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ABSTRACT

Despite significant advances in computational antibody design, the limited avail-
ability of high-quality binding data continues to constrain the exploration of di-
verse antibody syntax and uncharted evolutionary landscapes. To overcome these
challenges, we developed PALM-PA (Pre-trained Antibody Generative Large Lan-
guage Model–Preference Alignment), which integrates antibody linguistic pat-
terns with structural constraints to explore novel sequence spaces. Experimental
validation on influenza A hemagglutinin and programmed death-ligand 1 (PD-L1)
demonstrated nanomolar binding affinities (30.2 nM and 1.29 nM, respectively),
underscoring the feasibility of using structure-guided language models for the de
novo design of antibodies.

1 INTRODUCTION

Traditional monoclonal antibody development is limited by the low throughput and high cost
of experimental methods, which have driven the rapid development of computational paradigms
(structure-guided and sequence-guided) in antibody engineering (Wang et al. (2024); Wu et al.
(2024); Ruffolo et al. (2021)). Structure-guided methods design the target antibody scaffold to
ensure folding stability and binding specificity, followed by reverse optimization of the amino acid
sequence to match preset conformational constraints, demonstrating advantages in single-domain
antibodies design (Bennett et al. (2024)). Sequence-guided methods rely on language models trained
on large-scale natural antibody repertoires to efficiently explore the vast sequence space by learning
the intrinsic grammatical rules and evolutionary preferences of antibodies, and have shown potential
in the design of CDRH3 targeting SARS-CoV-2 (He et al. (2024)).

Due to the multilevel nonlinear coupling in the mapping of antibody sequence–structure–function,
the two paradigms face complementary challenges. Structure-based methods, which rely on preset
scaffolds, can ensure structural compatibility but often compress the sequence search space into lo-
cal optima, thus limiting the exploration of antibody variants that lie within the underexplored “dark
sequence space.” In contrast, sequence-based methods, although capable of generating highly het-
erogeneous candidates, may fail to guarantee structural compatibility and functional feasibility due
to their inability to decode implicit structural semantics. To bridge this gap, it is necessary to explore
how to internalize the core structural constraint information flow for functional antibody folding and
binding while inheriting the global evolutionary exploration patterns of sequence models, so as to
systematically mine the noncanonical binding motifs hidden in the deep sequence space and pro-
vide a high - confidence pre - enriched library for experimental screening. This “learning–constraint
synergy” paradigm will shift antibody design from local optimization toward a more global and
emergent exploration.

Motivated by these insights, we propose PALM-PA, which integrates antibody language model with
iterative structural optimization algorithms to achieve de novo design of antigen-specific CDR loops.
Our key contributions include:
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• PALM-PA: We introduce a novel large language model for antibodies that leverages a mul-
tiobjective joint learning strategy guided by antibody syntax.

• Iterative Structural Anchoring Alignment: The Kahneman–Tversky Optimization (KTO)
process is integrated into PALM-PA framework, establishing a dual-track feedback mech-
anism between sequence and structure.

• Disease-related Targets Validation: PALM-PA was validated on disease-relevant targets,
including influenza A hemagglutinin and programmed death-ligand 1 (PD-L1), for which
high-affinity binding antibodies were designed, achieving highest affinities of 30.2 nM and
1.29 nM, respectively.

2 METHODS

Figure 1: The workflow of PALM-PA. (A) The unconditional antibody generation model is trained
on large-scale antibody sequences data, with dynamic adjustment of the weights of FR and CDRs,
emphasizing hard-to-learn residues. (B) Antigen information is encoded using ESM3, which is
fused with epitope embeddings via a projection layer and integrated through cross-attention for
antigen-specific antibody generation. Noise perturbation is applied as a data augmentation strategy,
and residue semantic substitution cost is used to guide the learning of design rules. (C) Iterative
structural constraint alignment.

2.1 ARCHITECTURE OF BASELINE PALM

As shown in Figure 1, we first constructed an unconditional antibody generation model using the
LLaMA Transformer decoder. To address differences in sequence patterns between the antibody
framework regions (FR) and complementarity-determining regions (CDRs), we introduced a region-
adaptive focal function. This function leverages homoscedastic uncertainty to dynamically balance
the contributions of each region to the training loss while emphasizing more challenging residues.
To capture antigen–antibody binding patterns, we encoded antigen sequences and structures using
the pre-trained ESM3 (Hays et al., 2024), fused these representations with learnable conformational
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epitope information via a projection layer, and fed the combined representation into the decoder’s
cross-attention layer. The cross-attention layer was randomly initialized, whereas the decoder’s
self-attention layers inherited pre-trained weights from the unconditional antibody model.

Given the limited antigen–antibody binding data, conventional cross-entropy loss functions fail to
capture the substitutability of functional residues, thereby hindering exploration of the “dark” se-
quence space. To overcome this limitation, we redesigned the region-adaptive focal function based
on optimal transport principles by incorporating a residue semantic cost. This approach leverages
evolutionary information from the pre-trained antibody model to more accurately characterize amino
acid dependencies and learn residue similarity and substitutability. In addition, a noise injection fine-
tuning strategy was applied at each time step to further enhance the model’s adaptability to natural
antibody diversity and overall robustness.

2.2 ITERATIVE ALIGNMENT WITH STRUCTURAL CONSTRAINTS USING
EVOLUTIONARY-AWARE KTO

Direct Preference Optimization (DPO) (Rafailov et al. (2024)) has achieved remarkable success in
aligning large language models using explicit paired preference data. However, its direct appli-
cation to antigen–antibody structural optimization faces inherent challenges. DPO is sensitive to
imperfect preference annotations. The subtle and interdependent conformational features of anti-
gen–antibody complexes—such as the conformational flexibility at the antigen binding site and the
dynamic coordination between epitope and paratope interfaces—render the generation of reliable
preference annotations exceedingly challenging. These characteristics induce non-transitive prefer-
ences, which often lead to optimization bias, overfitting, and a reduction in the sequence diversity
that is critical for robust antibody function.

To address these issues, we propose an improved iterative KTO (Ethayarajh et al. (2024)) that in-
corporates an evolutionarily-aware semantic cost term. Building upon the traditional KTO loss, the
semantic cost term quantifies the evolutionary feasibility of residue substitutions, thus preserving
biologically plausible sequence variation while optimizing for structural compatibility. First, we
establish a structural validity criterion Ides(x, y) that evaluates antigen–antibody complexes using
predefined geometric compatibility metrics within the binding pocket. Samples that exceed a com-
posite quality threshold τdes are labeled as desirable (Ides(x, y) = 1); otherwise, they are labeled as
undesirable (Ides(x, y) = 0).

During the (t+ 1)th iteration, our overall optimization objective integrates two key components:

Lt+1(πt+1, πt) =E(x,y)∼Dt+1
[w(y) (1− σ (β∆(x, y)))]

+ α inf
γ∈Π(Qθ(·|x), P (·|x))

E(vi,vj)∼γ

[
χ(x,y)∈SC(vi, vj)

]
The dataset Dt+1 is constructed by sampling from the policy πt at iteration t and incorporating
historical data. The first term of the overall loss represents the KTO loss, which drives the model
update by maximizing the reward difference between desirable and undesirable outputs. The second
term is the semantic cost term that quantifies the evolutionary feasibility of residue substitutions,
with its weight controlled by the hyperparameter α. This term is computed by finding the optimal
joint distribution between the model distribution Qθ(· | x) and the data distribution P (· | x), where
C(vi, vj) denotes the cost of transporting probability mass between tokens vi and vj in the semantic
embedding space.

3 RESULTS

3.1 STRUCTURAL PREFERENCE OPTIMIZATION CAN IMPROVE THE QUALITY OF SAMPLED
ANTIBODIES

First, we performed structure-guided iterative optimization on the baseline PALM over five rounds.
In each round, 2,000 optimization steps were executed, generating 500 candidate sequences per anti-
gen–antibody complex. The three-dimensional conformations of these candidates were predicted us-
ing both Chai-1 (Discovery et al. (2024)) and tFold (Wu et al. (2024)). To provide feedback signals
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Figure 2: In silico simulation and experimental validation of PALM–PA. (A) Iterative optimiza-
tion trajectory on the RAbD benchmark dataset. The proportion of “desirable” samples in anti-
gen–antibody complexes progressively increases. (B) Comparison of pLDDT and TM-score dis-
tributions before and after structural optimization for baseline PALM and PALM–PA in the RAbD
dataset. (C) Comparison of the designed antibody from baseline PALM (yellow) and PALM–PA
(blue) against the ground truth (grey) complex (PDB: 5ggs). The structures shown are the highest
pLDDT conformations among the predicted complex structures of sampled sequences from base-
line PALM and PALM–PA. (D–E) For influenza A hemagglutinin and PD-L1, from left to right: the
ELISA binding signals for both baseline PALM and PALM–PA; the SPR binding curve of the bind-
ing antibody exhibiting the strongest affinity; and the minimum edit distance between the antibody’s
CDRs and those of the positive antibodies in the training set. Note: “baseline PALM” indicates the
model without structural constraints, and “PALM–PA” refers to the model after iterative structural
constraint optimization; ELISA absorbance was measured at 450 nm, with specific binding defined
as an absorbance greater than 0.5 and at least three times the background absorbance; Statistical
significance was determined using t-test. ∗ indicates p < 0.05, ∗∗ indicates p < 0.01, and ∗∗∗
indicates p < 0.001.

for model refinement, the generated candidates were evaluated using two metrics: TM-score exceed-
ing 0.75 and the average predicted local distance difference test (pLDDT) score for the CDR loops
above 80. A candidate was considered desirable only if the conformations predicted by both Chai-1
and tFold met the thresholds. Candidates meeting these criteria were labeled as “desirable samples,”
while those failing to meet both thresholds were designated as “rejected samples.” This classifica-
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tion feedback was then incorporated into subsequent optimization rounds. To evaluate the structural
optimization performance of PALM-PA, we conducted experiments on the antigen–antibody com-
plex dataset RAbD. For each complex, we sampled 100 sequences using both baseline PALM and
PALM-PA at each iteration, enabling a direct comparison of the generated candidate sequences.

As demonstrated in Figure 2A, PALM-PA enhanced the average hit rate of candidate antibodies by
36% (from 38.7% to 52.6%) over five iterative refinement cycles. Comparative structural analysis
revealed substantial advantages of PALM-PA over baseline PALM (Figure 2B). The constrained
optimization protocol significantly improved complementarity-determining region (CDR) quality
metrics, elevating median pLDDT score from 76.78 to 81.34 (p < 0.001) and enhancing structural
fidelity as evidenced by TM-score improvement from 0.74 to 0.85 (p < 0.001). These quanti-
tative enhancements indicate superior structural stability and native-like conformational sampling
in PALM-PA generated antibodies. Figure 2C illustrates a representative example (PDB: 5ggs):
before optimization, the highest-pLDDT sequence from baseline PALM showed significant devi-
ation in the CDRH3 loop, whereas after five rounds, the corresponding sequence from PALM-PA
achieved a TM-score of 0.93, demonstrating markedly improved alignment. These results suggest
that the iterative refinement process enables PALM-PA to internalize critical antigen-antibody inter-
face constraints through structural-aware feedback learning, effectively bridging sequence-structure
relationships.

3.2 DE NOVO DESIGN OF ANTIGEN-SPECIFIC ANTIBODIES

To evaluate the practicality of PALM-PA, we employed a widely used standard antibody framework
(Ewert et al. (2003)) as the starting point for de novo design and validated our approach by designing
CDRs for influenza A hemagglutinin and PD-L1. Specifically, we established screening criteria by
integrating TM-score > 0.8, CDRs conformational stability (pLDDT > 80), and atomic-level accu-
racy (PAE < 6). In each iteration, samples that met these thresholds and whose CDRH3 exhibited
a Levenshtein distance within the top 50% relative to a positive control were selected as “desirable
samples” and fed back into the optimization loop, thereby guiding PALM-PA to sample within a
high-quality subspace of the antibody deep sequence space.

For influenza A hemagglutinin (Figures 2D) and PD-L1 (Figures 2E), we conducted sequence sam-
pling using both baseline PALM and PALM-PA. Subsequent evaluation using Enzyme-Linked Im-
munoSorbent Assay (ELISA) revealed that the structural optimization implemented in PALM-PA
led to stronger binding signals. Subsequent surface plasmon resonance (SPR) experiments on the
designed antibodies revealed that the highest affinity antibodies had Kd values of 30.2 nM for in-
fluenza A hemagglutinin and 1.29 nM for PD-L1. These results demonstrate that, guided by struc-
tural optimization, PALM-PA effectively explores the deep sequence space to design antibodies that
achieve specific antigen interactions.

4 CONCLUSION

In this work, we introduced PALM-PA, a framework that integrates pre-trained large language mod-
els with iterative structural preference optimization for antigen-specific antibody de novo design.
Structural information, while valuable, often fails to provide sufficient insights into antigen-antibody
binding interfaces, particularly in flexible and conformationally variable regions (Towse & Daggett
(2012); Zheng et al. (2023)). In this context, language models exhibit an inherent capability to gener-
ate and evaluate sequences beyond the boundaries of natural training datasets, effectively overcom-
ing these limitations. By introducing a paradigm driven by iterative structural constraints, PALM-PA
systematically guides antibody sequence design. This approach significantly enhances the capacity
of language models to explore novel syntactic combinations within defined structural constraints,
facilitating the efficient discovery of diverse and high-quality antibody sequences tailored to spe-
cific antigenic targets. Validation across disease-related targets demonstrated the robustness and
efficiency of PALM-PA, highlighting its capacity to guide antibody design under specific structural
constraints and expand the possibilities of antibody engineering.

Despite these advancements, PALM-PA has limitations that require further exploration. Its reliance
on structural feedback highlights the need for more versatile and robust strategies to guide sequence
optimization, particularly in scenarios where structural information is sparse or unavailable. This

5



Published at the GEM workshop, ICLR 2025

limitation poses challenges for designing antibodies targeting antigens without existing antibody
binders or structural references. Future efforts should aim to reduce dependence on structural in-
puts and develop generalized optimization approaches to expand the applicability of PALM-PA to
uncharacterized or novel antigens.
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Weidle, Riti Biswas, Ellen L. Shrock, Philip J. Y. Leung, Buwei Huang, Inna Goreshnik, Russell
Ault, Kenneth D. Carr, Benedikt Singer, Cameron Criswell, Dionne Vafeados, Mariana Garcia
Sanchez, Ho Min Kim, Susana Vázquez Torres, Sidney Chan, and David Baker. Atomically
accurate de novo design of single-domain antibodies. bioRxiv, 2024. doi: 10.1101/2024.03.14.
585103.
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A APPENDIX

A.1 DATASET

To pretrain the unconditional antibody generation model, we curated a comprehensive dataset from
Observed Antibody Space (OAS) (Olsen et al. (2022)), INDI (Deszyński et al. (2022)) and PLAbDab
(Abanades et al. (2024)), enabling the model to learn universal antibody syntax. Rigorous data-
cleaning steps were applied, including removing sequences with invalid amino acid characters,
incomplete CDRs, and redundant CDRH3 sequences based on 90% sequence identity and 80%
sequence coverage thresholds. This resulted in a dataset comprising 87,138,696 single-chain anti-
bodies and 166,917 paired antibodies.

To train the baseline PALM, antigen-antibody complexes were gathered from the SAbDab (Schnei-
der et al. (2022), entries updated as of December 31, 2023) and INDI. To reserve the RAbD dataset
(Adolf-Bryfogle et al. (2018)) for testing, complexes from it and entries with a CDRH3 sequence
similarity greater than 0.4 to those in it were excluded. Further filtering criteria included the ex-
clusion of entries lacking heavy chains or antigens, those with incomplete structural information
(CDRH3 shorter than 7 residues or longer than 26 residues, and antigen residue coverage less than
90%). Additionally, a masked language modeling paradigm was introduced (Bavarian et al. (2022)),
where masked CDRs were appended to sequence ends, enabling the model to focus on specific
regions for antibody design and ensuring the effective generation of targeted antibody sequences.
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