
Published as a conference paper at COLM 2024

UTF-8 Plumbing: Byte-level Tokenizers Unavoidably Enable
LLMs to Generate Ill-formed UTF-8

Preston Firestone Shubham Ugare Gagandeep Singh Sasa Misailovic
University of Illinois Urbana-Champaign, USA

Abstract

Subword tokenization segments input text according to a pre-defined vo-
cabulary to feed it into a language model; the language model, in turn,
generates a sequence made from this same vocabulary. The members of
the vocabulary can be built of code points or bytes. Using code points
means that all members of the vocabulary are valid UTF-8 characters.
However, it also requires thousands of initial members to achieve accept-
able coverage of inputs. Beginning with bytes, on the contrary, avoids
out-of-vocabulary errors with only 256 initial members of the vocabulary,
but the members of the vocabulary and sequences of them are not guar-
anteed to be valid UTF-8. Sequences that are not valid UTF-8 break code
that assumes its input to be valid UTF-8. Applications of language models
must account for the breakage thereby introduced. In this paper, we for-
malize tokenization using monoid theory and prove that tokenizers whose
vocabularies contain tokens that are ill-formed UTF-8 can always produce
sequences that are ill-formed UTF-8. We show formally that attempting
to incrementally convert tokens back to a string and interpret the results
as UTF-8 gives different results than converting the whole sequence of to-
kens at once. This formal result predicts real-world bugs: we evaluate
mitigations for the problem identified and provide case studies of major
foundation models and constrained generation systems.

1 Introduction

Large language models (LLMs) compute the probability of a given sequence of tokens
drawn with replacement from a finite vocabulary. Tokenization is the process of cutting an
input string into tokens such that each token is a member of a predefined vocabulary. Tra-
ditionally, tokenization used prior knowledge of the language, such as words, morphemes,
or phonemes, to separate the text into useful elements (Grefenstette & Tapanainen, 1994;
Palmer, 2000). Contemporary natural language processing has moved to using “subword”
tokenization, where the vocabulary is derived automatically from a corpus of texts rather
than programmed manually (Mielke et al., 2021).

The text the tokenizer works with is stored in computers as bytes. In order to interpret these
bytes as characters meaningful to humans, we must define an encoding scheme mapping
between a sequence of bytes and a sequence of characters. The predominant scheme is
called UTF-8, regulated by Unicode Technical Committee (2025, §3.4, 3.9.3, 3.10). As of
2025, UTF-8 is used by 98.5% of all websites (W3Techs, 2025) and is required by the W3C
for user agents (van Kesteren, 2024, §4.2).

Figure 1 shows two examples of strings as characters, bytes, and tokens, from different lan-
guages and models. Contemporary language models’ tokenizers typically work with the
bytes on the bottom row of Figure 1 rather than the characters on the top row. Abstracting
away the bytes to focus on the characters is an instance of a “leaky” abstraction, a common
issue in software engineering: the information that we tried to hide by an abstraction ends
up being exposed (often as we need to handle errors) (see Spolsky, 2002; Kiczales et al.,
1992; Kiczales, 1991).

1

Published as a conference paper at COLM 2024

≀E0 A4 ≀ 85≀ ≀E0 A4 ≀ 97≀ ≀E0 A5 8D E0 A4 ≀A8≀ ≀E0 A4 BF E0 A4 ≀AE≀ ≀E0 A5 80≀ ≀E0 A4 ≀ B3≀ ≀E0 A5 87≀

(a) Characters and bytes representing the opening of the Rigveda (Sanskrit:), “ ”, translit-
erated agnim ı̄le (“I praise Agni [fire]”), tokenized according to cl100k_base.

≀D0 93≀ ≀D1 80 D0 B0 D0 B4≀ ≀20 D0 B3≀ ≀D1 80 D0 B0 D0 B4≀ ≀D0 B8 D0 BB D0 B0≀

(b) The first two words of The Building of Skadar (Serbian Cyrillic:), “ ”,
transliterated Grad gradila (“The city was built”), tokenized according to Qwen3’s vocabulary.

Figure 1: Examples of UTF-8 encoding. In each subfigure, the top row contains the in-
dividual Unicode characters that compose the string (see Unicode Technical Committee,
2025, §2.11), and the bottom row contains the UTF-8 bytes that encode each character in
the string; each byte is represented by two hexadecimal numerals. The squiggles ≀ indicate
the boundaries between tokens.

Concretely, concatenating tokens made up of bytes does not always result in sequences
that can be successfully interpreted as characters. In Figure 1a, the first token, ≀E0 A4≀,
does not encode any character by itself; only when combined with the second token ≀85≀
can the resulting three bytes E0 A4 85 be interpreted as the character sanskrit. Since lan-
guage models generate sequences made up of the tokens in their vocabulary rather than
generating bytes directly, programs that interact with sequences generated by a language
model must handle byte sequences that cannot be interpreted as characters.

Contributions. In this paper, we make the following contributions:

⋆ Introduce a formal framework for tokenization based on monoid theory.
⋆ Prove, using our formalism, that vocabularies containing tokens that cannot be inter-

preted as characters can always produce sequences that cannot be interpreted as charac-
ters.

⋆ Show that interpreting bytes as UTF-8 characters is not a homomorphism and formally
represent common mitigation strategies in the framework of monoids.

⋆ Classify popular language models according to the type of tokenizer they use.
⋆ Fix failures in constrained generation.

2 Background on monoids

To treat tokenizers abstractly, we introduce a formalism based on monoids, common in
the literature on combinatorics on words (Sakarovitch, 2009; Lothaire, 1997) but to our
knowledge new to natural language processing.

(Free) monoids. The basic component of our abstraction is the monoid.

Definition 1 (Monoid). A monoid is a triple composed of a set of elements, a binary opera-
tion on members of that set, and an identity element. We refer to monoids by Greek capital
letters (Σ), their members by subscripted lowercase Latin letters (s0, s1 ∈ Σ), the binary op-
eration as a subscripted dot (·Σ), and the identity element as a subscripted epsilon (ϵΣ). A
sequence of members of a monoid is referred to by a lowercase Greek letter (σ = s0 ·Σ s1).
Subscripts and binary operations are left out when context makes the meaning clear.

Monoids’ binary operation is associative but not commutative. For all members of the
monoid,

(s1 ·Σ s2) ·Σ s3 = s1 ·Σ (s2 ·Σ s3). (1)

The identity element is a neutral element for the binary operation, such that for any se-
quence σ

σ ·Σ ϵΣ = ϵΣ ·Σ σ = σ. (2)

2

Published as a conference paper at COLM 2024

Set theoretical operations (⊂,⊆,=, . . .) are defined between monoids that share a binary
operation and an identity element.

An example monoid is a language, where the symbols that make up the language are the
set of members s0 . . ., concatenation the binary operation ·Σ, and the empty string the iden-
tity element ϵΣ. In subsequent sections we will reason about all the sequences that can be
formed from a given monoid, which make up the free monoid of a given monoid.

Definition 2 (Free monoid). The free monoid generated by a monoid Σ, denoted Σ∗, is the
monoid of all sequences of finite length made of elements from Σ. The free monoid is like
the Kleene closure over the set of members of Σ, except the free monoid only contains finite
sequences.

In Section 3, we will use the free monoid to describe the set of all sequences that can be
generated with a given vocabulary, and in Section 4 we will use a free monoid to describe
all byte sequences that can be interpreted as a string.

Properties of monoids and their free monoids. We will need to compare the contents
of the free monoids of two different monoids that share a binary operation and identity
element; this will allow us to make claims about what kinds of sequences are and are not
in a given free monoid.

Lemma 1. If some monoid Σ contains a member not in some other free monoid ∆∗, where Σ and
∆∗ share a binary operation and an identity element, then the free monoid Σ∗ of the first monoid Σ
also contains a members not in the other free monoid ∆∗:

Σ ⊈ ∆∗ → Σ∗ ⊈ ∆∗.

Proof. Suppose for contradiction that there exist some Σ and ∆ such that Σ ⊈ ∆∗ and Σ∗ ⊆
∆∗; the existence of such a pair would be a counterexample to Lemma 1. For the set of
members of Σ to not be a subset of ∆∗, there must exist some member of Σ that is not in ∆∗.
That member of Σ is also in Σ∗, but that implies that Σ∗ ⊈ ∆∗. This contradiction shows
that no counterexample to Lemma 1 exists, thereby proving that the implication holds for
all monoids Σ and ∆ that share a binary operation and an identity element.

Mapping between monoids. In order to describe the process of tokenization in Section 3,
we will need to map sequences back and forth between different monoids. To that end we
introduce the abstraction of a stochastic map (Gastaldi et al., 2024).

Definition 3 (Stochastic map). A stochastic map κ from a monoid Σ to a monoid ∆ is a
function from Σ to the set of probability distributions on ∆.

Other works analyzing tokenizers (e.g. Zouhar et al., 2023b; Geng et al., 2024; van Antwer-
pen & Neubeck, 2024) assume that the tokenizer is deterministic or have to cope with the
ways it might not be. Following Gastaldi et al. (2024) we use stochastic maps to ensure
that our results apply to nondeterministic tokenizers, which might result in more robust
models (Geh et al., 2025; Chai et al., 2024a; Hofmann et al., 2022). Similarly, in our notation
we do not explicitly depict the probability distribution over tokenizations that τ returns,
because we do not examine the probability of individual tokenizations, but merely which
tokenizations are or are not possible for a given input.

We introduce the property of homomorphism as a restriction on maps:

Definition 4 (Homomorphism). A map κ from a monoid Σ to ∆ is a homomorphism if and
only if, for all σ, σ′ in Σ,

κ(σ ·Σ σ′) = κ(σ) ·∆ κ(σ′). (3)

We show in Section 3 that tokenizing a string is not a homomorphism and in Section 4
that interpreting bytes as a string is also not a homomorphism. We then discuss real-world
mitigations (Section 5) and bugs that arise because tokenizers fail to be homomorphisms
(Section 6).

3

Published as a conference paper at COLM 2024

3 Tokenization described with monoids

Using the tools we introduced, we can describe a tokenizer as a pair of stochastic maps
between two monoids and prove that tokenizing is not a homomorphism.

Binding and cutting monoids. We need to describe, in terms of monoids, the process of
cutting that a tokenizer does to its input. The system we introduce in this subsection is
similar but not identical to the system of Berglund & van der Merwe (2023). See Section 7
for a comparison of our system with theirs.
Definition 5 (Cut monoid). The cut monoid of a given monoid is a monoid each of whose
members has been prepended and postpended by a squiggle ≀. The cut monoid of a given
monoid Σ is indicated by a superscripted squiggle:

Σ≀ = {≀σ ≀ |σ ∈ Σ}. (4)

Where convenient to do so, we collapse adjacent squiggles ≀ for legibility.

For convenience, we use the notation Σ◦ to name a finite subset of some monoid Σ; we call
the operator ◦ “bind”. All three operators, cutting (≀), binding (◦), and freeing (∗), can be
applied in succession to a single monoid, which we depict by putting multiple superscripts
on the capital Greek letter representing the monoid; the operations are applied in order
from left to right.

We next illustrate our notation and define several monoids relevant in the rest of this paper.
The monoid Σ∗ is all possible finite sequences of members of Σ. The monoid Σ∗≀ is the
set of all possible finite sequences of members of Σ, each sequence with a squiggle pre-
and postpended to it—it represents the set of all possible tokens. Σ∗≀◦ is a finite subset of
Σ∗≀—it represents the vocabulary of some tokenizer. Σ∗≀◦∗ contains all possible sequences
of members of Σ∗≀◦—it represents all sequences that can be made using the vocabulary
of a given tokenizer.

What is a tokenizer? Tokenization is cutting the input into tokens. We define it as a pair of
mappings between two monoids Σ∗ and Σ∗≀◦∗ that share a binary operation and identity
element:
Definition 6 (Tokenizer). We call a tokenizer over some free monoid Σ∗ and some vocab-
ulary Σ∗≀◦ a pair of stochastic maps τ : Σ∗ → Σ∗≀◦∗ and κ : Σ∗≀◦∗ → Σ∗.

The map τ cuts its argument such that each token of the cut sequence is a member of
some the vocabulary Σ∗≀◦; κ joins the cut sequence by removing all the cut operators ≀. κ
is deterministic and works the same way for any vocabulary made from the same initial
monoid, whereas the behavior of τ depends on its vocabulary. Each tokenizer (τ, κ) is
parameterized by the vocabulary Σ∗≀◦ it is defined over, but we omit this detail in the
notation because we will only work with one vocabulary at a time. We will refer to passing
some input through τ as tokenizing and some input through κ as detokenizing.1

Tokenizers and homomorphism. In the paper, we will rely on the following property of
tokenizers as we defined them in Definition 6:
Theorem 1. Given a tokenizer (τ, κ), κ is a homomorphism, but τ is not.
Proof. κ is a homomorphism: The result of concatenating two cut sequences and removing
the cut marks is always identical to removing the cut marks and concatenating them: the
cut symbols are removed and the resultant string is identical to its uncut version. We have
shown that there are no counter examples to Equation 3 for κ.

τ is not homomorphism: Take some s0 · · · sn ∈ Σ∗ and cut it into some ≀s0 · · · sm−1 ≀ sm · sm+1 ≀
sm+2 · · · sn≀. It is impossible to separately cut s0 · · · sm and sm+1 · · · sn such that there is not

1Though the standard in the literature is to use “decode” for κ, we chose an alternative term “deto-
kenizing” to make it clear that we are speaking of turning tokens into some sequence of members
of the uncut monoid, a step we consider separately from the process of interpreting those bytes as a
UTF-8 string.

4

Published as a conference paper at COLM 2024

a cut after sm and before sm+1; therefore the concatenation of any separate cutting of the
two sequences s0 · · · sm and sm+1 · · · sn must include the subsequence sm ≀ sm+1. Cutting
the entire sequence s0 · · · sn at once allows for sequences that do not contain sm ≀ sm+1. We
show that there exist counterexamples to Equation 3 for τ.

Theorem 1 has already been proved by Geng et al. (2024), though they use a different
approach from ours. We reprove the Theorem here to exercise our system and state it in
our terms, and extensively use it in Section 4. Theorem 1 applies to any tokenizer that
uses cutting, regardless of vocabulary, the order in which cuts are applied, and whether
the tokenization is stochastic or not.

Out-of-vocabulary errors. Sometimes there does not exist any way to cut a sequence such
that the resulting cut sequence is made up exclusively of members of the tokenizer’s vocab-
ulary. Often, however, at least part of the input can be cut into members of the vocabulary.
There are three basic ways to deal with sections of the input that cannot be represented
in the vocabulary: failing entirely, dropping the unacceptable section, and replacing the
section with something else. In terms of our formalism:

1. Failing entirely: declaring τ to be undefined where its input cannot be mapped to Σ∗≀◦∗;
2. Dropping an unacceptable section: replacing the sequences between squiggles ≀ that

are not in Σ∗≀◦∗ with ≀ϵΣ≀ (this is a special case of the replacement strategy where η = ϵ);
3. Replacing the section with other symbols: mapping the objectionable bytes, according

to some scheme, to one or more members of Σ∗≀◦ specially set aside for this purpose.2

A τ that uses any of these mitigations will not be a homomorphism, because none of the
mitigations avoids the counterexample given in the proof of Theorem 1. UTF-8 implemen-
tations often elect the third option, replacing ill-formed byte sequences with a “replacement
character”, U+FFFD ().

4 UTF-8 and monoids

The UTF-8 encoding scheme. In the UTF-8
encoding scheme (Unicode Technical Com-
mittee, 2025, §3.9.3), each character is paired
with some byte sequence one to four bytes
long; a single such byte sequence is called
a UTF-8 code unit. Descriptions of the
UTF-8 code units are found in Table 1;
any sequence of bytes made up exclusively
of concatenated, non-overlapping UTF-8
code units is a well-formed UTF-8 string.
See Appendix B for more details about
Unicode and UTF-8. The rest of this sec-
tion will discuss UTF-8 using the monoid
and tokenizer abstractions we introduced
earlier. We begin by phrasing the encod-
ing of characters as bytes and the interpre-

First byte Second byte Third byte Fourth byte

00..7F
C2..DF 80..BF
E0 A0..BF 80..BF
E1..EC 80..BF 80..BF
ED 80..9F 80..BF
EE..EF 80..BF 80..BF
F0 90..BF 80..BF 80..BF
F1..F3 80..BF 80..BF 80..BF
F4 80..8F 80..BF 80..BF

Table 1: Well-formed UTF-8 byte se-
quences (Unicode Technical Committee,
2025, §3.9.3). A range such as 80..BF should
be read as an inclusive range from 80 through
BF.

tation of bytes as characters in terms of monoids.

Definition 7 (UTF-8). We refer to the monoid of UTF-8 code units as Υ, which is the B∗≀◦
specified in Table 1. The sequences of B∗ that are not in Υ∗ are ill-formed UTF-8 sequences;
the members of B∗ that are in Υ∗ are well-formed.

Not all byte sequences are well-formed UTF-8; see Appendix B for examples. The exis-
tence of byte sequences that are ill-formed in UTF-8 motivates Theorem 2, which follows
immediately from Lemma 1 and Definition 7.

2See Unicode Technical Committee (2025, §3.9.6) and van Kesteren (2024, §4.1) for the standard
algorithm for this replacement.

5

Published as a conference paper at COLM 2024

Theorem 2. Any vocabulary B∗≀◦ that contains a byte sequence β that is ill-formed in UTF-8
(β /∈ Υ∗) will be able to generate ill-formed sequences:

B∗≀◦ ⊈ Υ∗ → B∗≀◦∗ ⊈ Υ∗.

Due to Theorem 2, any language model’s vocabulary that contains byte tokens ill-formed
in UTF-8 can generate token sequences that are ill-formed in UTF-8.

Enforcing UTF-8 breaks homomorphism in tokenizers. In Section 6 we will show impacts
of assuming that the output of a language model is well-formed UTF-8. To prove that the
problems we discuss are inevitable, we introduce the following theorem.

Theorem 3. Interpreting a byte sequence as UTF-8 is not a homomorphism, but serializing a
sequence of well-formed UTF-8 byte sequences is a homomorphism.

Proof. Mapping between bytes and well-formed UTF-8 sequences is like tokenization, as
in Definition 6. Mapping from well-formed UTF-8 sequences to a sequence of bytes means
simply concatenating those bytes (Unicode Technical Committee, 2025, §3.10). Joining the
UTF-8 code units into a byte string is naturally like a detokenizer κ from Υ∗ (i.e. B∗≀◦∗) to
B∗. Mapping from a sequence of bytes to a well-formed UTF-8 sequence requires splitting
that byte sequence into consecutive, adjacent UTF-8 code units. This is like a τ from B∗ to
Υ∗ (i.e. to B∗≀◦∗). Theorem 3 follows directly by application of Theorem 1.

Theorem 3 applies regardless of which of the strategies of Section 3 is used. In the next
section, we will assume that decoding applies the third strategy discussed in Section 3,
and we will refer to the member of Υ set aside for ill-formed byte sequences as η. The
number of ηs used to replace ill-formed bytes in the sequence and their identity is variable.
In Section 6 we will see examples where more than one distinct replacement character
exists. See Unicode Technical Committee (2025, §3.9.6) for the standard algorithm used for
replacement when decoding UTF-8. The process assumes a single η, the character U+FFFD

“replacement character”. The number of ηs introduced to suture any ill-formed sections
of the byte sequence will not be relevant to the results of the next section, only that such a
unique character exists.

5 Incrementally detokenizing ill-formed UTF-8 sequences

It is common for language model applications to stream or otherwise incrementally gen-
erate tokens, decoding and displaying the decoded tokens opportunistically. Interactive
systems, for example, can display the intermediate steps of the generation to the user;
hosted language models on a remote server might send tokens to the client as soon as they
become available, rather than wait for generation to complete before sending anything
downstream.

As we have shown in Section 4, certain combinations of tokens can be ill-formed UTF-8,
causing a process that attempts to decode them to apply one of the coping strategies of
Subsection 3. The decoding processes used in deployed tokenizers use the third strategy
described at the end of Section 3: “replacing the [ill-formed] section with other symbols”, in
particular they use the symbol U+FFFD (“replacement character”); our formalism calls
it η.

If the user attempts to interpret the byte tokens as UTF-8 as the tokens come in, then con-
catenate, the result will be different from what the user would have gotten had they waited
for all the tokens before interpreting them all together. This problem was detected in serv-
ing engines for language models, which host language models and serve them through an
API locally or over the network: these engines failed to generate correct text, because they
incorrectly assumed that the conversion from bytes to well-formed UTF-8 was a homo-
morphism. This problem and a common mitigation strategy were introduced to Hugging
Face TGI by a user’s issue (Hugging Face, 2025; 0x1997, 2023) and percolated thence to
vLLM (Kwon et al., 2023; Yard1, 2023), OpenLLM (bentoml, 2025; jeffwang0516, 2023), and

6

Published as a conference paper at COLM 2024

SGLang (Zheng et al., 2024; hnyls2002, 2024), all of which faced similar issues for the same
reason. See Appendix C for a Python code from the serving engines.

Algorithm 1 formalizes this mitigation strat-
egy using the framework of monoids. The
function ADVANCETOKEN opportunistically
interprets byte tokens as UTF-8 sequences
when the end of the sequence’s final token
is aligned with the edge between two code
points. Each time it is called, ADVANCE-
TOKEN receives all the tokens generated so
far, with the new token at the end of the
sequence. If there is a new well-formed
code unit at the end of the sequence of to-
kens, ADVANCETOKEN updates i and j to
point to the last two positions in the token
sequence where the token and code unit
boundary lined up and returns the new
successfully-decoded code units. The al-
gorithm ignores the tokens before the ith
token, because appending bytes to well-
formed UTF-8 cannot change the previous
code units: well-formed UTF-8 code units
do not overlap.

Algorithm 1 Incrementally generate using
byte-level tokenizer.
Require:

– τ : B∗ → Υ∗. Tokenize a sequence of
bytes to a sequence of UTF-8 code units,
replacing ill-formed bytes with η.

– κ : B∗≀◦∗ → B∗. Detokenize from a se-
quence of byte tokens in some vocabu-
lary B∗≀◦ to a sequence of bytes.

– LM : B∗≀◦∗ → B∗≀◦. A language model
that takes in a sequence of tokens and
returns a new token.

– i : stateful integer initialized to 0.
– j : stateful integer initialized to 0.

1: function ADVANCETOKEN(β : B∗≀◦∗)
2: υ : Υ∗ ← τ(κ(β[i : j]))
3: υ′ : Υ∗ ← τ(κ(β[i : LENGTH(β)]))
4: if LENGTH(υ′) > LENGTH(υ) ∧

υ′[LENGTH(υ′)− 1] ̸= η then
5: i← j
6: j← LENGTH(β)
7: return υ′[LENGTH(υ) :

LENGTH(υ′)]
8: else
9: return ϵΥ
1: function GENERATE
2: β : B∗≀◦∗ ← ϵB
3: υ : Υ∗ ← ϵΥ
4: loop
5: β← β ·B LM(β)
6: υ← υ ·Υ ADVANCETOKEN(υ, β)
7: EMIT(β, υ)

The outer function, GENERATE, shows how
to exercise ADVANCETOKEN to emit the in-
crementally produced text as well-formed
code units are completed. Both the byte to-
kens and text generated so far are stored
in the local variables β and υ, which en-
ables the generating process to output text
as it is generated without losing informa-
tion about the exact bytes the model gen-
erated. Note the binary operations on lines
5 and 6 of the function GENERATE in Algo-
rithm 1: the first concatenates bytes and the
second UTF-8 code units. The purpose of
Algorithm 1 is to enable the simultaneous

application of these operations without destructively decoding the byte tokens such that
further tokens cannot be successfully appended to the sequence.

Algorithm 1 cannot make concatenating UTF-8 tokens a homomorphism (consistent with
Theorems 1 and 3). If one attempted to concatenate two sequences in Υ∗ that came out of
the function GENERATE, one would always end up with a sequence in Υ∗. But if the se-
quences in B∗≀◦∗ that Algorithm 1 detokenizes and decodes as UTF-8 are not well-formed
UTF-8, then the outputs of Algorithm 1 will remove or mangle the information the ill-
formed bytes contained. For example, the text of Figure 1a contains twelve tokens. De-
coding the first five with Algorithm 1 produces the UTF-8 code units “ ”; decoding
the remaining seven produces “ ”: concatenating produces “ ”, not the ex-
pected “ ”. Dropping the ill-formed bytes, strategy 2 from Section 3, will not restore
homomorphism: “ ” · “ ” is “ ”, not “ ”. Algorithm 1 is not always nec-
essary: none of the Cyrillic characters in Figure 1b are split across more than one token,
while several of the Devanagari characters Figure 1a are. Detokenizing and decoding this
Cyrillic sequence is a homomorphism as a special case, because all of its tokens are well-
formed; correctly handling the Devanagari sequence, on the other hand, requires special
handling.

7

Published as a conference paper at COLM 2024

The information lost when decoding an ill-formed byte sequence (whether failing, drop-
ping, or replacing) is always gone. Concatenating the decoded tokens will therefore pro-
duce different results from decoding the concatenated tokens wherever the split between
tokens is not aligned with the split between code units. Algorithm 1 decodes the interme-
diate results of generation while correctly appending new tokens to those generated so far.
The local variable υ in the function GENERATE always contains the code units generated so
far; if the final code unit is the filler character η (), then υ does not contain the final code
unit. Because it appends in the tokens’ monoid B∗≀◦ as well as in the code units’ monoid Υ
(see lines 5 and 6 of the function GENERATE), Algorithm 1 is a partial fix for certain cases,
but as we have seen, it has inherent limitations.

6 Sealing the leaks in UTF-8 decoding

Deployed tokenizers usually concatenate byte tokens and interpret them as if they were
UTF-8; when the process reaches an ill-formed subsequence, it has the choices outlined
in Section 3: failure, dropping, and replacement. Theorem 3 shows that if a vocabulary
contains byte tokens that are ill-formed UTF-8, it will be able to produce sequences that
are ill-formed UTF-8. We next classify the tokenizers of common foundation models and
discuss coping with the impacts of Theorem 3 in constrained generation.

Tokenization strategies of foundation models. In Table 2, we classify several popular
language models according to the style of tokenizer they use. We find two broad categories:
byte-level, and byte-fallback. Byte-level tokenizers impose no constraints on the formation
of tokens, which may or may not be valid in UTF-8. Since all non-ASCII characters are
represented by more than one byte in UTF-8, any script that uses a character other than the
128 in ASCII could have its characters split across multiple tokens by a byte-level tokenizer.

Byte-fallback tokenizers require that all tokens in the vocabulary be valid in UTF-8, with the
exception of 256 (or 243, excluding the 13 bytes that never appear in any UTF-8 code unit)
tokens, one for each byte. These extra tokens are used to represent parts of the input that
cannot otherwise be represented by tokens in the tokenizer’s vocabulary. Figure 2 gives
an example of such a tokenization, where each of the tokens contains a valid UTF-8 string,
except for the three single-byte tokens used to encode the rare character (“multiocular
o”, used in a single manuscript from the 15th century). Theorem 2 applies to both strategies
equally, because the single-byte tokens are already ill-formed and so a sufficient condition
for the theorem.

≀D0 BC≀ ≀D0 BD D0 BE D0 B3 D0 BE≀ ≀EA ≀ 99 ≀AE≀ ≀D1 87 D0 B8 D1 82≀ ≀D1 97≀ ≀D0 B9≀

Figure 2: Characters and bytes representing the Old Church Slavonic word ,
transliterated mnogoočitii (“many-eyed”), tokenized according to the vocabulary of
Gemma-3.

Model Tokenizer Type

OpenAI since GPT-2 (Radford et al., 2019; Brown et al., 2020; OpenAI et al., 2024) Byte-level
Qwen, Qwen2.5, Qwen3 (Bai et al., 2023; Yang et al., 2025b;a) Byte-level
Llama 1, 2 (Touvron et al., 2023a;b) Byte-fallback
Llama 3 (Grattafiori et al., 2024) Byte-level
Mistral, Mixtral (Jiang et al., 2023; 2024) Byte-fallback
Gemma 1, 2, 3 (Mesnard et al., 2024; Gemma Team et al., 2024; 2025) Byte-fallback
OLMo, OLMo 2 (Groeneveld et al., 2024; Team OLMo et al., 2025) Byte-level
Phi-1, 1.5, 2, 4 (Gunasekar et al., 2023; Li et al., 2023; Javaheripi & Bubeck; Microsoft et al., 2025) Byte-level
Phi-3 (Abdin et al., 2024) Byte-fallback
Cohere R and R+ (Cohere, 2024) Byte-level
Stable LM 1, 2 (Stability-AI; Bellagente et al., 2024) Byte-level
CodeGen, CodeGen2 (Nijkamp et al., 2023b;a) Byte-level

Table 2: Foundation models and the tokenizers they use.

8

Published as a conference paper at COLM 2024

Eight out of ten of the model families classified in Table 2 retain the same style of tokeniza-
tion throughout their generations. Llama changes from SentencePiece (Kudo & Richard-
son, 2018) to a vocabulary derived from OpenAI’s tiktoken (OpenAI, 2025) for its third
generation (Grattafiori et al., 2024). This change of dependencies resulted in a switch from
byte-fallback (since SentencePiece enforces UTF-8 validity on its tokens by default, the only
mitigation it offers for covering out-of-vocabulary inputs is byte-fallback) to byte-level.
Phi-3, unlike the other Phi-series models, used Llama 2’s vocabulary; Phi-{1, 1.5} use vo-
cabularies from CodeGen; Phi-2’s documentation does not describe the tokenization in de-
tail, but manual inspection of the publicly-available vocabulary reveals it to be byte-level;
and Phi-4 uses one of OpenAI’s vocabularies from tiktoken (OpenAI, 2025), all of which
are byte-level. As we discuss in Section 7, ablations are seldom performed on tokenizers,
and none of the models in Table 2 were tested with more than one tokenizer. We presume
that the reason for skipping ablations is the excessive cost of training multiple models of
the same scale and architecture but with distinct tokenizations (and embeddings).

Existing constrained generation systems and non-homomorphic tokenizers. Constrained
generation techniques are used to restrict language model outputs to adhere to specified
rules. We examined various grammar-constrained generation systems and tested them
to discover their behavior during partial generation decoding (Scholak et al., 2021; Poesia
et al., 2022; Willard & Louf, 2023; Ugare et al., 2025b;a; Banerjee et al., 2025; Loula et al.,
2025; Suresh et al., 2025). Among popular grammar-constrained generation tools, we found
that Synchromesh (Poesia et al., 2022) and SynCode (Ugare et al., 2025b) encountered issues
when grammars included non-ASCII characters such as emojis or mathematical symbols
such as ‘∀’. Both tools use character-based parsers rather than byte-based ones, which
created this vulnerability.

The way to fix this problem is to constrain generation at the level of bytes rather than
characters. Attempting to constrain at the level of characters fails where the bytes of the
token are ill-formed UTF-8. For example, the character ∀, used in Lean (Moura & Ullrich,
2021), might be tokenized ≀E2 88 ≀ 80≀. If the model has generated the first token of the
character, then the constrained generation algorithm must permit the second token as a
continuation, even though neither of the tokens is well-formed. Constraining at the level
of bytes rather than characters by using bytes as the input alphabet for lexers, DFAs, and
so forth repairs this problem.

For the v0.3.0 release of SynCode, we
replaced the previous character-level
finite state machines with byte-level
ones. To evaluate SynCode’s ability
to handle non-ASCII Unicode charac-
ters, we conducted an experiment us-
ing an emoji generation task. We se-
lected a subset of the TweetEval emoji

Metric SynCode v0.2.0 SynCode v0.3.0

Accuracy 0% 62%
Crash Rate 100% 0%

Table 3: Performance comparison between Syn-
Code versions on emoji generation task

dataset Barbieri et al. (2020), filtering for three common emoji classes. The task required
the model to generate exactly one emoji character in response to a given tweet, adhering
to a constrained grammar specification (see listing 4 in Appendix E). We evaluated this
task across 100 examples from the TweetEval test set on two versions of SynCode: v0.2.0
which used character-level constraints, and the current version which implements byte-
level constraints. Performance improvements are reported in Table 3: v0.2.0 crashed on all
examples, whereas v0.3.0 successfully generated emojis for all examples.

7 Related work

We direct the reader to Appendix A for more related work.

Formal approaches to tokenization. Following Sakarovitch (2009) and Lothaire (1997),
we treat languages as monoids. Monoids have found use in the analysis of formal lan-
guages (Yang & Wu, 2023) but hardly at all in the study of natural languages. The work
of Joachim Lambek on type grammar has led him to study natural language in terms of

9

Published as a conference paper at COLM 2024

ordered monoids (Lambek, 1997; 2007), but his work came to our attention too late to sig-
nificantly impact our work here.

UTF-8 challenges in tokenization. Rahman et al. (2024, §II.D) discuss the challenges of
UTF-8, both because it encodes characters as sequences of varying length, and many char-
acters are encoded by more than one byte. The latter challenge cannot be avoided unless
one wants to limit one’s character space to 256 unique characters, but the former issue is
unique to UTF-8 and distinguishes it from other encoding schemes, UTF-16 and UTF-32,
which encode all code points in two and four bytes respectively.

Ablations. To our knowledge, ablations on the relative efficacy of byte-fallback and byte-
level tokenization have not been performed. Dagan et al. (2024) ablate on datasets, pre-
tokenization schemes, and vocabulary size; Ali et al. (2024) ablate on datasets, tokenization
algorithms (BPE v. Unigram) and implementations (Hugging Face v. SentencePiece). None
directly address the tradeoffs between byte-level and byte-fallback tokenization.

Glitch tokens. “Glitch tokens” are under-trained tokens in the model’s vocabulary that
can cause erratic behavior (Land & Bartolo, 2024; Geiping et al., 2024). They are distinct
from the ill-formed UTF-8 sequences we discuss. Land & Bartolo (2024) discuss what they
call “partial UTF-8” tokens, defined as “tokens representing byte sequences that cannot
be converted to Unicode characters [decoded, in our terms] as they contain only part of
the full UTF-8 encoding for a character”. This is a special case of our ill-formed tokens:
ill-formed byte sequences need not contain any part of a UTF-8 encoding form. Ill-formed
tokens are explicitly excluded from Land & Bartolo (2024)’s experiments because they “are
not suitable for building verification prompts”, presumably because these prompts must
be well-formed UTF-8 to work with existing interfaces (e.g. Hugging Face’s).

The byte-fallback tokens (see Section 6) that encode the bytes of ASCII characters are a
source of glitchy tokens (see Geiping et al., 2024, Figure 23, in the Appendix). Geiping et al.
(2024) exclude byte-fallback tokens from the in the main body of the paper that reports the
glitchiest tokens in the Llama 2 vocabulary, because the tokens that represent the bytes of
the ASCII characters cannot be the result of ordinary tokenization.

Improbable bigrams. Jang et al. (2024) examine pairs of tokens made up of tokens that are
not well-formed UTF-8 but that, when concatenated, make a well-formed byte sequence.
These tokens enable make attacks similar to those of Land & Bartolo (2024); Geiping et al.
(2024), with the difference that Jang et al. (2024) examine pairs of tokens, whereas Land &
Bartolo (2024); Geiping et al. (2024) examine individual tokens. These bigrams are well-
formed and distinct from our examination of ill-formed sequences.

8 Conclusions and future work
The paper shows that UTF-8, tokens, and strings are leaky abstractions when generating
text using language models. Rather than burying the issue, practitioners should accustom
themselves to not expecting the inputs or outputs of their LLM system to be well-formed
UTF-8. Implementers of systems and applications for language models should test their
implementations on non-ASCII characters and ensure that they behave properly when an
input or generated sequence is ill-formed UTF-8. Authors should be more precise when
specifying the tokenization scheme their model uses when describing its architecture. We
leave for future work surveying more foundation models, testing language model applica-
tions, expanding Algorithm 1 for concatenation in both directions rather than just append-
ing (though we note that it behaves correctly when appending an arbitrarily large number
of new tokens), and experimenting with multiple constrained generation algorithms.

All humans have the right to interact with computers in their own language and to be
able to use computers to generate and manipulate text, with equal regard to all languages.
This paper works toward that goal by clarifying some common issues present with large
language models. It has addressed a leak in one of the abstractions used to work with lan-
guage, but the general problem of how to process all natural languages uniformly remains
open.

10

Published as a conference paper at COLM 2024

Acknowledgments

We thank the anonymous reviewers for their comments. This research was supported in
part by NSF Grants No. CCF-1846354, CCF-2313028, CCF-2238079, CCF-2316233, CNS-
2148583, and an Amazon Research Award.

Ethics statement

Davis & Suignard (2014) describes security issues that face systems that interact with Uni-
code as closely as language model applications and infrastructure must. They describe
non-visual exploits such as buffer overflows during encoding or decoding, text compari-
son, ill-formed input bytes, including several exploits that are particular to UTF-8. Davis
& Suignard (2014)’s visual exploits are based on visual spoofs, visually mistakable strings:
these are two or more different sequences of code points that appear the same to the user
(see Unicode Technical Committee (2025, §3.11) and Davis et al. (2024)). These would be
tokenized differently by all tokenizers, because they are not the same byte or code point
sequence and so cannot be represented by the same tokens.

Visual spoofs can be used for attacks similar to those recently studied by Geh et al. (2025),
where models generated radically different responses to varying tokenizations of the same
prompt; in some cases Geh et al. (2025) broke safety and alignment restrictions trained into
models. A visual spoof would circumvent a mitigation Geh et al. (2025) suggest for their
attack: providers of language models as a service could prohibit users from tokenizing their
own texts and require them to submit well-formed UTF-8 in order to avoid adversarial
tokenizations. Visual spoofs could produce the same effect of adversarial tokenization
without the user needing to have direct control over the tokenization process.

When discussing how to decode UTF-8 sequences, the Unicode standard offers the follow-
ing foreboding words: “[s]ilently ignoring ill-formed sequences is strongly discouraged
because joining text from before and after the ill-formed sequence can cause the resulting
text to take a new meaning. This result would be especially dangerous in the context of
textual formats that carry embedded program code” (Unicode Technical Committee, 2025,
C10). This warning is particularly apt for processes executing code that a language model
generated.

11

Published as a conference paper at COLM 2024

References

0x1997. Missing and garbled characters when streaming unicode text. GitHub Issue, 2023.
URL https://github.com/huggingface/text-generation-inference/issues/333.

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3
technical report: A highly capable language model locally on your phone, 2024. URL
https://arxiv.org/abs/2404.14219.

Orevaoghene Ahia, Sachin Kumar, Hila Gonen, Jungo Kasai, David Mortensen, Noah
Smith, and Yulia Tsvetkov. Do all languages cost the same? tokenization in the
era of commercial language models. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Process-
ing, pp. 9904–9923, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.614. URL https://aclanthology.org/2023.
emnlp-main.614/.

Mehdi Ali, Michael Fromm, Klaudia Thellmann, Richard Rutmann, Max Lübbering, Jo-
hannes Leveling, Katrin Klug, Jan Ebert, Niclas Doll, Jasper Buschhoff, Charvi Jain,
Alexander Weber, Lena Jurkschat, Hammam Abdelwahab, Chelsea John, Pedro Or-
tiz Suarez, Malte Ostendorff, Samuel Weinbach, Rafet Sifa, Stefan Kesselheim, and Nico-
las Flores-Herr. Tokenizer choice for LLM training: Negligible or crucial? In Kevin
Duh, Helena Gomez, and Steven Bethard (eds.), Findings of the Association for Computa-
tional Linguistics: NAACL 2024, pp. 3907–3924, Mexico City, Mexico, June 2024. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.247. URL
https://aclanthology.org/2024.findings-naacl.247/.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin
Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayi-
heng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei
Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng
Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang,
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tian-
hang Zhu. Qwen technical report, 2023. URL https://arxiv.org/abs/2309.16609.

Debangshu Banerjee, Tarun Suresh, Shubham Ugare, Sasa Misailovic, and Gagandeep
Singh. Crane: Reasoning with constrained llm generation. In Forty-Second International
Conference on Machine Learning, 2025. URL https://icml.cc/virtual/2025/poster/
43624.

Francesco Barbieri, Jose Camacho-Collados, Leonardo Neves, and Luis Espinosa-Anke.
Tweeteval: Unified benchmark and comparative evaluation for tweet classification, 2020.
URL https://arxiv.org/abs/2010.12421.

Marco Bellagente, Jonathan Tow, Dakota Mahan, Duy Phung, Maksym Zhuravinskyi,
Reshinth Adithyan, James Baicoianu, Ben Brooks, Nathan Cooper, Ashish Datta, Meng
Lee, Emad Mostaque, Michael Pieler, Nikhil Pinnaparju, Paulo Rocha, Harry Saini, Han-
nah Teufel, Niccolo Zanichelli, and Carlos Riquelme. Stable lm 2 1.6b technical report,
2024. URL https://arxiv.org/abs/2402.17834.

bentoml. OpenLLM. GitHub Repository, 2025. URL https://github.com/bentoml/
OpenLLM.

Martin Berglund and Brink van der Merwe. Formalizing bpe tokenization. Electronic Pro-
ceedings in Theoretical Computer Science, 388:16–27, September 2023. ISSN 2075-2180. doi:
10.4204/eptcs.388.4. URL http://dx.doi.org/10.4204/EPTCS.388.4.

Kaj Bostrom and Greg Durrett. Byte pair encoding is suboptimal for language model pre-
training. In Trevor Cohn, Yulan He, and Yang Liu (eds.), Findings of the Association for

12

https://github.com/huggingface/text-generation-inference/issues/333
https://arxiv.org/abs/2404.14219
https://aclanthology.org/2023.emnlp-main.614/
https://aclanthology.org/2023.emnlp-main.614/
https://aclanthology.org/2024.findings-naacl.247/
https://arxiv.org/abs/2309.16609
https://icml.cc/virtual/2025/poster/43624
https://icml.cc/virtual/2025/poster/43624
https://arxiv.org/abs/2010.12421
https://arxiv.org/abs/2402.17834
https://github.com/bentoml/OpenLLM
https://github.com/bentoml/OpenLLM
http://dx.doi.org/10.4204/EPTCS.388.4

Published as a conference paper at COLM 2024

Computational Linguistics: EMNLP 2020, pp. 4617–4624, Online, November 2020. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.414. URL
https://aclanthology.org/2020.findings-emnlp.414/.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners, 2020. URL https://arxiv.org/abs/2005.14165.

Yekun Chai, Yewei Fang, Qiwei Peng, and Xuhong Li. Tokenization falling short: On sub-
word robustness in large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024,
pp. 1582–1599, Miami, Florida, USA, November 2024a. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-emnlp.86. URL https://aclanthology.
org/2024.findings-emnlp.86/.

Yekun Chai, Qingyi Liu, Jingwu Xiao, Shuohuan Wang, Yu Sun, and Hua Wu. Au-
toregressive pre-training on pixels and texts. In Yaser Al-Onaizan, Mohit Bansal, and
Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 3106–3125, Miami, Florida, USA, November 2024b. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.182. URL
https://aclanthology.org/2024.emnlp-main.182/.

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John Wieting. Canine: Pre-training
an efficient tokenization-free encoder for language representation. Transactions of the
Association for Computational Linguistics, 10:73–91, 01 2022. ISSN 2307-387X. doi:
10.1162/tacl_a_00448. URL https://doi.org/10.1162/tacl_a_00448.

Marco Cognetta and Naoaki Okazaki. Tokenization as finite-state transduction, 2024. URL
https://arxiv.org/abs/2410.15696.

Marco Cognetta, Vilém Zouhar, Sangwhan Moon, and Naoaki Okazaki. Two counterex-
amples to tokenization and the noiseless channel. In Nicoletta Calzolari, Min-Yen Kan,
Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings
of the 2024 Joint International Conference on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pp. 16897–16906, Torino, Italia, May 2024. ELRA
and ICCL. URL https://aclanthology.org/2024.lrec-main.1469/.

Cohere. The command r model (details and application), 2024.

Gautier Dagan, Gabriel Synnaeve, and Baptiste Rozière. Getting the most out of your
tokenizer for pre-training and domain adaptation, 2024. URL https://arxiv.org/abs/
2402.01035.

Mark Davis and Michel Suignard. Unicode security considerations. Unicode Technical
Report 36, Unicode Consortium, 2014. URL https://www.unicode.org/reports/tr36/.

Mark Davis, Martin Dürst, and Ken Whistler. Unicode normalization forms. Unicode Stan-
dard Annex 15, Unicode Consortium, 2024. URL https://www.unicode.org/reports/
tr15/.

Matthias Gallé. Investigating the effectiveness of BPE: The power of shorter sequences.
In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 1375–1381, Hong
Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/
v1/D19-1141. URL https://aclanthology.org/D19-1141/.

13

https://aclanthology.org/2020.findings-emnlp.414/
https://arxiv.org/abs/2005.14165
https://aclanthology.org/2024.findings-emnlp.86/
https://aclanthology.org/2024.findings-emnlp.86/
https://aclanthology.org/2024.emnlp-main.182/
https://doi.org/10.1162/tacl_a_00448
https://arxiv.org/abs/2410.15696
https://aclanthology.org/2024.lrec-main.1469/
https://arxiv.org/abs/2402.01035
https://arxiv.org/abs/2402.01035
https://www.unicode.org/reports/tr36/
https://www.unicode.org/reports/tr15/
https://www.unicode.org/reports/tr15/
https://aclanthology.org/D19-1141/

Published as a conference paper at COLM 2024

Juan Luis Gastaldi, John Terilla, Luca Malagutti, Brian DuSell, Tim Vieira, and Ryan Cot-
terell. The foundations of tokenization: Statistical and computational concerns, 2024.
URL https://arxiv.org/abs/2407.11606.

Renato Lui Geh, Zilei Shao, and Guy Van den Broeck. Adversarial tokenization, 2025. URL
https://arxiv.org/abs/2503.02174.

Jonas Geiping, Alex Stein, Manli Shu, Khalid Saifullah, Yuxin Wen, and Tom Goldstein.
Coercing llms to do and reveal (almost) anything, 2024. URL https://arxiv.org/abs/
2402.14020.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin,
Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre
Ramé, et al. Gemma 2: Improving open language models at a practical size, 2024. URL
https://arxiv.org/abs/2408.00118.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona
Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al.
Gemma 3 technical report, 2025. URL https://arxiv.org/abs/2503.19786.

Saibo Geng, Sankalp Gambhir, Chris Wendler, and Robert West. Byte bpe tokenization as
an inverse string homomorphism, 2024. URL https://arxiv.org/abs/2412.03160.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The
llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Gregory Grefenstette and Pasi Tapanainen. What is a word, what is a sentence?: problems
of tokenisation. 1994.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David
Atkinson, Russell Authur, Khyathi Raghavi Chandu, Arman Cohan, Jennifer Dumas,
Yanai Elazar, Yuling Gu, Jack Hessel, Tushar Khot, William Merrill, Jacob Morrison,
Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Valentina
Pyatkin, Abhilasha Ravichander, Dustin Schwenk, Saurabh Shah, Will Smith, Emma
Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep Dasigi, Nathan Lambert, Kyle
Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Soldaini, Noah A. Smith, and
Hannaneh Hajishirzi. Olmo: Accelerating the science of language models, 2024. URL
https://arxiv.org/abs/2402.00838.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno,
Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi,
et al. Textbooks are all you need, 2023. URL https://arxiv.org/abs/2306.11644.

hnyls2002. Decode incrementally. GitHub Pull Request, 2024. URL https://github.com/
sgl-project/sglang/pull/517.

Valentin Hofmann, Hinrich Schuetze, and Janet Pierrehumbert. An embarrassingly simple
method to mitigate undesirable properties of pretrained language model tokenizers. In
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pp. 385–393, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.acl-short.43. URL https://aclanthology.org/2022.acl-short.43/.

Hugging Face. Text generation inference, 2025. URL https://github.com/huggingface/
text-generation-inference.

Huggingface. tokenizers. GitHub Repository, 2025. URL https://github.com/
huggingface/tokenizers.

Eugene Jang, Kimin Lee, Jin-Woo Chung, Keuntae Park, and Seungwon Shin. Improbable
bigrams expose vulnerabilities of incomplete tokens in byte-level tokenizers, 2024. URL
https://arxiv.org/abs/2410.23684.

14

https://arxiv.org/abs/2407.11606
https://arxiv.org/abs/2503.02174
https://arxiv.org/abs/2402.14020
https://arxiv.org/abs/2402.14020
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2412.03160
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2402.00838
https://arxiv.org/abs/2306.11644
https://github.com/sgl-project/sglang/pull/517
https://github.com/sgl-project/sglang/pull/517
https://aclanthology.org/2022.acl-short.43/
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/tokenizers
https://github.com/huggingface/tokenizers
https://arxiv.org/abs/2410.23684

Published as a conference paper at COLM 2024

Mojan Javaheripi and Sébastien Bubeck. Phi-2: The surprising power of small language
models.

jeffwang0516. bug: Output text from completionchunk is different with tokenizer.decode.
Github Issue, 2023. URL https://github.com/bentoml/OpenLLM/issues/809.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lu-
cile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b,
2023. URL https://arxiv.org/abs/2310.06825.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary,
Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian
Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud,
Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang,
Szymon Antoniak, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Tim-
othée Lacroix, and William El Sayed. Mixtral of experts, 2024. URL https://arxiv.org/
abs/2401.04088.

G. Kiczales. Towards a new model of abstraction in software engineering . In Proceedings
1991 International Workshop on Object Orientation in Operating Systems, pp. 127,128, Los
Alamitos, CA, USA, October 1991. IEEE Computer Society. doi: 10.1109/IWOOOS.1991.
183036. URL https://doi.ieeecomputersociety.org/10.1109/IWOOOS.1991.183036.

G. Kiczales, M. Theimer, and B. Welch. A new model of abstraction for operating system
design. In [1992] Proceedings of the Second International Workshop on Object Orientation in
Operating Systems, pp. 346–349, 1992. doi: 10.1109/IWOOOS.1992.252962.

Terry Koo, Frederick Liu, and Luheng He. Automata-based constraints for language model
decoding, 2024. URL https://arxiv.org/abs/2407.08103.

Taku Kudo. Subword regularization: Improving neural network translation models with
multiple subword candidates. In Iryna Gurevych and Yusuke Miyao (eds.), Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 66–75, Melbourne, Australia, July 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/P18-1007. URL https://aclanthology.org/P18-1007/.

Taku Kudo and John Richardson. SentencePiece: A simple and language independent
subword tokenizer and detokenizer for neural text processing. In Eduardo Blanco
and Wei Lu (eds.), Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 66–71, Brussels, Belgium, November
2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-2012. URL
https://aclanthology.org/D18-2012/.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large
language model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th
Symposium on Operating Systems Principles, 2023.

J. Lambek. From word to sentence: a pregroup analysis of the object pronoun who(m).
Journal of Logic, Language and Information, 16(3):303–323, February 2007. ISSN 1572-9583.
doi: 10.1007/s10849-006-9035-9. URL http://dx.doi.org/10.1007/s10849-006-9035-9.

Joachim Lambek. Type grammar revisited. In Selected Papers from the Second International
Conference on Logical Aspects of Computational Linguistics, LACL ’97, pp. 1–27, Berlin, Hei-
delberg, 1997. Springer-Verlag. ISBN 3540657517.

Sander Land and Max Bartolo. Fishing for magikarp: Automatically detecting under-
trained tokens in large language models. In Yaser Al-Onaizan, Mohit Bansal, and
Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 11631–11646, Miami, Florida, USA, November 2024. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.649. URL
https://aclanthology.org/2024.emnlp-main.649/.

15

https://github.com/bentoml/OpenLLM/issues/809
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://doi.ieeecomputersociety.org/10.1109/IWOOOS.1991.183036
https://arxiv.org/abs/2407.08103
https://aclanthology.org/P18-1007/
https://aclanthology.org/D18-2012/
http://dx.doi.org/10.1007/s10849-006-9035-9
https://aclanthology.org/2024.emnlp-main.649/

Published as a conference paper at COLM 2024

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and
Yin Tat Lee. Textbooks are all you need ii: phi-1.5 technical report, 2023. URL
https://arxiv.org/abs/2309.05463.

Jindřich Libovický, Helmut Schmid, and Alexander Fraser. Why don‘t people use
character-level machine translation? In Smaranda Muresan, Preslav Nakov, and Aline
Villavicencio (eds.), Findings of the Association for Computational Linguistics: ACL 2022,
pp. 2470–2485, Dublin, Ireland, May 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.findings-acl.194. URL https://aclanthology.org/2022.
findings-acl.194/.

Tomasz Limisiewicz, Terra Blevins, Hila Gonen, Orevaoghene Ahia, and Luke Zettlemoyer.
MYTE: Morphology-driven byte encoding for better and fairer multilingual language
modeling. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 15059–15076, Bangkok, Thailand, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.acl-long.804. URL https://aclanthology.org/2024.
acl-long.804/.

M. Lothaire (ed.). Combinatorics on Words. Cambridge University Press, 1997. ISBN
9780511566097. doi: 10.1017/cbo9780511566097. URL http://dx.doi.org/10.1017/
CBO9780511566097.

João Loula, Benjamin LeBrun, Li Du, Ben Lipkin, Clemente Pasti, Gabriel Grand, Tianyu
Liu, Yahya Emara, Marjorie Freedman, Jason Eisner, Ryan Cotterell, Vikash Mansinghka,
Alexander K. Lew, Tim Vieira, and Timothy J. O’Donnell. Syntactic and semantic con-
trol of large language models via sequential monte carlo. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=
xoXn62FzD0.

Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, et al.
Gemma: Open models based on gemini research and technology, 2024. URL https:
//arxiv.org/abs/2403.08295.

Microsoft, :, Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla,
Nguyen Bach, Jianmin Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, et al. Phi-4-
mini technical report: Compact yet powerful multimodal language models via mixture-
of-loras, 2025. URL https://arxiv.org/abs/2503.01743.

Sabrina J. Mielke, Zaid Alyafeai, Elizabeth Salesky, Colin Raffel, Manan Dey, Matthias
Gallé, Arun Raja, Chenglei Si, Wilson Y. Lee, Benoît Sagot, and Samson Tan. Between
words and characters: A brief history of open-vocabulary modeling and tokenization in
nlp, 2021. URL https://arxiv.org/abs/2112.10508.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming
language. In Automated Deduction – CADE 28: 28th International Conference on Automated
Deduction, Virtual Event, July 12–15, 2021, Proceedings, pp. 625–635, Berlin, Heidelberg,
2021. Springer-Verlag. ISBN 978-3-030-79875-8. doi: 10.1007/978-3-030-79876-5_37. URL
https://doi.org/10.1007/978-3-030-79876-5_37.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo Zhou. Code-
gen2: Lessons for training llms on programming and natural languages, 2023a. URL
https://arxiv.org/abs/2305.02309.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio
Savarese, and Caiming Xiong. Codegen: An open large language model for code with
multi-turn program synthesis, 2023b. URL https://arxiv.org/abs/2203.13474.

OpenAI. tiktoken. GitHub Repository, 2025.

16

https://arxiv.org/abs/2309.05463
https://aclanthology.org/2022.findings-acl.194/
https://aclanthology.org/2022.findings-acl.194/
https://aclanthology.org/2024.acl-long.804/
https://aclanthology.org/2024.acl-long.804/
http://dx.doi.org/10.1017/CBO9780511566097
http://dx.doi.org/10.1017/CBO9780511566097
https://openreview.net/forum?id=xoXn62FzD0
https://openreview.net/forum?id=xoXn62FzD0
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2503.01743
https://arxiv.org/abs/2112.10508
https://doi.org/10.1007/978-3-030-79876-5_37
https://arxiv.org/abs/2305.02309
https://arxiv.org/abs/2203.13474

Published as a conference paper at COLM 2024

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Flo-
rencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anad-
kat, et al. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Mar-
garet Li, Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, Gargi Ghosh, Mike
Lewis, Ari Holtzman, and Srinivasan Iyer. Byte latent transformer: Patches scale better
than tokens, 2024. URL https://arxiv.org/abs/2412.09871.

David D. Palmer. Tokenization and Sentence Segmentation, chapter 2. Marcel Drekker, 2000.

Aleksandar Petrov, Emanuele La Malfa, Philip H.S. Torr, and Adel Bibi. Language model
tokenizers introduce unfairness between languages. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2023.
Curran Associates Inc.

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher
Meek, and Sumit Gulwani. Synchromesh: Reliable code generation from pre-trained
language models, 2022. URL https://arxiv.org/abs/2201.11227.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. Technical report, OpenAI,
2019. URL https://cdn.openai.com/better-language-models/language_models_are_
unsupervised_multitask_learners.pdf.

Abrar Rahman, Garry Bowlin, Binit Mohanty, and Sean McGunigal. Towards linguistically-
aware and language-independent tokenization for large language models (llms), 2024.
URL https://arxiv.org/abs/2410.03568.

Phillip Rust, Jonas F. Lotz, Emanuele Bugliarello, Elizabeth Salesky, Miryam de Lhoneux,
and Desmond Elliott. Language modelling with pixels. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
FkSp8VW8RjH.

Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, October
2009. ISBN 9781139195218. doi: 10.1017/cbo9781139195218. URL http://dx.doi.org/
10.1017/CBO9781139195218.

Elizabeth Salesky, David Etter, and Matt Post. Robust open-vocabulary translation from
visual text representations. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia,
and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pp. 7235–7252, Online and Punta Cana, Dominican Repub-
lic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
emnlp-main.576. URL https://aclanthology.org/2021.emnlp-main.576/.

Craig W Schmidt, Varshini Reddy, Haoran Zhang, Alec Alameddine, Omri Uzan, Yuval
Pinter, and Chris Tanner. Tokenization is more than compression. In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pp. 678–702, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.40.
URL https://aclanthology.org/2024.emnlp-main.40/.

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. Picard: Parsing incrementally
for constrained auto-regressive decoding from language models, 2021. URL https://
arxiv.org/abs/2109.05093.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. In Katrin Erk and Noah A. Smith (eds.), Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1715–1725, Berlin, Germany, August 2016. Association for Computational Linguistics.
doi: 10.18653/v1/P16-1162. URL https://aclanthology.org/P16-1162/.

17

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2412.09871
https://arxiv.org/abs/2201.11227
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2410.03568
https://openreview.net/forum?id=FkSp8VW8RjH
https://openreview.net/forum?id=FkSp8VW8RjH
http://dx.doi.org/10.1017/CBO9781139195218
http://dx.doi.org/10.1017/CBO9781139195218
https://aclanthology.org/2021.emnlp-main.576/
https://aclanthology.org/2024.emnlp-main.40/
https://arxiv.org/abs/2109.05093
https://arxiv.org/abs/2109.05093
https://aclanthology.org/P16-1162/

Published as a conference paper at COLM 2024

Joel Spolsky. The law of leaky abstractions. Joel on Software, 2002. URL https://www.
joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/.

Stability-AI. Stable lm. GitHub Repository. URL https://github.com/stability-AI/
stableLM/.

Tarun Suresh, Debangshu Banerjee, Shubham Ugare, Sasa Misailovic, and Gagandeep
Singh. Dingo: Constrained inference for diffusion llms, 2025. URL https://arxiv.org/
abs/2505.23061.

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Gupta, Hyung Won Chung, Dara Bahri, Zhen
Qin, Simon Baumgartner, Cong Yu, and Donald Metzler. Charformer: Fast character
transformers via gradient-based subword tokenization, 2022. URL https://arxiv.org/
abs/2106.12672.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk,
Oyvind Tafjord, Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark,
Pradeep Dasigi, Nouha Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Ji-
acheng Liu, Saumya Malik, William Merrill, Lester James V. Miranda, Jacob Morrison,
Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman Rangapur, Michael Schmitz, Sam
Skjonsberg, David Wadden, Christopher Wilhelm, Michael Wilson, Luke Zettlemoyer,
Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2 olmo 2 furious, 2025. URL
https://arxiv.org/abs/2501.00656.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien
Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and
efficient foundation language models, 2023a. URL https://arxiv.org/abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine
Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel,
Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin
Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh
Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu,
Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin
Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schel-
ten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez,
Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and
fine-tuned chat models, 2023b. URL https://arxiv.org/abs/2307.09288.

Shubham Ugare, Rohan Gumaste, Tarun Suresh, Gagandeep Singh, and Sasa Misailovic.
Itergen: Iterative semantic-aware structured LLM generation with backtracking. In
The Thirteenth International Conference on Learning Representations, 2025a. URL https:
//openreview.net/forum?id=ac93gRzxxV.

Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. Syn-
code: LLM generation with grammar augmentation. Transactions on Machine Learning
Research, 2025b. ISSN 2835-8856. URL https://openreview.net/forum?id=HiUZtgAPoH.

Unicode Technical Committee. Unicode standard. Standard, Unicode, Inc., 2025. URL
https://www.unicode.org/versions/latest/.

Hendrik van Antwerpen and Alexander Neubeck. bpe readme. GitHub, 2024. URL https:
//github.com/github/rust-gems/blob/main/crates/bpe/README.md.

Anne van Kesteren. Encoding. Standard, WHATWG, 2024. URL https://encoding.spec.
whatwg.org.

18

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://github.com/stability-AI/stableLM/
https://github.com/stability-AI/stableLM/
https://arxiv.org/abs/2505.23061
https://arxiv.org/abs/2505.23061
https://arxiv.org/abs/2106.12672
https://arxiv.org/abs/2106.12672
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://openreview.net/forum?id=ac93gRzxxV
https://openreview.net/forum?id=ac93gRzxxV
https://openreview.net/forum?id=HiUZtgAPoH
https://www.unicode.org/versions/latest/
https://github.com/github/rust-gems/blob/main/crates/bpe/README.md
https://github.com/github/rust-gems/blob/main/crates/bpe/README.md
https://encoding.spec.whatwg.org
https://encoding.spec.whatwg.org

Published as a conference paper at COLM 2024

W3Techs. Usage statistics of character encodings for websites. Q-Success, 02 2025. URL
https://w3techs.com/technologies/overview/character_encoding.

Brandon T. Willard and Rémi Louf. Efficient guided generation for large language models,
2023. URL https://arxiv.org/abs/2307.09702.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale,
Adam Roberts, and Colin Raffel. Byt5: Towards a token-free future with pre-trained
byte-to-byte models. Transactions of the Association for Computational Linguistics, 10:291–
306, 03 2022. ISSN 2307-387X. doi: 10.1162/tacl_a_00461. URL https://doi.org/10.
1162/tacl_a_00461.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei
Huang, Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong
Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai
Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li,
Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao
Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng
Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun
Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report,
2025a. URL https://arxiv.org/abs/2505.09388.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei
Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin
Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin,
Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang
Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu.
Qwen2.5 technical report, 2025b. URL https://arxiv.org/abs/2412.15115.

Zhixuan Yang and Nicolas Wu. Modular models of monoids with operations. Proc. ACM
Program. Lang., 7(ICFP), August 2023. doi: 10.1145/3607850. URL https://doi.org/10.
1145/3607850.

Yard1. Use tgi-like incremental detokenization. GitHub Pull Request, 2023. URL https:
//github.com/vllm-project/vllm/pull/984.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu,
Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying
Sheng. Sglang: Efficient execution of structured language model programs, 2024. URL
https://arxiv.org/abs/2312.07104.

Vilém Zouhar, Clara Meister, Juan Gastaldi, Li Du, Mrinmaya Sachan, and Ryan Cot-
terell. Tokenization and the noiseless channel. In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 5184–5207, Toronto, Canada, July
2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.284.
URL https://aclanthology.org/2023.acl-long.284/.

Vilém Zouhar, Clara Meister, Juan Gastaldi, Li Du, Tim Vieira, Mrinmaya Sachan, and
Ryan Cotterell. A formal perspective on byte-pair encoding. In Anna Rogers, Jor-
dan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Association for Compu-
tational Linguistics: ACL 2023, pp. 598–614, Toronto, Canada, July 2023b. Association
for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.38. URL https:
//aclanthology.org/2023.findings-acl.38/.

19

https://w3techs.com/technologies/overview/character_encoding
https://arxiv.org/abs/2307.09702
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2412.15115
https://doi.org/10.1145/3607850
https://doi.org/10.1145/3607850
https://github.com/vllm-project/vllm/pull/984
https://github.com/vllm-project/vllm/pull/984
https://arxiv.org/abs/2312.07104
https://aclanthology.org/2023.acl-long.284/
https://aclanthology.org/2023.findings-acl.38/
https://aclanthology.org/2023.findings-acl.38/

Published as a conference paper at COLM 2024

A Extended related work

Tokenization notation and terminology. The process we call “cutting” is a standard step
in tokenization but is represented variously in the literature. Sennrich et al. (2016) use (|)
or a space; Gastaldi et al. (2024) use (p); Schmidt et al. (2024) and Bostrom & Durrett (2020)
use a space; Koo et al. (2024) use (); Kudo (2018) uses (/); Kudo & Richardson (2018) wrap
tokens with square brackets; Cognetta & Okazaki (2024) use ; and Geng et al. (2024) use
color to distinguish tokens. We follow Berglund & van der Merwe (2023) in using (≀),
though we extend their notation by requiring that cut sequences begin and end with (≀).
Morphisms in tokenization. We use the term homomorphism the way Geng et al. (2024)
use it. For Sakarovitch (2009), a homomorphism is a bijective morphism. Gastaldi et al.
(2024) call multiplicative what we refer to as a homomorphism; with the following addi-
tional constraint that it map non-empty sequences to non-empty sequences, it also has a
trivial kernel: δ ̸= ϵ∆ → κ(δ) ̸= ϵΣ. Lothaire (1997) and Sakarovitch (2009) call a morphism
what we call a homomorphism with the additional requirement that it map the identity
member to the identity member: κ(ϵ∆) = ϵΣ. We include neither of these additional re-
strictions because they are not necessary for our work here.

Subword tokenization methods. A cutting tokenizer like ours is a generalization of a sub-
word tokenizer (Sennrich et al., 2016; Kudo, 2018; Kudo & Richardson, 2018). The perfor-
mance of subword tokenizers is contested. The reader is directed inter alia to Gallé (2019);
Zouhar et al. (2023a) for a favorable impression and to Bostrom & Durrett (2020); Schmidt
et al. (2024); Chai et al. (2024a) for a negative one. Practically representing the negative
camp, tokenizer-free models work directly on input characters (e.g. Tay et al., 2022; Clark
et al., 2022), bytes (e.g. Xue et al., 2022; Pagnoni et al., 2024), or on images of input text (e.g.
Salesky et al., 2021; Rust et al., 2023; Chai et al., 2024b).

Byte-level and character-level approaches. Byte-pair encoding has been studied exten-
sively: Bostrom & Durrett (2020) argue that Unigram is superior to BPE. Gallé (2019) argue
that BPE performs highly because it compresses the input, but Schmidt et al. (2024) perform
experiments that suggest that compression is not necessary or sufficient for performance in
a tokenizer. Zouhar et al. (2023a) propose an information theoretic standard, Rényi entropy,
for why certain tokenizers perform better than others; Cognetta et al. (2024) supply counter
examples to the argument of Zouhar et al. (2023a). Libovický et al. (2022) examine the ef-
ficacy of tokenizationless character-level machine translation compared to character-level
BPE and find that the former performs at best only as well as the latter.

Inter-language performance comparisons. Limisiewicz et al. (2024); Hofmann et al. (2022)
examine adapting subword tokenization to respect morphological boundaries in language
in order to improve performance in non-European languages. Petrov et al. (2023); Ahia
et al. (2023) show that byte-level and character-level tokenization introduce severe dis-
crepancies among languages, due in part to the varying lengths of byte sequences used to
represent text in various languages.

B Details about UTF-8

Table 4: UTF-8 bit distribution, showing how to convert code points, represented as binary
numbers, into the bytes of UTF-8. (Unicode Technical Committee, 2025, Table 3-6).

Code Point First Byte Second Byte Third Byte Fourth Byte

00000000 0xxxxxxx 0xxxxxxx
00000yyy yyxxxxxx 110yyyyy 10xxxxxx
zzzzyyyy yyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx
000uuuuu zzzzyyyy yyxxxxxx 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx

In the main body of the paper we ignore the concept of code points entirely and exclusively
treat UTF-8 code units. However, in Appendix D we discuss a hack to store byte-level

20

Published as a conference paper at COLM 2024

tokens in well-formed UTF-8 files; we will need to discuss code points as such there. Each
character in Unicode (Unicode Technical Committee, 2025) is mapped to a number in the
range 0 to 10FFFF16, called a code point. To turn a code point into its UTF-8 code unit,
convert the code point to bytes as shown in Table 4. A process that interprets UTF-8 bytes
as characters, a process we waved away in the body of the paper, must disassemble the
bytes it receives on its input to recover the code point of the character it must display.

Several properties of UTF-8 referenced in the main text are immediately obvious by visual
inspection of Tables 4 and 1. For example, any sequence made up exclusively of bytes
starting 10, that is, in the range 80..BF, can never be well-formed UTF-8. Similarly, no
sequence made up exclusively of bytes beginning with 110, 1110, or 11110 can ever contain
any well-formed encoded forms. Also, the bytes C0-C1 and F5-FF never appear in UTF-8
at all, so they can also be used to disrupt well-formed encoding forms.

Note also that not all characters are encoded by the same number of bytes. In tokenizers
based on merging pairs of tokens, the number of bytes that make up a character could
influence the likelihood that that character is represented by more than one token. We
leave verifying or disproving this conjecture to future work.

C Python implementation of Algorithm 1

Listing 1 Implementation of Algorithm 1 from the serving engines discussed in Section 5.
In the real listing, the variable replacement_char is assigned the value . Note that the
variables we call i and j are named prefix_offset and read_offset respectively. The fast
version of the Hugging Face tokenizers library uses a Rust translation of this logic (Hug-
gingface, 2025).

1 def decode_token(
2 self,
3 all_input_ids: List[int],
4 prefix_offset: int = 0,
5 read_offset: int = 0,
6 skip_special_tokens: bool = False,
7) -> Tuple[str, int, int]:
8 prefix_text = self.tokenizer.decode(
9 all_input_ids[prefix_offset:read_offset],

10 skip_special_tokens=skip_special_tokens,
11)
12 new_text = self.tokenizer.decode(
13 all_input_ids[prefix_offset:],
14 skip_special_tokens=skip_special_tokens
15)
16

17 if len(new_text) > len(prefix_text) and not new_text.endswith(replacement_char):
18 new_text = new_text[len(prefix_text) :]
19 return new_text, read_offset, len(all_input_ids)
20 else:
21 return "", prefix_offset, read_offset

Table 5 gives an example of incrementally decoding a sequence of byte tokens. The first col-
umn of the execution trace contains the byte tokens to be detokenized, read in order from
top to bottom. The second column shows the characters emitted as they are completed.
The third and fourth columns show the values of i and j as they are advanced through the
sequence of byte tokens.

21

Published as a conference paper at COLM 2024

Table 5: Trace of executing Algorithm 1 on the tokens from Example 1a.

Byte token Text emitted i j

≀E0 A4≀ 0 0
≀85≀ 0 2
≀E0 A4≀ 0 2
≀97≀ 2 4
≀E0 A5 8D E0 A4≀ 2 4
≀A8≀ 4 6
≀E0 A4 BF E0 A4≀ 4 6
≀AE≀ 6 8
≀E0 A5 80≀ 8 9
≀E0 A4≀ 8 9
≀B3≀ 9 11
≀E0 A5 87≀ 11 12

D Mapping bytes to Unicode and back

≀D093≀ ≀D180 D0B0 D0B4≀ ≀20 D0B3≀ ≀D180 D0B0 D0B4≀ ≀D0B8 D0BB D0B0≀
≀ Ðˆ ≀ ≀ ÑG, Ð° Ð´ ≀ ≀ Ġ Ð³ ≀ ≀ ÑG, Ð° Ð´ ≀ ≀ Ð¸ Ð» Ð° ≀

Table 6: The first two words of The Building of Skadar (Serbian:),
“ ”, transliterated “Grad gradila” (“The city was built”). The top row is the se-
quence of characters making up these words, the middle row is the sequence of bytes that
are the UTF-8 encoding of this sequence of code points, and the bottom row is the bytes
of the middle row mapped to characters according to the mapping defined in Listing 2.
The squiggles ≀ in the bottom two rows indicate the tokenization according to Qwen3’s
vocabulary (Yang et al., 2025a).

Listing 2 Code from GPT-2 (Radford et al., 2019) that defines an injective but not surjective
mapping between the set of natural numbers from 0 to 255 and the set of natural numbers.
The numbers 2116, . . . 7E16, A116, . . . AC16, AE16, . . . , FF16 are mapped to themselves. The
remaining numbers are mapped in order to 10016 through 14316. The returned dictionary
maps from ints representing byte values to strs of one character representing code points.

1 def bytes_to_unicode():
2 bs = (
3 list(range(ord("!"), ord("~") + 1))
4 + list(range(ord("¡"), ord("¬") + 1))
5 + list(range(ord("®"), ord("ÿ") + 1))
6)
7 cs = bs[:]
8 n = 0
9 for b in range(2**8):

10 if b not in bs:
11 bs.append(b)
12 cs.append(2**8 + n)
13 n += 1
14 cs = [chr(n) for n in cs]
15 return dict(zip(bs, cs))

Hugging Face distributes tokenizer vocabularies as UTF-8-encoded files. 3 Since program-
mers tend to work with UTF-8-encoded strings rather than directly with byte sequences,

3In HTTP-speak: content-type: text/plain; charset=UTF-8

22

Published as a conference paper at COLM 2024

it is convenient to be able to represent arbitrary byte sequences, such as those produced
by arbitrarily clumping bytes, as UTF-8 sequences. 4 GPT-2 (Radford et al., 2019), because
it had a byte-level vocabulary stored in UTF-8 files, introduced a mapping between each
byte and a code point (see B) and storing the code points as UTF-8 byte sequences. The
tokenizer’s implementation must convert back and forth between the code points and the
bytes they represent to interact with byte-level inputs.

Listing 2 gives a Python procedure for mapping from bytes to (printable) code points. Most
of the code points between 0016 and FF16 are printable characters, so though the result
will be an ugly mix of semantically insignificant characters, the result will be made up
entirely of printable characters. The characters in the range 0016 through FF16 that are
control or whitespace characters are mapped to the code points beginning at 10016. Luckily
the entire block U+0100–U+17F0 is printable characters. The transition between the middle
and bottom rows of Example 6 exemplifies these transformations.

E Unicode character handling SynCode evaluation prompt and
grammar

As discussed in Section 6, to evaluate SynCode’s ability to handle non-ASCII Unicode char-
acters, we conducted an experiment using emoji generation task. We selected a subset of
the TweetEval emoji dataset Barbieri et al. (2020), filtering for three common emoji classes.
The task required the model to generate exactly one emoji character in response to a given
tweet, adhering to a constrained grammar specification. This evaluation directly tested
SynCode’s handling of multi-byte UTF-8 sequences, which was a limitation in earlier ver-
sions.

Listing 3 Grammar specification for emoji generation task using Unicode escape se-
quences.
// Lark grammar to validate single emoji output
start: emoji

// Define the 3 emojis from the TweetEval emoji dataset
emoji: "\U0001F60D" | "\U0001F602" | "\U0001F609"
emoji: " " | " " | " "

The prompt template instructed the model to analyze tweets and respond with exactly one
emoji from the allowed set (Listing 4). We evaluated this task across 100 examples from the
TweetEval test set on two versions of SynCode: v0.2.0 which used a character-level finite
state machine (FSM), and the current version which implements a byte-level FSM with our
recommended fix.

The results demonstrated a significant improvement in Unicode handling capability. Syn-
Code v0.2.0 with its character-level FSM failed on all 100 examples, resulting in a 100%
crash rate and 0% accuracy. In comparison, the current implementation after suggested fix
processed all examples without crashes, achieving 62% accuracy in emoji prediction.

4A notable exception is OpenAI, who after GPT-2 have worked directly with byte sequences that
are not guaranteed to be valid UTF-8.

23

Published as a conference paper at COLM 2024

Listing 4 Prompt template for emoji generation task (emoji symbols represented as place-
holders)
You are evaluating tweets to assign the most appropriate emoji.
INSTRUCTIONS:
1. Read the tweet below carefully.
2. Select the SINGLE most appropriate emoji that captures the sentiment.
3. Respond with ONLY that emoji - no words or other characters.

The emoji must be one of the 3 valid options from this set:

Tweet: "tweet_text"
Your response:

24

