated in
Figure 1, we probe LLMs with questions gener-
ated from biomedical knowledge triples to deter-
mine whether they can correctly recall the target
knowledge. By comparing the knowledge prob-
ing results of LLMs before and after editing, we
can evaluate how effectively knowledge editing en-
hances LLMs’ ability to handle long-tail biomedi-
cal knowledge. Our key findings are:

* LLMs struggle to capture long-tail biomedical
knowledge through pre-training.

* Knowledge editing can enhance LLMs’ per-
formance on long-tail biomedical knowledge,
but it remains less effective compared to more
common knowledge.

* Edited LLMs can memorise the form of long-
tail knowledge, but their ability to generalise
such knowledge is limited.

* We define one-to-many knowledge as triples
where a single subject-relation pair is linked
to multiple valid objects. This pattern is preva-
lent in long-tail biomedical knowledge and is
a key factor leading to LLMs’ poor perfor-
mance in capturing long-tail knowledge.

* Effectively handling one-to-many knowledge
is critical for improving LLMs’ performance
on long-tail biomedical knowledge through
knowledge editing.

2 Background and Definitions

This section defines long-tail biomedical knowl-
edge and briefly introduces the knowledge probing
and editing techniques used in our experiments.

2.1 Long-Tail Biomedical Knowledge

We denote biomedical knowledge using knowledge
triple (s, 7, 0), where s is the subject, 7 is the re-
lation, and o is the object. Let D be the set of
documents in the pre-training corpus, and D(s, 0)

be the subset of documents where both s and o co-
occur. We define the co-occurrence number of the
knowledge triple as |D(s, 0)|, which represents the
frequency of knowledge (s, r, 0) within the docu-
ment set D (Kandpal et al., 2023). In this paper,
following Mallen et al. (2023) and Kandpal et al.
(2023), we define long-tail knowledge as:

Ki={(s,r,0) | |D(s,0)| < a}, (D

where K; denotes the set of long-tail knowledge
and « represents a predefined threshold.

2.2 Knowledge Probing

Knowledge probing aims to evaluate LLMs’ ability
to capture factual knowledge (Meng et al., 2022b),
and can serve as an evaluation method to assess
the effectiveness of knowledge editing (Hernandez
et al., 2023). Specifically, given a subject s and a
relation r in a triple (s, , 0), we use a manually
designed template 7 (s,7) to generate a natural
language question, which is then fed into an LLM
fo to generate the object o as the answer. Follow-
ing prior works Meng et al. (2022a) and Kassner
et al. (2021), accuracy (ACC) is commonly used to
evaluate the performance of LLM in recalling the
correct target entity o, which is formulated as:

IE(S,T,O)N'P]I {arg m;lX f@(y | T(Sa ’I")) = O} 5
(2)

where E, ;. )~ denotes the expectation over a set
of knowledge triples P, y indicates the predicted
answer and I{-} is the indicator function. In this
paper, we compare the knowledge probing results
of LLMs before and after knowledge editing to
investigate the effectiveness of editing methods in
handling long-tail biomedical knowledge.

2.3 Knowledge Editing

Knowledge editing (Yao et al., 2023) aims to inject
a new knowledge (s, r, o) into an LLM through a
specific edit descriptor (x, ye) (Yao et al., 2023).
Given a knowledge (s, r,0) for editing, x. can
be formulated as (s,r), and y. = o. The ulti-
mate target of knowledge editing is to obtain an
edited model fy,_, which effectively integrates the
intended modifications within the editing scope,
while preserving the model’s performance for out-
of-scope unrelated facts:

fo. () = {y

ifx € I(xe,ye)

ifx € O(xe, ye) ©)

fo(x)
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Figure 2: An overview of probing and editing for biomedical knowledge. These knowledge triples are classified into
different groups based on co-occurrence number and further divided into one-to-one and one-to-many categories
based on the number of correct answers (see § 4.4). The increasing performance with the number of co-occurrence
number indicates that LLMs struggle to effectively capture long-tail biomedical knowledge before and after editing.

Here, the in-scope set I(z.,y.) includes z, and
its equivalence neighborhood N (x., y.), which in-
cludes related input/output pairs. In contrast, the
out-of-scope O(z., y.) contains inputs that are un-
related to the edit descriptor (ze, Ye ).

3 Identifying Long-Tail Biomedical
Knowledge

Due to the lack of biomedical datasets specifically
designed to evaluate long-tail knowledge, we de-
velop a pipeline to extract such knowledge. In
this section, we outline the procedures for extract-
ing long-tail biomedical knowledge, with further
details provided in Appendix A and Figure 7.

We focus on biomedical knowledge represented
as knowledge triples and extract these triples from
SNOMED CT (Donnelly et al., 2006), which is a
comprehensive biomedical knowledge graph com-
prising over 1.4 million clinical triples (Benson and
Grieve, 2021), and widely used to evaluate LLMs’
understanding of biomedical knowledge (Meng
et al., 2022b). Following previous work (Kand-
pal et al., 2023), we adopt the co-occurrence num-
ber—i.e., how often a triple’s subject and object ap-
pear in the same document—as a proxy for knowl-
edge popularity. To identify the long-tail knowl-
edge within these triples, we use an entity link-
ing pipeline to compute the co-occurrence number
of each triple in the PubMed corpus?, which is a

2https://pubmed.ncbi .nlm.nih.gov/

widely used biomedical corpus for pre-training. In
the entity linking pipeline, we use PubTator (Wei
et al., 2013) to annotate entities in the PubMed
corpus and then use SapBERT (Liu et al., 2021) to
link knowledge triple entities to PubMed entities.
Subsequently, we compute the co-occurrence num-
ber for each triple. Long-tail knowledge is defined
as triples with a co-occurrence number less than
10 (Kandpal et al., 2023). As a result, we obtained
59,705, 14,087, and 28,375 triples for the training,
validation, and test sets, respectively, stratified by
varying levels of co-occurrence. The statistics of
the dataset are presented in Table 1. We refer to our
dataset as CliKT (Clinical Knowledge Triples).
To evaluate LLMs’ ability to understand these
triples, we generate question-answer pairs follow-
ing Meng et al. (2022a). For each triple, we con-
struct a question using the subject and relation,
with the object serving as the answer. For exam-
ple, for the triple (Diabetes, treated_by, Insulin),
the corresponding QA pair is: What is Diabetes
treated by? Answer: Insulin. The template for
constructing questions is provided in Table 3.

4 Knowledge Editing for Long-Tail
Biomedical Knowledge

In this section, we investigate the effectiveness of
knowledge editing methods in enhancing LLMs’
ability to handle long-tail biomedical knowledge.
Since some editing methods, e.g., MEND (Mitchell
et al., 2022) and IKE (Zheng et al., 2023a), require
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Item Train  Valid Test
# Triples 59,705 14,087 28375
|D(s,0)| < 10! 52,297 11,476 22,952
[D(s,0)| € [10',10%) 5,363 2,055 4,110
|D(s,0)| € [102,10%) 1,659 551 1,103
[D(s,0)| > 103 386 105 210
# Relations 21 21 21
# Subjects 39,654 12,267 21,872
# Objects 7,867 3,526 4,706

Table 1: The statistics of CliKT dataset. |D(s, 0)| rep-
resents the oc-occurrence number of knowledge triple.

training data, we follow the data splitting strat-
egy proposed by Meng et al. (2022a) to divide our
CIiKT dataset into training, validation, and test sets
(see Table 1)3. We report all results on the test set.

4.1 Experimental Setup

LLMs. To investigate whether LLMs can be edited
for long-tail biomedical knowledge, we focus on
LLMs that are specifically pre-trained on biomedi-
cal data. We employ two models primarily trained
on PubMed: BioGPT-Large (Luo et al., 2022) and
BioMedLLM (Bolton et al., 2024). Furthermore, we
include four general-domain LLMs: Llama2 (Tou-
vron et al., 2023), Llama3 (Grattafiori et al.,
2024), GPT-J (Wang and Komatsuzaki, 2021) and
Qwen2.5 (Yang et al., 2024) to evaluate whether
our findings generalise to models not specifically
trained on biomedical data®*.

Knowledge Editing Methods. For knowledge
editing, we employ the following methods, which
have demonstrated strong effectiveness in knowl-
edge injection tasks (Wang et al., 2025):

* ROME (Meng et al., 2022a): ROME updates
an MLP layer to encode new information by
treating the MLP module as a key-value mem-
ory. It relies on causal mediation analysis to
precisely identify the location for editing.

* MEMIT (Meng et al., 2023): it employs the
localisation strategies from ROME and ap-
plies explicit parameter adjustments to inject
new knowledge across multiple layers.

* MEND (Mitchell et al., 2022): MEND en-
ables efficient, targeted updates to LLMs by
leveraging low-rank gradient transformations.
It enables quick, localised modifications in
model behaviour using only a single input-
output example, while preventing overfitting.

3Details of dataset splitting method are in Appendix A.3.
“Details of these LLM:s are provided in Appendix B.1.

60
;550 '/‘///_’
8 //o——o
40
30
Llama2 —e— BioMedLM
—e— GPT- BioGPT-Large
+ 20000
c
310000
O
0 10! 10° 103

Co-occurrence Number

Figure 3: The overall performance of pre-edit prob-
ing on Llama2, GPT-J, BioMedLM and BioGPT-Large.
The shaded areas indicate the standard deviation and
Count denotes the number of triples within each group.

* IKE (Zheng et al., 2023a): IKE modifies fac-
tual knowledge in LLMs through in-context
learning without updating parameters. It cor-
rects specific knowledge using demonstration
contexts, reducing over-editing and preserv-
ing previously stored knowledge.

* FT (Yao et al., 2023): FT updates model pa-
rameters using gradient descent on a single
MLP layer identified by ROME. We employ
the FT implementation within the EasyEdit
framework (Wang et al., 2023b).

We follow the official implementations for each
method and perform hyperparameter tuning on our
CIiKT dataset to ensure a fair comparison’.
Evaluation Metrics. We use knowledge probing
to assess whether LLMs have successfully acquired
biomedical knowledge within the CliKT dataset.
Specifically, we assess their zero-shot QA perfor-
mance on the test-set questions, using accuracy
(ACC) as the evaluation metric, as detailed in § 2.2.

In addition, we adopt standard knowledge edit-
ing metrics (Meng et al., 2022a; Yao et al., 2023) to
assess the effectiveness of editing: (1) Reliability
measures whether the model correctly incorporates
the target knowledge after editing—i.e., whether it
outputs the correct answer for the edited input; (2)
Generalisation evaluates whether the model can
apply the updated knowledge to semantically simi-
lar variations (e.g., paraphrased queries), reflecting
the robustness of the edit; (3) Locality assesses
whether unrelated predictions remain unaffected

*Details about the training and hyperparameter tuning
process can be found in Appendix B.4.
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Figure 4: The performance of knowledge probing after
editing with different editing methods on BioMedLM,
where “Base” denotes LLM without editing.

after editing, ensuring that edits are localized and
do not introduce unintended side effects.

Evaluation examples for these three metrics are
derived from the test set of CliKT. Due to space
limit, more details about metric definitions, evalua-
tion example construction procedures and illustra-
tive examples are provided in Appendix B.2.

4.2 Pre-Edit Results on Long-Tail Biomedical
Knowledge

Finding 1: LLMs struggle to capture long-tail
biomedical knowledge through pre-training.

To investigate whether LLMs face challenges in
capturing long-tail biomedical knowledge during
pre-training, we categorise biomedical knowledge
triples in CliKT into different groups based on their
co-occurrence number |D(s, 0)| and evaluate the
probing results of LLMs across these groups.

The bottom portion of Figure 3 shows the distri-
bution of triples across the different groups, which
highlights the long-tail nature of biomedical knowl-
edge, where long-tail knowledge accounts for the
majority of the data. The results for biomedical
LLMs and general-domain LLMs are illustrated in
the top portion of Figure 3. Specifically, Figure 3
shows that the performance of LLMs declines as
the co-occurrence number decreases. In particu-
lar, the performance of BioMedLM on long-tail
knowledge (|D(s,0)| < 10) is 22.86% lower rel-
ative to its performance on popular knowledge
(|D(s,0)] > 10%). This trend is also evident
in general-domain LLMs. For example, Llama2
experiences an accuracy drop of 16.86% when
handling long-tail biomedical knowledge com-
pared with popular knowledge. These results in-
dicate that LLMs struggle with long-tail biomed-
ical knowledge, highlighting the challenge of ac-
curately capturing long-tail knowledge during pre-
training. Furthermore, Figure 3 shows that as the

Group Edit Reliability? Gen.t Localityt
ROME 98.02 68.42 83.70
MEMIT 86.21 4736  98.10
<10! MEND 91.32 46.75 89.60
IKE 83.87 4370 97.81
FT 32.52 40.36 96.80
ROME 98.11 70.10 84.60
MEMIT 89.21 4821 9730
[10',10?) MEND 88.90 47.80 89.83
IKE 84.52 45.12 96.80
FT 33.35 40.78 97.90
ROME 98.63 72.50 84.62
MEMIT 89.01 5147 9790
[102,10%) MEND 88.94 48.83 91.40
IKE 85.89 4674  96.85
FT 33.89 44.62 96.66
ROME 98.66 72.54 84.45
MEMIT 89.87 50.00 9743
> 108 MEND 90.96 49.86 90.92
IKE 85.91 48.76 96.87
FT 34.84 44.62 97.57

Table 2: Performance of knowledge editing methods on
the CliKT dataset across different co-occurrence num-
ber groups. The best performance per group is marked
in boldface, while the second-best performance is un-
derlined. 1 indicates that higher values reflect better
performance, and “Gen.” stands for Generalisation.

co-occurrence number decreases, the standard de-
viation of ACC increases. This observation implies
that LLMs exhibit greater confidence when pro-
cessing popular biomedical knowledge than long-
tail biomedical knowledge.

Based on the above analysis, we conclude that
LLMs indeed struggle to capture long-tail biomedi-
cal knowledge. As long-tail knowledge constitutes
the majority of biomedical data, it is crucial to ex-
plore methods that can effectively improve LLMs’
performance on long-tail biomedical knowledge.

4.3 Post-Edit Results for Long-Tail
Biomedical Knowledge

Finding 2: Knowledge editing can enhance LLMs’
performance on long-tail biomedical knowledge,
but it remains less effective compared to more com-
mon knowledge.

Subsequently, we investigate the effectiveness of
knowledge editing for long-tail biomedical knowl-
edge. We apply existing knowledge editing meth-
ods to inject biomedical knowledge from the CliKT
dataset into LLMs and then follow the procedures
in the pre-edit experiments for evaluation.

The post-edit probing results for BioMedLM®
are presented in Figure 4. These results yield the

The results of other LLMs, i.e., BioGPT, Llama2, Llama3,
Qwen2.5, can be found in Figure 8 of the Appendix, which
show similar findings as BioMedLM.
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Figure 5: The comparison of knowledge probing performance between one-to-one and one-to-many settings across
different co-occurrence numbers, with the pie chart on the far right illustrating the data distribution.

following findings: (1) Knowledge editing meth-
ods, especially ROME, can enhance LLM’s ability
in handling long-tail biomedical knowledge. For
example, Figure 4 shows that BioMedLM edited
with ROME achieves an improvement of approx-
imately 52.08% in ACC on long-tail knowledge
(|D(s,0)| < 10) compared to the base model be-
fore editing; (2) Despite the improvements from
knowledge editing, Figure 4 also reveals that ACC
of post-edit LLMs consistently drops as the co-
occurrence number decreases across all the edit-
ing methods. Specifically, for ROME, the ACC on
long-tail knowledge is still 16.15% relatively lower
than on popular knowledge (|D(s,0)| > 10%).
This indicates that even after editing, the edited
LLMs still struggle with long-tail knowledge.

Finding 3: Edited LLMs can memorise the form of
long-tail knowledge, but their ability to generalise
such knowledge is limited.

In addition to the post-edit probing results, we
also calculate the other editing metrics outlined in
§4.1 to comprehensively evaluate the effectiveness
of the editing methods. Specifically, we calculate
the Reliability, Generalisation and Locality metrics
of edited models across different groups of biomed-
ical knowledge. From the results in Table 2, we
observe that ROME’s Reliability remains above
98% across all groups, with no significant varia-
tion. Similarly, the Reliability of MEMIT, MEND,
and IKE is largely unaffected by the co-occurrence
number, indicating that the edited LLMs’ ability
to memorise the form of inserted knowledge is
not influenced by long-tail knowledge. However,
the generalisation performance declines as the co-
occurrence number decreases, which aligns with
the observed reduction in post-edit ACC for edited-
LLMs as the co-occurrence number decreases.
This observation suggests that, although edited
LLMs can memorize the form of long-tail knowl-
edge itself after knowledge editing, their ability

to generalise this long-tail knowledge, especially
in reasoning and responding to related questions,
remains influenced by low co-occurrence numbers.

Furthermore, we observe that, though all the
editing methods exhibit relatively strong perfor-
mance in terms of locality across groups, ROME
is affected more than the other methods. This in-
dicates that while ROME achieves the best reli-
ability and generalisation, it may slightly affect
unrelated knowledge, consistent with the observa-
tions of Wang et al. (Wang et al., 2024b).
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Figure 6: The knowledge probing performance of
BioMedLM on both one-to-one knowledge and one-
to-many knowledge before and after editing.

4.4 Knowledge Type Analysis in Editing

In this section, to further investigate the cause of
the performance gap between long-tail and popu-
lar biomedical knowledge before and after editing,
we further subdivide both long-tail and popular
knowledge into two categories: one-to-one and
one-to-many. The one-to-one knowledge refers to
triples where a subject is linked to a single object
via a given relation, while one-fo-many knowledge
represents triples where the same subject-relation
pair is linked to multiple objects (Nagasawa et al.,
2023). For example, the triple (Type I diabetes,
therapeutic procedure, insulin therapy) represents
a one-to-one knowledge, where “Type 1 diabetes”
is associated with a single object, “insulin therapy”.



In contrast, (hypertension, associated with, heart
disease) exemplifies a one-to-many knowledge,
where “hypertension” can be linked to multiple

objects, such as “stroke” or “kidney disease’”.

4.4.1 Pre-Edit Probing of Different Types of
Knowledge

Finding 4: The prevalence of one-to-many knowl-
edge in long-tail biomedical knowledge is a key
factor contributing to LLMs’ poor performance in
capturing such long-tail knowledge.

Figure 5 shows the pre-edit probing results of
one-to-one and one-to-many knowledge across dif-
ferent co-occurrence number groups. We found
that one-to-one knowledge is almost unaffected
by co-occurrence numbers and consistently outper-
forms one-to-many knowledge in all groups. For
instance, BioGPT achieves an ACC that is approx-
imately 115.56% higher on one-to-one knowledge
compared to one-to-many knowledge. In contrast,
for one-to-many knowledge, results from BioGPT,
BioMedLM, and Llama2 all show a steady in-
crease in ACC as the co-occurrence number in-
creases. This suggests that co-occurrence num-
ber, or knowledge frequency, has a significant
impact on LLMs’ ability to accurately compre-
hend one-to-many knowledge. We further anal-
ysed the distribution of one-to-one and one-to-
many knowledge. Figure 5 shows that as the co-
occurrence number increases, the proportion of
one-to-many knowledge decreases while one-to-
one knowledge increases. In the long-tail knowl-
edge group (|D(s,0)| < 10), 90.4% of the knowl-
edge is one-to-many. This analysis reveals that
LLMs’ difficulty with long-tail biomedical knowl-
edge before editing is primarily due to the large
proportion of one-to-many knowledge, which is
challenging for LLMs to comprehend, as it in-
creases the probability that the correct answers
will not align with the model’s output.

4.4.2 Knowledge Editing for Different Types
of Knowledge
Finding 5: Effectively handling one-to-many
knowledge is critical for improving LLMs’ perfor-
mance on long-tail biomedical knowledge through
knowledge editing.
Next, we apply editing methods to both one-
to-one and one-to-many knowledge. The results
"The detailed evaluation process of one-to-one and one-to-

many knowledge, following the same procedure described in
Section 4.1, can be found in Appendix B.3.

for BioMedLLM? are provided in Figure 6, which
indicate that while editing methods enhance perfor-
mance on one-to-many knowledge, the improve-
ment remains limited. For instance, in the ROME-
edited BioMedLM for the long-tail knowledge
(ID(s,0)| < 10), the ACC for one-to-one knowl-
edge was initially 42.19% higher than that for one-
to-many knowledge. After applying the editing,
this gap decreased to 16.43%. However, the per-
sistent gap also highlights that even after editing,
the model’s performance on one-to-many knowl-
edge, which constitutes the majority of long-tail
knowledge, remains constrained. This finding sug-
gests that despite knowledge editing can enhance
LLMs’ capability in handling one-to-many know!l-
edge, there remains a challenge in bridging the
performance gap between one-to-one and one-to-
many knowledge. This limitation is critical given
that one-to-many knowledge constitutes the major-
ity of long-tail knowledge.

5 Related Work
5.1 LLMis for the Biomedical Domain

LLMs have achieved remarkable progress in the
biomedical domain (Tian et al., 2024). Early ad-
vance were led by BERT (Vaswani et al., 2017) and
its variants, such as BioBERT (Lee et al., 2020)
and Clinical BERT (Huang et al., 2019), which
showed significant improvements in named en-
tity recognition and relation extraction when ap-
plied to large datasets such as PubMed and clin-
ical notes (Perera et al., 2020; Sun et al., 2021).
GPT-based models, including GPT-J (Wang and
Komatsuzaki, 2021), BioGPT (Luo et al., 2022)
and BioMedLM (Bolton et al., 2024), further en-
hanced biomedical text generation and question
answering (Tian et al., 2024). Recent LLMs
like Llama (Touvron et al., 2023), Falcon (Al-
mazrouei et al., 2023), and Palm (Chowdhery et al.,
2023) have scaled transformer architectures to ad-
dress more complex tasks, such as biomedical
knowledge reasoning (Wu et al., 2024a; Watan-
abe et al., 2024) and assisting in clinical decision-
making (Sandmann et al., 2024). This work ex-
plores LLMs’ performance on long-tail biomedical
knowledge. We present the first study to investigate
how long-tail knowledge impacts LLMs in knowl-
edge editing, offering new insights into improving

8The results for other LLMs, i.e., BioGPT, Llama2,
Llama3, Qwen2.5, are provided in Figure 9 and Figure 10,
which demonstrate similar results as BioMedLM.



LLMs’ handling of rare biomedical information
through knowledge editing techniques.

5.2 Knowledge Editing

Existing knowledge editing methods can be clas-
sified into three categories (Yao et al., 2023):
memory-based (Zheng et al., 2023b), meta learn-
ing (Mitchell et al., 2022), and locate-then-
edit (Meng et al., 2022a). Memory-based methods,
like IKE (Zheng et al., 2023b), leverage external
memory to update knowledge without changing
model parameters. Meta-learning methods, such
as KE (Cao et al., 2021), train a hyper-network to
generate updated weights. MEND (Mitchell et al.,
2022) improves on this by using low-rank gradient
updates for more efficient model edits.

Locate-then-edit approaches aim for more tar-
geted knowledge editing. Methods like KN (Dai
et al., 2022) use knowledge attribution to locate
relevant neurons but struggle with precise weight
updates. ROME (Meng et al., 2022a) advances
this by using causal tracing to locate and edit the
Feed Forward Network (FFN) layers, which act
as key-value memories (Geva et al., 2021, 2023).
MEMIT (Meng et al., 2023) further expands this
technique for batch editing. To the best of our
knowledge, this work is the first to investigate
the effectiveness of knowledge editing on long-tail
biomedical knowledge.

5.3 Long-Tail Knowledge within LLMs

Existing studies have explored how long-tail
knowledge, affects LLMs’ performance (Shin et al.,
2022; Han and Tsvetkov, 2022; Elazar et al., 2022;
Mallen et al., 2023; Kandpal et al., 2023). Mallen
et al. (2023) find that commonsense QA accu-
racy is strongly correlated with the frequency of
entity popularity in the pre-training data from
Wikipedia (Milne and Witten, 2008). Similarly,
Elazar et al. (2022) employ causal inference to
investigate how pre-training data statistics affect
commonsense QA, highlighting how models rely
on co-occurrence patterns between subjects, ob-
jects, and text to answer questions. More recently,
Kandpal et al. (2023) explore the connection be-
tween the knowledge LLMs acquire for general-
domain QA tasks and its frequency in the pre-
training corpus, introducing comparative experi-
ments involving model retraining and scaling.
Despite these findings, most prior works have
focused on general-domain QA, leaving the long-
tail biomedical domain remaining largely unex-

plored (Wu et al., 2024b). This gap is especially
concerning as LLLMs are increasingly being used
by healthcare professionals, including doctors, to
assist in diagnosis and treatment recommendations.
Our research fills this gap by investigating the influ-
ence of long-tail biomedical knowledge on LLMs
through knowledge probing and examining its im-
pact on the effectiveness of knowledge editing.

6 Discussion

While our work highlights the challenges LLMs
face in capturing and editing biomedical one-to-
many knowledge, we acknowledge that addressing
these limitations requires further exploration. We
outline several promising directions that may help
improve performance in this domain: (1) Retrieval-
augmented generation (RAG): incorporating exter-
nal biomedical knowledge by retrieving relevant
documents or triples could help LLMs better han-
dle long-tail biomedical knowledge. This approach
has shown promise in open-domain QA (Gao et al.,
2023) and may be adapted for biomedical edit-
ing with domain-specific retrieval modules; (2)
Structure-aware finetuning: instead of treating
each triple independently, future work could ex-
plore fine-tuning strategies that explicitly model
the structure of one-to-many knowledge. For exam-
ple, training objectives can be designed to encour-
age the model to recognise that multiple objects
may be valid for a given subject-relation pair.

7 Conclusion

In this paper, we investigate the effectiveness of
knowledge editing methods for addressing the
challenges of long-tail biomedical knowledge in
LLMs. Our results show that while existing tech-
niques enhance performance on long-tail knowl-
edge, they still fall short compared to their per-
formance on high-frequency knowledge. This dis-
parity is largely due to the prevalence of one-to-
many knowledge structures in the biomedical do-
main, which complicate models’ ability to accu-
rately represent and edit such information. Our
results highlight the need for advanced editing tech-
niques specifically designed for long-tail knowl-
edge. These techniques should prioritise strategies
for effectively handling the intricacies of one-to-
many knowledge scenarios, which are particularly
common in the biomedical domain and remain a
significant obstacle for current methods.



Limitations

We identify the following limitations of our
work: (1) First, our approach to extracting long-
tail knowledge is based on document-level co-
occurrence frequency (Kandpal et al., 2023), which
captures general patterns of occurrence but lacks
refinement at the sentence level. This limitation
may cause our analysis to miss finer patterns in
knowledge distribution, especially in instances
where sentence-level context provides essential nu-
ances. Future work could enhance the long-tail
knowledge extraction pipeline by investigating co-
occurrence on the sentence-level to improve the
granularity of knowledge editing. (2) Second, our
experimental framework is limited to the collection
of over 100,000 biomedical knowledge extracted
from PubMed, an extensive repository of biomed-
ical literature. While we believe the scale of this
collection offers a robust foundation for evaluat-
ing our methods, our future research should focus
on extracting long-tail knowledge from a broader
range of domains to further validate the generalis-
ability of our findings. (3) Finally, we concentrate
on analysing limitations without proposing spe-
cific solutions, prioritising the establishment of a
comprehensive understanding. Future work will fo-
cus on developing methods to improve knowledge
editing performance on long-tail knowledge.
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Appendix

In the Appendix, we introduce more details along with dataset construction, experimental details, and
additional experimental results:

* Appendix A: CIliKT Construction (cf. Section 3).
* Appendix B: Experimental Details (cf. Section 2 and 3).
* Appendix C: Additional Results (cf. Section 3).

A CIliKT Construction

Due to the lack of datasets dedicated to evaluating long-tail biomedical knowledge, we propose CIliKT, a
new benchmark specifically designed to evaluate LLMs’ performance on long-tail biomedical knowledge.
Notably, given that PubMed is a widely used biomedical corpus for pre-training LLMs (Wang et al.,
2023a), which contains over 37 million abstracts of biomedical papers (Wei et al., 2013), we mainly
focus on PubMed data to extract long-tail biomedical knowledge. Specifically, we first extract knowledge
triples from SNOMED CT (Donnelly et al., 2006) (§A.1) to obtain a comprehensive set of biomedical
concepts and their relationships. Next, we employ an entity linking pipeline to map these triples back to
their corresponding documents in the PubMed (Roberts, 2001) corpus (§A.2), enabling us to identify
whether a triple represents long-tail knowledge based its occurrence in the corpus. Finally, we generate
question-answer (QA) pairs based on the knowledge triples to evaluate the ability of LLMs to capture the
factual knowledge, and conduct a human evaluation to show that our entity linking pipeline accurately
identifies relevant documents for the majority of the QA pairs.

A.1 Extracting Biomedical Knowledge Triples

We focus on the long-tail biomedical knowledge from the PubMed corpus. However, directly extracting
such knowledge from the entire corpus is a challenging task (Shetty and Ramprasad, 2021; Nguyen et al.,
2021; Abdullah et al., 2023). Therefore, following previous work (Alghanmi et al., 2021; Fei et al., 2021),
we leverage information from existing biomedical knowledge graphs to facilitate more efficient extraction.
Specifically, we extract all the knowledge triples from SNOMED CT (Donnelly et al., 2006), which is a
comprehensive biomedical knowledge graph comprising over 200K triples and widely used for assessing
LLMs’ understanding of biomedical knowledge (Meng et al., 2022b). Each triple is denoted as (head
entity, relation, tail entity), representing the relationship between two entities, e.g., (Type 1 Diabetes,
Therapeutic Procedure, Insulin therapy).

A.2 Mapping Knowledge Triples to PubMed Documents

We then develop an entity linking pipeline to map the extracted knowledge triples back to documents in
Pubmed (Roberts, 2001) to identify long-tail knowledge. The detailed procedure is as follows:

Entity Annotation. To facilitate the mapping of knowledge triples to specific PubMed documents, we
first need to annotate the entities within the PubMed corpus. To this end, we use PubTator (Wei et al.,
2013), a robust web-based text-mining tool that provides automatic annotations of biomedical concepts
in PubMed. Following the work of Wei et al. (2019), we obtain entity annotations within 37 million
PubMed abstracts®.

Entity Linking. After obtaining annotated entities, the next step is to map the knowledge triples to their
corresponding PubMed documents. Previous studies (Elsahar et al., 2018; Kandpal et al., 2023) suggest
that when the head entity and the tail entity of a knowledge triple co-occur within a document, it is likely
that the knowledge represented by the triple is expressed in that document. Based on this observation,
we define documents where both the head and tail entities of a knowledge triple co-occur as its related
documents, and the count of such documents as the co-occurrence number.

The annotated data is available at https://ftp.ncbi.nlm.nih.gov/pub/lu/PubTatorCentral/
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Type 1 Diabetes is a chronic condition in which the pancreas The common treatment of Fabry disease is Enzyme therapy, which

produces little or no insulin, leading to elevated blood sugar replaces the missing enzyme... Gene therapy offers a newer
levels... The only effective treatment for managing this condition is approach, targeting the genetic mutation directly, with the
Insulin therapy, making it the standard and essential approach for potential for longer-term benefits in addressing...These options
maintaining blood sugar levels in patients. provide different ways to manage the condition.
Entities Document Indices Entities Document Indices
Type 1 Diabetes —_— 3 22 47 Fabry disease E— 8 54 67
Insulin therapy — 3 17 22 Enzyme therapy — 8 32 54
KG Knowledge Triples Questions
TP What is the therapeutic procedure of Type 1 Diabetes Insulin thera
Type 1 Diabetes Insulin therapy s s e — S 2y
TP 1024 Docs \=="co-occur
Fabry disease Enzyme therapy -
What is the therapeutic procedure of  Fabry disease: Enzyme therapy
- ~— I
KG | Knowledge Graph TP |therapeutic procedure 6 Docs \—"co-occur

Figure 7: The pipeline for identifying long-tail biomedical knowledge consists of a systematic process encompassing
document collection, entity linking, knowledge graph traversal, and question generation.

To determine whether both the head and tail entities of a triple co-occur in a document, we use
SapBERT (Liu et al., 2021), an effective biomedical entity linking model, to match these entities to
those present in the document. For instance, given the triple (Hypertension, causes, heart disease) from
SNOMED CT, SapBERT can link “Hypertension” to its equivalent term “high blood pressure” in PubMed,
ensuring an accurate match with related documents. We iterate through the entire corpus to calculate the
co-occurrence number for each triple. We define triples with a low co-occurrence number as long-tail
biomedical knowledge.

Question Generation. Finally, we generate QA pairs based on the resulting triples to assess the LLMs’
ability to capture these knowledge triples. Following Meng et al. (2022a), we manually design templates
to generate questions using the head entity and the relation, while considering the tail entity as the answer.
For example, given a triple (Diabetes, treated_by, Insulin), the corresponding QA pair would be: Question:
What is Diabetes treated by? Answer: Insulin. We provide some example templates in Table 3, where
“Question” is the template used for constructing questions.

A.3 Dataset Splitting

After generating the question-answer pairs, we randomly split them into training, validation and test
sets using an 7:1:2 ratio. Following the initial split, we applied additional filtering to the training set by
discarding knowledge triples with zero co-occurrence number, resulting in a slightly smaller effective
training set. The detailed statistics of each split are provided in Table 1. To preserve the natural distribution
and diversity of relational patterns, we did not explicitly constrain the overlap of subjects or objects across
splits. As a result, some entities may appear in multiple sets. This design choice ensures a realistic and
challenging setting for evaluating editing methods that may rely on generalisation across related facts.

B Experimental Details

B.1 Details of Large Language Models

We employ two biomedical LLMs and two general-domain LLMs in our experiments:

* BioGPT-Large (Luo et al., 2022): A 1.5 billion parameter model from Microsoft, primarily
pre-trained on PubMed, excelling in drug discovery and medical record analysis.

* BioMedLLM (Bolton et al., 2024): A Stanford-developed model optimised for biomedical tasks,
pretrained on PubMed with 2.7 billion parameters, ideal for literature retrieval and information
extraction.
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Relation Template

Finding site Edit Prompt: “The finding site of [SUBJECT] is.”
Question: “What is the finding site of [SUBJECT]?”
Rephrase: “Where is [SUBJECT] typically found?”

Associated morphology Edit Prompt: “The associated morphology of [SUBJECT] is.”
Question: “What is the associated morphology of SUBJECT?”
Rephrase: “Can you describe the morphology associated with [SUBJECT]”

Causative agent Edit Prompt: “The causative agent of [SUBJECT] is”
Question: “What is the causative agent of [SUBJECT]?”
Rephrase: “Which pathogen causes [SUBJECT]?”

Interprets Edit Prompt: “[SUBJECT] interprets.”
Question: “What does [SUBJECT] interprets?”
Rephrase: “What is interpreted by [SUBJECT]?”

Procedure site Edit Prompt: “The procedure site of [SUBJECT] is”
Question: “What is the indirect procedure site of [SUBJECT]?”
Rephrase: “Where is the procedure site for [SUBJECT]?”

Pathological process Edit Prompt: “The pathological process of [SUBJECT] involves.”
Question: “What is the pathological process of [SUBJECT]?”
Rephrase: “Which pathological process does [SUBJECT] involve?”

Due to Edit Prompt: “[SUBJECT] is due to.”
Question: “What is the [SUBJECT] due to?”
Rephrase: “What is the cause of [SUBJECT]?”

Has active ingredient Edit Prompt: “The active ingredient of [SUBJECT] is.”
Question: “What is the active ingredient of [SUBJECT]?”
Rephrase: “What active ingredient does [SUBJECT] have?”

Part of Edit Prompt: “[SUBJECT] is a part of.”
Question: “What is the [SUBJECT] a part of?”
Rephrase: “To what is [SUBJECT] a part?”

Has definitional manifestation Edit Prompt: “The definitional manifestation of [SUBJECT] is.”
Question: “What is the definitional manifestation of [SUBJECT]?”
Rephrase: “How is [SUBJECT] manifested definitionally?”

Component Edit Prompt: “The component of [SUBJECT] is.”
Question: “What is the component of [SUBJECT]?”
Rephrase: “What components does [SUBJECT] consist of 7

Table 3: Examples of relation templates demonstrate how each relation is transformed into input prompts, which
can categorized into three parts: Edit Prompt, Question, and Rephrase. The “Edit Prompt” is used for knowledge
editing and reliability evaluation, the “Question” is designed for knowledge probing, and the “Rephrase” is used to
assess generalisation metrics. The complete template for all the relations can be found in our github repository.

* Llama2 (Touvron et al., 2023): A Meta-developed model with 7 billion parameters, designed for
general-purpose language tasks. It has been leveraging large-scale pretraining on diverse datasets,
including biomedical corpora.

* GPT-J (Wang and Komatsuzaki, 2021): A 6 billion parameter open-source model by EleutherAl,
trained on the Pile dataset, which includes a significant portion of biomedical texts from PubMed.
In addition to the models listed above, we also include results for two recently released models,

Llama3 (Grattafiori et al., 2024) and Qwen2.5 (Yang et al., 2024), to provide a broader view of knowledge
editing performance across both biomedical-specific and general-purpose LLM:s.

B.2 Details of Knowledge Editing Evaluation Metrics

To evaluate the effectiveness of knowledge editing, we adopt three standard metrics: Reliability, Generali-
sation, and Locality. All evaluation instances are derived from the test split of the CliKT dataset. Below,
we define each metric, describe how its evaluation data is constructed, and provide illustrative examples.
(1) Reliability: This metric evaluates whether the model has correctly incorporated target knowledge
after editing. Specifically, it measures the model’s accuracy on a set of test instances (., y.) that directly
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correspond to the target edits.

Eap yin{(@eyey! {argmax fo.ly [ we) = y;} : )
Y

Construction Procedure. For each knowledge triple we aim to edit, e.g., (Type I Diabetes, Therapeutic
Procedure, Corticosteroids), we first use an Edit Prompt, such as “The therapeutic procedure of Type
1 Diabetes is Corticosteroids.” to inject the knowledge into the model. We then use a corresponding
evaluation question, such as “What is the therapeutic procedure of Type 1 Diabetes?”, paired with its
correct answer “Corticosteroids”, to assess whether the edit was successful. These input-output pairs
form the test set used to compute the reliability score.

(2) Generalisation: Considering that paraphrased sentences are modified accordingly through editing,
this metric measures the average accuracy on equivalent neighbours R(x., y. ), where equivalent neigh-
bours are rephrased questions based on the edited knowledge. This metric evaluates the model’s ability
to apply the edited knowledge to semantically equivalent but surface-form-different inputs. It reflects
whether the edit generalises beyond the exact phrasing used during editing. Formally, it measures the
accuracy on a set of paraphrased input-output pairs R(z., ye):

Bay yi~Rzeye) 1 {argmax fo.(y | x) = yé} . (5)
Y

Construction Procedure. Given a factual triple targeted for editing, e.g., (Type I Diabetes, Therapeutic
Procedure, Corticosteroids), we first construct an evaluation question in canonical form, such as “What
is the therapeutic procedure of Type 1 Diabetes?”. To assess generalisation, we generate another
semantically equivalent paraphrases of this question, e.g., “Which treatment is used for Type 1 Diabetes?”
or “How is Type I Diabetes typically treated?”. These paraphrases are created using a predefined
Rephrase template. The expected answer “Corticosteroids” remains unchanged across all variants,
and the model’s ability to produce the correct answer across paraphrases indicates the strength of
generalisation.

(3) Locality: This metric assesses whether the knowledge edit remains localized—that is, whether the
model’s behavior on unrelated inputs remains unchanged after editing. It reflects the extent to which the
edit introduces undesired side effects on out-of-scope content. Formally, locality measures the consistency
between the model’s pre-edit and post-edit predictions over a set of unrelated input examples O(z¢, ).

Bt i mO(wewe) I {fo. (W | 20) = foly | )} (6)

Construction Procedure. To evaluate locality, for each triple we aim to edit, we randomly sample one
triple from the test set that is not semantically related to it. We ensure that the sampled triple involves
a different subject and relation to ensure that it lies outside the semantic scope of the edit. For this
unrelated triple, e.g., (Aspirin, Side Effect, Nausea), we then construct a natural language question with its
“Rephrase Prompt”, such as “What side effect is associated with Aspirin?”, to test whether the model’s
prediction remains unchanged after the edit. High locality indicates that the edit does not inadvertently
affect unrelated knowledge stored in the model.

Please refer to Table 3 for examples of relation-specific templates used to generate the edit prompts,
canonical questions and their paraphrased forms.

B.3 Evaluation for One-to-One and One-to-Many Knowledge

In our evaluation, both one-to-one and one-to-many knowledge triples are evaluated under a unified
framework that assesses each triple individually. For one-to-one knowledge, each test instance corresponds
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Figure 8: The performance of knowledge probing after editing with different editing methods on BioGPT and
Llama2, where “Base” denotes LLM without editing.

to a unique subject-relation-object triple, and the model is evaluated on its ability to produce the correct
object given a natural language question constructed from the subject and relation.

For one-to-many knowledge, we follow the definition where a single subject-relation pair is associated
with multiple valid objects (Nagasawa et al., 2023). Importantly, we do not expect the model to generate
all corresponding objects simultaneously. Instead, each (s, 7, 0;) triple is treated as a separate test case,
with its own query and expected answer. This allows for consistent evaluation using the same protocol as
in the one-to-one setting. For example, if a subject-relation pair (s, r) is associated with objects 0 and
02, We construct two separate questions based on (s, r), and evaluate whether the model can correctly
return o; and os in their respective instances. This ensures that each fact is evaluated separately, while
preserving the structural diversity inherent in one-to-many knowledge.

We adopt the same accuracy-based probing method described in Section 2.2, and apply it uniformly
across all triple types.

B.4 Details of Training and Hyperparameter Tuning of Baselines

To ensure fair and rigorous comparison, we closely followed the official implementations of each baseline
method and adapted them to our biomedical knowledge editing setting using the CliKT dataset. Tuning
was informed by empirical performance and grounded in established practices from prior works (Meng
et al., 2022a; Mitchell et al., 2022; Zheng et al., 2023a). In what follows, we detail the training and
hyperparameter tuning procedures for each method:

ROME (Meng et al., 2022a): We used the causal trace method from ROME to determine the optimal
editing layer for BioMedLM, identifying Layer 5 as the most effective. Other fixed parameters include
the learning rate and number of editing steps, aligned with the original ROME implementation. The main
tuned hyperparameter was the weight applied to the MLP component in the editing layer. Edits were
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Figure 9: Knowledge probing performance before and after editing for one-to-one and one-to-many knowledge on
BioGPT and Llama2.
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Figure 10: Knowledge probing performance before and after editing on one-to-one and one-to-many knowledge for
Llama3 and Qwen2.5.

applied directly to test set instances using these optimised settings.

MEMIT (Meng et al., 2022a): Similar to ROME, we fixed the learning rate and number of editing steps.
MEMIT modifies a range of layers simultaneously; using causal trace results, we selected Layers 3
through 8 as the editing layers. We tuned the weights assigned to each editing layer to maximize editing
accuracy while preserving model stability.

MEND (Mitchell et al., 2022): The learning rate, batch size, and training epochs were set according to
configurations from original work. We tuned the weights within the auxiliary editing networks, which are
responsible for transforming standard fine-tuning gradients into localized, high-precision updates. These
adjustments enable fast, targeted edits without degrading overall model behaviour.

IKE (Zheng et al., 2023a): IKE relies on in-context learning and prompt engineering. We fixed the
number of demonstrations k=16 as used in the original paper. Minimal tuning was required, as the method

is prompt-based. We adapted the prompt templates to fit biomedical terminology and relation patterns in
the CliKT dataset.

Fine-Tuning (FT): We adopted standard fine-tuning settings, including a learning rate of 5e-5 and 3
training epochs, consistent across all experiments. No major tuning was performed, as FT serves primarily
as a baseline reference for full-model retraining.

C Additional Results

We present the performance of knowledge editing on additional base LLMs in this section. In particular,
we evaluate the post-edit probing accuracy of BioGPT(Luo et al., 2022), Llama2(Touvron et al., 2023),
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Llama3 (Grattafiori et al., 2024), and Qwen2.5 (Yang et al., 2024) using a range of editing methods. The
results are shown in Figure 8(a), Figure 8(b), Figure 8(c), and Figure 8(d), respectively.

To further investigate the impact of editing across different types of biomedical knowledge, we also
conduct a relation-level analysis for each model. These results are presented in Figure 9 and Figure 10.
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