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Abstract

Knowledge editing has emerged as an effective001
approach for updating large language models002
(LLMs) by modifying their internal knowledge.003
However, their application to the biomedical004
domain faces unique challenges due to the long-005
tailed distribution of biomedical knowledge,006
where rare and infrequent information is preva-007
lent. In this paper, we conduct the first com-008
prehensive study to investigate the effective-009
ness of knowledge editing methods for editing010
long-tail biomedical knowledge. Our results011
indicate that, while existing editing methods012
can enhance LLMs’ performance on long-tail013
biomedical knowledge, their performance on014
long-tail knowledge remains inferior to that015
on high-frequency popular knowledge, even016
after editing. Our further analysis reveals that017
long-tail biomedical knowledge contains a sig-018
nificant amount of one-to-many knowledge,019
where one subject and relation link to multi-020
ple objects. This high prevalence of one-to-021
many knowledge limits the effectiveness of022
knowledge editing in improving LLMs’ un-023
derstanding of long-tail biomedical knowledge,024
highlighting the need for tailored strategies to025
bridge this performance gap1.026

1 Introduction027

Recently, knowledge editing (Meng et al., 2022a;028

Yao et al., 2023) has emerged as a promising ap-029

proach to efficiently update large language models030

(LLMs) by injecting new knowledge into their in-031

ternal knowledge (Touvron et al., 2023; Achiam032

et al., 2023). These methods have shown re-033

markable performance in enhancing LLMs’ perfor-034

mance across several general-domain tasks, such035

as question answering (QA) (Huang et al., 2023),036

knowledge injection (Li et al., 2024), and knowl-037

edge reasoning (Wang et al., 2024a).038

1Code and datasets can be found in: https://anonymous.
4open.science/r/edit_bio_long_tail-82BF.
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Figure 1: LLMs often struggle with long-tail biomedical
knowledge, where entities co-occur in a few documents.
Knowledge editing offers a potential solution by inject-
ing this rare information into LLMs, improving their
ability to handle such long-tail knowledge.

While knowledge editing methods have proven 039

effective in general-domain tasks, their application 040

to the biomedical domain presents unique chal- 041

lenges (Wu et al., 2024b). Specifically, real-world 042

biomedical data often exhibit a long-tailed distri- 043

bution, with a small amount of popular knowledge 044

and a large amount of long-tail knowledge that ap- 045

pears rarely or only once (Wu et al., 2024b; Delile 046

et al., 2024). For example, the common disease 047

“Type 1 Diabetes” is mentioned in over 106,138 048

papers in PubMed (Roberts, 2001), while a rare 049

disease like “Evans Syndrome” appears in only 050

about 23 papers (Wei et al., 2013). Recent studies 051

indicate that the low frequency of knowledge in 052

the pre-training corpus can hinder LLMs’ under- 053

standing of this knowledge (Kandpal et al., 2023; 054

Wu et al., 2024b). Figure 1 illustrates an example 055

where LLMs struggle with low-frequency biomed- 056

ical knowledge. This is particularly problematic as 057

LLMs are increasingly being used by healthcare 058

professionals, including doctors, to assist in diag- 059

nosis and treatment recommendations (Tian et al., 060

2024). As LLMs become more integrated into clin- 061

ical practice, their ability to accurately handle rare 062

but critical biomedical knowledge becomes essen- 063

tial. This raises a critical question for knowledge 064

editing in the biomedical domain: 065

Can knowledge editing methods effectively edit 066
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large language models to incorporate long-tail067

biomedical knowledge?068

In this work, we present the first comprehen-069

sive study to investigate the effectiveness of knowl-070

edge editing for long-tail biomedical knowledge.071

We focus on biomedical knowledge represented as072

knowledge triples and leverage knowledge prob-073

ing (Alghanmi et al., 2021) to evaluate whether074

LLMs have effectively acquired this knowledge.075

Specifically, knowledge probing is a technique076

that queries LLMs to assess their internal factual077

knowledge (Meng et al., 2022b). As illustrated in078

Figure 1, we probe LLMs with questions gener-079

ated from biomedical knowledge triples to deter-080

mine whether they can correctly recall the target081

knowledge. By comparing the knowledge prob-082

ing results of LLMs before and after editing, we083

can evaluate how effectively knowledge editing en-084

hances LLMs’ ability to handle long-tail biomedi-085

cal knowledge. Our key findings are:086

• LLMs struggle to capture long-tail biomedical087

knowledge through pre-training.088

• Knowledge editing can enhance LLMs’ per-089

formance on long-tail biomedical knowledge,090

but it remains less effective compared to more091

common knowledge.092

• Edited LLMs can memorise the form of long-093

tail knowledge, but their ability to generalise094

such knowledge is limited.095

• We define one-to-many knowledge as triples096

where a single subject-relation pair is linked097

to multiple valid objects. This pattern is preva-098

lent in long-tail biomedical knowledge and is099

a key factor leading to LLMs’ poor perfor-100

mance in capturing long-tail knowledge.101

• Effectively handling one-to-many knowledge102

is critical for improving LLMs’ performance103

on long-tail biomedical knowledge through104

knowledge editing.105

2 Background and Definitions106

This section defines long-tail biomedical knowl-107

edge and briefly introduces the knowledge probing108

and editing techniques used in our experiments.109

2.1 Long-Tail Biomedical Knowledge110

We denote biomedical knowledge using knowledge111

triple ⟨s, r, o⟩, where s is the subject, r is the re-112

lation, and o is the object. Let D be the set of113

documents in the pre-training corpus, and D(s, o)114

be the subset of documents where both s and o co- 115

occur. We define the co-occurrence number of the 116

knowledge triple as |D(s, o)|, which represents the 117

frequency of knowledge ⟨s, r, o⟩ within the docu- 118

ment set D (Kandpal et al., 2023). In this paper, 119

following Mallen et al. (2023) and Kandpal et al. 120

(2023), we define long-tail knowledge as: 121

Kl = {⟨s, r, o⟩ | |D(s, o)| < α} , (1) 122

where Kl denotes the set of long-tail knowledge 123

and α represents a predefined threshold. 124

2.2 Knowledge Probing 125

Knowledge probing aims to evaluate LLMs’ ability 126

to capture factual knowledge (Meng et al., 2022b), 127

and can serve as an evaluation method to assess 128

the effectiveness of knowledge editing (Hernandez 129

et al., 2023). Specifically, given a subject s and a 130

relation r in a triple ⟨s, r, o⟩, we use a manually 131

designed template T (s, r) to generate a natural 132

language question, which is then fed into an LLM 133

fθ to generate the object o as the answer. Follow- 134

ing prior works Meng et al. (2022a) and Kassner 135

et al. (2021), accuracy (ACC) is commonly used to 136

evaluate the performance of LLM in recalling the 137

correct target entity o, which is formulated as: 138

E⟨s,r,o⟩∼PI
{
argmax

y
fθ(y | T (s, r)) = o

}
,

(2) 139

where E⟨s,r,o⟩∼P denotes the expectation over a set 140

of knowledge triples P , y indicates the predicted 141

answer and I{·} is the indicator function. In this 142

paper, we compare the knowledge probing results 143

of LLMs before and after knowledge editing to 144

investigate the effectiveness of editing methods in 145

handling long-tail biomedical knowledge. 146

2.3 Knowledge Editing 147

Knowledge editing (Yao et al., 2023) aims to inject 148

a new knowledge ⟨s, r, o⟩ into an LLM through a 149

specific edit descriptor (xe, ye) (Yao et al., 2023). 150

Given a knowledge ⟨s, r, o⟩ for editing, xe can 151

be formulated as ⟨s, r⟩, and ye = o. The ulti- 152

mate target of knowledge editing is to obtain an 153

edited model fθe , which effectively integrates the 154

intended modifications within the editing scope, 155

while preserving the model’s performance for out- 156

of-scope unrelated facts: 157

fθe(x) =

{
ye if x ∈ I(xe, ye)

fθ(x) if x ∈ O(xe, ye)
(3) 158
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Figure 2: An overview of probing and editing for biomedical knowledge. These knowledge triples are classified into
different groups based on co-occurrence number and further divided into one-to-one and one-to-many categories
based on the number of correct answers (see § 4.4). The increasing performance with the number of co-occurrence
number indicates that LLMs struggle to effectively capture long-tail biomedical knowledge before and after editing.

Here, the in-scope set I(xe, ye) includes xe and159

its equivalence neighborhood N(xe, ye), which in-160

cludes related input/output pairs. In contrast, the161

out-of-scope O(xe, ye) contains inputs that are un-162

related to the edit descriptor (xe, ye).163

3 Identifying Long-Tail Biomedical164

Knowledge165

Due to the lack of biomedical datasets specifically166

designed to evaluate long-tail knowledge, we de-167

velop a pipeline to extract such knowledge. In168

this section, we outline the procedures for extract-169

ing long-tail biomedical knowledge, with further170

details provided in Appendix A and Figure 7.171

We focus on biomedical knowledge represented172

as knowledge triples and extract these triples from173

SNOMED CT (Donnelly et al., 2006), which is a174

comprehensive biomedical knowledge graph com-175

prising over 1.4 million clinical triples (Benson and176

Grieve, 2021), and widely used to evaluate LLMs’177

understanding of biomedical knowledge (Meng178

et al., 2022b). Following previous work (Kand-179

pal et al., 2023), we adopt the co-occurrence num-180

ber—i.e., how often a triple’s subject and object ap-181

pear in the same document—as a proxy for knowl-182

edge popularity. To identify the long-tail knowl-183

edge within these triples, we use an entity link-184

ing pipeline to compute the co-occurrence number185

of each triple in the PubMed corpus2, which is a186

2https://pubmed.ncbi.nlm.nih.gov/

widely used biomedical corpus for pre-training. In 187

the entity linking pipeline, we use PubTator (Wei 188

et al., 2013) to annotate entities in the PubMed 189

corpus and then use SapBERT (Liu et al., 2021) to 190

link knowledge triple entities to PubMed entities. 191

Subsequently, we compute the co-occurrence num- 192

ber for each triple. Long-tail knowledge is defined 193

as triples with a co-occurrence number less than 194

10 (Kandpal et al., 2023). As a result, we obtained 195

59,705, 14,087, and 28,375 triples for the training, 196

validation, and test sets, respectively, stratified by 197

varying levels of co-occurrence. The statistics of 198

the dataset are presented in Table 1. We refer to our 199

dataset as CliKT (Clinical Knowledge Triples). 200

To evaluate LLMs’ ability to understand these 201

triples, we generate question-answer pairs follow- 202

ing Meng et al. (2022a). For each triple, we con- 203

struct a question using the subject and relation, 204

with the object serving as the answer. For exam- 205

ple, for the triple ⟨Diabetes, treated_by, Insulin⟩, 206

the corresponding QA pair is: What is Diabetes 207

treated by? Answer: Insulin. The template for 208

constructing questions is provided in Table 3. 209

4 Knowledge Editing for Long-Tail 210

Biomedical Knowledge 211

In this section, we investigate the effectiveness of 212

knowledge editing methods in enhancing LLMs’ 213

ability to handle long-tail biomedical knowledge. 214

Since some editing methods, e.g., MEND (Mitchell 215

et al., 2022) and IKE (Zheng et al., 2023a), require 216

3
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Item Train Valid Test
# Triples 59,705 14,087 28,375
|D(s, o)| < 101 52,297 11,476 22,952
|D(s, o)| ∈ [101, 102) 05,363 02,055 04,110
|D(s, o)| ∈ [102, 103) 01,659 00,551 01,103
|D(s, o)| ≥ 103 00,386 00,105 00,210

# Relations 00,021 00,021 00,021
# Subjects 39,654 12,267 21,872
# Objects 07,867 03,526 04,706

Table 1: The statistics of CliKT dataset. |D(s, o)| rep-
resents the oc-occurrence number of knowledge triple.

training data, we follow the data splitting strat-217

egy proposed by Meng et al. (2022a) to divide our218

CliKT dataset into training, validation, and test sets219

(see Table 1)3. We report all results on the test set.220

4.1 Experimental Setup221

LLMs. To investigate whether LLMs can be edited222

for long-tail biomedical knowledge, we focus on223

LLMs that are specifically pre-trained on biomedi-224

cal data. We employ two models primarily trained225

on PubMed: BioGPT-Large (Luo et al., 2022) and226

BioMedLM (Bolton et al., 2024). Furthermore, we227

include four general-domain LLMs: Llama2 (Tou-228

vron et al., 2023), Llama3 (Grattafiori et al.,229

2024), GPT-J (Wang and Komatsuzaki, 2021) and230

Qwen2.5 (Yang et al., 2024) to evaluate whether231

our findings generalise to models not specifically232

trained on biomedical data4.233

Knowledge Editing Methods. For knowledge234

editing, we employ the following methods, which235

have demonstrated strong effectiveness in knowl-236

edge injection tasks (Wang et al., 2025):237

• ROME (Meng et al., 2022a): ROME updates238

an MLP layer to encode new information by239

treating the MLP module as a key-value mem-240

ory. It relies on causal mediation analysis to241

precisely identify the location for editing.242

• MEMIT (Meng et al., 2023): it employs the243

localisation strategies from ROME and ap-244

plies explicit parameter adjustments to inject245

new knowledge across multiple layers.246

• MEND (Mitchell et al., 2022): MEND en-247

ables efficient, targeted updates to LLMs by248

leveraging low-rank gradient transformations.249

It enables quick, localised modifications in250

model behaviour using only a single input-251

output example, while preventing overfitting.252

3Details of dataset splitting method are in Appendix A.3.
4Details of these LLMs are provided in Appendix B.1.
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Figure 3: The overall performance of pre-edit prob-
ing on Llama2, GPT-J, BioMedLM and BioGPT-Large.
The shaded areas indicate the standard deviation and
Count denotes the number of triples within each group.

• IKE (Zheng et al., 2023a): IKE modifies fac- 253

tual knowledge in LLMs through in-context 254

learning without updating parameters. It cor- 255

rects specific knowledge using demonstration 256

contexts, reducing over-editing and preserv- 257

ing previously stored knowledge. 258

• FT (Yao et al., 2023): FT updates model pa- 259

rameters using gradient descent on a single 260

MLP layer identified by ROME. We employ 261

the FT implementation within the EasyEdit 262

framework (Wang et al., 2023b). 263

We follow the official implementations for each 264

method and perform hyperparameter tuning on our 265

CliKT dataset to ensure a fair comparison5. 266

Evaluation Metrics. We use knowledge probing 267

to assess whether LLMs have successfully acquired 268

biomedical knowledge within the CliKT dataset. 269

Specifically, we assess their zero-shot QA perfor- 270

mance on the test-set questions, using accuracy 271

(ACC) as the evaluation metric, as detailed in § 2.2. 272

In addition, we adopt standard knowledge edit- 273

ing metrics (Meng et al., 2022a; Yao et al., 2023) to 274

assess the effectiveness of editing: (1) Reliability 275

measures whether the model correctly incorporates 276

the target knowledge after editing—i.e., whether it 277

outputs the correct answer for the edited input; (2) 278

Generalisation evaluates whether the model can 279

apply the updated knowledge to semantically simi- 280

lar variations (e.g., paraphrased queries), reflecting 281

the robustness of the edit; (3) Locality assesses 282

whether unrelated predictions remain unaffected 283

5Details about the training and hyperparameter tuning
process can be found in Appendix B.4.
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editing with different editing methods on BioMedLM,
where “Base” denotes LLM without editing.

after editing, ensuring that edits are localized and284

do not introduce unintended side effects.285

Evaluation examples for these three metrics are286

derived from the test set of CliKT. Due to space287

limit, more details about metric definitions, evalua-288

tion example construction procedures and illustra-289

tive examples are provided in Appendix B.2.290

4.2 Pre-Edit Results on Long-Tail Biomedical291

Knowledge292

Finding 1: LLMs struggle to capture long-tail293

biomedical knowledge through pre-training.294

To investigate whether LLMs face challenges in295

capturing long-tail biomedical knowledge during296

pre-training, we categorise biomedical knowledge297

triples in CliKT into different groups based on their298

co-occurrence number |D(s, o)| and evaluate the299

probing results of LLMs across these groups.300

The bottom portion of Figure 3 shows the distri-301

bution of triples across the different groups, which302

highlights the long-tail nature of biomedical knowl-303

edge, where long-tail knowledge accounts for the304

majority of the data. The results for biomedical305

LLMs and general-domain LLMs are illustrated in306

the top portion of Figure 3. Specifically, Figure 3307

shows that the performance of LLMs declines as308

the co-occurrence number decreases. In particu-309

lar, the performance of BioMedLM on long-tail310

knowledge (|D(s, o)| < 10) is 22.86% lower rel-311

ative to its performance on popular knowledge312

(|D(s, o)| ≥ 103). This trend is also evident313

in general-domain LLMs. For example, Llama2314

experiences an accuracy drop of 16.86% when315

handling long-tail biomedical knowledge com-316

pared with popular knowledge. These results in-317

dicate that LLMs struggle with long-tail biomed-318

ical knowledge, highlighting the challenge of ac-319

curately capturing long-tail knowledge during pre-320

training. Furthermore, Figure 3 shows that as the321

Group Edit Reliability↑ Gen.↑ Locality↑

<101

ROME 98.02 68.42 83.70
MEMIT 86.21 47.36 98.10
MEND 91.32 46.75 89.60
IKE 83.87 43.70 97.81
FT 32.52 40.36 96.80

[101, 102)

ROME 98.11 70.10 84.60
MEMIT 89.21 48.21 97.30
MEND 88.90 47.80 89.83
IKE 84.52 45.12 96.80
FT 33.35 40.78 97.90

[102, 103)

ROME 98.63 72.50 84.62
MEMIT 89.01 51.47 97.90
MEND 88.94 48.83 91.40
IKE 85.89 46.74 96.85
FT 33.89 44.62 96.66

≥ 103

ROME 98.66 72.54 84.45
MEMIT 89.87 50.00 97.43
MEND 90.96 49.86 90.92
IKE 85.91 48.76 96.87
FT 34.84 44.62 97.57

Table 2: Performance of knowledge editing methods on
the CliKT dataset across different co-occurrence num-
ber groups. The best performance per group is marked
in boldface, while the second-best performance is un-
derlined. ↑ indicates that higher values reflect better
performance, and “Gen.” stands for Generalisation.

co-occurrence number decreases, the standard de- 322

viation of ACC increases. This observation implies 323

that LLMs exhibit greater confidence when pro- 324

cessing popular biomedical knowledge than long- 325

tail biomedical knowledge. 326

Based on the above analysis, we conclude that 327

LLMs indeed struggle to capture long-tail biomedi- 328

cal knowledge. As long-tail knowledge constitutes 329

the majority of biomedical data, it is crucial to ex- 330

plore methods that can effectively improve LLMs’ 331

performance on long-tail biomedical knowledge. 332

4.3 Post-Edit Results for Long-Tail 333

Biomedical Knowledge 334

Finding 2: Knowledge editing can enhance LLMs’ 335

performance on long-tail biomedical knowledge, 336

but it remains less effective compared to more com- 337

mon knowledge. 338

Subsequently, we investigate the effectiveness of 339

knowledge editing for long-tail biomedical knowl- 340

edge. We apply existing knowledge editing meth- 341

ods to inject biomedical knowledge from the CliKT 342

dataset into LLMs and then follow the procedures 343

in the pre-edit experiments for evaluation. 344

The post-edit probing results for BioMedLM6 345

are presented in Figure 4. These results yield the 346

6The results of other LLMs, i.e., BioGPT, Llama2, Llama3,
Qwen2.5, can be found in Figure 8 of the Appendix, which
show similar findings as BioMedLM.
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following findings: (1) Knowledge editing meth-347

ods, especially ROME, can enhance LLM’s ability348

in handling long-tail biomedical knowledge. For349

example, Figure 4 shows that BioMedLM edited350

with ROME achieves an improvement of approx-351

imately 52.08% in ACC on long-tail knowledge352

(|D(s, o)| < 10) compared to the base model be-353

fore editing; (2) Despite the improvements from354

knowledge editing, Figure 4 also reveals that ACC355

of post-edit LLMs consistently drops as the co-356

occurrence number decreases across all the edit-357

ing methods. Specifically, for ROME, the ACC on358

long-tail knowledge is still 16.15% relatively lower359

than on popular knowledge (|D(s, o)| ≥ 103).360

This indicates that even after editing, the edited361

LLMs still struggle with long-tail knowledge.362

Finding 3: Edited LLMs can memorise the form of363

long-tail knowledge, but their ability to generalise364

such knowledge is limited.365

In addition to the post-edit probing results, we366

also calculate the other editing metrics outlined in367

§4.1 to comprehensively evaluate the effectiveness368

of the editing methods. Specifically, we calculate369

the Reliability, Generalisation and Locality metrics370

of edited models across different groups of biomed-371

ical knowledge. From the results in Table 2, we372

observe that ROME’s Reliability remains above373

98% across all groups, with no significant varia-374

tion. Similarly, the Reliability of MEMIT, MEND,375

and IKE is largely unaffected by the co-occurrence376

number, indicating that the edited LLMs’ ability377

to memorise the form of inserted knowledge is378

not influenced by long-tail knowledge. However,379

the generalisation performance declines as the co-380

occurrence number decreases, which aligns with381

the observed reduction in post-edit ACC for edited-382

LLMs as the co-occurrence number decreases.383

This observation suggests that, although edited384

LLMs can memorize the form of long-tail knowl-385

edge itself after knowledge editing, their ability386

to generalise this long-tail knowledge, especially 387

in reasoning and responding to related questions, 388

remains influenced by low co-occurrence numbers. 389

Furthermore, we observe that, though all the 390

editing methods exhibit relatively strong perfor- 391

mance in terms of locality across groups, ROME 392

is affected more than the other methods. This in- 393

dicates that while ROME achieves the best reli- 394

ability and generalisation, it may slightly affect 395

unrelated knowledge, consistent with the observa- 396

tions of Wang et al. (Wang et al., 2024b). 397
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Figure 6: The knowledge probing performance of
BioMedLM on both one-to-one knowledge and one-
to-many knowledge before and after editing.

4.4 Knowledge Type Analysis in Editing 398

In this section, to further investigate the cause of 399

the performance gap between long-tail and popu- 400

lar biomedical knowledge before and after editing, 401

we further subdivide both long-tail and popular 402

knowledge into two categories: one-to-one and 403

one-to-many. The one-to-one knowledge refers to 404

triples where a subject is linked to a single object 405

via a given relation, while one-to-many knowledge 406

represents triples where the same subject-relation 407

pair is linked to multiple objects (Nagasawa et al., 408

2023). For example, the triple ⟨Type 1 diabetes, 409

therapeutic procedure, insulin therapy⟩ represents 410

a one-to-one knowledge, where “Type 1 diabetes” 411

is associated with a single object, “insulin therapy”. 412
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In contrast, ⟨hypertension, associated with, heart413

disease⟩ exemplifies a one-to-many knowledge,414

where “hypertension” can be linked to multiple415

objects, such as “stroke” or “kidney disease”7.416

4.4.1 Pre-Edit Probing of Different Types of417

Knowledge418

Finding 4: The prevalence of one-to-many knowl-419

edge in long-tail biomedical knowledge is a key420

factor contributing to LLMs’ poor performance in421

capturing such long-tail knowledge.422

Figure 5 shows the pre-edit probing results of423

one-to-one and one-to-many knowledge across dif-424

ferent co-occurrence number groups. We found425

that one-to-one knowledge is almost unaffected426

by co-occurrence numbers and consistently outper-427

forms one-to-many knowledge in all groups. For428

instance, BioGPT achieves an ACC that is approx-429

imately 115.56% higher on one-to-one knowledge430

compared to one-to-many knowledge. In contrast,431

for one-to-many knowledge, results from BioGPT,432

BioMedLM, and Llama2 all show a steady in-433

crease in ACC as the co-occurrence number in-434

creases. This suggests that co-occurrence num-435

ber, or knowledge frequency, has a significant436

impact on LLMs’ ability to accurately compre-437

hend one-to-many knowledge. We further anal-438

ysed the distribution of one-to-one and one-to-439

many knowledge. Figure 5 shows that as the co-440

occurrence number increases, the proportion of441

one-to-many knowledge decreases while one-to-442

one knowledge increases. In the long-tail knowl-443

edge group (|D(s, o)| < 10), 90.4% of the knowl-444

edge is one-to-many. This analysis reveals that445

LLMs’ difficulty with long-tail biomedical knowl-446

edge before editing is primarily due to the large447

proportion of one-to-many knowledge, which is448

challenging for LLMs to comprehend, as it in-449

creases the probability that the correct answers450

will not align with the model’s output.451

4.4.2 Knowledge Editing for Different Types452

of Knowledge453

Finding 5: Effectively handling one-to-many454

knowledge is critical for improving LLMs’ perfor-455

mance on long-tail biomedical knowledge through456

knowledge editing.457

Next, we apply editing methods to both one-458

to-one and one-to-many knowledge. The results459

7The detailed evaluation process of one-to-one and one-to-
many knowledge, following the same procedure described in
Section 4.1, can be found in Appendix B.3.

for BioMedLM8 are provided in Figure 6, which 460

indicate that while editing methods enhance perfor- 461

mance on one-to-many knowledge, the improve- 462

ment remains limited. For instance, in the ROME- 463

edited BioMedLM for the long-tail knowledge 464

(|D(s, o)| < 10), the ACC for one-to-one knowl- 465

edge was initially 42.19% higher than that for one- 466

to-many knowledge. After applying the editing, 467

this gap decreased to 16.43%. However, the per- 468

sistent gap also highlights that even after editing, 469

the model’s performance on one-to-many knowl- 470

edge, which constitutes the majority of long-tail 471

knowledge, remains constrained. This finding sug- 472

gests that despite knowledge editing can enhance 473

LLMs’ capability in handling one-to-many knowl- 474

edge, there remains a challenge in bridging the 475

performance gap between one-to-one and one-to- 476

many knowledge. This limitation is critical given 477

that one-to-many knowledge constitutes the major- 478

ity of long-tail knowledge. 479

5 Related Work 480

5.1 LLMs for the Biomedical Domain 481

LLMs have achieved remarkable progress in the 482

biomedical domain (Tian et al., 2024). Early ad- 483

vance were led by BERT (Vaswani et al., 2017) and 484

its variants, such as BioBERT (Lee et al., 2020) 485

and ClinicalBERT (Huang et al., 2019), which 486

showed significant improvements in named en- 487

tity recognition and relation extraction when ap- 488

plied to large datasets such as PubMed and clin- 489

ical notes (Perera et al., 2020; Sun et al., 2021). 490

GPT-based models, including GPT-J (Wang and 491

Komatsuzaki, 2021), BioGPT (Luo et al., 2022) 492

and BioMedLM (Bolton et al., 2024), further en- 493

hanced biomedical text generation and question 494

answering (Tian et al., 2024). Recent LLMs 495

like Llama (Touvron et al., 2023), Falcon (Al- 496

mazrouei et al., 2023), and Palm (Chowdhery et al., 497

2023) have scaled transformer architectures to ad- 498

dress more complex tasks, such as biomedical 499

knowledge reasoning (Wu et al., 2024a; Watan- 500

abe et al., 2024) and assisting in clinical decision- 501

making (Sandmann et al., 2024). This work ex- 502

plores LLMs’ performance on long-tail biomedical 503

knowledge. We present the first study to investigate 504

how long-tail knowledge impacts LLMs in knowl- 505

edge editing, offering new insights into improving 506

8The results for other LLMs, i.e., BioGPT, Llama2,
Llama3, Qwen2.5, are provided in Figure 9 and Figure 10,
which demonstrate similar results as BioMedLM.
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LLMs’ handling of rare biomedical information507

through knowledge editing techniques.508

5.2 Knowledge Editing509

Existing knowledge editing methods can be clas-510

sified into three categories (Yao et al., 2023):511

memory-based (Zheng et al., 2023b), meta learn-512

ing (Mitchell et al., 2022), and locate-then-513

edit (Meng et al., 2022a). Memory-based methods,514

like IKE (Zheng et al., 2023b), leverage external515

memory to update knowledge without changing516

model parameters. Meta-learning methods, such517

as KE (Cao et al., 2021), train a hyper-network to518

generate updated weights. MEND (Mitchell et al.,519

2022) improves on this by using low-rank gradient520

updates for more efficient model edits.521

Locate-then-edit approaches aim for more tar-522

geted knowledge editing. Methods like KN (Dai523

et al., 2022) use knowledge attribution to locate524

relevant neurons but struggle with precise weight525

updates. ROME (Meng et al., 2022a) advances526

this by using causal tracing to locate and edit the527

Feed Forward Network (FFN) layers, which act528

as key-value memories (Geva et al., 2021, 2023).529

MEMIT (Meng et al., 2023) further expands this530

technique for batch editing. To the best of our531

knowledge, this work is the first to investigate532

the effectiveness of knowledge editing on long-tail533

biomedical knowledge.534

5.3 Long-Tail Knowledge within LLMs535

Existing studies have explored how long-tail536

knowledge, affects LLMs’ performance (Shin et al.,537

2022; Han and Tsvetkov, 2022; Elazar et al., 2022;538

Mallen et al., 2023; Kandpal et al., 2023). Mallen539

et al. (2023) find that commonsense QA accu-540

racy is strongly correlated with the frequency of541

entity popularity in the pre-training data from542

Wikipedia (Milne and Witten, 2008). Similarly,543

Elazar et al. (2022) employ causal inference to544

investigate how pre-training data statistics affect545

commonsense QA, highlighting how models rely546

on co-occurrence patterns between subjects, ob-547

jects, and text to answer questions. More recently,548

Kandpal et al. (2023) explore the connection be-549

tween the knowledge LLMs acquire for general-550

domain QA tasks and its frequency in the pre-551

training corpus, introducing comparative experi-552

ments involving model retraining and scaling.553

Despite these findings, most prior works have554

focused on general-domain QA, leaving the long-555

tail biomedical domain remaining largely unex-556

plored (Wu et al., 2024b). This gap is especially 557

concerning as LLMs are increasingly being used 558

by healthcare professionals, including doctors, to 559

assist in diagnosis and treatment recommendations. 560

Our research fills this gap by investigating the influ- 561

ence of long-tail biomedical knowledge on LLMs 562

through knowledge probing and examining its im- 563

pact on the effectiveness of knowledge editing. 564

6 Discussion 565

While our work highlights the challenges LLMs 566

face in capturing and editing biomedical one-to- 567

many knowledge, we acknowledge that addressing 568

these limitations requires further exploration. We 569

outline several promising directions that may help 570

improve performance in this domain: (1) Retrieval- 571

augmented generation (RAG): incorporating exter- 572

nal biomedical knowledge by retrieving relevant 573

documents or triples could help LLMs better han- 574

dle long-tail biomedical knowledge. This approach 575

has shown promise in open-domain QA (Gao et al., 576

2023) and may be adapted for biomedical edit- 577

ing with domain-specific retrieval modules; (2) 578

Structure-aware finetuning: instead of treating 579

each triple independently, future work could ex- 580

plore fine-tuning strategies that explicitly model 581

the structure of one-to-many knowledge. For exam- 582

ple, training objectives can be designed to encour- 583

age the model to recognise that multiple objects 584

may be valid for a given subject-relation pair. 585

7 Conclusion 586

In this paper, we investigate the effectiveness of 587

knowledge editing methods for addressing the 588

challenges of long-tail biomedical knowledge in 589

LLMs. Our results show that while existing tech- 590

niques enhance performance on long-tail knowl- 591

edge, they still fall short compared to their per- 592

formance on high-frequency knowledge. This dis- 593

parity is largely due to the prevalence of one-to- 594

many knowledge structures in the biomedical do- 595

main, which complicate models’ ability to accu- 596

rately represent and edit such information. Our 597

results highlight the need for advanced editing tech- 598

niques specifically designed for long-tail knowl- 599

edge. These techniques should prioritise strategies 600

for effectively handling the intricacies of one-to- 601

many knowledge scenarios, which are particularly 602

common in the biomedical domain and remain a 603

significant obstacle for current methods. 604
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Limitations605

We identify the following limitations of our606

work: (1) First, our approach to extracting long-607

tail knowledge is based on document-level co-608

occurrence frequency (Kandpal et al., 2023), which609

captures general patterns of occurrence but lacks610

refinement at the sentence level. This limitation611

may cause our analysis to miss finer patterns in612

knowledge distribution, especially in instances613

where sentence-level context provides essential nu-614

ances. Future work could enhance the long-tail615

knowledge extraction pipeline by investigating co-616

occurrence on the sentence-level to improve the617

granularity of knowledge editing. (2) Second, our618

experimental framework is limited to the collection619

of over 100,000 biomedical knowledge extracted620

from PubMed, an extensive repository of biomed-621

ical literature. While we believe the scale of this622

collection offers a robust foundation for evaluat-623

ing our methods, our future research should focus624

on extracting long-tail knowledge from a broader625

range of domains to further validate the generalis-626

ability of our findings. (3) Finally, we concentrate627

on analysing limitations without proposing spe-628

cific solutions, prioritising the establishment of a629

comprehensive understanding. Future work will fo-630

cus on developing methods to improve knowledge631

editing performance on long-tail knowledge.632
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Appendix 936

In the Appendix, we introduce more details along with dataset construction, experimental details, and 937

additional experimental results: 938

• Appendix A: CliKT Construction (cf. Section 3). 939

• Appendix B: Experimental Details (cf. Section 2 and 3). 940

• Appendix C: Additional Results (cf. Section 3). 941

A CliKT Construction 942

Due to the lack of datasets dedicated to evaluating long-tail biomedical knowledge, we propose CliKT, a 943

new benchmark specifically designed to evaluate LLMs’ performance on long-tail biomedical knowledge. 944

Notably, given that PubMed is a widely used biomedical corpus for pre-training LLMs (Wang et al., 945

2023a), which contains over 37 million abstracts of biomedical papers (Wei et al., 2013), we mainly 946

focus on PubMed data to extract long-tail biomedical knowledge. Specifically, we first extract knowledge 947

triples from SNOMED CT (Donnelly et al., 2006) (§A.1) to obtain a comprehensive set of biomedical 948

concepts and their relationships. Next, we employ an entity linking pipeline to map these triples back to 949

their corresponding documents in the PubMed (Roberts, 2001) corpus (§A.2), enabling us to identify 950

whether a triple represents long-tail knowledge based its occurrence in the corpus. Finally, we generate 951

question-answer (QA) pairs based on the knowledge triples to evaluate the ability of LLMs to capture the 952

factual knowledge, and conduct a human evaluation to show that our entity linking pipeline accurately 953

identifies relevant documents for the majority of the QA pairs. 954

A.1 Extracting Biomedical Knowledge Triples 955

We focus on the long-tail biomedical knowledge from the PubMed corpus. However, directly extracting 956

such knowledge from the entire corpus is a challenging task (Shetty and Ramprasad, 2021; Nguyen et al., 957

2021; Abdullah et al., 2023). Therefore, following previous work (Alghanmi et al., 2021; Fei et al., 2021), 958

we leverage information from existing biomedical knowledge graphs to facilitate more efficient extraction. 959

Specifically, we extract all the knowledge triples from SNOMED CT (Donnelly et al., 2006), which is a 960

comprehensive biomedical knowledge graph comprising over 200K triples and widely used for assessing 961

LLMs’ understanding of biomedical knowledge (Meng et al., 2022b). Each triple is denoted as (head 962

entity, relation, tail entity), representing the relationship between two entities, e.g., (Type 1 Diabetes, 963

Therapeutic Procedure, Insulin therapy). 964

A.2 Mapping Knowledge Triples to PubMed Documents 965

We then develop an entity linking pipeline to map the extracted knowledge triples back to documents in 966

Pubmed (Roberts, 2001) to identify long-tail knowledge. The detailed procedure is as follows: 967

Entity Annotation. To facilitate the mapping of knowledge triples to specific PubMed documents, we 968

first need to annotate the entities within the PubMed corpus. To this end, we use PubTator (Wei et al., 969

2013), a robust web-based text-mining tool that provides automatic annotations of biomedical concepts 970

in PubMed. Following the work of Wei et al. (2019), we obtain entity annotations within 37 million 971

PubMed abstracts9. 972

Entity Linking. After obtaining annotated entities, the next step is to map the knowledge triples to their 973

corresponding PubMed documents. Previous studies (Elsahar et al., 2018; Kandpal et al., 2023) suggest 974

that when the head entity and the tail entity of a knowledge triple co-occur within a document, it is likely 975

that the knowledge represented by the triple is expressed in that document. Based on this observation, 976

we define documents where both the head and tail entities of a knowledge triple co-occur as its related 977

documents, and the count of such documents as the co-occurrence number. 978

9The annotated data is available at https://ftp.ncbi.nlm.nih.gov/pub/lu/PubTatorCentral/
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Figure 7: The pipeline for identifying long-tail biomedical knowledge consists of a systematic process encompassing
document collection, entity linking, knowledge graph traversal, and question generation.

To determine whether both the head and tail entities of a triple co-occur in a document, we use979

SapBERT (Liu et al., 2021), an effective biomedical entity linking model, to match these entities to980

those present in the document. For instance, given the triple (Hypertension, causes, heart disease) from981

SNOMED CT, SapBERT can link “Hypertension” to its equivalent term “high blood pressure” in PubMed,982

ensuring an accurate match with related documents. We iterate through the entire corpus to calculate the983

co-occurrence number for each triple. We define triples with a low co-occurrence number as long-tail984

biomedical knowledge.985

Question Generation. Finally, we generate QA pairs based on the resulting triples to assess the LLMs’986

ability to capture these knowledge triples. Following Meng et al. (2022a), we manually design templates987

to generate questions using the head entity and the relation, while considering the tail entity as the answer.988

For example, given a triple (Diabetes, treated_by, Insulin), the corresponding QA pair would be: Question:989

What is Diabetes treated by? Answer: Insulin. We provide some example templates in Table 3, where990

“Question” is the template used for constructing questions.991

A.3 Dataset Splitting992

After generating the question-answer pairs, we randomly split them into training, validation and test993

sets using an 7:1:2 ratio. Following the initial split, we applied additional filtering to the training set by994

discarding knowledge triples with zero co-occurrence number, resulting in a slightly smaller effective995

training set. The detailed statistics of each split are provided in Table 1. To preserve the natural distribution996

and diversity of relational patterns, we did not explicitly constrain the overlap of subjects or objects across997

splits. As a result, some entities may appear in multiple sets. This design choice ensures a realistic and998

challenging setting for evaluating editing methods that may rely on generalisation across related facts.999

B Experimental Details1000

B.1 Details of Large Language Models1001

We employ two biomedical LLMs and two general-domain LLMs in our experiments:1002

• BioGPT-Large (Luo et al., 2022): A 1.5 billion parameter model from Microsoft, primarily1003

pre-trained on PubMed, excelling in drug discovery and medical record analysis.1004

• BioMedLM (Bolton et al., 2024): A Stanford-developed model optimised for biomedical tasks,1005

pretrained on PubMed with 2.7 billion parameters, ideal for literature retrieval and information1006

extraction.1007
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Relation Template

Finding site Edit Prompt: “The finding site of [SUBJECT] is.”
Question: “What is the finding site of [SUBJECT]?”
Rephrase: “Where is [SUBJECT] typically found?”

Associated morphology Edit Prompt: “The associated morphology of [SUBJECT] is.”
Question: “What is the associated morphology of SUBJECT?”
Rephrase: “Can you describe the morphology associated with [SUBJECT]”

Causative agent Edit Prompt: “The causative agent of [SUBJECT] is”
Question: “What is the causative agent of [SUBJECT]?”
Rephrase: “Which pathogen causes [SUBJECT]?”

Interprets Edit Prompt: “[SUBJECT] interprets.”
Question: “What does [SUBJECT] interprets?”
Rephrase: “What is interpreted by [SUBJECT]?”

Procedure site Edit Prompt: “The procedure site of [SUBJECT] is”
Question: “What is the indirect procedure site of [SUBJECT]?”
Rephrase: “Where is the procedure site for [SUBJECT]?”

Pathological process Edit Prompt: “The pathological process of [SUBJECT] involves.”
Question: “What is the pathological process of [SUBJECT]?”
Rephrase: “Which pathological process does [SUBJECT] involve?”

Due to Edit Prompt: “[SUBJECT] is due to.”
Question: “What is the [SUBJECT] due to?”
Rephrase: “What is the cause of [SUBJECT]?”

Has active ingredient Edit Prompt: “The active ingredient of [SUBJECT] is.”
Question: “What is the active ingredient of [SUBJECT]?”
Rephrase: “What active ingredient does [SUBJECT] have?”

Part of Edit Prompt: “[SUBJECT] is a part of.”
Question: “What is the [SUBJECT] a part of?”
Rephrase: “To what is [SUBJECT] a part?”

Has definitional manifestation Edit Prompt: “The definitional manifestation of [SUBJECT] is.”
Question: “What is the definitional manifestation of [SUBJECT]?”
Rephrase: “How is [SUBJECT] manifested definitionally?”

Component Edit Prompt: “The component of [SUBJECT] is.”
Question: “What is the component of [SUBJECT]?”
Rephrase: “What components does [SUBJECT] consist of?”

Table 3: Examples of relation templates demonstrate how each relation is transformed into input prompts, which
can categorized into three parts: Edit Prompt, Question, and Rephrase. The “Edit Prompt” is used for knowledge
editing and reliability evaluation, the “Question” is designed for knowledge probing, and the “Rephrase” is used to
assess generalisation metrics. The complete template for all the relations can be found in our github repository.

• Llama2 (Touvron et al., 2023): A Meta-developed model with 7 billion parameters, designed for 1008

general-purpose language tasks. It has been leveraging large-scale pretraining on diverse datasets, 1009

including biomedical corpora. 1010

• GPT-J (Wang and Komatsuzaki, 2021): A 6 billion parameter open-source model by EleutherAI, 1011

trained on the Pile dataset, which includes a significant portion of biomedical texts from PubMed. 1012

In addition to the models listed above, we also include results for two recently released models, 1013

Llama3 (Grattafiori et al., 2024) and Qwen2.5 (Yang et al., 2024), to provide a broader view of knowledge 1014

editing performance across both biomedical-specific and general-purpose LLMs. 1015

B.2 Details of Knowledge Editing Evaluation Metrics 1016

To evaluate the effectiveness of knowledge editing, we adopt three standard metrics: Reliability, Generali- 1017

sation, and Locality. All evaluation instances are derived from the test split of the CliKT dataset. Below, 1018

we define each metric, describe how its evaluation data is constructed, and provide illustrative examples. 1019

(1) Reliability: This metric evaluates whether the model has correctly incorporated target knowledge 1020

after editing. Specifically, it measures the model’s accuracy on a set of test instances (xe, ye) that directly 1021

15



correspond to the target edits.1022

Ex′
e,y

′
e∼{(xe,ye)}1

{
argmax

y
fθe(y | x′e) = y′e

}
. (4)1023

1024

Construction Procedure. For each knowledge triple we aim to edit, e.g., (Type 1 Diabetes, Therapeutic1025

Procedure, Corticosteroids), we first use an Edit Prompt, such as “The therapeutic procedure of Type1026

1 Diabetes is Corticosteroids.” to inject the knowledge into the model. We then use a corresponding1027

evaluation question, such as “What is the therapeutic procedure of Type 1 Diabetes?”, paired with its1028

correct answer “Corticosteroids”, to assess whether the edit was successful. These input-output pairs1029

form the test set used to compute the reliability score.1030

(2) Generalisation: Considering that paraphrased sentences are modified accordingly through editing,1031

this metric measures the average accuracy on equivalent neighbours R(xe, ye), where equivalent neigh-1032

bours are rephrased questions based on the edited knowledge. This metric evaluates the model’s ability1033

to apply the edited knowledge to semantically equivalent but surface-form-different inputs. It reflects1034

whether the edit generalises beyond the exact phrasing used during editing. Formally, it measures the1035

accuracy on a set of paraphrased input-output pairs R(xe, ye):1036

Ex′
e,y

′
e∼R(xe,ye)1

{
argmax

y
fθe(y | x′e) = y′e

}
. (5)1037

1038

Construction Procedure. Given a factual triple targeted for editing, e.g., (Type 1 Diabetes, Therapeutic1039

Procedure, Corticosteroids), we first construct an evaluation question in canonical form, such as “What1040

is the therapeutic procedure of Type 1 Diabetes?”. To assess generalisation, we generate another1041

semantically equivalent paraphrases of this question, e.g., “Which treatment is used for Type 1 Diabetes?”1042

or “How is Type 1 Diabetes typically treated?”. These paraphrases are created using a predefined1043

Rephrase template. The expected answer “Corticosteroids” remains unchanged across all variants,1044

and the model’s ability to produce the correct answer across paraphrases indicates the strength of1045

generalisation.1046

(3) Locality: This metric assesses whether the knowledge edit remains localized—that is, whether the1047

model’s behavior on unrelated inputs remains unchanged after editing. It reflects the extent to which the1048

edit introduces undesired side effects on out-of-scope content. Formally, locality measures the consistency1049

between the model’s pre-edit and post-edit predictions over a set of unrelated input examples O(xe, ye).1050

Ex′
e,y

′
e∼O(xe,ye)1

{
fθe(y | x′e) = fθ(y | x′e)

}
(6)1051

1052

Construction Procedure. To evaluate locality, for each triple we aim to edit, we randomly sample one1053

triple from the test set that is not semantically related to it. We ensure that the sampled triple involves1054

a different subject and relation to ensure that it lies outside the semantic scope of the edit. For this1055

unrelated triple, e.g., (Aspirin, Side Effect, Nausea), we then construct a natural language question with its1056

“Rephrase Prompt”, such as “What side effect is associated with Aspirin?”, to test whether the model’s1057

prediction remains unchanged after the edit. High locality indicates that the edit does not inadvertently1058

affect unrelated knowledge stored in the model.1059

Please refer to Table 3 for examples of relation-specific templates used to generate the edit prompts,1060

canonical questions and their paraphrased forms.1061

B.3 Evaluation for One-to-One and One-to-Many Knowledge1062

In our evaluation, both one-to-one and one-to-many knowledge triples are evaluated under a unified1063

framework that assesses each triple individually. For one-to-one knowledge, each test instance corresponds1064
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(a) The performance on BioGPT.
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(b) The performance on Llama2.
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(c) The performance on Llama3.
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(d) The performance on Qwen2.5.

Figure 8: The performance of knowledge probing after editing with different editing methods on BioGPT and
Llama2, where “Base” denotes LLM without editing.

to a unique subject-relation-object triple, and the model is evaluated on its ability to produce the correct 1065

object given a natural language question constructed from the subject and relation. 1066

For one-to-many knowledge, we follow the definition where a single subject-relation pair is associated 1067

with multiple valid objects (Nagasawa et al., 2023). Importantly, we do not expect the model to generate 1068

all corresponding objects simultaneously. Instead, each ⟨s, r, oi⟩ triple is treated as a separate test case, 1069

with its own query and expected answer. This allows for consistent evaluation using the same protocol as 1070

in the one-to-one setting. For example, if a subject-relation pair ⟨s, r⟩ is associated with objects o1 and 1071

o2, we construct two separate questions based on ⟨s, r⟩, and evaluate whether the model can correctly 1072

return o1 and o2 in their respective instances. This ensures that each fact is evaluated separately, while 1073

preserving the structural diversity inherent in one-to-many knowledge. 1074

We adopt the same accuracy-based probing method described in Section 2.2, and apply it uniformly 1075

across all triple types. 1076

B.4 Details of Training and Hyperparameter Tuning of Baselines 1077

To ensure fair and rigorous comparison, we closely followed the official implementations of each baseline 1078

method and adapted them to our biomedical knowledge editing setting using the CliKT dataset. Tuning 1079

was informed by empirical performance and grounded in established practices from prior works (Meng 1080

et al., 2022a; Mitchell et al., 2022; Zheng et al., 2023a). In what follows, we detail the training and 1081

hyperparameter tuning procedures for each method: 1082

ROME (Meng et al., 2022a): We used the causal trace method from ROME to determine the optimal 1083

editing layer for BioMedLM, identifying Layer 5 as the most effective. Other fixed parameters include 1084

the learning rate and number of editing steps, aligned with the original ROME implementation. The main 1085

tuned hyperparameter was the weight applied to the MLP component in the editing layer. Edits were 1086
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Figure 9: Knowledge probing performance before and after editing for one-to-one and one-to-many knowledge on
BioGPT and Llama2.
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Figure 10: Knowledge probing performance before and after editing on one-to-one and one-to-many knowledge for
Llama3 and Qwen2.5.

applied directly to test set instances using these optimised settings.1087

MEMIT (Meng et al., 2022a): Similar to ROME, we fixed the learning rate and number of editing steps.1088

MEMIT modifies a range of layers simultaneously; using causal trace results, we selected Layers 31089

through 8 as the editing layers. We tuned the weights assigned to each editing layer to maximize editing1090

accuracy while preserving model stability.1091

MEND (Mitchell et al., 2022): The learning rate, batch size, and training epochs were set according to1092

configurations from original work. We tuned the weights within the auxiliary editing networks, which are1093

responsible for transforming standard fine-tuning gradients into localized, high-precision updates. These1094

adjustments enable fast, targeted edits without degrading overall model behaviour.1095

IKE (Zheng et al., 2023a): IKE relies on in-context learning and prompt engineering. We fixed the1096

number of demonstrations k=16 as used in the original paper. Minimal tuning was required, as the method1097

is prompt-based. We adapted the prompt templates to fit biomedical terminology and relation patterns in1098

the CliKT dataset.1099

Fine-Tuning (FT): We adopted standard fine-tuning settings, including a learning rate of 5e-5 and 31100

training epochs, consistent across all experiments. No major tuning was performed, as FT serves primarily1101

as a baseline reference for full-model retraining.1102

C Additional Results1103

We present the performance of knowledge editing on additional base LLMs in this section. In particular,1104

we evaluate the post-edit probing accuracy of BioGPT(Luo et al., 2022), Llama2(Touvron et al., 2023),1105
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Llama3 (Grattafiori et al., 2024), and Qwen2.5 (Yang et al., 2024) using a range of editing methods. The 1106

results are shown in Figure 8(a), Figure 8(b), Figure 8(c), and Figure 8(d), respectively. 1107

To further investigate the impact of editing across different types of biomedical knowledge, we also 1108

conduct a relation-level analysis for each model. These results are presented in Figure 9 and Figure 10. 1109
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