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ABSTRACT

In this paper, we investigate a new practical learning scenario, where the data dis-
tributed in different sources/clients are typically generated with various modalities.
Existing research on learning from multi-source data mostly assume that each
client owns the data of all modalities, which may largely limit its practicability. In
light of the expensiveness and sparsity of multimodal data, we propose “patchwork
learning” to jointly learn from fragmented multimodal data in distributed clients.
Considering the concerns on data privacy, patchwork learning aims to impute
incomplete multimodal data for diverse downstream tasks without accessing the
raw data directly. Local clients could miss different modality combinations. Due
to the statistical heterogeneity induced by non-i.i.d. data, the imputation is more
challenging since the learned dependencies fail to adapt to the imputation of other
clients. In this paper, we provide a novel imputation framework to tackle modality
combination heterogeneity and statistical heterogeneity simultaneously, called “col-
laborative adaptation”. In particular, for two observed modality combinations from
two clients, we learn the transformations between their maximal intersection and
other modalities by proposing a novel ELBO. We improve the worst-performing
required transformations through a Pareto min-max optimization framework. In
extensive experiments, we demonstrate the superiority of the proposed method
compared to existing related methods on benchmark data sets and a real-world
clinical data set.

1 INTRODUCTION

Multi-modal learning (Ngiam et al.| 2011)), which refers to the paradigm of learning from the data
with multiple modalities, has gained growing interest for its practical significance in facilitating
real-world applications (Valindria et al., |[2018}; |Yang et al., 2022)). In reality, multimodal data are
typically generated from various users/clients with private information. Given the costly and sparse
nature of such multimodal data, an interesting problem is how to learn from distributed multimodal
data without sacrificing privacy.

One challenge of learning from distributed multimodal data is modality heterogeneity. In many
applications, local data on clients are generated with various modalities. More importantly, it is
usually hard to require all modalities to exist in each client in reality. One example is collaborative
learning in the clinical research network (CRN) involving multiple hospitals (Fleurence et al.,[2014),
where each hospital can be viewed as a local client. If we want to collaboratively build a mortality
prediction model for COVID-19 patients, different hospitals can have various medical records due to
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different diagnoses and treatments. Hence, it becomes crucial to enhance scalability by dealing with
different combinations of modalities.

Another challenge, which has been studied in federated learning (FL)(McMahan et al., 2017), is
statistical heterogeneity (i.e., non-identically distributed data from local clients). As the remote data
sources could be gathered from various users in reality, there is research showing that a global model
can suffer severe performance degradation when the local data distributions drift dramatically

et al} 2020).
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(a) distributed multimodal learning (b) patchwork learning

Figure 1: Illustrations of the two learning paradigms. Gray grids denote the observed modalities and
white grids are missing modalities. Y is the label to be predicted. (a). distributed multimodal learning;
the data in local clients are multimodal and all modalities are observed. (b). patchwork learning;
different clients have different multimodal data. The goal is to jointly learn from the “patchwork” to
impute all missing modalities without direct access to the raw data.

With the aforementioned considerations, we propose a general multimodal learning problem in a
practical setting, called patchwork learning (Rajendran et al.| 2023)), where data from distributed
clients have different modality combinations. Instead of learning a prediction model using complete
multimodal data in existing distributed multimodal learning (Zhao et al., 2021} Xiong et al.|[2022)),
where each client has the data of all modalities shown in Figure [I] (a), patchwork learning aims
to learn from incomplete data as shown in Figure[I](b). Each client owns one or multiple modali-
ties. Different clients have different modality combinations, which introduces additional difficulty
when collaboratively learning models. Our goal is to impute the unobserved modalities to provide
convenience for various downstream tasks without direct access to the raw data.

Modality imputation from observed data becomes even more challenging when it associates with
statistical heterogeneity. As the missing modalities of a specific target client are unavailable during
training, the imputation process depends on the learned dependencies among modalities from other
clients, known as source clients. This may bring bias because of the statistical heterogeneity.
To tackle the statistical heterogeneity and modality heterogeneity simultaneously, we propose a
novel imputation framework called “collaborative adaptation” (CLAP). For statistical heterogeneity,
we propose to learn a common modality VAE for each modality for all clients. We mitigate the
distribution discrepancy of the generated representations from modality VAEs by balancing the
distribution distance of all clients. For different modality combinations in local clients, we propose
client-adaptation VAE (CA-VAE) for approximating the required dependencies between the maximal
intersection of observed modalities in source and target clients, which maximally utilizes the observed
modalities for the missing modality imputation.

We empirically evaluate our framework on a series of benchmark data sets, and a real-world electronic
health record (EHR) data repository eICU, which includes patient EHR data in ICU from multiple
hospitals. The results show our framework outperforms existing relevant methods in the modality
imputation tasks and classification downstream tasks. The source codes of our framework are made
publicly available at https://github.com/zaocan666/CLAP,

2 RELATED WORK

Learning from diverse modalities has the potential to improve the performance of machine learning
algorithms as they could provide complementary information. For example, the visual appear-
ance and tactile impression of an object could converge on a more invariant abstract characteriza-
tion [2014). While there are research aiming to bridge modalities with fully-supervised
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complete data (Pandey & Dukkipatil 2017; |Ledig et al.l2017), an important problem is that multi-
modal data is usually expensive and sparse (Wu & Goodman, 2018). To overcome this obstacle, Wu
et al. firstly propose MVAE(Wu & Goodmanl |2018) to yield generalizable representations to capture
the relationship across modalities in a weakly supervised setting, where there is only a subgroup
of examples with all modalities present. MVAE flexibly handles missing data in a scalable way
for arbitrary multiple views. Recently, several variants of MVAE are proposed to strengthen the
generation quality and the coherence between modalities (Shi et al., [2019; [Sutter et al.| [2020bjaj;
Hwang et al.,|2021; |Daunhawer et al.,2021). As existing multimodal representation learning methods
were proposed for traditional learning scenario, there is no distribution discrepancies and privacy
concerns, which limit their practicability in patchwork learning scenario.

The concept of federated learning (FL) was first proposed by McMahan et al. (McMahan et al.
2017). Recently, statistical heterogeneity in FL has drawn much attention in machine learning
community and a variety of efforts have been made to tackle it. There are research proposing to
calibrate local objectives by regulating the deviation between local models and the global model (L1
et al., 2021; |Smith et al.l 2017). For example, Smith ef al. aim to model the information-sharing
mechanism between local objectives by a multi-task regularization(Smith et al., 2017). Another
line of research focus on a better trade-off between local and global learning (Liang et al.| [2020;
Collins et al.| [2021; Khodak et al., 2019} [Fallah et al., [2020). For example, some studies assume the
heterogeneity comes from label shift and propose to use a multi-head network to model a common
feature embedding (Collins et al., |2021). In existing work, it is usually assumed that data from all
clients share a common feature space. Besides statistical heterogeneity, a more universal problem is
how to learn when different clients own diverse data modalities.

Considering the diverse data modalities in real life, there are a few research investigating the task
of distributed multi-modal learning, i.e., collaboratively learning models on distributed sources
containing multimodal data (Xiong et al.,[2022; Zhao et al.| [2021). In particular, Zhao et al. present a
multimodal FedAvg algorithm to aggregate the representation extracted by local autoencoders for
downstream tasks(Zhao et al.| 2021). Xiong et al. propose a co-attention mechanism(Xiong et al.|
2022)) to fuse different modalities under the assumption that the multimodal data are completely
observed as shown in Figure [T] (a). In this work, we are interested in addressing a more practical
and upstream learning task: how to impute a patchwork when local clients have various incomplete
multimodal data.
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Figure 2: Illustrations of Assumption (a). connected sub-graph; { M7, M>} is a connected sub-
graph, because ¢! has both modalities. Similarly, { My, M3} ({ M3, M4}) is a connected sub-graph
because of ¢ (¢?). (b). no connected sub-graph; M7, M3 and M, are isolated points.

3 NOTATIONS AND PROBLEM DEFINITION

3.1 NOTATIONS

Suppose there are N clients with K modalities in a patchwork. The input space X? is not shared
across all clients. Different local clients can have different subsets of all modalities. An example is
shown in Figure[[b), X = {M;, Mz, My} but X2 = {My, M5}. We use 2 = {m},mj, ..., m }
to denote the sample variable of X", where m/ is the j-th modality in the i-th client. For example,
a' = {mi,m3, m}} is the sample variable of X' shown in Figure [l|(b). The output space Y
denotes the missing modalities. Note that the missing modalities Y™ are not accessible during training.
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3.2 PATCHWORK LEARNING

Suppose each modality M,, is a node of a graph, and there is an undirected edge from M, to M, if
there exists a client ¢! owning both modalities. An edge between M), and M, means that we could
model the dependency between them.

To enable the possibility of the imputation of blank grids in a patchwork, we propose the following
assumptions.

Assumption 1. For the row in the patchwork, each client owns the data with at least one modality.
Assumption [T[jmeans that the observed modalities cannot be an empty set for each client.

Assumption 2. There exists a connected sub-graph in the patchwork.

We give an example shown in Figure[2(a)l When there exist sub-graphs in the patchwork, it guarantees
the dependency between missing modalities M,, € Y and the observed modalities X* could be
learned from other clients.

A missing modality data m§» in the client ¢’ is imputed relying on the learned dependency between

M; and the observed modalities X, and the completed imputation of the patchwork means that all
missing modalities could be imputed. We have the following proposition.

Proposition 1. (informal, proof in Appendix) Assumption[I|and a connected graph are the necessary
and sufficient conditions for the completed imputation of the patchwork.

Since Y is not available during training, the imputation of the target client ¢’ relies on the dependen-
cies learned from other clients. In general, patchwork learning faces the following challenges that
need to be addressed:

* statistical heterogeneity; the multimodal data of local clients are typically non-i.i.d. The
model may fail to adapt the learned dependencies to target clients;

* modality combination heterogeneity; local clients can have various modality combinations.
The learned dependencies from X* is hard to be used for other clients with different
combinations X7;

* modality combination vulnerability; the learned imputation method could be vulnerable
to the modality combinations and the imputation quality significantly varies for two similar
combinations;

4 METHODOLOGY

4.1 PRELIMINARIES: VARIATIONAL AUTOENCODER (VAE), PRODUCT-OF-EXPERTS (POE)
AND PARETO MIN-MAX OPTIMIZATION

VAE. VAE (Kingma & Welling} 2013) is proposed as a generative model, which assumes the latent
variable z is sampled from a prior standard normal distribution p(z) := N (0, 1). VAE consists of
an encoder gg(z|z) with the parameters ¢, and a decoder p,(z|z) with the parameters ¢. During
training, VAE maximizes log p(z) by optimizing the evidence lower bound (ELBO) formulated as

max ELBO(z), where ELBO(z) := Eqg, (2| [log p(2[2)] — Dxr (9o(2|2), p(2)), (1)

where Dk, (qo(2|2), p(2)) denotes the Kullback-Leibler divergence between gg(z|x) and p(z).

PoE. Wu et al. propose PoE(Wu & Goodman, 2018)) for multimodal variational autoencoder (MVAE).
MVAE assumes that the multimodal data are conditionally independently generated from a joint
latent representation z. Suppose there are K modalities X = {M;, Ms, ..., Mk }. The generative
model has the following factorized form:

p(mi,ma, ..., m,z) = p(z)p (m1]z) p (m2|2) ...p (mx|2) . @)
According to Eq.(2), Wu er al. propose to employ PoE to aggregate the representations of multiple

modalities. For any modality combination X° C X, PoE obtains the aggregated representation
q(z|x*) as follows.

[ — (Zlmi)p(Z).

3
HiKzl,mie.’zS p(z)

q(z[z°) =

4
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where ¢(z|m;) and p(z) are both Gaussian, and the product and quotient distributions are solvable in
closed for

Pareto min-max optimization. Suppose l(h) = [l1(h),l2(h), ... In(h)] represents the loss vector
on N learning tasks with hypothesis h, h is a Pareto solution if there is no hypothesis »’ that dominates
h: h' < h,ie.,

PR e H, st Vil (B') < 1;(h)and 35 : 1; () < 1;(h) )

A Pareto Min-max solution means that a Pareto solution achieves the lowest loss on the maximal value
in I(h). To obtain such a solution, there are research proposing to use the entropy function method
to achieve min-max optimality and then continue to optimize all losses with projected gradient for
Pareto optimality (Cui et al., 2021}, which indicates that each objective cannot be further optimized
without degrading others. Pareto min-max optimization maximizes the utility of the worst-performing
objective.
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(a) two clients in the patchwork
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(b) the optimal transformations

max ELBO(z%|m3, m3)

(d) client-adaptation VAE

Figure 3: (a) and (b) illustrate the identification of the required dependencies for two clients. (a)
the patchwork with two clients, where colored grids represent observed modalities and blank grids
represent missing modalities; (b) the identified dependencies for the imputation. (c) and (d) illustrate
our implementation framework CLAP. (c). modality VAE: each modality learns a VAE for obtaining
the representation. The VAEs are trained by Pareto min-max optimization. (d). client-adaptation
VAE (CA-VAE): CA-VAE shares the encoder (F) with modality VAE and has an extra decoder D¢

4.2 AN OVERVIEW OF THE REALIZATION OF CLAP

From Figure E| (c) and (d), our framework consists of modality VAE and client-adaptation VAE,
which synergistically address the three key challenges stated in Sec. [3.2]

Modality VAE. From Figure[3|(c), we learn a VAE for each modality M, to obtain the representation
z;, which has the encoder E := {E1, ..., Ex } and the decoder DM := {DM ... DM }.

For the training of each modality VAE (F; and DZM ), the data of the i-th modality M; come from
multiple clients (e.g., m}, ...,m¥) and are non-i.i.d. An averaged loss on all data may harm particular
clients. The learned modality VAE could generate biased representation during imputation.

As shown in Figure 3] (c), to mitigate the statistical heterogeneity of the learned representation, we
share the encoder for all clients. Meanwhile, we propose to balance the KL divergence of the learned
representations by maximizing the client with the maximal KL divergence, so that each modality
VAE encodes various data distributions of all clients to a common latent space, which we call vertical
Pareto min-max optimization.

Client-Adaptation VAE (CA-VAE). From Figure |E| (d), we learn a CA-VAE to model the de-
pendencies among modalities, which shares the parameters of the encoder with modality VAE
E := {F\,..., Ex} and has an additional decoder D¢ := {ch, ey DIC;} By using the two de-
coders (DM and D) separately, we relieve the potential conflicts when rebuilding the unimodal data
in modality VAEs and multimodal data in CA-VAE.

"More details about the computation of ¢ (z|z*) could be found in (Wu & Goodman, 2018)
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To model the dependencies between modalities, we use the subset of the observed modalities
X" C X' to infer other modalities and X'* itself. | Specifically, the subsets are identified as the
intersection of the observed modalities between X* and other clients. For the example shown in
Figure [3|(d), we use the modality combination X3 N X4 = {M;, M>} to rebuild X>. Then we
use PoE to aggregate the representations z; = hg, (m}) and 2o = hg, (m3), where hg, denotes the
encoder F; in Figure (d). The aggregated z is input to D€ to rebuild all observed modalities X 3.

The optimization of CA-VAE. While a poor transformation learned from one client could worsen
the imputation of multiple clients, to overcome the combination vulnerability, we propose horizontal
Pareto min-max optimization to balance the dependency learning across the diverse combinations.

The training of CLAP. We train CLAP following the framework in federated learning (McMahan
et al.,2017). Only the sum of the gradients is allowed to be transferred between the server and clients.
We summarize the algorithm for the training of CLAP in Algorithm 1 in Appendix. The Pareto
min-max optimization and other implementation details could also be found in Appendix because of
the page limit.

4.3 MODALITY VAE AND VERTICAL PARETO MIN-MAX OPTIMIZATION

_ N
Multimodal data { {m; }]K_ L } mostly have different dimensions when computing. To enhance the
=1Ji=1

scalability of the imputation framework, we learn a modality VAE for each modality, which encodes

mé- to a latent representation z = hyg, (m;) with fixed dimension, i.e.,

5?1;} _(Equ (zmi) [log pg, (mﬂzﬂ — Dir (o, (z\m;)m(z))) wherei=1,2,...,N. (5)
Statistical heterogeneity and vertical Pareto min-max optimization. From the equation (3)), the KL
divergence measures the difference between the distribution of the learned representations gp, (z|m})
and the spherical Gaussian p(z). The presence of a diverse KL divergence among local clients
suggests a significant statistical heterogeneity.

We propose vertical Pareto min-max optimization to address the statistical heterogeneity. Specifically,
since there is a conflict when a global model minimizes all KL divergences, minimizing the maximal
KL divergence on the worst client can increase the KL divergences of other clients, leading to more
uniform KL divergences across all clients. Thus, the maximum KL divergence is an indicator of the
uniformity of the KL divergences. We propose to enhance the worst client with minimal ELBO to
minimize the maximal KL divergence.

Pareto mid)n max —(Eq, (.mi) [log py, (mﬂz)] — Dk 1.(qo; (z|m;),p(z))), mé- is observable. (6)
IR j J

4.4 CLIENT-APATATION VAE AND HORIZONTAL PARETO MIN-MAX OPTIMIZATION

Modality combination heterogeneity and CA-VAE. Given a patchwork to be completed, the
trainable transformations are defined. For a client 2:¢ with k observed modalities, there are 2% subsets
and 2* corresponding transformationsﬂ While learning all transformations could have an exponential
computing complexity, a natural problem is how to identify the optimal transformations efficiently.

Identify the required dependencies on two clients. To answer the above problem, we first consider
there are two clients c' and ¢? with the modality combinations X' and X2 shown in Figure[3](a).

Both clients learn the dependencies on their observed modalities for the imputation of the other. From
Figure 3] (a), to impute m? for ¢2, ¢! could learn the transformation My — M (or M3 — M;) using
its data ='. However, the optimal dependencies for c? may be {Ma, M3} — M, which uses the
intersection of X' and X? to infer other modalities. By using the intersection, the dependencies
learned from X' maximize the utilization of the observed data in X2 when imputing the missing
modalities for 2.

From the above analysis, the identified optimal dependencies learned by transformations shown in
Figure[3] (b) are as follows.

forch: X'nX? - X'\ X2, forc: X?nX! — X2\ X! (7)

2We also rebuild X'* for the rationality of the encoder.
3For each subset X'* C X", there is a corresponding transformation X'* — X*\ X",
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where X!\ X? denotes X! removes the elements in X 2. For two clients with different modality
combinations, the identified dependencies mitigate the modality combination heterogeneity by using
all common modalities, which is the intersection X! N X 2. This improves the transferability of the
learned dependencies when applied to the target clients with different combinations.

Identify the required dependencies on multiple clients. For multiple clients, we identify the
dependencies to be modeled accordlng to Eq.(7) for each pair of clients. The required dependencies
to be modeled by each client ¢* are formulated as follows.

forc: XPnX) - X'\ X9, Vje{l1,2,..,N}, j#i. 8)

Learning the identified dependencies by CA-VAE. We consider the multimodal data {m }ji )

in each client is generated by an unknown random process with a latent representation z. To learn
the dependencies formulated in Eq.(8), we propose to approximate X  using X* N X7. We use 2/
to denote the subset of the variable ¢, which only contains the modality combination X* N X7,
We optimize the KL-divergence between the learned and the true posterior distribution (p (z|x )) to
model the dependencies in Eq.(8}

min Dicz, (ao (212) [1p (=]2)) ©)

Since p (z|3c1) in Eq.@) is intractable, we optimize Eq.@) by giving the following proposition.

Proposition 2. (proof in Appendix.) Eq.(I0) formulates an appropriate ELBO, and minimizing
Eq.(I0) minimizes the KL-divergence formulated in Eq.(9), i.e.,

L (0, ¢52") == — (Bgy (2w [log (ps(a']2)] — Dicr (g0 (212°77) |p(2))) . (10)

where ¢ denotes the parameters of the encoder E and ¢ denotes the parameters of the decoder D¢
shown in Figure (d). g (z\me ) is calculated using PoE according to Eq.. p(z) is the standard
normal distribution.

For client ¢!, we approximate the dependen(:les in Eq.(8} . ) by optimizing the sum of the KL-divergence
between ¢(z |xm5 ) and p(z|2?), where j is the selected other clients with different modality conbina-
tions (X? # X7).

néun/: (0, ¢;2" Z/: ) (11)

Modality combination vulnerability and horlzontal Pareto min-max optimization. While a poor
transformation learned from one client could worsen the imputation of multiple clients. We propose
to mitigate the worst-case effect by Pareto min-max optimization, i.e.,

Pareto rg’lq&nmlax L (0,¢;:E ) . (12)

5 EXPERIMENTS

Baselines. As we tackle a new problem and there is no existing method that focuses on it, we modify
the training scheme of existing methods on the modality imputation using an existing distributed
learning scheme (e.g., FedAvg (McMahan et al} 2017)) as ours. In particular, in each communication
round, each client trains its local model using the observed modalities, then the server averages the
model weights to update the global model. The baselines include MVAE (Wu & Goodman), 2018)),

MMVAE (Shi et al., 2019) and MoPoE-VAE (Sutter et al., 2020b).
E [CRICE
m . 7 - 7

MVAE MMVAE MoPoE CLAP
Figure 4: Imputation results of all methods on PolyMNIST. Each column represents a sample. Red
boxes indicate the missing modalities.

Datasets. Following the work (Sutter et al., 2020b), we evaluate our method with baselines on
benchmark datasets with various modalities, including PolyMNIST, MNIST-SVHN-TEXT, CelebA
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and CUB. More importantly, the practicability of our method is validated on a real-world clinical
distributed dataset eICU (Pollard et al.,[2018)).

Evaluation metrics. We evaluate the performance of all methods from two aspects. 1. generation
quality; the models take the observed modalities as inputs to generate missing modalities. We assess
the coherence of generated modalities with pre-trained classifiers to evaluate whether the imputed
samples could be classified correctly. Meanwhile, we also approximate the log-likelihoods of the
output data to reflect the generation quality. For the eICU dataset, which is tabular data and has many
modalities, we report the mean square error (MSE) between the generated results and the ground truth.
2. representation quality; the latent space of the data is supposed to be informative. We build the
downstream tasks by using the learned classifiers to measure the quality of learned representations.
All experiments are run 5 times to calculate the average results with stds. More experimental results,
more ablation studies and discussions could be found in Appendix.

5.1 EXPERIMENTS ON POLYMNIST

The PolyMNIST dataset (Sutter et al., | 2020b)) is synthesized with the MNIST dataset. Each sample
contains 5 image modalities with different backgrounds and styles with the same digit label. There
are 60,000 samples in the training set and 10,000 samples in the test set. We create the distributed
environment by partitioning the dataset into 5 clients. Each client contains 6 classes of samples.
Different clients involve different classes of data. In each client, we mask less than 2 modalities at
random.

Table 1: Imputation coherence accuracy (%) of 5 modalities on the PolyMNIST dataset.
Model M1 M2 M3 M4 M5
MVAE 221411 195405 1524174 687112 19.6410
MMVAE 36.3i0.1 60.5i0‘4 61.3i1‘0 64.4i2,0 34-4i0.8
MoPoE  38.5+06 69.4+14 7244114 757105 456110
CLAP 452402 69411 74.5101 793108 50.5403

Table 2: Linear classification accuracy (%) on the representation of the modality subsets on the
PolyMNIST dataset.

Model {Ma} {Mas, M5} {Ms, M, Ms}  Average

MVAE 8144i0A4 75.7i0,9 76.7i042 77.9i0_9
MMVAE 869411 7894105 83.2141.0 83.041.1
MoPoE 7942i0A4 80.1i1,5 97.9i0‘9 85.7i1_5
CLAP 87.6.L 0.2 91.8.10.4 959402 9191 0.4

The experimental results on PolyMNIST dataset are shown in Table[I] and 2] From Table [T} MVAE
has a worse imputation coherence accuracy because it fails to learn the dependencies among modali-
ties. MoPoE achieves better imputation coherence than other baselines as it learns all transformations
among modalities. CLAP achieves the best imputation coherence as it models the required depen-
dencies for imputation, which mitigates the potential modality combination vulnerability. For the
quality of the learned representation shown in Table[2] CLAP still maintains the best accuracy as our
method addresses the heterogeneity by learning a common latent representation for all clients. We
visualize the generated result in Figure[d] From Figure[4] the baseline methods are easily confused by
the images "7’ and ’9’, and CLAP correctly impute the missing modalities.

5.2 EXPERIMENTS ON MORE COMPLICATED DATASET BIMODAL CELEBA

Bimodal CelebA The Bimodal CelebA dataset (Sutter et al., 2020a) is extended from CelebA
dataset (Liu et al.;[2015). Each face image is attached with a textual modality. It is generated with
the 40 attributes describing the face. Compared with the MNIST-SVHN-TEXT dataset, the face
images in the Bimodal CelebA dataset are more complex. Also, the text strings are longer and more
complicated. We split the dataset into 5 clients. For the setting of statistical heterogeneity, we set
different portions of Male samples in local clients.

The results of imputation coherence and latent space classification are shown in Table[3] CLAP sur-
passes all baselines and achieves the highest imputation coherence and latent space classification
accuracy.
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Table 3: Imputation coherence and latent space classification results of 2 modalities I (Image) and T’
(Text) on the Bimodal CelebA dataset. The mean average precision (mAP) (%) is averaged over all
40 attributes.

Coherence Latent Classification

1 T 1 T
MVAE 35.510.1 34.7i0.4 16.0i0_3 7-1i0,2
MMVAE 344102 327403 4374102 415401
MoPoE 349403 337105 438401 412403
CLAP 374103 352101 442101 454403

Model

Table 4: Results on eICU dataset. MSE and latent classification AUC (%) are averaged over 13
modalities and certain subsets. The log-likelihoods of joint distribution X are reported.

Model MSE Latent Classification  Likelihood
MVAE 0.0661+0.0002 56.310.3 3411405
MMVAE 0.0681 +0.0004 53.0i02 ‘340«4&06
MoPoE - - -
CLAP 0.0653-0.0002 62302 -340.240.7

5.3 EXPERIMENTS ON A REAL-WORLD CLINICAL DATASET EICU

To further confirm the practicability of CLAP, we use a real-world clinical dataset eICU (Pollard et al.|
2018). eICU contains the records of the patients to ICUs with hospital information, and each hospital
is a client (Cui et al.;[2022). The data is preprocessed as in (Sheikhalishahi et al., 2019). We select 13
features (e.g., FiO2, O2 Saturation, etc.) as 13 modalities. Each instance has the 48-hour monitoring
data of the 13 features. The label is binary indicating whether the patient is alive. The experimental
results are shown in Table [d] in which MoPoE can not work on the eICU dataset due to the vast
number (2'3) of modality subsets. We use AUC to evaluate the classification results due to the severe
label imbalance (more than 90% samples have negative labels). From Table@l, CLAP outperforms
baselines in all three metrics.

5.4 ABLATION STUDIES

Vertical and horizontal Pareto min-max optimization. We conduct ablation studies on PolyMNIST
to validate the effect of Pareto min-max optimization. In particular, we use the averaged loss to
replace Pareto min-max optimization in Eq.(6) and Eq.(I2). The averaged results over all 5 modalities
are shown in Table 5| where w/o both denotes that both losses are replaced with the averaged losses.
w/o modality means that we only replace vertical Pareto min-max optimization in Eq.(6) with the
averaged loss, and w/o client means that we only replace horizontal Pareto min-max optimization in
Eq.(6) with the averaged loss. The results are shown in Table[5] The ablation studies on more clients
could be found in Appendix.

Table 5: Ablation study on the PolyMNIST dataset. Coherence accuracy, log-likelihood and latent
classification accuracy (%).

Method Coherence Likelihood  Latent
w/o both 56.410.0 -667241 533404
w/o modality  57.31¢.2 -66424 3 544401
w/o client 56901 -663314 551402
CLAP 58.710.2 -6603 4 56.640.1

6 CONCLUSION

In this paper, we propose a practical multimodal learning problem. Given an incomplete patchwork,
we propose a scalable framework, CLAP, to achieve an efficient and valid imputation by jointly
learning from the patchwork vertically and horizontally without direct access to the raw data. Em-
pirical results on both benchmark and real-world medical data sets demonstrated the effectiveness,
superiority, and practicability of our proposed method. We hope this work opens venues for future
research, for example, large models in multimodal learning, unsupervised multimodal learning, etc.



Published as a conference paper at ICLR 2024

7 ACKNOWLEDGMENTS*

This work is funded by the Natural Science Fundation of China(NSFC. No. 62176132) and the
Guogiang Institute of Tsinghua University, with Grant No. 2020GQG0005.

REFERENCES

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared represen-
tations for personalized federated learning. In International Conference on Machine Learning, pp.
2089-2099. PMLR, 2021.

Sen Cui, Weishen Pan, Jian Liang, Changshui Zhang, and Fei Wang. Addressing algorithmic disparity
and performance inconsistency in federated learning. Advances in Neural Information Processing
Systems, 34:26091-26102, 2021.

Sen Cui, Jian Liang, Weishen Pan, Kun Chen, Changshui Zhang, and Fei Wang. Collaboration
equilibrium in federated learning. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 241-251, 2022.

Imant Daunhawer, Thomas M. Sutter, Ricards Marcinkevics, and Julia E. Vogt. Self-supervised
disentanglement of modality-specific and shared factors improves multimodal generative models.
In Zeynep Akata, Andreas Geiger, and Torsten Sattler (eds.), Pattern Recognition - 42nd DAGM
German Conference, DAGM GCPR 2020, Tiibingen, Germany, September 28 - October 1, 2020,
Proceedings, volume 12544 of Lecture Notes in Computer Science, pp. 459-473. Springer, 2020.

Imant Daunhawer, Thomas M Sutter, Kieran Chin-Cheong, Emanuele Palumbo, and Julia E Vogt.
On the limitations of multimodal vaes. arXiv preprint arXiv:2110.04121, 2021.

Li Deng. The MNIST database of handwritten digit images for machine learning research [best of
the web]. IEEFE Signal Process. Mag., 29(6):141-142, 2012.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
learning. arXiv preprint arXiv:2003.13461, 2020.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning with
theoretical guarantees: A model-agnostic meta-learning approach. Advances in Neural Information
Processing Systems, 33:3557-3568, 2020.

Rachael L Fleurence, Lesley H Curtis, Robert M Califf, Richard Platt, Joe V Selby, and Jeffrey S
Brown. Launching pcornet, a national patient-centered clinical research network. Journal of the
American Medical Informatics Association, 21(4):578-582, 2014.

HyeongJoo Hwang, Geon-Hyeong Kim, Seunghoon Hong, and Kee-Eung Kim. Multi-view represen-
tation learning via total correlation objective. Advances in Neural Information Processing Systems,
34,2021.

Mikhail Khodak, Maria-Florina Balcan, and Ameet Talwalkar. Adaptive gradient-based meta-learning
methods. arXiv preprint arXiv:1906.02717, 2019.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Christian Ledig, Lucas Theis, Ferenc Huszdr, Jose Caballero, Andrew Cunningham, Alejandro Acosta,
Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single image
super-resolution using a generative adversarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4681-4690, 2017.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated learning

through personalization. In International Conference on Machine Learning, pp. 6357-6368. PMLR,
2021.

10



Published as a conference paper at ICLR 2024

Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B Allen, Randy P Auerbach, David Brent, Ruslan
Salakhutdinov, and Louis-Philippe Morency. Think locally, act globally: Federated learning with
local and global representations. arXiv preprint arXiv:2001.01523, 2020.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, December
7-13, 2015, pp. 3730-3738. IEEE Computer Society, 2015.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273—1282. PMLR, 2017.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y Ng. Multi-
modal deep learning. In Proceedings of the 28th international conference on machine learning
(ICML-11), pp. 689-696, 2011.

Gaurav Pandey and Ambedkar Dukkipati. Variational methods for conditional multimodal deep
learning. In 2017 International Joint Conference on Neural Networks (IJCNN), pp. 308-315. IEEE,
2017.

Tom J Pollard, Alistair EW Johnson, Jesse D Raffa, Leo A Celi, Roger G Mark, and Omar Badawi.
The eicu collaborative research database, a freely available multi-center database for critical care
research. Scientific data, 5(1):1-13, 2018.

Suraj Rajendran, Weishen Pan, Mert R Sabuncu, Jiayu Zhou, and Fei Wang. Patchwork learning:
A paradigm towards integrative analysis across diverse biomedical data sources. arXiv preprint
arXiv:2305.06217, 2023.

Seyedmostafa Sheikhalishahi, Vevake Balaraman, and Venet Osmani. Benchmarking machine
learning models on eicu critical care dataset. arXiv preprint arXiv:1910.00964, 2019.

Yuge Shi, Brooks Paige, Philip Torr, et al. Variational mixture-of-experts autoencoders for multi-
modal deep generative models. Advances in Neural Information Processing Systems, 32, 2019.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task
learning. Advances in neural information processing systems, 30, 2017.

Thomas Sutter, Imant Daunhawer, and Julia Vogt. Multimodal generative learning utilizing jensen-
shannon-divergence. Advances in Neural Information Processing Systems, 33:6100-6110, 2020a.

Thomas M Sutter, Imant Daunhawer, and Julia E Vogt. Generalized multimodal elbo. In International
Conference on Learning Representations, 2020b.

Vanya V Valindria, Nick Pawlowski, Martin Rajchl, Ioannis Lavdas, Eric O Aboagye, Andrea G
Rockall, Daniel Rueckert, and Ben Glocker. Multi-modal learning from unpaired images: Applica-
tion to multi-organ segmentation in ct and mri. In 2018 IEEE winter conference on applications of
computer vision (WACV), pp. 547-556. IEEE, 2018.

Mike Wu and Noah Goodman. Multimodal generative models for scalable weakly-supervised
learning. Advances in Neural Information Processing Systems, 31, 2018.

Baochen Xiong, Xiaoshan Yang, Fan Qi, and Changsheng Xu. A unified framework for multi-modal
federated learning. Neurocomputing, 2022.

Guang Yang, Qinghao Ye, and Jun Xia. Unbox the black-box for the medical explainable ai via
multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond. Information
Fusion, 77:29-52, 2022.

Ilker Yildirim. From perception to conception: learning multisensory representations. University of
Rochester, 2014.

Yuchen Zhao, Payam Barnaghi, and Hamed Haddadi. Multimodal federated learning. arXiv preprint
arXiv:2109.04833, 2021.

11



Published as a conference paper at ICLR 2024

CONTENTS
M TIntroduction|
2 Related Workl
3 Nowfi [ Problem Definition
BI_NO@EONS . . - - v o oo e e

4 Methodology|

4.1 Preliminaries: Variational Autoencoder (VAE), Product-of-Experts (PoE) and Pareto

| Min-max Optimization] . . . . . . . . . .. . .. e

4.3 Modality VAE and Vertical Pareto Min-Max Optimization| . . . . ... ... ...
4.4 Client-Apatation VAE and Horizontal Pareto Min-max Optimization| . . . . . . . .

B.T Experimentson POlyMNIST] . . . . . . . . . . . .. . . i

[5.2 Experiments on More Complicated Dataset Bimodal CelebA] . . . . . . . .. . ..

[5.3 Experiments on a Real-world Clinical Dataset eICU|. . . . . .. .. ... .....

6__Conclusion

[7Acknowledgments¥|

[A_Theoretical Proofs|
IA.1 Proof of Proposition|I}. . . . . .. ... ... ... ... ...
IA.2 Proof of Proposition|2}. . . . . . . ... ... ... ...

B Convergence Analysis|

|C Algorithm and Optimization|

& JA

o 1 B T T T

[D Tmplementation|

ID.2 More Experiments| . . . . .. ... o

ID.3 Traiming Details| . . . . . . .. ... ..

AN N N B

O O o0 oo 3



Published as a conference paper at ICLR 2024

[E_More Ablation Studies| 19
1 MoreClients] . . . .. . ... e 19

[E.2  Different Number of Missing Modalities| . . . . ... ... ... ... ...... 19
[E.3  Different Latent Vector Dimensionality| . . . .. ... ... ... .. ....... 20
|[E.4  Difterent Level of Statistical Heterogenity| . . . . . . ... .. ... ... ..... 20

[F° Computation Analysis and Devices| 20

A THEORETICAL PROOFS

A.1 PROOF OF PROPOSITION[]
Assumption 3. All modalities form a connected graph in the patchwork.

Firstly, we prove that if a patchwork satisfies Assumption [I]and Assumption [3] then the patchwork
could be completed.

Suppose we use f(M;, M;) to denote a transformation from M; to M. If there are a client c* owning

the two modalities {M;, M;} C X*, the transformation f(M;, M;) could be optimized by learning
from the data.

From Assumption [3] if the patchwork forms a connected graph, each pair of modalities has an
undirected path from one modality to the other, i.e.,

Vi,je{1,2,..,K},3p, st., M; — M;, (13)
where p denotes a path on the graph.
As each edge denotes an optimized transformation, the path between M; and M corresponds to

a composed transformation f(M;, My1) o f(M;, Myz2)... o f(Mym, M;). Therefore, each missing
modality could be imputed by the optimized transformations and the patchwork could be completed.

Then we prove that if a patchwork could be completed by the optimized transformations, the
patchwork satisfies Assumption|[I]and Assumption 3]

If the patchwork violates Assumptionm and there exists a client has no data, i.e.,
Jie{1,2,...N}, X" =0, (14)

then ¢! cannot impute its missing modalities and the patchwork cannot be completed. This violates

the premise that the patchwork could be completed. Therefore, the patchwork satisfies Assumption [T}

If the patchwork violates Assumption [3| there exists two modalities {M ¢ M j} and no path between
them, i.e.,

Ji,j€{1,2,...,K},Pp, sit., M; — M. (15)
Since there is no edge between M; and M, there is no client that owns the two modalities { M;, M }.
If a client ¢! has the modality M; and it can impute M from the learned transformations, this means
that there exists a path between another observed modality M}, and M, i.e.,

IM;, € X', 3p, s.t., My — M;. (16)
Meanwhile, ¢! has both modality M; and My, so there exists a path between M}, and M.
dp, s.t., My — M,. a7

Combining the above two Equations, there exists p from M; to M; and this violates Eq.@).
Therefore, Assumption E| holds.

If a client ¢! has the modality M and it can impute M;, we can prove Assumptionholds similarly.

If a client ¢! does not have M; and does not have M;, ¢! can impute both modalities using the

observed modalities. Then there exists a modality M}, € X! and there exists a path between M, and
M; and a path between Mj, and M;. Therefore, there exists p from M; to M;. This violates Eq.@
and Assumption [3holds.

13
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A.2 PROOF OF PROPOSITION[Z]

Firstly, we prove that Eq.(I0) formulates an appropriate ELBO, i.e.,

logp(a') > —L£(0, ¢, a"). (18)
We prove it as follows.

logp(z) = D inj D) & By ey |log 2T 1

08(a") = Dicr, (@l ) (o1) + Ey ooy [l FEES (19
p(z,x")

> Eyy(z]zini) [og qg(zxmﬂ)} (19b)
= Eqy(z|2i) log py(2*|2) — Dk (qg (z|1:mj) ||p(z)) (19¢)
= —LM(0,¢,2"). (19d)

Since D, (qo(2|2™7)||p(2]2")) > 0, the inequality Eq.(19b) holds.

Then we demonstrate that minimizing £ (6, ¢, 2%, x7) minimizes D, (g0 (2| X*) [|p (2|X*))

in Eq.(9).

From Eq., logp(z') is pre-defined. Maximizing Eg, (,|zini) [log

p(z.x")
g , , (g0 (z[z7)
Dir (qo(2|2")||p(2]2")). In Eq.(19a), p(z, 27) is agnostic, so we use ps(2?|2)p(z) to approximate

p(z, x"). Therefore, —L"7 (6, ¢, ") is an appropriate approximation of E, (i) [log %} ,

} minimizes

and maximizing —£%7 (6, ¢, z*) minimizes D1, (go (2|z"™7) ||p (z]z?)).

B CONVERGENCE ANALYSIS

The work (Cui et al.| 2021) provides the convergence analysis of Pareto min-max optimization in
section C in Appendix. We present the analysis in the following.

The convergence of Pareto min-max optimization. (More proof details could be found in (Cui et al.,
2021)).) Recall that Pareto min-max optimization aims to achieve a Pareto solution ~* that has the
lowest loss on the maximal value in I(h) = [l1(h), l2(h), ..., Iy (h)]. Pareto min-max optimization
obtains such a h* by a two-staged constrained multi-objective optimization.

The convergence of the first stage: Suppose we use 0% and ¢° to denote the parameters of i and

the parameter ¢ in the ¢-th iteration, (Cui et al., 2021} proves that in each iteration, [,nam (hgt, §t)
decreases in Lemma 1 in the Appendix.

AS Lo (hgt, 6%) > 0 and decreases in each iteration, Pareto min-max optimization achieves min-max
optimality and the algorithm converges.

The convergence of the second stage: (Cui et al., 2021]) proves that in each iteration, the objective
li(hy) (i =1,2,..., N) decreases or remains unchanged.

l; (h9t+1) <l (hgt) ,Vi € {1, ,N}
This means that the objective in the second stage (% Zf\il 1;(h)) decreases or remains unchanged
without violating the constraints. Finally, Pareto min-max optimization achieves Pareto optimality
and the algorithm converges.

The convergence is not affected by the statistical and modality heterogeneity. From the above
analysis, the convergence of Pareto min-max optimization is guaranteed from the perspective of
constrained multi-objective optimization.

14



Published as a conference paper at ICLR 2024

Algorithm 1 The training of CLAP

Input: the number of client N, the number of modalities K, epoch T;,, batch size B,,, ini-
tialization of the encoder E (6%), the decoder DM (gf)kM ) the decoder D¢ (gf)kc), where k =
1,2,..., K.

1: fort=0,...,7,, — 1 do

2 randomly selects a subset of clients S

3 the training of modality VAEs

4 for modality M,k =1,2,..., K do

5: for client ¢’ € S in parallel do
6: (if My, is observed) draw mini-batch m?C ~ X?

7.
8
9
0

calculate the ELBO: ELBO(m})
then calculate the gradients with respect to parameters 6% d){cw ;
end for
Server aggregates the gradients of selected clients and update the parameters 6% ¢! by
Pareto min-max optimization;
11:  end for
12:  the training of CA-VAEs
13:  for client ¢ € S, in parallel do

10:

14: draw mini-batch z* ~ X i o

15: calculate the losses L (0, ¢, 2") (¢’ € S;) according to Eq.

16: then calculate the gradients of losses for parameters 6% gbkc k=1,2,...,K),
17:  end for

18:  Server aggregates the gradients of selected clients and update the parameters 6% and qbg
(k=1,2,..., K) by Pareto min-max optimization.

19: end for

20: Output: the learned model 6%, oM, ¢¢ (k = 1,2, ...., K).

statistical heterogeneity: Pareto min-max optimization is applied to mitigate the statistical hetero-
geneity. Even if there is severe statistical heterogeneity in local clients, Pareto min-max optimization
still converges to a Pareto stationary solution, whose gradient is close to zero.

modality heterogeneity: Different modality combinations correspond to different objectives. Modal-
ity heterogeneity may induce more objectives to be optimized. During the Pareto min-max optimiza-
tion, the objectives decrease in each iteration and the algorithm still converges after T iterations.

C ALGORITHM AND OPTIMIZATION

C.1 ALGORITHM

We summarize the algorithm for the training of CLAP in Algorithm|[l} For the inference of CLAP,
we present the process of imputation in Algorighm [2] During training, we use the intersection of
observed modalities (X N X7) between modalities to rebuild all observed modalities. Note that each
client has N — 1 modality intersection with other clients. When aggregating the gradients, in each
client, only the parameter gradients of encoders and decoders corresponding to visible modalities
are transmitted. In the inference, we use the intersection which has the most modalities to infer the
missing modalities. This corresponds to Line 5 in Algorithm 2}

C.2 PARETO MIN-MAX OPTIMIZATION

Pareto min-max optimization (Cui et al., 2021) aims to achieve a Pareto solution h* that has the
lowest loss on the maximal value in I(h) = [l1(h),l2(h), ..., Iy (h)]. Pareto min-max optimization
obtains such a h* by a two-staged constrained multi-objective optimization.
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Algorithm 2 The inference of CLAP

Input: the patchwork to be completed, the number of clients NV, the number of modalities K, the
learned model 0%, M, ¢ (k = 1,2, ...., K).

1: fort=1,2,..., N do

2 fork=1,2,...., K do

3: (if m}, is observed) calculate the latent representation z using the encoder 0%;
4:  end for
5
6

calculates the representation z using the maximal intersection modality combination by PoE;
rebuild all missing modalities using the decoder D¢ (¢, k = 1,2, ..., K);

7: end for

8: Output: the completed patchwork.

The first stage: it achieves a min-max solution h' by entropy function method, which optimizes a
surrogate function defined as follows

Lo (. §) = 51n§:exp (ligh)) .

=1

Imaz (R, d) satisfies that

lmaw(h) S lAma:E (ha 5[) S lmam(h) + (SIH(N>,
where 0 > 0 is a hyper-parameter. It will decrease in each iteration.

The second stage: it continues to optimize the obtained solution h! to achieve Pareto optimality with
constrained Pareto optimization. The objective to be optimized is as follows:

N
1
in — ; AL (R) < 1;(hY), Vi )
m’inNigzllz(h),st,l(h)_l(h ),Vie{1,2,...,N}

In this way, Pareto min-max optimization achieves a Pareto solution, in which each objective cannot
be further optimized without degrading others. Meanwhile, it maintains its min-max optimality as it
achieves the minimal maximum loss value.

C.3 DISCUSSIONS ON LIMITATIONS

This paper focuses on generating missing modalities for local clients. However, privacy and commu-
nication concerns arise when learning generative models collaboratively, and CLAP is no exception.

Privacy. The implementation of CLAP involves collaboratively learning generative VAEs for imputing
missing modalities. The transmission of gradient information between the server and clients may
result in information leakage. To address this privacy concern, differential privacy may be useful to
protect privacy from leakage during the training of the generative models.

Communication. Generative models typically have more parameters compared to classification
models, which may result in more communication and computation overhead for local clients. In this
regard, transferring the most valuable gradient information for model training is a potential research
direction to reduce communication overhead.

D IMPLEMENTATION

D.1 EVALUATION

In patchwork learning, models learn to project the samples with missing modalities into a joint latent
representation and reconstruct the complete modalities. We evaluate the performance of all methods
from two aspects: generation quality and representation quality. Generation quality can be assessed
by generation coherence and Test Set Log-likelihood. For the eICU dataset, we also report the mean
square error (MSE) between generated and input samples. Representation quality can be assessed by
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linear classifier accuracy in latent space. The sample labels refer to digit numbers in the PolyMNIST
dataset and the MNIST-SVHN-TEXT dataset, 40 binary attributes in the Bimodal CelebA dataset,
and mortality in the eICU dataset. The results are averaged over all clients.

Generation Coherence. A classifier is trained for each modality to predict the label of samples.
During the evaluation of multimodal methods, all the modalities are reconstructed from incomplete
modalities. Then we predict labels from the generated modalities and calculate accuracy (for the
PolyMNIST dataset and the MNIST-SVHN-TEXT dataset), mean average precision (for the Bimodal
CelebA dataset), or AUC (for the eICU dataset) using the true labels.

Test Set Log-likelihood. We generate full modalities for each sample and estimate the test set
log-likelihood with 15 importance samples as in (Sutter et al., [2020b)).

Linear Classifier Accuracy in Latent Space. Patchwork learning methods project samples into a
joint latent representation and total modalities can be reconstructed from the latent representation.
The learned latent space of quality should be constructed and contain intact information of all the
modalities even if the input modalities are incomplete. Therefore, we perform linear classification
in the latent space to predict the sample label. A logistic regression classifier is trained with 500
samples in the training set for each modality subset in each client. And it is tested in the latent space
of test sets.

D.2 MORE EXPERIMENTS

MNIST-SVHN-TEXT dataset (Sutter et al., [2020a) is created based on MNIST-SVHN dataset (Shi
et al.,[2019), which is composed of image modalities MNIST and SVHN, as well as a text modality.
In particular, MNIST (Deng, 2012)) modality is a handwritten digit image. SVHN (Netzer et al.,[2011)
modality is an image of a digit cropped from street view pictures. Each sample has the same label for
all images. The text modality is an English string indicating the digit label. Each MNIST image pairs
with 20 SVHN images. The dataset has 20x 60,000 training samples and 20x 10,000 test samples.
For the setting of data heterogeneity, we partition the dataset into 10 clients, and each client contains
6 classes of samples. In each client, there is less than one modality to be masked.

The performance of all methods on this dataset is shown in Table [6| From Table [6] our method
outperforms all baselines and achieves the best coherence. The modeling of the SVHN modality is
mediocre as this modality is complex and noisy. CLAP still maintains the best coherence (58.9). As
there may exist a trade-off between coherence and log-likelihood, our method achieves a comparable
log-likelihood with baselines. More results are shown in Appendix.

Table 6: Imputation coherence accuracy (%) of 3 modalities M (MNIST), S (SVHN) and T" (Text)
on the MNIST-SVHN-TEXT dataset. The log-likelihoods are tested on X = {M, S, T}

Coherence Likelihood

M S T X
MVAE 755+03 477114 804407 -197143
MMVAE 88.6406 21.542.1 76.841.4 -183842
MoPoE 8944107 544402 921403 -184041
CLAP 9531038 589.03 923.03 -1838 1

Model

CUB. We also conduct our experiments on CUB datasets. CUB |Hwang et al.| (2021)) contains
11,788 photos of 200 kinds of birds in natural scenes, each annotated with 10 fine-grained captions
describing the bird’s appearance characteristics collected through Amazon Mechanical Turk (AMT).
We partition the data into 10 clients. Each client contains 90 different kinds of birds. For the two
modalities (image and text), we randomly mask one modality for the randomly selected clients. The
results of MSE, linear classification, and log-likelihood are shown in Table where I and T stand for
image and text modalities respectively. As shown in the table, CLAP still outperforms all baselines
on this complex dataset.

PolyMNIST. The log-likelihood results are reported in Table |8} which evaluates the generation
quality. MVAE has a worse imputation coherence accuracy because it fails to learn the dependencies
among modalities. MoPoE achieves better imputation coherence than other baselines as it learns all
transformations among modalities. CLAP achieves the best log-likelihoods as it models the required
dependencies for imputation compared with baselines.
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Table 7: Experimental results on CUB
method MSE  Latent Classification Likelihood

I {Iy {T} (LT} I T X

MVAE 0.0298 134 1.7 53 -6437  -156  -6549
MMVAE 0.0425 138 29 35 -6650 -117  -6745
MoPoE 0.0241 13.0 35 4.9 -6283  -148 -6374
CLAP 0.0233 153 3.5 5.7 -6251 -142  -6342

Table 8: The log-likelihoods of 5 modalities and the joint log-likelihoods of X = {M;,i =1,2,...5}
on PolyMNIST dataset.

Model M1 MQ M3 M4 M5 X
MVAE -149540  -129241  -125244  -137342  -143141  -68494
MMVAE  -134741  -119945 -127444 -1460+1 -134642 -696414
MoPoE  -141243 -123742 -120142 -149414 -131246 -671545

CLAP 2131940 120741 117743 135342 -134943  -660314

MNIST-SVHN-TEXT. The results of linear classification accuracy on MNIST-SVHN-TEXT are in
Table

Table 9: Linear classification accuracy (%) in latent space of some modality subsets on the MNIST-
SVHN-TEXT dataset. The average accuracy of all possible subsets is also reported.

Model {S} {M,S} {M,S,T} Average
MVAE 327402 66.54713 48.810.1 711405
MMVAE 79.7.195 6504038 472407 79.140.2
MoPoE 79.91043 68.5i0,3 49.0i0.2 80.5i0_2
CLAP 794,101 68. 7106 49.2 3 80.6.¢ 1

eICU. In the original setting, there are 13 modalities in the eICU dataset, which means the MoPoE
can not work due to the vast number (2'3) of modality subsets. To make the comparison feasible, we
discard the last modality and divide the rest 12 modalities into 4 modality groups. The results are
shown in the Table[I0] In this setting, our method also outperforms all the baselines on all metrics.

D.3 TRAINING DETAILS

We use Adam optimizer for training and the training batch size of all experiments is set as 256. The
architecture of classifiers for the coherence test is the same as the unimodal encoder architecture
except for the last layer. The model architecture and training hyperparameters are the same for
different methods. When calculating the training loss, the likelihood of reconstructed modalities is
weighted according to their data dimensions.

Bimodal CelebA. The learning rate is set as 0.0005, f3 is set as 1.0, dimension of latent vectors is set
as 64. The models are trained for 200 epochs. The encoders and decoders for both the Image and
Text modalities are based on residual convolutional blocks. We use modality-specific latent space as
in (Daunhawer et al.| 2020) to improve the generation quality. The modality-specific latent vector
occupies half of the latent vectors.

PolyMNIST. The learning rate is set as 0.001, 3 is set as 0.4, dimension of latent vectors is set as 512.
The models are trained for 300 epochs. The unimodal encoders are convolutional neural networks
and the decoders are based on transposed convolutional layers.

CUB. The learning rate is set as 0.0005, [ is set as 0.4, dimension of latent vectors is set as 64. The
models are trained for 75 epochs. The encoders for both the Image and Text modality are based on
convolutional neural networks and the decoders are based on transposed convolutional layers.

MNIST-SVHN-TEXT. The learning rate is set as 0.001, 3 is set as 0.4, dimension of latent vectors
is set as 20. The models are trained for 150 epochs. The encoder and decoder of the MNIST modality
are fully-connected neural networks. For the SVHN and TEXT modality, they are convolutional and
transposed convolutional neural networks.
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Table 10: Results on eICU dataset with 4 modalities.

MSE Latent Classification Likelihood
Method
Ml M2 M3 M4 Average X
MVAE  0.0366 0.0426 0.1006 0.0876 40.2 -319
MMVAE 0.0380 0.0440 0.1029 0.0928 38.3 -320
MoPoE  0.0360 0.0426 0.0997 0.0848 41.5 -319
CLAP 0.0360 0.0422 0.0997 0.0847 43.3 -316

eICU. The learning rate is set as 0.0005, (3 is set as 2.0, dimension of latent vectors is set as 32. The
models are trained for 150 epochs. The encoders are composed of LSTM and fully connected layers.
And the decoders are fully-connected neural networks.

E MORE ABLATION STUDIES

E.1 MORE CLIENTS

We conduct experiments on the PolyMNIST dataset with more clients (50 and 100). The results are
shown in Table [I5] When we split the dataset into more clients, the statistical heterogeneity gets
more complex. Thus the latent classification results and log-likelihood decline for all the models and
our method still outperforms the baselines.

Table 11: Latent space classification and log-likelihood results of some modality subsets on the
PolyMNIST dataset. The average accuracy of all possible subsets.

Client Latent Classification Likelihood
Model
Number
{M4} {M4,M5} {]\/IQ,]VI4,]\J5} Average ]\/[2 M4 M5 X
MVAE 345 31.5 30.7 21 -1268  -1518 -1381 -7168
50 MMVAE 36.7 32.6 32.0 213 -1250  -1435  -1372  -7185
MoPoE 337 294 31.2 20.8 -1267  -1505 -1368 -7119
CLAP 36.7 40.4 39.9 234 -1242 -1465 -1363  -7104
MVAE 374 37.6 374 22.0 -1295 -1475 -1418 -7327
100 MMVAE 37.1 35.0 34.0 21.7 -1304  -1470  -1418 -7389
MoPoE 35.8 36.5 36.1 21.7 -1306  -1499  -1464  -7385
CLAP 37.6 37.7 384 223 -1282  -1466  -1406  -7313

E.2 DIFFERENT NUMBER OF MISSING MODALITIES.

As the missing modalities are diverse in local clients, we propose to randomly generate the masks on
the PolyMNIST dataset. Specifically, we randomly generate different masks with different missing
probabilities. We conduct experiments on the PolyMNIST dataset with 3 random masks. From the
results in Table[T2] our method consistently outperforms other baselines.

Table 12: Imputation coherence accuracy (%), latent space classification and log-likelihood results of
some modality subsets on the PolyMNIST dataset.

Model Coherence Latent Classification Likelihood
My My Ms {My} {Ms,Ms} {My, My, Ms} X
MVAE 18.1 69.1 182 80.3 74.7 77.0 -6851
mask 1 MMVAE 620 63.1 34.6 86.8 79.2 81.3 -6951
MoPoE  69.5 73.1 483 79.0 80.5 94.7 -6734
CLAP 69.7 79.2 504 884 91.9 96.7 -6614
MVAE 224 705 16.1 82.8 71.1 77.5 -6842
mask 2 MMVAE 645 62.8 34.8 87.5 77.7 81.4 -6951
MoPoE  69.8 719 452 80.3 81.7 95.6 -6768
CLAP 708 771 524  88.2 91.5 95.8 -6601
MVAE 157 692 152 81.7 74.5 77.4 -6832
mask 3 MMVAE 637 625 359 84.4 75.3 80.2 -6960
MoPoE  68.4 70.7 464 81.3 81.4 95.0 -6751
CLAP 715 773 537 852 92.7 94.8 -6634
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Besides, we mask the different number of modalities on the eICU dataset. As the results shown in
Table[T3] the imputation task is more difficult to tackle with more modalities masked.

Table 13: Results on eICU dataset with the different number of modalities masked. MSE and latent
classification AUC (%) are averaged over 13 modalities and certain subsets. The log-likelihoods of
joint distribution X are reported.

Masked number MSE  Latent Classification Likelihood

1 0.0612 65.4 -3214
2 0.0653 62.3 -340.2
3 0.0667 60.2 -357.6
5 0.0668 54.2 -382.4
10 0.0705 52.1 -380.7

E.3 DIFFERENT LATENT VECTOR DIMENSIONALITY

‘We conduct the ablation study using the MNIST-SVHN-TEXT dataset on the latent vector dimen-
sionality. As shown in Table[I4] the performance degrades when the latent vector dimensionality is
too small (<20). Otherwise, the model performances are similar.

Table 14: Results on MNIST-SVHN-TEXT dataset with the different number of latent vector
dimensionality.

. . . Coherence Likelihood
Dimensionality
M S T X

3 45.1 19.2 789 -1956
5 65.1 474 789 -1919
10 78.0 534 93.1 -1873
20 953 589 923 -1838
40 96.4 60.7 89.3 -1847
60 944 61.1 91.7 -1852
80 95.6 60.6 91.2 -1868
100 943 61.0 89.3 -1876

E.4 DIFFERENT LEVEL OF STATISTICAL HETEROGENITY

We supplement the ablation study on statistical heterogeneity shown in Table [T5] We split the
PolyMNIST dataset into 50 clients and each client contains samples from k classes. A smaller k
leads to greater heterogeneity. As shown in the Table below, the log-likelihoods decrease with the
increase of heterogeneity. The latent classification accuracies are larger for smaller k, because smaller
k values entail a reduction in the number of classes, making classification easier.

Table 15: Results on the PolyMNIST dataset with different statistical heterogeneity indicator k.

k Latent Classification Likelihood

{M4} {M4,M5} {MQ,M4,M5} Average M2 M4 M5 X
8 31.1 33.0 31.2 19.7 -1261  -1483 -1359 -7104
6 36.7 40.4 399 234 -1242  -1465 -1363 -7104
4 43.5 43.9 42.9 26.7 -1267 -1486 -1384 -7122
3 50.2 52.1 524 30.7 -1290 -1487 -1386 -7148

F COMPUTATION ANALYSIS AND DEVICES

As a generative model, CLAP has a similar number of parameters with other federated multimodal
learning methods, including the baselines PoE, MoE, etc. Therefore, CLAP does not bring many
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extra computational and communication costs. As we study a novel problem, it is hard to compare
the computational overhead with other methods used in other problems. We provide the running-time
comparisons with baselines in Table [I6] which demonstrates that CLAP does not have too much
additional computational overhead with baselines. MoPoE can not work on the eICU dataset due
to the vast number (2'3) of modality subsets. It has an exponential complexity with respect to the
number of modalities and costs a vast number of computing resources. Compared with MVAE and
MMVAE, our method aggregates the identified several subsets and does not add too much burden on
optimization and computation.

Devices In the experiments, we conduct all methods on a local Linux server that has two physical
CPU chips (Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz) and 32 logical kernels. All methods are
implemented using Pytorch framework and all models are trained on GeForce RTX 2080 Ti GPUs.

Table 16: Run-time consumption comparisons on the eICU dataset

Methods  Run-time consumption (PolyMNIST) Run-time consumption (eICU)

MVAE 261 min 70 min
MMVAE 236 min 61 min
MoPoE 246 min > 1440 min

CLAP 279 min 79 min
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