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Abstract

Data annotation is a time-consuming and labor-
intensive task, with an average annotation cost
of $0.11 per instance on crowdsourcing plat-
forms. This high cost has become a constraint
for further development of many researches.
As large-scale language models (LLMs) have
made significant progress in many tasks, re-
searchers have begun to experiment with the
use of prompt learning to generate samples.
However, previous studies have mainly focused
on surface semantic tasks and neglected in-
depth studies of implicit semantic tasks (e.g.,
metaphors), which require LLMs to provide
a deeper understanding of the implicit mean-
ings in text. Therefore, the aim of this pa-
per is to explore the data generation capabil-
ities of ChatGPT in dealing with metaphorical
tasks. In previous surface semantic tasks, re-
searchers usually use direct generation of sam-
ples (DG) and example-based prompt enhance-
ment (EPE) methods. We propose a sematic-
based prompt enhancement (SPE) method. Ex-
periments demonstrate that the SPE method has
the best F1 performance on three datasets and
exceeds the accuracy of crowdsourced annota-
tions (CA) samples on two datasets. Finally,
we provide an in-depth analysis and discussion
of the three ChatGPT sample generation meth-
ods through extensive example analysis and
experiments.

1 Introduction

Metaphors, as a unique way for people to under-
stand the world, help understand vague and abstract
concepts in the source domain by extracting famil-
iar concepts in the target domain (Lakoff and John-
son, 2008). However, current metaphor detection
systems often use supervised methods that rely on
high-quality manually labeled data. According to
a survey (Wang et al., 2021a), the average label-
ing cost per instance on crowdsourcing platforms
is as high as $0.11. Comparatively, generating
samples using large language model (e.g., GPT3.5-
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Figure 1: (a) is direct sample generation using ChatGPT.
(b) is the example-based prompt enhancement (EPE)
method, where examples are added to the prompt. (c) is
the sematic-based prompt enhancement (SPE) method
we proposed, which uses multiple word senses.

turbo) APIs becomes a more cost-effective alter-
native, costing only 0.05 per 1M token input and
0.15 per 1M token output, respectively. Therefore,
this raises an interesting question: how can Chat-
GPT be effectively guided to generate high-quality
sample data?

Initially, LLMs were studied mainly through
fine-tuning. McCann et al. (2018) and Rajani et al.
(2019) used decoders to generate correct responses
with question and context. Trinh and Le (2018)
and Petroni et al. (2019) used encoders that em-
ploy a completionist approach to guide the model
in generating the required answers. For example,
"Donald Trump is [MASK]", where "[MASK]" can
be: "former president” or "businessman". With the



development of LLMs, the emergence of GPT-3
(Brown et al., 2020) has significantly improved the
ability of sample generation. However, its large
number of parameters also brings the problem of
difficult fine-tuning. In contrast, prompt learning,
with its non-invasive nature and no need for model
fine-tuning, has become a new approach to explore
sample generation. In this area, researchers have
guided models to generate multiple samples of the
same kind through prompts and labels (Ye et al.,
2022; Meng et al., 2022). Yoo et al. (2021); Wang
et al. (2021b) design generic templates and provide
examples to guide GPT-3 to generate similar data
while adapting to multiple downstream tasks.

The above approaches have brought new re-
search ideas to sample generation tasks. How-
ever, these studies mainly focus on data generation
for surface language tasks, which usually only re-
quire models to learn information about lexical and
syntactic structures. In contrast, implicit semantic
tasks (e.g., metaphors, sarcasm) are more complex
and require in-depth understanding of the implicit
meanings in the text. In past studies, Chakrabarty
et al. (2022) attempted to generate metaphor sam-
ples using GPT-3, but manual checking is required.

Inspired by ChatGPT’s excellent performance
on zero- or few-sample NLP tasks, we consider
utilizing ChatGPT’s world knowledge to generate
metaphor samples. Therefore, this paper aims to
apply ChatGPT to metaphor sample generation.
We design a sematic-based prompt enhancement
(SPE) method based on word meanings, targeting
the properties of metaphors. SPE does not rely on
manually labeled samples, and only requires the
introduction of the WordNet (Miller, 1995; Fell-
baum, 1998). In addition, we introduce ChatGPT
direct generation (DG) and example-based prompt
enhancement (EPE), as well as crowdsourced an-
notations (CA) samples. Finally, we conduct ex-
tensive experiments and example analysis on these
four samples. Overall, our contributions are sum-
marized below:

1. To the best of our knowledge, this is the first
study to apply ChatGPT to metaphorical sam-
ple generation. We conducted extensive ex-
periments and analysis on samples generated
by the three ChatGPT methods and manually
labeled samples.

2. For the characteristics of metaphors, we de-
sign a sematic-based prompt enhancement

(SPE) method. Experimental results show
that SPE achieves the best performance on
all three datasets compared to direct gener-
ation (DG) and example-based prompt en-
hancement (EPE) methods.

3. We give example analyses of samples gen-
erated by the three ChatGPT methods, and
summarize the current problems of generat-
ing metaphor samples by ChatGPT into three
categories: the misinterpretation of conven-
tional meaning, the neglect of metaphorical
evolution and polysemy confusion.

4. We provide automatic and manual evaluation
of samples generated by the three ChatGPT
methods and crowdsourced annotations (CA)
samples, and provide an in-depth discussion
of the results of several experiments and ex-
ample analyses.

2 Related Work
2.1 Large Language Modeling

The core principle of large-scale language model-
ing (LLM) lies in revealing the tacit knowledge
in the model by simulating task-specific linguistic
environments. Since the introduction of the self-
attention mechanism (Vaswani et al., 2017), the
field of LLM has made a vigorous development. In
the research, BERT (Devlin et al., 2018), which
uses the Transformer encoder architecture, and
GPT (Radford et al., 2018), which uses the Decoder
architecture, have emerged. On the basis of BERT,
many remarkable variants have emerged, such as
RoBERTa (Liu et al., 2019) and DeBERTa (He
et al., 2020). And the emergence of GPT-3 (Brown
et al., 2020), a third-generation model based on the
decoder structure with 175 billion parameters, 10
times more than any previous non-sparse language
model, has changed the landscape of LLM.

2.2 Prompt Learning

The goal of prompt learning is to guide the LLM
in a non-fine-tuned manner to generate specific
content. In this task, the LLM plays the role of a
sample less or zero sample learner. Past studies are
usually categorized into two main groups: generat-
ing annotations and generating samples. Ye et al.
(2022) and Meng et al. (2022) used the method
of adding polarity labels to prompts to guide the
model to a specified tendency. For example, a
prompt can be constructed such as "Movie reviews
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Figure 2: The prompt design of the SPE method. wj, denotes the target word, yy, is the label, and v; denotes the jth
meaning of the target word wy. ny ; ; is the number of samples to be generated for the jth meaning of the target
word wy. ¢ = 0 or 1 corresponds to y = 0, yx = 1, respectively, which indicates that the target word is a literal,

metaphorical usage.

with positive sentiment are". Wang et al. (2021a)
proposed an approach that combines manual and
LLM labeling to mitigate the cost. Yoo et al. (2021)
designed a template to guide the model for sam-
ple annotation or sample generation by introducing
instances of different tasks. Lang et al. (2022) de-
signed a joint training framework of GPT-3 and
BERT for the labeling of classification tasks.

2.3 Metaphor Detection

For the task of specifying target words and their
corresponding contexts, metaphor detection aims
to determine whether the target words are used in
a metaphorical manner. Compared to tasks such
as sentiment labeling and question and answer,
metaphor detection requires the model to have a
deeper understanding of the implicit meaning of the
text, a challenge that has typically been addressed
in prior research by injecting domain knowledge.
In prior work, researchers have used a variety of
knowledge injection strategies. Among them, Le
et al. (2020), Song et al. (2021) and Feng and Ma
(2022) used dependency tree knowledge to direct
the model to focus on specific syntactic structures.
Mao and Li (2021), Choi et al. (2021) and Su et al.
(2020) incorporate Part-Of-Speech tagging (POS),
where Mao and Li (2021) treats POS as a separate
subtask. In addition, Gong et al. (2020), Klebanov
et al. (2016) and Zhang and Liu (2023) introduced
the WordNet database (Fellbaum, 1998). Gong
et al. (2020) and Klebanov et al. (2016) classified
words into fifteen categories based on semantic fea-
tures, while Zhang and Liu (2023) constructed a
dichotomous subtask by directly taking the most
common definitions of words in WordNet as literal
meanings.

3 Method

We investigate three ChatGPT sample generation
methods: SPE, DG and EPE. our proposed SPE
method is described in Section §3.2, and the prompt
designs for the DG and EPE methods are described
in Appendices 11.1 and 11.2, respectively.

3.1 GPT-3 Labeling

We choose GPT3.5-turbo-1106 (hereinafter re-
ferred to as Turbo3.5), which is released by Ope-
nAl, for data labeling. In the labeling process, we
first design the prompt according to the metaphor
detection task. Subsequently, we filled in the gaps
in the prompt according to different target words,
labels and sample sizes. Specifically, for the target
word w;. and label y;, there are:

{xn}n 1 = Turbo3.5(prompt, wi, yi,n;), (1)

where ], denotes the nth sample generated by cen-
tering on the target word w;, whose metaphoricity
is related to the label y;. Specifically, when y; = 1
or y; = 0, the target word w; behaves as metaphori—
cal or non-metaphorical in the sample set {a7, })\*
respectively.

nl’

3.2 Semantics-based Prompt Enhancement

Lexical Meaning Search. In metaphor detection
tasks, WordNet (Miller, 1995; Fellbaum, 1998) is a
commonly used external knowledge base by re-
searchers and has been shown to help improve
metaphor detection performance (Gong et al., 2020;
Klebanov et al., 2016; Zhang and Liu, 2023).
Zhang and Liu (2023). Inspired by these studies,
we utilizes WordNet to obtain multiple meanings
of target words. For any target word wy, as well as
the verb meaning sets Vj, retrieved from WordNet



(Vy is sorted by frequency of use), we consider the
first two common meanings as literal meanings,
and the rest as metaphorical meanings. That is, for
any lexical meaning v; € V:

. Vg 0<j<2andy;=0 2)
7T Wk j>2andy =1,

where Vj; and Vj,, denote the literal and
metaphorical lexical sense sets of the target word
wg, respectively. The label y; = 0 indicates that
wyg 1 used non-metaphorically, while y;, = 1 indi-
cates that wy, is used metaphorically.

Prompt Construction. The prompt construction
method is illustrated in Figure 2. For the input
(wg, yx), we first specify word = wy. Then, de-
pending on the value of yi, the model is asked
to generate ny, ; literal or metaphorical sentences,
where ¢ = 0 or 1 corresponds to y; = 0 and y,, = 1,
respectively. Unlike the DG and EPE approaches,
we consider the literal lexical sense set Vy,; and the
metaphorical lexical sense set V, ,,, of the target
word wy,. Specifically, we first divide based on the
number of samples to be generated, for y;, = 1
there are:

amy 3)

ng1,; = ceil( ‘Vk |
,m

where ceil is an upward rounding function, |V |
denotes the number of metaphorical lexemes, 1y 1 ;
denotes the target word of the kth metaphorical us-
age, and the number of samples to be generated
for the jth lexical meaning. For example, for the
first metaphorical lexical meaning v3 € V. ,,, and
its required number of generated samples 7, 1. We
specify the values of the variables in the prompt:
n = ng1,j, meaning = vs, bootstrap ChatGPT to
generate the metaphor samples. The next metaphor-
ical meaning vy is then given until ng ; samples
have been generated.

4 Experiment

4.1 Dataset

VUAverb. The VU Amsterdam Metaphor Corpus
(VUAMCO) (Steen et al., 2010) metaphorically an-
notates each lexical unit in a subset of the British
National Corpus (Edition et al.), and the annotation
was done using the MIPVU program. Based on
VUAMC, several different variants of the VUA cor-
pus have emerged, among which VUAverb is the
verb version of the VUA corpus. This paper uses

the VUAverb dataset mentioned in the metaphor
detection shared task (Leong et al., 2018, 2020),
which contains 15516 training samples and 5873
test samples.

VUAverb Cuts. VUAverb has the problem of long-
tailed distribution. for example, the target words
"say" and "go" contain 509 and 506 samples re-
spectively, while the number of most verbs is very
small. According to statistics, among the 1875
verbs in the VUAverb training set, there are only
257 verbs with number greater than 10 (13.7% of
the total), while there are 781 verbs with number
equal to 1 (41.7% of the total). To mitigate the
long-tailed distribution, we trimmed the VUAverb
train. Specifically, we first filtered out the target
word categories with sample sizes larger than 10,
and then randomly selected 10 of them as the final
samples of the category. After such processing, we
finally obtained 7,900 pieces of data, which will
be used as crowdsourced annotations (CA) data for
subsequent experiments.

TroFi. TroFi (Birke and Sarkar, 2006) is a verb-

Dataset Tokens Sentences Y% Met.
DG_tr 106833 7921 34.2%
EPE_tr 140143 7720 34.8%
SPE_tr 168003 8027 37.4%
VUA_tr 245706 7900 34.1%
VUA_de 83660 2935 30.1%
VUA_te 83915 2940 29.8%
TroFi_de 60763 1870 43.5%
TroFi_te 60539 1869 43.5%
MOH-X_de 2722 317 50.5%
MOH-X_te 2880 332 46.7%

Table 1: Dataset statistics. tr: training set. de: dev
set. te: test set. tokens: number of vocabulary units or
samples to be tested. sent.: total number of sentences,
%Met.. proportion of metaphor samples to total samples

target focused dataset containing the literal and
metaphorical usage of 50 English verbs from the
1987-1989 Wall Street Journal corpus (Charniak
et al., 2000). We use the same version of TroFi
as Choi et al. (2021) and Zhang and Liu (2023),
which contains a total of 3739 samples. These sam-
ples cover rich verb instances and provide diverse
contextual information.

MOH-X. The MOH dataset was created by Mo-
hammad et al. (2016), and its construction method-
ology involves first extracting polysemous verb
samples from WordNet, and then metaphorically la-
beling the sentences via a crowdsourcing platform.
To ensure the quality of the dataset annotation, Mo-
hammad et al. (2016) adopted a 70% annotation



consistency criterion. A subset of MOH, MOH-X
(Shutova et al., 2016), contains 649 samples and is
a commonly used dataset in mainstream metaphor
detection systems (Choi et al., 2021; Zhang and
Liu, 2023). This subset excludes instances with
pronouns, dependent subjects or objects. There-
fore, we use MOH-X for model evaluation.

4.2 Experimental Setup

Experiment 1. Two pre-trained models, BERT
(Devlin et al., 2018) and RoBERTa (Liu et al.,
2019), were considered and initialized with weight
parameters from the Huggingface library (Wolf
et al., 2019). The output of the model adopts part
of the model idea designed in Choi et al. (2021),
i.e., the hidden layer output corresponding to the
target word is used for classification. In the experi-
mental part, we first trained BERT and RoBERTa
on DG, EPE, SPE, and CA samples, respectively,
and then validated them on the test set. We chose
three datasets, VUAverb test, TroFi and MOH-X,
as test sets. Due to the lack of validation sets, we
divided the above three datasets according to a 1:1
ratio of lexical types (e.g., "go", "get") and labels
(0 or 1). Eventually, the number of validation and
test sets for TroFi is 1870 and 1869, for MOH-X
is 317 and 332, respectively, and for VUAverb-test
is 2935 and 2940, respectively.The final samples
used for training are shown in Table 1.
Experiment 2. Experiment 2 demonstrates the
cost required for the three ChatGPT sample gener-
ation methods, DG, EPE, and SPE, and the crowd-
sourced annotations (CA) samples. For CA, we use
the manual labeling cost recorded in Wang et al.
(2021a), which is $0.11 per sample. For DG, EPE
and SPE generated samples, we tokenize them us-
ing the methods provided by RoBERTa (Liu et al.,
2019) and record the total number of sample tokens
for each method separately. For the cost, we use
the token price given in the official OpenAl website
as the auto-labeling cost !. The input is $0.5 per
IM tokens and the output is $1.5 per 1M tokens.
Experiment 3. Experiment 3 investigates the ef-
fects of the three methods, DG, EPE and SPE, on
the performance of the test set after the gradual
introduction of CA samples. We designed six ex-
periments that examined different combinations of
generation samples and CA samples with differ-
ent percentages: generation samples 100% + CA

'OpenAl cost link: https://openai.com/pricing. The model
version is GPT3.5-turbo-1106 with a record date of 2024.3.

samples 0%, generation samples 80% + CA sam-
ples 20%, generation samples 60% + CA samples
40%, generation samples 40% + CA samples 60%,
generation samples 20% + CA samples 80%, and
generation samples 0% + CA samples 100%. In
the experiments, we randomized the percentage of
the target word category (target word + label), and
if the number of group samples was smaller than
the number of samples required to be extracted,
repeated extraction was used. Please refer to Ap-
pendix 11.3 for detailed analysis of the experimen-
tal results.

4.3 Implementation Details

All experiments in this paper use the Adam opti-
mizer (Kingma and Ba, 2014), initialized with a
learning rate of 3e-5 and a dropout rate of 0.2. The
batch sizes for training, validation, and testing were
set to 100. the maximum length of a sentence was
150 tokens, the metaphor weights were set to 5,
and the maximum epoch was set to 25. to prevent
the model from being underfitted at the beginning
of the training period, we only save the epoch<14
or the model when overall loss is less than 2. We
used the model weights that reached the maximum
F1 value in the validation set for testing. In addi-
tion, all experiments were run on a cloud server
equipped with a single card A100 80G GPU.

S Analysis of results

Experiment 1. The experimental results are pre-
sented in Table 2. Compared to DG and EPE,
our proposed SPE method achieves the best per-
formance on F1 for all three datasets (e.g., on
RoBERTa, SPE 0.488 vs. EPE 0.454 on VUAverb
and SPE 0.518 vs. EPE 0.498 on TroFi and SPE
0.723 vs. 0.441 on MOH-X) with a p-values of
0.039 (<0.05). This proves the superiority of SPE.
However, SPE still falls short compared to CA
(e.g., on RoBERTa, -0.067 on VUAverb and -0.1
on TroFi and -0.054 on MOH-X) with p-values of
0.017 (<0.05). This is demonstrated by the fact
that the ChatGPT generation method is much lower
than CA in the Rec metric. indicating that the Chat-
GPT method generates a poor diversity of metaphor
samples, which prevents the model from learning
enough metaphor information.

However, the SPE method differs very little from
CA on Acc and even slightly exceeds it (e.g. on
RoBERTa, SPE 0.698 vs. CA 0.658 on VUAverb
and SPE 0.589 vs. CA 0.563 on TroFi), with



BERT-base

RoBERTa-base

Dataset
DG EPE SPE CA DG EPE SPE CA

o Acc. 0701 0.666 071 0.732* 0.694 0.66 0.698" 0.658
§ F1 0.283 0434 0458 0.591* 0303 0454 0.488 0.555*
5 Pre. 0496 0.439 0518 0.542* 0474 0436 0.493* 0454
> Rec. 0.198 0429 041 0.649* 0222 0473 0482 0.713*

Acc. 0578 0.565 0.589 0.601* 0.582 0.581 0.589* 0.563
'% F1 0.236 0445 0466 0.612* 0.27 0498 0.518 0.618*
= Pre. 0555 0.501 0.53 0.53  0.565* 0.509 0.53 0.499

Rec. 0.15 0401 0411 0.723* 0.177 049 0507 0.811*
v Ace. 0622 052 0.728* 0.713 0.628 0.526 0.77 0.789*
T F1 0346 034 0.648 0.709* 0376 0441 0.723 0.777*
QO Pre. 0917 0477 0.822 0.674 0.88* 0492 0.832 0.767
2 Rec. 0.213 0.265 0.535 0.748* 0.239 0.4 0.639 0.787*

Table 2: The performance of the samples generated by the three ChatGPT methods was evaluated against manually
labeled samples on a test dataset. First, the four samples were fine-tuned using the BERT or RoBERTa models and
then evaluated on the VUAverb test, TroFi and MOH-X, respectively.

Mih. CA ChatGPT

total input output total
CA  869% - - -
DG - 0.060$ 0.16$ 0.220%
EPE - 0.114$ 0.21$ 0.324%
SPE - 0.087$ 0.252% 0.339%

Table 3: Cost statistics. CA stands for crowdsourced
annotations and the annotation cost is $0.11 per sample.
While ChatGPT method generates cost of $0.5 per IM
tokens input and $1.5 per 1M tokens output.

a p-value of 0.018 (<0.05). This suggests that
using SPE as a training sample in a supervised
metaphor detection task is not inferior to CA. al-
though the Rec of the SPE method is slightly lower
than that of CA, it improves the accuracy of the
non-metaphorical samples. Specifically, the SPE
method has higher Pre than CA (e.g., on RoBERTa,
SPE 0.493 vs. CA 0.454 on VUAverb and SPE
0.53 vs. CA 0.499 on TroFi and SPE 0.832 vs. CA
0.767 on MOH-X), with a p-value of 0.017 (<0.05).
Experiment 2. The cost of generating the sam-
ples is shown in Table 3. In total, CA cost $869,
which is much higher than $0.22 for DG, $0.324
for EPE, and $0.339 for SPE. This indicates that
using ChatGPT to generate metaphor samples has
a huge advantage in terms of cost. In connection
with the results of Experiment 1, we find that with

an increase of only $0.015, SPE achieves the best
performance among the three methods, DG, EPE,
and SPE, and even achieves a huge F1 improve-
ment on the MOH-X dataset (e.g., SPE 0.648 vs.
EPE 0.34 on BERT and SPE 0.723 vs. EPE 0.441
on RoBERTa) with p-value less than 0.001. This
proves the superiority of our proposed method. In
addition, we observe that the output spend of the
three ChatGPT methods correlates with their F1
performance. Since the output spend depends on
the number of tokens of the generated samples, this
suggests that increasing the length of the generated
samples can improve the sample quality.

6 Case Study

Based on the above experimental analysis, despite
the huge cost advantage of the ChatGPT method,
there are still some problems with the samples it
generates, which can be summarized into three cate-
gories: the misinterpretation of conventional mean-
ing (MCM), the neglect of metaphorical evolution
(NME) and polysemy confusion (PC). Examples
of problems in these three categories are listed in
Table 4.

MCM states that ChatGPT incorrectly interprets
the conventional meaning as a literal use. For ex-
ample, the literal use of "account”, which originally
meant "counting", later evolved into "customer or
client having an account” or "statement answer-
ing for conduct". However, due to the customized



EPE

SPE

Types CA DG
natural hazards The account manager
MCM account for up to was responsible for

4 per cent of total
deaths - - -

The City had been
expecting bad figures

maintaining relation-
ships - - -

The sun rose, paint-
ing the sky with yel-

NME and the shares rose low, as if expecting a
15p to 239p. glorious day ahead.

In the fifth group ses- Being the winner en-

PC sion entitled Focus titled him to a cash

on the Individual, - - -

prize.

Taking into account
the increasing num-
ber of car accidents

The sunflower, reach-
ing for the sky, ex-
pects a warm em-
brace from the sun.

as the ancient
philosophers entitled
them.

The meticulous ac-
countant carefully ac-
counted for every
penny - - -

It’s natural to expect
professionalism and
competence from our
employees - - -

- entitles you to re-
ceive a certificate of
achievement.

Table 4: Common errors showcase. CA: crowdsourced annotations samples. DG: ChatGPT direct generation.
EPE: example-based prompt enhancement method. SPE: sematic-based prompt enhancement method. CM denotes
misinterpretation of conventional meaning. NME denotes neglect of metaphorical evolution. PC denotes polysemy
confusion. The MCM example requires ChatGPT to generate the literal usage of "account"”, while the NME and PC
examples require the metaphorical usage of "expect" and the literal usage of "entitle", respectively.

meaning of "having an account”, ChatGPT mis-
interprets it as literal. In the MCM example, the
CA is accurately labeled and interpreted as "count-
ing", while the samples generated by DG, EPE, and
SPE all contain errors. DG and EPE misinterpreted
"having an account" as literal, while SPE directly
generated the word "accountant”.

NME suggests that ChatGPT often creates
metaphors by anthropomorphizing elements of na-
ture, while ignoring the evolution of metaphors.
Take the metaphorical usage of "expect" as an
example, which initially means "long for, antic-
ipate"”, and was later extended to mean "the ex-
pected changes in the economy and stock market".
In the NME example, the CA is accurate, inter-
preting it as "expected changes in the stock mar-
ket". However, DG and EPE ignore the evolution-
ary pattern of metaphors and construct inappro-
priate metaphors through anthropomorphism (e.g.,
"sun expects”, "sunflower expects"). Such exam-
ples abound in other samples generated by the DG
method. On the contrary, SPE was influenced by
the pre-positioned common meanings, reducing the
occurrence of NME.

PC indicated that the ChatGPT’s understanding
of metaphors is confused due to too many lexical
variations. Take the literal usage of "entitle" as an
example, its initial meaning is "to give a title to a

chapter, book" or "give a title or name to". Later
extended to "to bestow an office" or "to give (some-
one) property". Entitle obviously has more literal
and derived meanings than other words. In the PC
example, CA is correctly labeled as "give a title or
name to". DG and SPE generate an incorrect inter-
pretation as "have the right to". But EPE, which
uses the correct usage of CA as an example, also
correctly translates it as "give a title or name to".

7 Integrated Assessment

Automatic Evaluation. We use three evaluation
metrics, BLEU, METEOR and ROUGE, to mea-
sure the degree of similarity between the three Chat-
GPT methods and CA samples. All three metrics
employ the n-gram matching mechanism, but dif-
fer slightly in the factors considered. Specifically,
BLEU and ROUGE focus on precision and recall,
respectively, while METEOR additionally consid-
ers information such as synonyms and stems. For
each generated sample, we first compute its evalua-
tion value (e.g., BLEU) with the same target words
and labeled samples in CA. Then, we select the
maximum value from multiple evaluation values as
the final evaluation value of this generated sample
with respect to the original sample.

Manual Evaluation. The manual evaluation is
performed on a group basis, e.g., for samples of



Automatic Evaluation

Manual Evaluation

Methods
BLEU METEOR ROUGE avg Clarity Relevance Diversity avg
CA - - - - 3.946 3.73 3.93 3.869
DG 0.103 0.146 0.303 0.184 4.519 3.93 3.584 4.011
EPE 0.19 0.207 0.34 0.246 4411 3.389 3.643 3.814
SPE 0.123 0.134 0264  0.174 447 3.708 3.784 3.987

Table 5: BLEU, METEOR and ROUGE were used as automated assessment indicators using 1-gram matching.
While clarity, relevance and diversity were used as manual assessment methods.

the target word "go" and the label "1". The as-
sessment metrics include clarity, relevance, and
diversity, each of which is rated on a scale of 1
to 5. Clarity indicates the comprehensibility of
the sample, including whether the text is easy to
understand and whether the metaphors are easy
to determine. Relevance indicates whether the la-
beled categories match actual usage. The greater
the number of accurate annotations in the same
group, the higher the relevance score. Diversity
indicates whether the same panel sample contains
more and more diverse information, e.g., whether
the text descriptions cover different domains (e.g.,
economics, politics). Based on the above three met-
rics, three volunteers were invited to evaluate the
samples using the CA, DG, EPE, and SPE methods,
respectively, and the final results were averaged
across the three ratings.

Results. The experimental results show that
the EPE method reaches the maximum values on
BLUE, METEOR, and ROUGE metrics (e.g., 0.19,
0.207, and 0.246) in the automatic evaluation, in-
dicating that the introduction of the examples is
effective in guiding ChatGPT to generate content
that is similar to CA samples. In manual evaluation,
the ChatGPT method far exceeds the CA samples
in terms of clarity. Specifically, the DG, EPE, and
SPE methods outperform the CA in terms of clarity
by 0.57, 0.46, and 0.52, respectively. suggesting
that ChatGPT-generated samples are more compre-
hensible compared to CA samples. However, in
conjunction with the sample analysis, we found
that the DG samples often used a "shortcut" ap-
proach to create metaphors by anthropomorphizing
elements from nature. While this makes the gen-
erated metaphors easier to understand (maximum
clarity of 4.519 and maximum relevance of 3.93).
However, it also significantly reduces the richness
of the content of the metaphor samples (minimum
diversity value of 3.584).

The results of linkage Experiment 1 show that
although DG, EPE, and SPE far outperform CA
in terms of clarity, these three ChatGPT methods
have relatively low performance on the test set. In
addition, in terms of relevance metrics, EPE per-
forms better than DG on the test set, even though
EPE is lower than DG (e.g., EPE 3.389 vs. DG
3.93). This suggests that metaphor comprehensi-
bility or labeling accuracy is not sufficient to de-
termine the quality of a metaphor sample. Further-
more, current metaphor detection methods seem
to learn only a certain distribution (possibly simi-
lar subject-predicate collocations) at the expense
of understanding the nature of the metaphor (e.g.,
whether derivations are detected, etc.).

Finally, there is a correlation between the F1
performance and diversity. This suggests that the
richness of the sample content is an important fac-
tor affecting performance, and that richer samples
can be generated by introducing exemplars or mul-
tiple word meanings. We designed our SPE method
to improve clarity and relevance while maintaining
high diversity (e.g., SPE 3.784 vs. EPE 3.643).

8 Conclusion

This paper investigate how to generate a metaphor-
ical dataset using ChatGPT. We propose a sematic-
based prompt enhancement (SPE) method. Experi-
mental results show that the SPE method achieves
the best F1 performance on the three datasets, but
still falls short of crowdsourced annotations (CA)
samples. In addition, we introduce the direct gener-
ation method (DG) and the exemplar-based prompt
enhancement method (EPE). We provide insights
into the advantages and disadvantages of the three
ChatGPT sample generation methods by means of
example analysis, automatic evaluation and manual
evaluation.



9 Limitations

This paper investigate the problem of how to gener-
ate a metaphorical dataset using ChatGPT and pro-
pose a sematic-based prompt enhancement (SPE).
The method relies on the knowledge of word mean-
ings in WordNet, which brings some overhead. Ex-
ample analysis reveals that there are still a number
of problems with the current samples generated
using ChatGPT, which are broadly classified into
three categories: the Misinterpretation of Conven-
tional Meaning (MCM), the Neglect of Metaphor-
ical Evolution (NME), and the Polysemy Confu-
sion (PC). Addressing these issues still requires
improvements in generating sources (ChatGPT) as
well as Prompt design methods. In future work,
we will aim to explore ways to minimize the re-
liance on manual annotation or the use of external
databases, and to ensure the quality of metaphorical
sample generation.

10 Ethics Statement

In this paper, we detail how ChatGPT was utilized
to generate the metaphorical dataset. The datasets
used and the research papers cited were obtained
from publicly available sources, and we strictly
adhere to academic and research ethics guidelines
to ensure the legitimacy and transparency of the
research process. We place particular emphasis
on transparency and openness of information, and
are committed to providing clear methodological
descriptions and experimental details so that other
researchers can understand and reproduce our re-
search. We encourage other researchers in our aca-
demic community to conduct responsible research
and adhere to best practices in knowledge sharing
to advance the continued development of the field.
Through open information sharing, we expect to
foster broader collaboration and deeper understand-
ing of the metaphor detection task.
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11 Appendix A

11.1 direct generation

Prompt:

Generate ny ; sentences in different styles
containing the specified verb based on
the explanation, where the verb are used
metaphorically.

word: W

s-1:

Table 6: DG prompt.

The Direct Sample Generation (DG) approach
aims to direct ChatGPT to generate samples of a
specified type without using external knowledge
content (e.g., metaphorical examples). For input
information , wy, Y, Ny ; represent the target word,
label, and the number of samples to be generated,
respectively. (ny; is the same as the number of
samples in the same group in VUAverb cut). 7 = 0
or 1 corresponds to y = 0, y = 1, respectively,
indicating that the target word is literal, metaphori-
cal usage. The specific prompt design is shown in
Table 6.

11.2 example-based prompt enhancement

Prompt:

Generate ny ; sentences in different styles
containing the specified verb based on
the explanation, where the verb are used
metaphorically.

word: Wi

example: dy ;

s-1:

Table 7: EPE prompt.

Example-based prompt enhancement (EPE)
methods are commonly used techniques for prompt
learning. For example, Yoo et al. (2021); Wang
et al. (2021b) provide one or more examples and
category labels for each category of a particu-
lar task. Inspired by the above, this paper intro-
duces the EPE method and adapts it for metaphor-
ical features. First, we notate the sample set of
all available examples (i.e., the VUAverb cut) as
D= (.m, wi,yi)|1 < ) < N, where Ti, Wy, and Y;
are the text, the target word, and the corresponding
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labels, respectively. In then, we classify D into
subsets Dy; based on the target word wy, and the
corresponding label y;, where ¢ = 0 or 1 denotes
the literal, metaphorical usage, respectively. For
each category Dy, ;, we randomly select a sample
dy; as an example. Finally, dj, ; will be used as a
prompt message in the prompt.

11.3 Sample Fusion Experiment

On both VUAverb and TroFi (see Figure 3 a,b),
the introduction of the original sample at the be-
ginning leads to a decrease in Acc. This suggests
that the difference in the distribution of the gener-
ated samples and the original samples affects the
model’s ability to learn metaphorical information,
which leads to the opposite effect. In contrast, com-
pared to DG and SPE, EPE has an early turning
point in the decline of VUAverb-Acc, and its per-
formance starts to increase after 20%. This is due
to the fact that the examples of the EPE method
are derived from VUAverb. However, Acc is also
able to improve as the original data share contin-
ues to increase. Moreover, the F1 values of the
three methods in each dataset also show a general
upward trend (see Figure 3 d,e,f). This indicates
that the introduction of the original sample can im-
prove the ability of the model model to capture
metaphorical information.

In addition, since the DG method has a low
performance, the introduction of a small num-
ber of proto-samples can achieve a high F1 per-
formance improvement (e.g., DG100% + CA0%
0.299 vs. DG80% + CA20% 0.465 on VUAverb
and DG100% + CAO0% 0.272 vs. DG80% +
CA20% 0.569 on TroFi). The EPE and SPE origi-
nally had not-so-low F1 values, so the introduction
of a small number of original samples yielded little
in terms of performance improvement.

Overall, the introduction of manually labeled
data on top of the ChatGPT generated data is re-
lated to the performance of the generated data on
the test set. On the one hand, researchers may not
be able to construct prompts that are suitable for
certain general tasks. therefore, they often gener-
ate samples directly using ChatGPT. This situation
makes it possible to introduce partially manually
labeled data, and by paying a small portion of the
cost of manual labeling, the samples can quickly
catch up in performance with the performance of
the samples generated by the customized prompt.
On the other hand, if the researcher is able to de-
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Figure 3: The prompt design diagram is shown below. wy, denotes a specific target word, yy, is its label, and when
yr = 1 indicates the metaphorical usage of the generated target word wy. nj denotes the number of samples
generated.

sign a reasonable prompt based on a specific task
(e.g., the SPE method proposed in this paper). As
it performs well on the test set. Therefore, the in-
troduction of some of the original sample data may
lead to performance degradation due to factors such
as distribution mismatch, or yield little results. In
this regard, the second case is not used to introduce
manually labeled samples.
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