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ABSTRACT

Transformers have demonstrated remarkable performance in a wide range of ap-
plications, making in-context learning an essential technique. In-context learning
primarily relies on two types of information: in-context examples and task de-
scription. While previous research has extensively investigated the influence of
in-context examples on learning behavior, the role of task description has not
been adequately explored, despite their practical significance. In this paper, we
present a study examining the impact of task description on the in-context learning
performance of transformers. We devise a synthetic experiment setting, making
the information of task description controllable. Through a series of well-designed
experiments, we systematically vary task description information and assess the
resulting effects on model performance across multiple tasks. Our findings reveal
the double-side roles of task description: insufficient task description will lead
the model to ignore in-context examples, resulting a poor in-context performance;
once the information in task description surpasses a certain threshold, the impact of
task description transfers from negative to positive, and a performance emergence
can be observed. We further conduct the tasks on GPT-4 and observe a similar
double-side impact. In conclusion, this study contributes to a deeper understanding
of the in-context learning from a task description perspective.

1 INTRODUCTION

In-context learning refers to the transformer’s ability to learn from context-based prompts, which
has been utilized in numerous applications, including AI planning (Valmeekam et al., 2022; Xie
et al., 2023), reasoning (Huang & Chang, 2022), image understanding (Alayrac et al., 2022) and
autonomous agents (Wang et al., 2023). Despite the extensive application of in-context learning, our
comprehension of its underlying mechanisms is still underexplored. Recent research has investigated
in-context learning within a meta-learning framework (Gu et al., 2023; Min et al., 2021), offering
insights into how transformers utilize in-context examples to tackle new tasks. However, transformers
can employ in-context information from two sources: in-context demonstrations and task description.
The role of task description, though practically significant, has not been thoroughly studied. In this
work, we concentrate on how task description influences in-context learning within a meta-learning
framework.

The meta-learning framework (Gu et al., 2023; Min et al., 2021) is used to enrich in-context learning
of transformer, where the transformer is directly trained to implement in-context learning. We adopt
an arithmetical operation, which has been widely utilized to study in-context learning (Akyürek
et al., 2022; Power et al., 2022; Garg et al., 2022; Razeghi et al., 2022). Specifically, each task can
be constructed as ((a · x) ◦ (b · y)) mod p = r, where x, y are the inputs, p is a prime number,
◦ represents an operator, and r is the result to be predicted. a, b, ◦ together specify the task. The
transformer is expected to learn this task from the few shot examples, and the prompt is formulated
as [{(xi, yi, ri)}li=1, (xq, yq)]. {(xi, yi, ri)}li=1 can be regarded as few shot examples, while xq, yq
is the query.

In this paper, we aim to study the impact of task description. Unlike the previous setting, we
include the task description in the prompt. Specifically, the prompt in our modified framework is
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Figure 1: A: A transition of the impact on the performance of in-context learning can be observed
given different amount of task description information. Beyond 3.2 nats (marked with a blue dashed
line), the task description acts as a positive role and boosts performance significantly. Before the
threshold, the information of task description has little (in the range of 0.8∼3.2 nats) or even negative
(in the range of 0∼0.8 nats) impact ( lower than task info = 0.). B: Influence of in-context examples
(x-axis) on in-context learning performance (y-axis), given different task description. Shaded areas
indicates +/- std calculated from 3 runs. Task description info is measured in nats.

[d, {(xi, yi, ri)}li=1, (xq, yq)], where d denotes the task description depicting a, b, ◦. To investigate
the role of task description, we devise a synthetic experiment, where we can flexibly control the
complexity of the task description d, i.e., assigning d with different levels of information of a, b, ◦.
Specifically, given a task ground truth label t = (a, b, ◦), we design task description d to control the
mutual information I(t; d).

In the proposed experimental setup, we investigate the impact of task description on in-context
learning capability when changing the mutual information I(t; d).

As shown in Figure 1A, we observe a transition regarding the impact of task description: those
with insufficient information can impair in-context learning, while task description with abundant
information can aid it, with a transition between these states. We identify two cases where negative
impacts of in-sufficient task description on in-context learning can be somewhat mitigated: (i) a
large number of in-context examples with low-information task description, and (ii) high-information
task description. We also investigate whether incorporating task prediction as an auxiliary task
improves in-context learning. Results indicate that task prediction as a surrogate task generally
benefits in-context learning. To verify the generality of our findings, we conduct further studies on
more realistic NLP tasks, the results also align with our experimental results on the synthetic tasks.
We further let GPT-4 to perform our synthetic tasks with task description, observing similar trends
in predictions. These experiments confirm the universality of our findings. In summary, we study
in-context learning from the perspective of task description, and reveal that task description with
insufficient information can have a negative impact on in-context learning.

2 RELATED WORK

In-context learning Recent years have seen significant advances in natural language processing
(NLP), especially with the development of large-scale language models designed for in-context
learning. These models, such as GPT-4 (OpenAI, 2023) by OpenAI, PaLM2 (Anil et al., 2023) by
Google, and Llama (Touvron et al., 2023) by Facebook, excel in understanding and generating human-
like text by leveraging massive amounts of data and sophisticated algorithms. In-context learning
refers to the model’s ability to adapt its understanding and responses based on the specific context
provided (Brown et al., 2020), which has been proven to be crucial in enhancing their performance
across various NLP tasks, including AI planning (Valmeekam et al., 2022; Xie et al., 2023), reasoning
(Huang & Chang, 2022), image understanding (Alayrac et al., 2022), and autonomous agents (Wang
et al., 2023). However, despite the impressive progress, challenges persist in understanding the
mechanism behind in-context learning. This paper delves into this mechanism through synthetic
tasks, taking a step forward in grasping in-context learning from the aspect of task description.

Exploration of in-context learning from synthetic tasks. Exploring in-context learning mecha-
nisms in real-world applications is challenging due to their complexities (Min et al., 2022). Recent
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studies have turned to synthetic tasks for a more controlled environment to understand these mecha-
nisms effectively. For instance, linear regression tasks have been used in several studies (Akyürek
et al., 2022; Von Oswald et al., 2023; Garg et al., 2022) to explore Transformer’s in-context learning
behavior, while some researchers also study image data to analyze the learning process. Moreover,
investigations (Chan et al., 2022a;b; Fu et al., 2023) have been conducted from in-context and
in-weights perspectives, examining the learning process through the lens of the model’s internal
representations and the role of weights. While valuable, many of the aforementioned explorations
tend to overlook the impact of task descriptions on the in-context learning process. Understanding
this influence is crucial for guiding these models toward desired learning outcomes and enhancing
their effectiveness across various applications.

Task description in real in-context learning application. In the realm of in-context learning,
the prompt plays a crucial role in guiding the language model’s response generation. A prompt is a
textual input provided to the model, containing the necessary context and instructions that help the
model understand the user’s requirements and produce relevant responses. The task description in
the prompt often includes specific questions, statements, or examples that outline the desired output,
enabling the model to adapt and generate contextually appropriate text (Brown et al., 2020). The task
description plays a important role in in-context learning by providing information about recognizing
the task in real application (Pan, 2023; Cho et al., 2023). However, systematic studies about the
role of task description and the mechanisms behind are lacking. This paper, from a information
perspective, fills this gap by providing the analysis of task description under different situations. Our
work can provide a general guidance on how to providing task description.

3 FORMULATION AND MOTIVATION

We assume a dataset D, comprising N data samples D = {(dj , cj , qj , rj , tj)}Ni=1, where the j-th
sample is a specific task, containing the task description dj , a sequence of task examples cj =
{(xi, yi, ri)}li=1, a query qj and related output rj . tj contains the elements specifying the task, in our
synthetic task, tj = (aj , bj , ◦j). The examples satisfy ((aj ·xi) ◦j (bj · yi))mod p = ri We partition
the dataset into two subsets: Dtrain and Dtest. This partitioning should ensure that tasks in the test
dataset remain unseen in the training dataset, i.e., for each task k in the testing set Dtrain, no tj exists
in Dtest such that tk = tj . The primary aim of in-context learning is to utilize the task description
and examples to adapt the model, thereby optimizing its performance on previously unseen tasks. To
accomplish this objective, we maximize the following function:

Ep(d,c,q)Eqθ(r|d,c,q) log p(r|d, c, q). (1)

Here qθ(r|d, c, q) denotes the predicted distribution of target r, while p refers to real distribution. To
analyze the aforementioned objective associated with task label t, we employ the variational method,
constructing an evidence lower bound. Given the intractable nature of the distribution p(t|r, d, c, q),
we approximate it using a parameterized distribution qθ(t|d, c, q) as follows:

KL(qθ(t|d, c, q)|p(t|r, d, c, q))
= KL(qθ(t|d, c, q)|p(t|d, c, q))− Eqθ(t|d,c,q) log p(r|t, d, c, q) + log p(r|d, c, q). (2)

Please refer to appendix B for the proof. Considering the non-negative nature of the KL divergence,
we can express the log-likelihood in the following manner:

log p(r|d, c, q) ≥ −KL(qθ(t|d, c, q)|p(t|d, c, q)) + Eqθ(t|d,c,q) log p(r|t, d, c, q). (3)

The first term signifies the task label prediction, whereas the subsequent term corresponds to the
loss function employed in the in-context training for the transformer. This equation, therefore,
demonstrates that accurate task label prediction contributes to the maximization of the log-likelihood.

Incorporating the task description as a component of the input allows it to serve as a representation of
the task itself. To assess the efficacy of this description, we examine encoder and decoder models that
yield conditional distributions q(d|t) and p(t|d). Given that q(t) embodies the marginal distribution
of task t, we define the reconstruction error, denoted as R, in the following manner:

R = Eq(t)Eq(d|t)[− log p(t|d)] ≤ KL(q(t, d)||p(t, d))− I(t; d) +Hq(t), (4)
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Task Prediction

A. Sequences for Training

Task: 𝑎 ∙ 𝑥 ∘ 𝑏 ∙ 𝑦 𝑚𝑜𝑑 𝑝 = 𝑟 

𝑎𝑙 𝑎𝑢 𝑏𝑙 𝑏𝑢 𝑜𝑝 𝑥1 𝑦1 𝑟1 𝑥2 𝑦2 𝑟2 ∙∙∙ 𝑥𝑙 𝑦𝑙 𝑟𝑙 𝑥𝑞 𝑦𝑞 𝑟

?

Task Description In-Context Examples Query

B. An Example

Task: 2 ∙ 𝑥 + 7 ∙ 𝑦 𝑚𝑜𝑑 𝑝 = 𝑟, 𝑝 = 11 

Query:𝑥𝑞 = 5, 𝑦𝑞 = 3

Answer Ground Truth: 𝑟 = 9
Task Description setting: 𝑎𝑙 = 2, 𝑎𝑢 = 3, 𝑏𝑙 = 5, 𝑏𝑢 = 10, so 𝑅𝑎 = 2, 𝑅𝑏 = 6

2 3 5 10 + 1 6 0 8 5 7 ∙∙∙ 9 2 10 5 3 9

?

Task Description In-Context Examples Query

C. Model, Input and Output

𝑎𝑙 𝑎𝑢 𝑏𝑙 𝑏𝑢 𝑜𝑝 𝑥1 𝑦1 𝑟1 𝑥2 𝑦2 𝑟2 ∙∙∙ 𝑥𝑙 𝑦𝑙 𝑟𝑙 𝑥𝑞 𝑦𝑞

Task Description In-Context Examples Query

Transformer (Causal)

ෝ𝑟1 ෝ𝑟2 ∙∙∙ ෝ𝑟𝑙 ?

a

ො𝑎 𝑏 ෞ𝑜𝑝

𝑜𝑝𝑏

Exact TaskPadding

Figure 2: Experimental Setup. A: We construct our synthetic task dataset using basic equations.
During training, the model receives a prompt sequence with task description, in-context examples,
and a query. Only an inexact range of a and b will be implied in task description, and we train the
transformer to calculate the answer r of the operation given xq and yq as query. B: An example of
prompt sequence. Ra = au − al + 1, Rb = bu − bl + 1,and al,au,bl,bu stand for the possible lower
and upper bounds of a and b. C: Model, input and output. We use standard decoder-only Transformer,
taking a token sequence as input and employing auto-regression for training. We calculate loss for
the output sequence, and accuracy is measured solely on the answer of query equation. For task
prediction, exact task label t = (a, b, op) will be added to the end of input token.

where I(t; d) is the mutual information between task label t and the task description d. Please
see appendix C for the proof. The aforementioned equation indicates that increasing the mutual
information can reduce the negative log likelihood of t.

Further, the mutual information I(t; d) can be bounded as follows:

0 ≤ I(t; d) = Ep(t,d)

[
log

q(t, d)

q(t)q(d)

]
= Hq(t)−Hq(t|d) ≤ Hq(t). (5)

Based on the aforementioned equation, we observe that the mutual information ranges from 0 to
Hq(t). Consequently, to examine the impact of mutual information, we propose incorporating its
control in our experimental design. Please see Sec. 4 for details.

In summary, we consider an in-context learning setting where the task is unseen in the training
set. However, to simplify the problem, we assume that the task labels in the testing set are novel
recombinations of the training ones. In order to reformulate the prediction into a compositional
generalization problem, we derive a variational lower bound of the log-likelihood as a new objective,
as shown in Equation 3. The first term in it is for task prediction. Since we consider the task
description as a representation of the task, its goodness has an impact on the model performance. By
modeling it as a representation, we derive a quantity to estimate its goodness, as shown in Equation 4.
Therefore, we design our experiments with some principles to analyze how to train our model for
better in-context ability from the following perspectives: (i) the mutual information between the
task description and the task label; (ii) with or without task prediction.

4 EXPERIMENTAL DESIGN

In this section, we delve into the experimental design to conduct the study on task description from the
above two perspectives. We begin by outlining the design principles, which serve as the foundation
for the entire experiment.

Design Principle (i) Controllable task description information: The information provided in
the task description can be directly manipulated, allowing for precise control over the quantity of
information presented to the model. (ii) Unseen evaluation tasks: To ensure the model’s ability
to generalize, the evaluation tasks presented to the model are not included in the training set, which
is necessary to assess the model’s performance on unseen tasks. (iii) Information inference from
multiple sources: The model is designed to extract information from both the task description and
in-context examples provided. This enables the model to adapt and learn from various sources of
information.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.1 TASK DESIGN WITH CONTROLLABLE TASK DESCRIPTION

As mentioned before, each datum in our synthetic dataset is constructed as x = (d, c, q, r, t), we
remove the index for simplicity. t = (a, b, ◦) is the ground truth label of the equation. c =
{(xi, yi, ri)}li=1, and each item satisfies ((a · xi) ◦ (b · yi))mod p = ri. For ◦, we choose +, − or /.
q and r are query and related output.

As shown in Figure 2AB, we train the transformer to predict the output r of query q, given a task
description d and in-context examples c. The prompt is formulated as [d, c, q].

Here we provide the details of task description d. Following the design principle above, we set
the task description d to provide the range of a, b. Specifically, the task description is given as
d = (al, au, bl, bu, op), and a ∈ [al, au] and b ∈ [bl, bu]. op stands for the operator +, − or /. We
provide definite information of the operator, and control varying mutual information between d and
t by using different al, au, bl, bu. Specifically, the total number of possible a, b pairs is nab. For
example, nab = 100 when a, b ∈ [1, 10]. Given this task description, we can narrow down possible
ab pair numbers from nab to Ra ·Rb, where Ra = au − al +1 and Rb = bu − bl +1. This indicates
that the information given by the task description can be formulated as:

I(t; d) = log(
nab

Ra ·Rb
). (6)

We choose p = 11 in all experiments. a, b are integers, and a, b ∈ [1, 10]. We set the above
range of a, b for efficiency, which can already demonstrate the impact transition of task description.
Finer-grained control of the task description information can be achieved with larger range of a, b.
When setting Ra, Rb to the largest range, nab = Ra ·Rb, and I(t; d) = 0, zero task information is
provided, which we treat as the baseline. The task description tokens shown in Figure 2AB are still
provided for fair comparison.

4.2 MODEL TRAINING WITH TASK PREDICTION

Loss Function The auto-regression is used to train the model. Following GPT (Radford &
Narasimhan, 2018), given a token sequence z = (z1, . . . , zT ), we train the model to predict
p(z) =

∏T
t=1 p(zt|z<t). We calculate loss for in-context examples, query, and the answer of

query equation. The in-context examples are denoted as set Ci−1. For i > 1, Ci−1 represents the
in-context example sequence {(x1, y1, r1), . . . , (xi−1, yi−1, ri−1)}. For i = 1, C0 is an empty set.
Specifically, we calculate the loss for the sequence s = {(x1, y1, r1), . . . , (xL, yL, rL)} and task
description d as follows:

L(θ, s, d) = 1

L

L∑
i=1

l(f({d, Ci−1, xi, yi}), ri), (7)

where l denotes the loss function, e.g., cross entropy loss is adopted in our setting. Accuracy is
calculated only for the answer r of query equation.

For task prediction, as shown in Figure 2C, task label t = (a, b, op) will be added to the end of input
token, to add in task prediction loss while avoiding task information leakage (as auto-regression
ensures the model outputs the predicted answer before seeing the task label). Loss for task prediction
can be re-formulated as:

Lt(θ, s, d) =
1

L

L∑
i=1

l(f({d, Ci−1, xi, yi}), ri, t). (8)

Model and Training For experiments on synthetic tasks, we use a standard decoder-only causal
Transformer (Vaswani et al., 2017) with 24 layers. For experiments on the natural language task
CoFE (An et al., 2023), we follow their approach and use pre-trained GPT2-Large as our model. We
use Adam optimizer with learning rate 1e−4 for all experiments. To reduce randomness, we calculate
the mean value of 3 runs. More implementation details are given in appendix A.
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Figure 3: Exploring the transition of task description. A:Attention explanation for interference
between task description and in-context examples in transformer’s in-context learning . As task
description info increases, the attention ratio for examples decreases. For all experiments, 15 in-
context examples are given. B: The transformer’s learning curve, showing the transformer’s accuracy
on validation queries (y-axis) across training steps (x-axis). Notable in-context learning process
is evident with sufficient task info or when in-context examples’ impact surpasses incomplete task
description’s distraction (low task info, many examples).

5 RESULTS

5.1 HOW TASK DESCRIPTION AFFECTS IN-CONTEXT LEARNING

Negative impact of Insufficient Task description Can be Observed. We use the accuracy of
the predicted results r of queries (xq, yq) to reflect in-context learning performance, and use the
mean of three runs to reduce the randomness. The results are presented in Figure 1A. Before a
certain information threshold (about 3.2 nats), the task description has negative (0 ∼ 0.8 nats) or
little (0.8∼3.2 nats) impact on the in-context performance. Specifically, for 0 ∼ 0.8 nats, more
task information leads to worse performance, especially for relative large number of in-context
examples, such as 15, 23. For 0.8∼3.2 nats, the accuracy remains at a low level. Interestingly, after
the information threshold, the accuracy grows rapidly as the information gains, but keeps relatively
stable with changes in the number of in-context examples.

In general, there are two cases where the model can achieve a relatively high accuracy: (i) given low-
information task description, and large number of in-context examples, or (ii) given high-information
task description.

We try to understand the observed transition by analyzing how accuracy relates to task description
information and the number of in-context examples. We select 6 representative points: 2 points
(0.104, 1.386) before the transition, 1 point around the transition (3.219), and 3 points after the
transition (3.759, 4.094, 4.605), as shown in Figure 1B. When task information is at low level (0.104),
in-context examples dominate in transformer’s learning and the accuracy grows as the number of
in-context examples increases. When task description is sufficient (4.605), the performance is high
and in-context examples have minimal impact.

When task information is insufficient (3.759, 4.094), adding one in-context example slightly decreases
accuracy compared to no in-context examples, suggesting distraction from the added example. On
the other hand, when medium-level task information added (1.386, 3.219), the accuracy do not
increase given more in-context examples and the accuracy is lower than 0.104, indicating the added
task information actually misleads the learning on the in-context examples. In a summary, as there are
two sources, the task description and in-context examples, providing the task information, the model
may struggle on relying which source to capture the in-context ability, i.e., the task information and
in-context examples can interfere with each other, leading to poor in-context capability.

To verify the above hypothesis, we further analyse the attention inside the transformer. Given same
input sequence, we sum up weights in all attention layers in the transformer, and calculate the ratio of
in-context examples and task description respectively. The number of in-context examples is fixed to
15. As shown in Figure 3A, the ratio of in-context examples in attention keeps declining with more
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Task Info: 4.605 nats Task Info: 1.386 nats Task Info: 0

Figure 4: Results of task prediction. A: A demonstration of accuracy gain (Predicting tasks v.s.
without predicting tasks). Acc(P) refers to accuracy on predicting results r under predicting task
setting, Acc(w/o P) refers to corresponding accuracy without task prediction. Accuracy gain means
the value of Acc(P) - Acc(w/o P). B: Comparison between Acc(P) and Acc(w/o P) given various
amount of task information and various number of in-context examples.

task description information. On the contrary, the attention ratio of task description increases when
more task-related information are given. This indicates that adding task description info will divert
model’s attention in in-context examples.

We also demonstrate the accuracy during the training process. Figure 3B illustrates how the trans-
former struggles to learn with incomplete task details (before the transition threshold 3.2 nats).
Only after the transition, an obvious in-context learning process can be witnessed given sufficient
task info. Or the transformer can learn gradually when given very low task info and large number
of in-context examples (refers to the first column in Figure 3B), mainly because the influence of
in-context examples can exceed the distraction of incomplete task description. In appendix F, we
attempt to provide a rough explanation to above phenomenon using a simplified 1-layer transformer’s
attention mechanism.

Higher information of task description will increase the performance. As illustrated in Equa-
tion 4, higher mutual information will reduce the upper bound of the prediction error. Intuitively,
the task description captures the essential aspects and the underlying structure of the task, providing
the model with valuable insights and a more accurate understanding of the problem it needs to
solve. When the mutual information is high, it means that knowing the task description reduces the
uncertainty about the prediction of task itself. Consequently, when the task description has high
mutual information with the task, the model can leverage this strong representation to make better
decisions and predictions, even when faced with limited or ambiguous examples.

5.2 IMPACT OF TASK PREDICTION

To study how predicting task description affects in-context learning performance (measured through
the accuracy of the predicted results r of validation queries), we conduct experiments by adding an
extra loss between the predicted task label and ground truth task label. By comparing the gain (with
predicting task label v.s w/o predicting task label), we can evaluate the impact of task prediction.

Predicting the task can improve in-context learning performance. We calculate the accuracy
(with predicting task description) minus the accuracy (w/o predicting task description), and the
results are presented in Figure 4A. A performance improvement can be observed under different task
descriptions and in-context example settings, as the curves mostly stay above zero axis. Figure 4B
provides a more detailed comparison under different levels of task information: high (4.605 nats,
after the Transition), medium (1.386 nats, causing distraction in transformer’s in-context learning)
and very low (0 nat, no distraction). These results confirm that predicting the task label generally
enhances in-context learning performance, except when the transformer’s in-context learning ability
is distracted by incomplete task info.

5.3 PERFORMANCE OF GPT-4 ON THE SYNTHETIC TASK

Synthetic experiments using GPT-4 result in similar performance pattern. We test if LLMs are
affected similarly by task descriptions by replicating the synthetic experiment with GPT-4 (OpenAI,
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Figure 5: Additional experiments. A: Performance of GPT4 on our synthetic task. Incomplete task
description can cause similar distraction in GPT4 in-context learning ability. B: Experiments on real
tasks. We design three different settings of task description, and experiment on all three info settings
given 2, 4, 6, 8, 10 in-context examples separately.

2023). We sample task description and corresponding in-context examples from the synthetic task
validation dataset to form prompt for GPT-4, and require GPT-4 to predict the possible real task
and result to the queries. For each experiment setting (given certain amount of task info and certain
number of in-context examples), we randomly sample 50 prompts and the resulting accuracy of the
predicted results of queries is presented in Figure 5A. Similar performance pattern appears when
given incomplete task description (around 2 nats), that GPT-4 performs worse than given less task
info (around 0 nats) due to interference between task description and in-context examples. Only when
the in-context examples are insufficient for in-context learning (1 example) does accuracy improve
with more task info.

5.4 BEYOND THE SYNTHETIC EXPERIMENT

To verify that the discovery from the synthetic experiment also hold on the real task, we conduct
another experiment on the more realistic task on several NLP tasks. The results are well-aligned with
the findings on the synthetic experiment, indicating our findings can be well scale to real word cases.

Experiments on compositional generalization tasks. We experiment on CoFE (An et al., 2023), a
natural language dataset focused on compositional generalization, which assesses a model’s ability to
generalize and predict novel combinations based on its training data.

In our experiments, we select 12 task labels from CoFE, with the training set comprising 4 randomly
chosen labels and the test set containing the remaining 8. More details and examples of CoFE data
are provided in appendix D.

We design three settings of task description containing different amount of information: Full Task
Info includes all task information, Part Task Info implies only the task label category, and No Task
Info omits task description entirely. Across these settings, we vary the number of in-context examples.

Results in Figure 5B indicate that using task prediction as a proxy task can still significantly improve
accuracy, highlighting its impact on the transformer’s in-context learning. Full Task Info consistently
achieves the highest accuracy, suggesting that detailed task information enhances in-context learning
ability. Conversely, incomplete task descriptions lead to lower accuracy and limited gains with more
in-context examples.

Experiments on spelling tasks. We perform further validation on spelling tasks introduced in (Hon-
ovich et al., 2022). The tasks are delineated in Table 1. We use instruction as task description. For
both tasks, we experimented on three scenarios: full instruction, in-complete instruction and no
instruction. All Experiments based on pre-trained GPT-4.

Table 1: The instruction of spelling tasks.
Task Instruction example

Second Letter Extract the second letter of the input word. input: cat, output: a
Starting With Extract the words starting with a given letter from the input sentence. input: Has the potion not worked? [p], output: potion
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For ”Second Letter” task, we use ”Extract letter of the input word” as in-complete task description, and
evaluate the model’s ability to learn in-context information with varying numbers of examples. For
’Starting With’ task, we use ’Extract words from the input sentence’ as in-complete task description.
Resulting accuracy given in Table 2. Similarly, model given no task description outperforms model
given in-complete task description (when given 10 examples).

Table 2: The results of spelling tasks.

Task No Task Info Part Task Info Full Task Info
Second Letter 0.5 0.1 1
Starting With 0.85 0.45 0.95

5.5 ABLATIONS

Experiments on original GPT2-Large Following previous works (Garg et al., 2022; Chan et al.,
2022a; Min et al., 2021), we train our model on a subset of equations and test ICL ability on the
remaining unseen equations (using unseen ab pairs).This training process contributes to enhancing
the transformer’s comprehension of our instructions. The table below depicts the ICL results of an
un-pretrained GPT2-Large model (indicating that it uses GPT2-Large weights directly without any
training on our dataset). The results reveal that un-pretrained GPT2 struggles to comprehend our
instructions and performs poorly in in-context learning.

Table 3: Experiments on original GPT2-Large
ICL Accuracy 0 ex 1 ex 3 ex 7 ex 15 ex 23 ex

Info 0 nat 0 0 0 0.014 0 0
Info 1.02 nats 0 0 7e-04 5.2e-05 0.001 0.001
Info 3.22 nats 0 1e-04 2e-04 8e-05 0 0
Info 3.91 nats 0.001 0.001 0.006 0.001 2e-04 2e-04
Info 4.61 nats 6e-04 9e-04 2.4e-05 6.7e-05 7e-04 0.007

Double-side impact can also be observed in experiments on smaller transformers. Table 4
illustrates the performance of a smaller 12-layer model, showing a similar transition on accuracy.
However, compared to experiments using the larger 24-layer model, there’s a noticeable decline in
validation accuracy regardless of the task information provided. Even smaller models (e.g., 6 layers)
perform poorly, with a validation accuracy of only 0.1258 despite precise task descriptions and 32
in-context examples. To thoroughly investigate how task information influences performance, we opt
for the larger 24-layer transformer to capture performance variations more accurately.

Table 4: Ablation results given different amount of task info and 15 in-context examples.
Task Info(nats) 0 0.21 0.45 0.73 1.39 1.83 3.22 4.02 4.27 4.61

Smaller Transformer(12 layers) 0.1620 0.1034 0.1012 0.1004 0.1014 0.1014 0.1013 0.4507 0.771 0.9284
Finetuned Vicuna-13b 0.22 0.09 0.07 0.11 0.14 0.17 0.44 0.81 0.85 0.99

Experiments on Vicuna-13b. We replicate our experiments on larger models to verify that our
experimental results were not due to a small model or poor understanding.

(i) The attention hypothesis is still held on original Vicuna-13b. We use the same prompt as the
experiments using GPT-4 in Section 5.3. We ask Vicuna-13b to elucidate the mechanism underlying
its output and calculate the proportion of instances where the model analyzes the in-context examples.
We refer to this metric as ”Example Analyzing Rate”. The output accuracy and example analyzing
rate are listed in Table 5. Similar to the pattern shown in Figure 3A, the example analyzing rate
decreases with additional task description information. However, compared to GPT-4, the original
Vicuna-13b model’s relatively limited computing capabilities constrained its ability to accurately
solve equations. Despite the increased attention focused on examples, the model faces challenges
in learning the correct values of a and b from the in-context examples, leading to a rapid decline in
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Table 5: Results on original Vicuna-13b.
Task info (nats) 0 0.11 0.21 0.45 0.71 1.39 2.41 3.22 3.91 4.61
ICL Accuracy 0.02 0.05 0.05 0 0.01 0 0.01 0.18 0.2 0.55

Example Analyzing 1 1 0.9 0.4 0.44 0.55 0.55 0.4 0.35 0.1

output accuracy. Even when provided with the exact task description, the original Vicuna-13b model
may still struggle to follow the instructions and accurately calculate the result (only 0.55 accuracy).

(ii) A similar negative impact of insufficient task description can also be observed in the case of
the fine-tuned Vicuna-13b model. We fine-tuned Vicuna-13b on our dataset for 3 epochs and results
are given in Table 4. This fine-tuning improves the model’s comprehension of our instructions and
enhances its computational accuracy. Enhancements in ICL accuracy are noticeable across all task
information settings, although the degree of improvement varies. Similar to experiments conducted on
GPT-2, when low-level task information is added, the model may struggle to determine which source
to prioritize for capturing the in-context ability. In such scenarios, the fine-tuning improvements
in computational accuracy may provide limited assistance, as attention is diverted away from the
examples.

We conducted experiments on both smaller and larger models, confirming that our observations
remain consistent across different model sizes. Additional ablations on edge cases are detailed in
Appendix E. These include scenarios where no task information is provided, or different amounts of
task information are given without any in-context examples.

6 DISCUSSION AND LIMITATION

While we acknowledge the dual impact of task description and conduct some attention-based analysis,
we don’t provide a comprehensive explanation for the transition effect. In appendix F, we attempt to
explain this using a simplified 1-layer transformer’s attention mechanism. Understanding the transi-
tion phenomena in context learning is intriguing yet challenging; for instance, GROKKING (Power
et al., 2022) only shows a sharp transition without clarifying it. Another work (Raventós et al., 2023)
observed a similar transition, attributing it to a shift from the theoretical optimal task to the actual
task. Our above study suggests that the transition in task description results from the conflict between
task information and in-context examples, leading to model confusion during optimization. This
switching between information sources causes the transition.

A potential limitation of this work lies in the synthetic experimental setting that has been employed to
investigate the impact of task descriptions on in-context learning performance of Transformers. While
this approach enables the systematic exploration of task description information and its influence
on model performance, it may not fully capture the challenges encountered in real-world scenarios.
Nevertheless, our method highlights the dual impact of task description on in-context learning, which
is important to the community.

7 CONCLUSION

In conclusion, transformers have demonstrated remarkable performance across diverse applications,
with in-context learning as a crucial technique. However, our grasp of its mechanisms remains
limited. This study delves into the role of task descriptions in in-context learning for transformers,
revealing their impact on performance. Our experiments in a synthetic environment underscore the
importance of crafting task descriptions carefully to improve model performance and generalization,
considering the impact transition. This study contributes to our understanding of in-context learning
in transformers, paving the way for more effective real-world applications. Future research could
focus on developing automated methods for generating optimal task descriptions to enhance model
performance across tasks. Exploring learning mechanisms that seamlessly integrate task descriptions
and examples would also be valuable.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES
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A IMPLEMENTATION DETAILS

Synthetic experiments. We use a standard decoder-only causal Transformer (Vaswani et al., 2017)
with 24 layers, an embedding length of 256, and 8 attention heads. Following previous works (Garg
et al., 2022; Chan et al., 2022a; Min et al., 2021), we train the model on our synthetic dataset for
200k steps to enhancing the transformer’s comprehension of our instructions. The dataset is evenly
split into training and testing sets, necessitating the model to grasp the instructions from the training
set and perform in-context learning accordingly on the unseen equation tasks in the testing set. We
conduct all experiments with a batch size of 128 on a single 3090 GPU, and use Adam optimizer with
learning rate 1e−4. To reduce the randomness, we calculate the mean value of 3 runs, std indicated in
Figure 1 and Figure 4.

Experiments on CoFE. For experiments on the natural language task CoFE (An et al., 2023), we
follow their approach and use pretrained GPT2-Large as our model. All experiments conducted with
a batch size of 4 on a single 3090 GPU. Similarly, we fine-tune model on a subset of data and test
in-context learning ability on unseen language combinations, using Adam optimizer with learning
rate 1e−4 and calculate the mean value of 3 runs. Std indicated in Figure 5.

Experiments with Vicuna-13b. Both the original and fine-tuned experiments with Vicuna-13b
utilize pretrained model weights (Chiang et al., 2023). The training and testing sets used in previous
GPT2 experiments are also employed here. Vicuna-13b is fine-tuned on the training set for 3 epochs,
while other settings remain at their default values.

B THE DERIVATION OF EQUATION 3

In the following two sections, we have primarily drawn upon the proofs VAE (Kingma & Welling,
2013) and in Belghazi et al. (2018) as key literature sources to prove our claims.

Using Bayes rule, we can obtain the following derivation:

KL(qθ(t|d, c, q)|p(t|r, d, c, q))
= Eqθ(t|d,c,q)[log qθ(t|d, c, q)− log p(t|r, d, c, q)]

= Eqθ(t|d,c,q)

[
log qθ(t|d, c, q)− log

p(r|t, d, c, q)p(t|d, c, q)
p(r|d, c, q)

]
= Eqθ(t|d,c,q)

[
log

qθ(t|d, c, q)
p(t|d, c, q)

− log p(r|t, d, c, q)
]
+ log p(r|d, c, q)

= KL(qθ(t|d, c, q)|p(t|d, c, q))− Eqθ(t|d,c,q) log p(r|t, d, c, q) + log p(r|d, c, q)

(9)

C THE DERIVATION OF EQUATION 4

We can rewrite the reconstruction error with the conditional distribution p(t|d) = p(t, d)/p(d):

R = Eq(t)Eq(d|t)[− log p(t|d)] = Eq(t,d)

[
log

q(t, d)

p(t, d)

]
− Eq(t,d)[log q(t, d)] + Eq(d)[log p(d)]

= KL(q(t, d)|p(t, d))− Eq(t,d)[log q(t, d)] + Eq(d)[log p(d)],
(10)

where the first term is KL divergence, the second term is the joint entropy Hq(t, d). We focus on the
third term:

Eq(d)[log p(d)] = Eq(d)[log
p(d)

q(d)
] + Eq(d)[log q(d)] = −KL(q(d)|p(d)) +Hq(d) (11)

We bring Eq. 11 into Eq. 10, then the joint entropy and entropy can be formulated as:

−Eq(t,d)[log q(t, d)] +Hq(d) = −Eq(t,d)

[
log

q(t, d)

q(t)q(d)

]
+ Eq(t)[log q(t)]

= −Iq(t; d) +Hq(t)

(12)
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Table 6: Examples of data in CoFE.

Category In-context Examples Test Case

Primitive Substitution

input:shark
output:NONE(SHARK,NONE,NONE)

input:A girl grew the boy.
output:DRAW(Girl,BOY,NONE)

input:The shark drew a boy.
output:DRAW(SHARK,BOY,NONE)

Primitive Structural Alternation

input:The goose baked.
output:BAKE(GOOSE,NONE,NONE)

input:A teachernoticed a chicken.
output:NOTICE(TEACHER,CHICKEN,NONE)

input:A teacherbaked the chicken.
output:BAKE(TEACHER,CHICKEN,NONE)

Phrase Recombination

input:Logan mailed Stella the cake in the pile.
output:MAIL(LOGAN,IN,STELLA)

input: The goose rolled a baby in a room.
output:ROLL(GOOSE,IN,NONE)

input:A visitor in the pile rolled a resident.
output:ROLL(IN,RESIDENT,NONE)

Since the KL-divergence is non-negative, we obtain the bound:

R = KL(q(t, d)|p(t, d))−KL(q(d)|p(d))− Iq(t; d) +Hq(t)

≤ KL(q(t, d)|p(t, d))− Iq(t; d) +Hq(t)
(13)

D COFE DATASET

CoFE dataset (An et al., 2023) is constructed based on COGS, a compositional generalization
benchmark designed for the fine-tuning paradigm. Here, compositional generalization refers to
understanding and producing novel expressions by recombining known components in language, and
is an important human ability. COGS, as well as CoFE, are designed for semantic parsing tasks. In
these datasets, the training set covers all the primitives but lacks certain combinations, and the test set
is made up of these missing combinations, so the model has to learn to translate natural language
expressions into semantic representations.

Why we experiment on CoFE dataset. We choose CoFE for our experiments in Section 5.4 for
two primary reasons: 1) CoFE is an NLP dataset designed to tackle more complicated and realistic
tasks. We conduct additional experiments to validate that insights gained from synthetic experiments
also apply to real-world tasks. 2) The task description in CoFE can be partially provided, allowing us
to adjust the amount of information given to transformers. This enables us to study the impact of task
information on in-context learning.

Explanation for CoFE dataset. CoFE is a NLP incontext-learning datset based on compositional
generalization tasks. Compositional generalization refers to the ability of a model to generalize its
understanding and make predictions about novel combinations of components based on its training
data. In other words, it’s the capacity to understand and perform tasks involving new compositions of
elements or concepts that it hasn’t explicitly encountered during training.

For example, consider a language model trained on sentences like ”The cat is on the mat” and
”The dog is in the garden.” If the model has good compositional generalization, it should be able to
understand and generate correct responses to novel sentences like ”The cat is in the garden” or ”The
dog is on the mat” even though it hasn’t seen those exact combinations of words during training.

CoFE requires the model to perform compositional generalization on semantic parsing tasks. The
objective involves predicting semantic representations of input sentences, such as subjects and
objects. However, the queries provided are recombinations of the in-context examples, compelling
the transformer to grasp grammar fully and predict on new compositions of elements or concepts not
explicitly encountered in the examples.

Thus, the task type in CoFE can be determined by two factors: the type of recombination (concerning
the query) and the type of semantic representation to be predicted (concerning the output). Some data
examples are given in Table 6.

How we use CoFE. In our experiments, we employ 3 types of recombination to predict 4 types of
semantic representations, resulting in a total of 12 different tasks. We randomly select 4 of these tasks
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for pre-training the model to ensure it comprehends our instructions (ensuring coverage of all types
of semantic representations in the training set), while the remaining 8 are reserved for the in-context
learning test. We imply the type of recombination and the type of semantic representation in task
description. And in Part Task Info experiment, we only imply the type of recombination,leaving the
model to learn which type of semantic representation it should predict based on the examples.

We experiment on all three info settings under different numbers of in-context examples. In task
description, the combination categories are tokenized as 1,2,3 and the target primitive type are
denoted as 11-14. All words in CoFE are tokenized starting from 100 to avoid messing up with task
description.

The relation between experiments on CoFE and experiments on synthetic tasks: The conclusions
of synthetic experiments are still held. On CoFE, we evaluated model’s ICL ability given Full
Task Info, Part Task Info, No Task Info, and whether asked to predict the real task or not. Still, using
task prediction as proxy task can significantly improve accuracy, while a negative impact is observed
when the task description is insufficient.

E ADDITIONAL ABLATIONS

E.1 ABLATION: NO TASK INFORMATION DURING TRAINING

We present the transformer’s accuracy given no task information and different number of in-context
examples. It can be depicted in Table 7 that the accuracy grows with in-context example number.
This table actually refers to zero mutual information in Figure 1A.

E.2 ABLATION: NO IN-CONTEXT EXAMPLES DURING TRAINING

Table 8 lists the transformer’s accuracy given different amount of task information and no in-context
examples. When given maximal info (4.605 nats, referring to totally accurate task description), the
transformer performs best. This indicates transformer’s ability in understanding well-designed task
description. Also, it can be seen that under no in-context example setting, the accuracy grows with
task information gain. The growing trend speeds up when more task information added (around 3.2
nats, which is close to the transition threshold). Such performance pattern aligns with experiments
given both task description and in-context examples.

Table 7: Given different number of in-context examples, no task information provided.
Number of In-context Examples 0 1 3 5 7 9 11 15 17 23

Accuracy 0.1017 0.1117 0.1198 0.1320 0.2093 0.1875 0.2955 0.3670 0.4267 0.5367

Table 8: Given different amount of task information, no in-context examples provided.
Task Info (nats) 0 0.104 0.207 0.223 0.329 0.445 0.713 1.022 1.386 1.833 2.303 2.996 3.219 3.307 3.506 3.624 3.759 3.912 4.094 4.317 4.6052

Accuracy 0.1017 0.1024 0.1055 0.1002 0.1056 0.1035 0.1040 0.1053 0.1013 0.1100 0.1210 0.1189 0.1248 0.1574 0.1555 0.2404 0.2572 0.2834 0.5225 0.7857 0.9107

F EXPLANATION FOR EXPERIMENTAL PHENOMENON

We explore the attention mechanism behind the phenomenon based on a 1-layer position-
encoding-free transformer. We follow Tian et al. (Tian et al., 2023) to construct a simplified 1-layer
position-encoding-free transformer, to understand how transformers work in in-context learning,
especially the attention mechanisms in learning from task description and in-context examples. This
simplified model can elucidate the interference between insufficient information and inadequate
in-context examples in attention, as well as illustrate how a low level of task information content
affects in-context learning.

F.1 PROBLEM SETTING

We follow Tian et al. (Tian et al., 2023) to construct a simplified 1-layer transformer, which contains
one softmax self-attention layer followed by one decoder layer which predicts the next token. The
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analysis is conducted under the following assumptions: no positional encoding; long input sequence;
the decoder layer learns much faster than the self-attention layer.

F.2 NOTATIONS

Given input sequence X = [x1, x2, . . . , xT ], the task of the transformer is to predict the next token
xT+1. We call xT = m as the query token of the sequence, and xT+1 = n as the next token to
be predicted. Other tokens xt(1 ≤ t ≤ T − 1) are called contextual tokens. In our experiments,
contextual tokens can be split into task description d and in-context examples e. The other notations
are listed in Table 9.

Table 9: Notations.
n Representation of next token in formulation
l, l′ Representation of distinct contextual tokens in formulation
d Task description token
e In-context example token

P (l|n) Conditional probability of contextual token l given
certain query token and next token to be predicted as n

rl/l′|n(t) Relative gain between l and l′ for next token n
cln Un-normalized attention score given next token n

Ra, Rb Possible range of a and b given in task description
ne Number of given in-context examples
Se Total number of all possible example pairs
zm Attention logits for a query token m
˙zm Dynamics of self-attention

n ∈ Ψ−1(m) All next token n that can be predicted
by the query token m (P (n|m) > 0)

fn l2-norm attention score corresponding to the position of n

F.3 THEOREMS

Theorem 1. Under certain simplifications, we simplified the conditional probability as P (d|n) =
1/RaRb and P (e|n) = ne/Se. Then the relative attention gain between task description d and
in-context examples e can be written as:

rd/e|n(t) = (
Se

RaRbne
)2 − 1

This formulation indicates that the difference between P (d|n) and P (e|n) can decide the distribution
of self-attention, resulting in two possible scenarios:

1) If either d or e exhibits decisive certainty, the relative gain will be significant, prompting the
self-attention mechanism to concentrate on learning from this particular type of information.

2) If neither d nor e can decisively outweigh the other, leading to both |rd/e|n(t)| and |re/d|n(t)|
being close to 1, the attention mechanism lacks emphasis and may distribute randomly. This can
hinder effective learning.

Theorem 2. Given Lemma 4 in Tian et al. (Tian et al., 2023) (n′ is a possible next token different
from n):

˙zm = ηZγ
∑

n∈Ψ−1(m)

diag(fn)
∑
n′ ̸=n

βnn′(fnf
T
n )− I)fn′

We neglect learning coefficients ηZ , γ, βnn′ and assume the transformer is given adequate in-context
examples. Under certain simplifications, the dynamics of self-attention can be formulated as:

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

˙zm = ηZγ
∑

n∈Ψ−1(m)

∑
n′ ̸=n

βnn′ [
1−R2

aR
2
b

R3
aR

3
b

,
n2
e

RaRbS2
e

]

The second term of the above formula related to the corresponding attention learning speed of
in-context examples, which diminishes with insufficient task description (indicated by larger values
of Ra and Rb as the task information becomes more ambiguous). This term remains unaffected only
when the task description is precise (Ra = Rb = 1).

F.4 PROOF STRETCH

We assume the task description and in-context examples as single, distinct tokens for simplicity. As
the query can be randomly selected given task description and in-context examples, the probabilities
P (m|d) and P (m|e) are neglected for simplicity. And we approximate the conditional probability
P (d|n) and P (e|n) , solely to elucidate the relationship between the task description and in-context
examples. Then substitute all these terms into Theorem 3 from Tian et al. (Tian et al., 2023), yielding
Theorem 1 here.

To study the impact of insufficient task description on learning, we assume the transformer is given
adequate in-context examples that given a certain query, specific in-context examples will reliably
predict specific next token n. On the contrary, task description is insufficient so there exists n′ that
P (d|n′) ̸= 0, P (d|n) ̸= 0. Substitute the above terms into Lemma 4 in Tian et al. (Tian et al., 2023)
and drop non-essential constant terms, the dynamics of self-attention can be formulated as Theorem
2 here.

F.5 DETAILED PROOF FOR THEOREM 1

According to Tian et al. (Tian et al., 2023), for a next token n and its two distinct tokens l and l′, the
dynamics of the relative self-attention gain can be formulated as:

rl/l′|n(t) = c2ln(t)/c
2
l′n(t)− 1

Here ”distinct tokens” refers to contextual tokens which appear only for a single next token (given
certain query, the next token n can only be predicted by this distinct token). And cln refers to
un-normalized attention score given next token n.

For simplicity, assume the task description and in-context examples as single, distinct tokens, and
denoted as ’d’ and ’e’. As the query can be randomly selected given task description d and in-context
examples e, the probabilities P (m|d) and P (m|e) are neglected for simplicity. Then the dynamics of
the relative self-attention gain between task description and examples can be formulated as:

rd/e|n(t) = C · P (d|n)2(t)/P (e|n)2(t)− 1

Under our experiment setting, the probabilities can be simplified as:

P (d|n) = 1/RaRb, P (e|n) = ne/Se

Here Ra, Rb denote the possible range of a and b given in task description, and ne denotes number
of given in-context examples, Se denotes the total number of all possible example pairs (assume
Se = 100 for following analysis for easier calculation).

In this ideal situation (non-essential constant term neglected), the relative attention gain can be written
as:

rd/e|n(t) = (
Se

RaRbne
)2 − 1

This formulation indicates that the difference between P (d|n) and P (e|n) can decide the distribution
of self-attention. And there are two possible scenarios.
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First, if either one of d or e has decisive certainty, the relative gain will be high enough to concentrate
self-attention, so that the transformer can focus on learning from this certain kind of information.

For example, given exact task description (Ra = Rb = 1), then the relation gain is rd/e|n(t) = 99
and re/d|n(t) = −0.99. Or given very ambiguous task description (Ra = Rb = 10) and adequate
examples (ne = 10), the relation gain is rd/e|n(t) = −0.99 and re/d|n(t) = 99. The significant
difference ensures that the transformation focuses attention on specific parts, learning from a more
effective source of information.

However, here comes the second scenario if neither d nor e can decisively outweighs the other,
resulting in |rd/e|n(t)| and |re/d|n(t)| both near 1. Then the attention has no emphasis and can
distribute randomly, which harms effective learning.

As a case of example, assume Ra = Rb = 3 and ne = 10, then rd/e|n(t) = 0.23 and re/d|n(t) =
−0.19, resulting in no significant relative attention gain.

From this simplified model, it can be inferred that insufficient information and inadequate in-context
examples interferes with each other in attention, while task description with abundant information
can aid self-attention concentration.

This also agrees with our experiment in attention ratio in Fig 4A. Significant attention ratio change
can only be witnessed when task info is very low (around 0) or very high (beyond 4). The attention
distribution remains unchanged when given insufficient task description, inferring that insufficient
task info does little help in self-attention.

F.6 DETAILED PROOF FOR THEOREM 2

Lemma 4 in Tian et al. (Tian et al., 2023) gives the formulation of the dynamics of self-attention
( ˙zm):

˙zm = ηZγ
∑

n∈Ψ−1(m)

diag(fn)
∑
n′ ̸=n

βnn′(fnf
T
n )− I)fn′

ηZ , γ, βnn′ correspond to learning coefficients and are neglected for simplicity in following analysis.
n ∈ Ψ−1(m) refers to all next token ”n” that can be predicted by the present token ”m” (P (n|m) > 0),
and n′ is a possible next token different from ”n”. fn denotes l2-norm attention score corresponding
to the position of ”n”, and can be simplified here as [P (l1|n), · · · , P (l′1|n)]T .

To study the impact of insufficient task description on learning, assume the transformer is given
adequate in-context examples that given a certain query, P (e|n) = ne/Se while P (e|n′) = 0 (n′ ̸= n,
and e refers to a combination of examples). On the contrary, task description ”d” is insufficient so
there exists n′ that P (d|n′) = P (d|n) = 1/RaRb. Under the above simplifying assumptions, we
have:

fn = [
1

RaRb
,
ne

Se
]T , fn′ = [

1

RaRb
, 0]T

Substitute the above formula and drop non-essential constant terms, the dynamics of self-attention
can be formulated as:

˙zm = ηZγ
∑

n∈Ψ−1(m)

∑
n′ ̸=n

βnn′ [
1−R2

aR
2
b

R3
aR

3
b

,
n2
e

RaRbS2
e

]

The second term of the above formula related to the corresponding attention learning speed of
in-context examples, which degrades with insufficient task description (the more ambiguous task info
given, the larger Ra, Rb). Only when the task description is accurate (Ra = Rb = 1) can this term
be unaffected.

The aforementioned deduction can somewhat reveal how insufficient task description impact the
attention learning speed of in-context examples. The resulting negative impact can slow down the
learning process and may even harm final results.
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