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ABSTRACT

Tabular data in the wild are frequently afflicted with class-imbalance, biasing ma-
chine learning model predictions towards major classes. A data-centric solution to
this problem is oversampling - where the classes are balanced by adding synthetic
minority samples via generative methods. However, although tabular generative
models are capable of generating synthetic samples under a balanced distribution,
their integrity suffers when the number of minority samples is low. To this end,
pre-trained generative language models with rich prior knowledge are a fitting
candidate for the task at hand. Nevertheless, an oversampling strategy tailored for
tabular data that utilizes the extensive capabilities of such language models is yet
to emerge. In this paper, we propose a novel oversampling framework for tabular
data to channel the abilities of generative language models. By leveraging its con-
ditional sampling capabilities, we synthesize minority samples by progressively
masking the important features of the majority class samples and imputing them
towards the minority distribution. To reduce the inclusion of imperfectly converted
samples, we utilize the power of the language model itself to self-authenticate the
labels of the samples generated by itself, sifting out ill-converted samples. Ex-
tensive experiments on a variety of datasets and imbalance ratios reveal that the
proposed method successfully generates reliable minority samples to boost the
performance of machine learning classifiers, even under heavy imbalance ratios.

1 INTRODUCTION

Tabular data is one of the most common forms of data in real-world applications, spanning vast
industries such as healthcare (Johnson et al., 2021), marketing (Sakar et al., 2019), and finance (Shah
et al., 2022). However, due to their idiosyncratic nature and volatility in the data collection process,
tabular data in the wild are often ridden with class-imbalance. For example, a financial report dataset
curated to predict a major economic collapse is likely to be class-imbalanced as such events are
rare in the real world. In turn, machine learning classifiers trained from such imbalanced data are
inclined to be biased, as the model is trained towards classifying an overly significant amount of
samples as the majority class. This misalignment in generalization directly impacts the classification
performance of minority classes, which are often the critical foci of interest. For instance, a cancer
prediction classifier would be of limited use if its predictions are substantially inclined towards
predicting all patients as cancer-free, as resulting false negatives inevitably incur major liabilities.

Faced with the issue, diverse methodologies have been proposed to address the issue of class imbal-
ance. These methods predominantly focus on either modifying the model itself (Kang et al., 2020;
Tian et al., 2020; Menon et al., 2021; Hong et al., 2021) or adapting its loss function to enhance
robustness against class imbalance (Cao et al., 2019). However, these approaches fall short in terms
of general applicability since they require the end-user to directly modify the existing off-the-shelf
machine learning models. Considering the common practice of an end-user to employ a range of
readily available models depending on the domain peculiarities of the given data, these model-
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centric strategies are bound to incur potential difficulties and friction from the perspective of the
end-user. Consequently, a model-agnostic, data-centric approach of minority oversampling (Chawla
et al., 2002; Han et al., 2005; He et al., 2008) has been proposed to synthetically generate and
add minority samples to balance the class distribution. Through such means, the model itself or its
learning mechanism can be kept intact while the data itself becomes balanced to remedy the issue.

Recent advances in deep generative models have bestowed the means to generate high-quality syn-
thetic data (Kingma & Welling, 2013; Goodfellow et al., 2020; Ho et al., 2020; Radford et al., 2019).
Given their success in other data modalities (Rombach et al., 2022; OpenAI, 2023), they have been
successfully adapted to the tabular domain (Choi et al., 2017; Xu et al., 2019; Kim et al., 2023;
Kotelnikov et al., 2023; Borisov et al., 2023). By training these generative models on the imbalanced
dataset, synthetic minority samples can be drawn from the generative distribution to oversample the
minority classes. However, this approach often struggles in practical situations when the number of
minority samples is too small to successfully train a generative model. In this situation, the model
may fail to learn the minority distribution, or simply memorize the minority samples.

To this end, a stronger generative model equipped with pre-trained knowledge is required to mit-
igate overfitting. An intriguing solution to this problem is the usage of generative large language
models (LLMs) (Radford et al., 2019; OpenAI, 2023; Touvron et al., 2023a;b) to process tabular
data through language interfaces (Dinh et al., 2022). Recent studies have demonstrated that by rep-
resenting tabular data as free text and leveraging the knowledge of language models, effective task
performance can be achieved even when the amount of data is limited (Hegselmann et al., 2023;
Nam et al., 2023). However, this abrupt shift of paradigm makes it challenging to apply conven-
tional imbalance handling techniques, such as borderline sampling (Han et al., 2005; He et al.,
2008), major-to-minor translation (Kim et al., 2020), or style transfer (Kim et al., 2022). Thus, there
emerges a need for a systematic framework to effectively perform minority oversampling based on
language models.

In this paper, we propose Language-Interfaced Tabular Oversampling (LITO), a novel oversampling
framework for tabular data that comprehensively utilizes the power of language-interfaced tabular
learning. Using the conditional sampling capabilities of the generative language model, samples
with minority traits can be synthesized through class label prompting. Based on this functionality, we
develop a borderline sampling method that converts a majority sample to a minority by progressively
‘puncturing’ the feature values of the sample and imputing them under minority conditioning, so that
they convey the characteristics of the minority class.

However, recent observations on the generative capabilities of language models report the potential
for biased (Gallegos et al., 2023) or contradictory (Ji et al., 2023) generation. When supplied with
class-imbalanced data, the model might incline towards generating majority classes even with class
conditioning, introducing noisy samples. Such risks can be exacerbated during the execution of
aggressive techniques such as borderline sampling, as there is a possibility that the sample may not
be fully converted. To effectively sample synthetic minorities under these conditions, we propose a
simple yet effective rejection sampling procedure to prevent the inclusion of ill-synthesized minority
samples. Motivated by self-alignment methodologies (Sun et al., 2023) of large language models,
we use the language model on itself to predict the labels of its own generated samples, filtering out
ill-synthesized suspects. Integrating these components, we then propose a progressive imputation
scheme harnessing the power of the language model itself to guide its own oversampling procedure.
We validate our method against various tabular datasets from OpenML-CC18 (Bischl et al., 2019)
and UCI machine learning repository (Dua & Graff, 2017), with varying imbalance ratios. Also, we
demonstrate the applicability of the LITO framework on black-box chatbot LLMs such as GPT3.5-
turbo through in-context learning (ICL).

Our contributions are threefold:

• We propose a novel tabular oversampling strategy based on generative language models
that converts a majority sample to a minority sample by inducing missing values in the
important columns and filling them through minority-class conditioned imputation.

• To mitigate the problem of faulty synthesis, we introduce a simple yet effective technique
that utilizes the generative language model itself to filter out defective samples.

• Our oversampling strategy enhances the performance of off-the-shelf machine learning
models, even for highly imbalanced datasets.
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2 BACKGROUND

2.1 OVERSAMPLING FOR CLASS-IMBALANCED DATA

We formally define the problem setting of our interest. We take into consideration a supervised
learning problem given a training dataset D := {zn = (xn, yn)}Nn=1, where x ∈ Rm is the feature
vector and y ∈ {1, . . . , C} is the class label of the data point z. For each class, we denote the
number of training samples that belong to class c as Nc, where the classes are sorted by their number
of samples in descending order without the loss of generality as in N1 ≥ N2 ≥ · · · ≥ NC . A
dataset is class-imbalanced if the number of samples for each class is not equal and skewed: N1 ≫
NC . We define the majority class as the class with the largest number of samples (N1) and other
classes as minority classes. The imbalance ratio is defined as α = N1

NC
An oversampling strategy

introduces synthetic minority samples to the dataset until the number of samples for all minority
classes becomes equal to the majority class, as in N1 = Ñ2 = · · · = ÑC . This process yields a
class-balanced dataset D̃ which in turn is employed to train a desired machine learning model.

2.2 LANGUAGE-INTERFACED TABULAR GENERATION

To the best of our knowledge, a clear consensus on the precise definition of tabular data is yet to be
reached. In this paper, we temporarily define tabular data as data formatted into N rows (samples)
and M columns (features), which can be cast into the format of comma-separated values (CSV).
Unlike other data modalities such as vision, speech, or graphs, a notable characteristic of tabular data
is that it can be straightforwardly represented in free text. This suggests the possibility of applying
natural language processing algorithms to process tabular data. Particularly, an intriguing approach
is the handling of tabular data using generative language models. Since tabular data can be readily
formatted into text, they can be processed by generative language models without the usage of
external adapters or representation alignment (Tsimpoukelli et al., 2021). Toward this goal, Dinh
et al. (2022); Hegselmann et al. (2023); Borisov et al. (2023) explored the prediction and generation
capabilities of generative language models by transforming tabular data into text prompts using
textual encoders. Following Dinh et al. (2022), we refer to such a paradigm as language interfacing
for tabular data, and refer to the core language model as tabular language models (TLM), for the
scope of this paper. Given a tabular dataset, the n-th row of the table can be represented as a textual
prompt tn using the following rule:

tn,m = [hm, “is”, vn,m, “, ”] and tn = [tn,1, tn,2, . . . , tn,M ] (1)

where n ∈ {1, . . . , N}, m ∈ {1, . . . ,M}, vn,m is the (n,m)-th value of the table, and hm is the
name of the mth column. The row index n may be omitted for brevity. Here, we follow the encoding
format proposed in Borisov et al. (2023). However, the syntactic structure or the choice of articles
to construct the textual prompt may vary.

In the same vein, the generation of tabular data is also feasible using the language-interfacing
paradigm. The GReaT (Borisov et al., 2023) framework for tabular generation fine-tunes an au-
toregressive pre-trained transformer with tabular data to generate novel tabular samples. A textual
encoder encodes the column names and features into text, which is then fed to the language model
for fine-tuning. Since the columns of the table do not exhibit spacial locality, a random feature or-
der permutation function is employed. To generate synthetic samples, conventional autoregressive
sampling is used. Since the generative model is fine-tuned with random feature order permutation,
arbitrary conditional sampling is possible by prompting the model with conditioning column names
and values to a TLM f :

t̃ :=
[
t̃s1 , t̃s2 , . . . , t̃sM−l

| tr1 , tr2 , . . . , trl
]
= f([tr1 , tr2 , . . . , trl ]) (2)

where tr are column conditional prompts and ts are sampled column texts. Such capabilities can be
readily utilized for class-conditioned sampling by placing the label column and values in the front
of the prompt for autoregressive decoding. Although certain deep generative models for tabular data
support class conditional sampling, arbitrary feature-conditioned sampling capabilities are generally
not present in other forms of tabular generative models.
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Figure 1: Overview of our framework (LITO). Using a TLM backbone, minority candidates are generated via
class-conditioned borderline sampling. Then, the generated candidates are self-authenticated by re-imputing
their labels. For rejected candidates, the process is repeated until the sample is converted as long as the predic-
tion confidence increases with each iteration.

3 LANGUAGE-INTERFACED TABULAR OVERSAMPLING (LITO)

In this section, we introduce our Language-Interfaced Tabular Oversampling (LITO) framework that
synthesizes minority samples by leveraging the conditional sampling capabilities and the rich prior
knowledge of pre-trained generative language models. Our framework is composed of two compo-
nents: minority class-conditioned sampling to generate synthetic minority candidates (Section 3.1),
and the self-authentication procedure to filter out defective samples (Section 3.2). The overall frame-
work of LITO is described in Figure 1.

3.1 MINORITY-CONDITIONED SAMPLING WITH IMPORTANCE-AWARE IMPUTATION

The first stage of our framework is to generate minority-class conditioned samples via class-
conditioned prompting, using arbitrary conditioned sampling (Equation 2) of TLMs. A synthetic
minority sample of class c can be generated from a TLM f via class-conditioning by prompting the
model with the minority class label:

tc = f([tclabel]) (3)

where tclabel = [“label”, “is”, “c”, “, ”]. With this functionality, we propose a novel borderline sam-
pling strategy tailored to a decoder-only TLM by converting a majority sample to a minority sample
through class-conditioned imputation. First, a substrate majority class sample s is randomly drawn
from the entire training set. Subsequently, we induce missing values by ‘puncturing’ out k columns,
obtaining a truncated prompt [t1, t2, . . . , tM−k]. By prompting the sample as the target minority
class and performing conditional imputation, we convert the sample to the targeted minority class:

tc = f([tclabel, t1, t2, . . . , tM−k]) (4)

where the conditioned columns are re-indexed without the loss of generality. Note that our approach
is equivalent to full class-conditioned sampling when k = M .

Considering the heterogeneity of columns, randomly puncturing and imputing the feature values
may neglect important columns that are key towards defining a sample as a majority class or a
minority class. In other words, imputing unimportant columns may not be sufficient to convert a
majority class sample to a minority class sample. With this in mind, we propose to puncture and
impute columns guided by a feature importance criterion. In detail, we utilize the self-attention
scores of the TLM to attribute the importance of column features. We input a given substrate s to the
TLM and extract the last-layer attention map to obtain the attention scores with respect to the label
token, and calculate the importance score for each tabular column by summing the attention scores
of the tokens that consist of the respective column. In the case where the label consists of multiple
tokens, we use the mean of the attention scores on the label tokens. The importance score of the
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m-th column of substrate sample s is given as:

I(s,m) =
1

|tok(ts,label)|

tok(ts,label)∑
i

tok(ts,m)∑
j

∑
h

As
i,j,h (5)

where tok(ts,m) is the set of tokenized sequence indices that consists of the m-th tabular column of
substrate s, h is the attention head index, and As

i,j,h is the last layer attention score of the i-th token
by the j-th token for head h for substrate s. After obtaining the sample-wise column importance
scores, we select top-k important columns to be subject to imputation.

3.2 REJECTION SAMPLING VIA SELF-AUTHENTICATION

Although intuitive, the proposed strategy carries inherent risks due to the uncertainty of whether the
samples generated by class-conditional prompting or borderline sampling are indeed minority sam-
ples. For class-conditioned sampling, there is a possibility that the model may generate a majority
class sample even under such conditioning if the model is inclined towards the majority class. For
borderline sampling, if the number of column punctures is insufficient, there remains a possibility
for the sample to either retain its majority class identity or fall into an ambiguous category between
the two. Despite the provision of class-conditional prompting, oversampling through imputation can
still yield either ambiguous minority samples or even majority samples, which can adversely affect
the formation of decision boundaries. Therefore, it is imperative to devise a method to filter out such
ill-generated synthetic samples.

For this purpose, we propose a simple yet effective rejection sampling method that utilizes the char-
acteristics of language models. Our key intuition is that the generative language model is also capa-
ble of imputing the label of the given sample when the label is absent. Thus, a generated sample can
be verified by the language model itself by imputing the label of the sample:[

t̃label | t1, . . . , tM
]
= f([t1, . . . , tM ]) (6)

Based on this functionality, we introduce the Self-Authentication procedure to the oversampling
process. After a minority sample is generated, we discard the label of the generated sample and re-
impute the label using the TLM. If the label of the synthesized minor is indeed predicted as a minor,
then the sample is accepted. If else, then the sample is deemed faulty and is discarded. This process
is akin to the self-alignment process of language models (Sun et al., 2023), where the language
model itself is utilized to control the generation process of the language model. We refer to this
sample-and-authenticate framework as LITO. Note that our self-authentication method not only can
be combined with borderline sampling, but also full class-conditional sampling (LITO-C).

3.3 ADAPTIVE OVERSAMPLING WITH PROGRESSIVE IMPUTATION

Combining the components described above, we now propose LITO-B, an adaptive borderline sam-
pling strategy. When transforming the features of majority class samples into minority class samples
through imputation, it is important to acknowledge that the number of column imputations required
to successfully convert a majority class sample into the target minority class may vary from one
sample to another. In other words, certain samples might not achieve proper translation due to an
insufficiently determined number of column punctures. In such cases, despite the potential for these
samples to be converted into the minority class by increasing the number of column punctures, they
are preemptively excluded during self-authentication.

To synthesize more diverse and probable samples, we propose a progressive imputation sampling
method, wherein we incrementally increase the column puncture count while iteratively generat-
ing and filtering samples. For each round, we puncture k columns according to the importance
ordering and execute conditional imputation. Then, self-authentication is performed to confirm the
converted samples. For the samples that have failed the authentication, we puncture the next k-
important columns and iterate the process. Additionally, if the prediction probability of the target
label (confidence) does not increase after each imputation round, then the substrate sample is dis-
carded. Through this process, the number of imputed columns can be adapted dynamically, generat-
ing diverse samples. The overall process is described in Algorithm 1.
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Algorithm 1 LITO-B

1: Input: Training set D := {zn = (xn, yn)}Nn=1, Fine-tuned TLM f , Number of classes C, puncture count
per round k, Authenticated samples← []

2: for each class ci in C do
3: while generate amount == |cmajor| − |ci| do
4: Sample the substrate s in D where ys ̸= ci
5: Compute the attention score I of each columns from equation 5
6: Sort I , by descending order
7: o = Index of I
8: round r = 0
9: while True do

10: Puncture o[r : (r + 1)× k] indices at s and change label column to target label ci
11: Resulting in sp = [tcilabel, t1, t2, . . . , tM−k] ▷ Imputation
12: Synthesized sample sr = f(sp)
13: Puncture label column of sr ▷ For self-authentication
14: pred, logit = f(sr)
15: if pred == ci then
16: Authenticated samples← sr
17: Break
18: else
19: if prob(ci, sr) >= prob(ci, sr−1) then ▷ Check confidence increase
20: s← sr
21: r+ = 1
22: else
23: Break
24: end if
25: end if
26: end while
27: end while
28: end for

3.4 EXTENDING TO BLACK-BOX LANGUAGE MODELS THROUGH IN-CONTEXT LEARNING

Considering the scaling law of LLM performance with respect to their number of parameters (Ka-
plan et al., 2020), it can be projected that the effectiveness of the LITO framework will also in-
crease with the size of the backbone TLM. However, for powerful but proprietary black-box LLMs,
fine-tuning a model to perform tabular oversampling entails practical difficulties for an end-user.
Intriguingly, recent variants of LLMs possess the ability to effectively learn from the input data
in the inference phase through in-context learning, enabling an end-user to adapt LLMs to their
distinctive needs without fine-tuning the language model. By supplying an LLM with the imbal-
anced dataset and instruction prompts for feature importance calculation, conditional imputation,
and self-authentication (Appendix C), the LITO framework can be adapted to black-box LLMs, as
we demonstrate in Section 4.5.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of our framework by conducting experiments on
multiple publicly available datasets. We validate our method and its individual components follow-
ing the conventions of prior works. Below, we provide a brief overview of our experimental setting
in Section 4.1, followed by empirical results and detailed analyses in the subsequent sections. We
also analyze the sampling quality and diversity in Appendix B.

4.1 EXPERIMENTAL SETUP

Datasets. We validate our method on six tabular benchmark datasets: Default, Shoppers,
Sick, and Diabetes for binary classification, Obesity and Satimage for multi-class classifi-
cation. They exhibit variation in terms of sample sizes and feature dimensions. The detailed charac-
teristics of the datasets are provided in Appendix A. We partition the datasets into 80% for training
and 20% for the test set following the previous works (Kim et al., 2022). For datasets with rela-
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Table 1: Comparison of our method with other baselines for binary classification tasks. We conduct experi-
ments on both a mild class-imbalance setting (α = 10) and an extremely class-imbalanced setting (α = 100).
We report the F1-score and balanced accuracy with the standard errors on four benchmark datasets. The best
performance is bolded, and the second-best is underlined.

Extreme imbalance (imbalance ratio α = 100 )

Dataset Default Shoppers Sick Diabetes (α = 20)
F1 bAcc F1 bAcc F1 bAcc F1 bAcc

Vanilla 45.16 ±0.09 50.60 ±0.04 54.02 ±0.11 54.15 ±0.06 67.71 ±0.79 66.13 ±0.48 49.54 ±0.23 54.29 ±0.09

SMOTE 55.25 ±0.13 57.41 ±0.08 64.72 ±0.41 63.40 ±0.06 68.90 ±0.30 69.65 ±0.45 61.06 ±0.54 61.28 ±0.42

B-SMOTE 51.64 ±0.13 53.89 ±0.07 64.65 ±0.20 62.15 ±0.22 48.68 ±1.45 58.18 ±1.58 59.77 ±0.47 60.46 ±0.38

CTGAN 55.13 ±0.16 55.47 ±0.13 57.25 ±0.14 56.07 ±0.09 59.26 ±0.53 59.00 ±0.85 55.31 ±1.40 55.50 ±1.32

SOS 56.19 ±0.31 56.71 ±0.19 65.65 ±0.52 63.30 ±0.45 80.53 ±0.15 83.04 ±0.35 49.80 ±0.32 54.39 ±0.13

GreaT 51.38 ±0.09 52.71 ±0.09 56.64 ±0.10 65.02 ±0.10 70.47 ±0.62 82.73 ±0.60 49.44 ±0.68 49.59 ±0.54

LITO-C 61.91 ±0.07 62.11 ±0.08 73.75 ±0.13 71.06 ±0.06 85.09 ±0.81 84.69 ±1.06 63.04 ±0.46 63.20 ±0.41

LITO-B 65.52 ±0.14 67.33 ±0.13 74.58 ±0.20 73.09 ±0.23 85.63 ±0.95 87.67 ±0.60 64.23 ±0.42 64.05 ±0.38

Mild imbalance (imbalance ratio α = 10 )

Dataset Default Shoppers Sick (α = 12.2) Diabetes
F1 bAcc F1 bAcc F1 bAcc F1 bAcc

Vanilla 55.27 ±0.07 55.97 ±0.05 71.08 ±0.10 68.23 ±0.17 85.76 ±0.77 83.01 ±0.89 52.66 ±0.50 55.77 ±0.27

SMOTE 62.81 ±0.20 62.54 ±0.19 74.31 ±0.16 74.89 ±0.28 71.91 ±0.58 72.59 ±0.79 65.85 ±0.51 65.70 ±0.27

B-SMOTE 61.74 ±0.24 61.37 ±0.23 69.84 ±0.16 76.53 ±0.46 67.63 ±0.79 69.52 ±2.77 65.48 ±0.70 65.20 ±0.49

CTGAN 59.15 ±0.22 59.34 ±0.23 72.30 ±0.18 70.28 ±0.24 77.15 ±0.62 83.77 ±0.89 62.66 ±0.96 63.43 ±0.93

TVAE 63.23 ±0.15 61.70 ±0.12 71.24 ±0.22 69.00 ±0.26 82.02 ±0.47 86.38 ±0.57 63.17 ±1.04 62.77 ±0.91

SOS 60.96 ±0.21 60.16 ±0.20 74.24 ±0.29 75.19 ±0.30 84.04 ±0.40 90.51 ±0.19 53.06 ±0.42 55.92 ±0.23

GreaT 65.22 ±0.10 66.78 ±0.10 68.32 ±0.20 75.89 ±0.11 82.86 ±0.34 91.09 ±0.22 64.94 ±0.61 65.31 ±0.72

LITO-C 67.94 ±0.03 67.48 ±0.04 75.85 ±0.13 77.66 ±0.12 86.00 ±0.19 91.13 ±0.14 64.29 ±0.38 64.00 ±0.36

LITO-B 66.86 ±0.05 68.85 ±0.04 75.59 ±0.05 76.86 ±0.09 85.83 ±0.12 91.92 ±0.14 65.94 ±0.44 66.12 ±0.39

tively small sizes (Diabetes, Sick), we split the dataset into 70% training set and 30% test set.
To construct class-imbalanced datasets, we deliberately reduce the number of training samples per
class to establish a long-tail distribution in the class distribution. Then, given the parameter γ which

controls the imbalance ratio α = γ
− l−1

L−1

l of datasets, we decide the number of samples for class l

following Ñl = N1 · α and the remainder are discarded. We conduct experiments on mild (α = 10)
and extremely class-imbalanced (α = 100) settings.

Baselines. We select two statistical methods and four deep learning-based generative models as
baselines. SMOTE (Chawla et al., 2002) and Borderline-SMOTE (B-SMOTE) (Han et al., 2005)
are classical oversampling methods that augment the samples of minor classes. For deep generative
models, we use CTGAN (Xu et al., 2019), TVAE (Xu et al., 2019), and SOS (Kim et al., 2022).
CTGAN is a generative adversarial network (GAN) specifically designed to generate synthetic tabu-
lar data samples under conditional constraints. Similarly, TVAE is a variational autoencoder (VAE)
modified for tabular data. We do not compare with TVAE in the case of extremely imbalanced setting
(α = 100), as the model exhibits mode-collapse behavior, completely failing to generate any minor-
ity samples. SOS is a score-based generative model equipped with imbalance-tailored techniques,
proposed as an oversampling method for imbalanced tabular data. GReaT (Borisov et al., 2023) is
a generative TLM based on fine-tuning GPT-2 (Radford et al., 2019) and its distilled version (Sanh
et al., 2019). For the experimental evaluations below, we use GReaT based on Distill-GPT2 as the
baseline. For our experimental evaluations, we adopt the same Distill-GPT2 GReaT model as our
backbone TLM. Finally, Vanilla indicates the case where no oversampling is employed and the ma-
chine learning classifiers are trained with the imbalanced train set as-is.

Evaluation protocol. Our primary evaluation metric to measure the strength of a given oversam-
pling strategy is machine learning (ML) efficiency. In detail, ML efficiency quantifies the classifica-
tion performance of a given set of machine learning models trained on a training set augmented with
oversampled data, which includes the original training samples and the synthesized samples evalu-
ated on the held-out test set. Following the common evaluation procedure in the literature (Kim et al.,
2022; Borisov et al., 2023), we compute the average classification performance of a curated set of
ML models. For binary classification, we employ Decision Trees (Loh, 2011), AdaBoost (Schapire
et al., 1999), Logistic Regression (Cox, 1958), and Multi-Layer Perceptron (Bishop & Nasrabadi,
2006), following (Kim et al., 2022). For multi-class classification, we add Random Forest (Breiman,
2001) and XGBoost (Chen & Guestrin, 2016) and exclude AdaBoost and MLP due to their ob-
served training instabilities. For evaluation, minority classes are generated and added to the training
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Table 2: Comparison of our method with other baselines for multi-class classification tasks. We conduct ex-
periments on both mild class imbalance settings (α = 10) and extremely class-imbalanced settings (α = 100).
We report the F1-score and balanced accuracy with standard errors on two benchmark datasets. The best per-
formance is bolded, and the second-best is underlined.

Extreme imbalance (α = 100 ) Mild imbalance (α = 10 )

Dataset Obesity Satimage Obesity Satimage
F1 bAcc F1 bAcc F1 bAcc F1 bAcc

Vanilla 48.69 ±0.18 52.06 ±0.15 70.43 ±0.05 71.70 ±0.04 71.39 ±0.09 71.32 ±0.12 80.52 ±0.07 80.04 ±0.07

SMOTE 34.59 ±0.80 39.90 ±0.65 77.63 ±0.32 77.34 ±0.27 49.61 ±1.76 54.21 ±1.24 84.03 ±0.23 83.36 ±0.22

B-SMOTE 37.39 ±1.15 41.79 ±0.95 74.53 ±0.14 74.15 ±0.15 50.58 ±0.97 54.22 ±1.05 82.21 ±0.18 81.69 ±0.30

CTGAN 62.67 ±0.97 63.42 ±0.94 65.24 ±0.46 68.05 ±0.34 62.43 ±0.68 62.91 ±0.48 78.07 ±0.41 77.64 ±0.34

TVAE - - - - 69.75 ±0.94 70.33 ±0.95 82.17 ±0.30 81.69 ±0.30

SOS 47.53 ±0.74 50.79 ±0.52 75.66 ±0.28 76.35 ±0.24 68.66 ±0.89 69.93 ±0.86 83.05 ±0.35 82.79 ±0.32

GreaT 57.18 ±0.45 58.20 ±0.60 74.32 ±0.19 74.64 ±0.20 76.73 ±0.24 77.98 ±0.12 82.36 ±0.17 82.43 ±0.16

LITO-C 66.62 ±0.47 67.58 ±0.56 81.74 ±0.13 81.14 ±0.12 78.13 ±0.24 79.23 ±0.12 84.53 ±0.05 83.82 ±0.05

LITO-B 68.02 ±0.44 69.08 ±0.49 76.81 ±0.16 78.24 ±0.18 79.74 ±0.44 80.64 ±0.36 84.69 ±0.05 83.92 ±0.11

set using the respective oversampling methods until all the minority classes reach the number of
the majority class. To account for the randomness in the sampling procedure, we repeat the over-
sampling process 4 times, and train the machine learning models 5 times for a single oversampling
instance, resulting in a total of 20 evaluations per method. We measure the F1-score and balanced
accuracy (bAcc) and report their mean and standard error, as the uniform split of the test set is also
imbalanced. A more detailed description of the experimental setting is described in Appendix A.

4.2 BINARY CLASSIFICATION

We first evaluate the effectiveness of our method in addressing imbalanced binary classification
tasks. For experiments on mild imbalance scenarios, we use α = 10 except for Sick since its
natural imbalance ratio is α = 12.2. For extreme imbalance experiments, we use α = 100 except
for Diabetes where we use α = 20, as all generative models collapse for α = 100. The results
are presented in Table 1. For both mild imbalance and extreme imbalance scenarios, our methods
consistently outperform all baselines, including statistical and deep generative methods, on all four
tabular datasets. These results demonstrate the effectiveness of the minority samples synthesized
through our oversampling strategy in assisting machine learning algorithms in their formation of
more effective decision boundaries. As demonstrated by the significant improvement observed with
our method in the case of highly imbalanced cases, our method is able to effectively perform even
in extremely class-imbalanced scenarios with a limited number of samples for the minority class.
Notably, comparing our method to GreaT, we observe a significant performance difference, implying
the importance of self-authentication.

4.3 MULTI-CLASS CLASSIFICATION

To validate the effectiveness of our method on imbalanced multi-class classification tasks, we also
conduct experiments on two multi-class tabular benchmark datasets. Note as there is more than one
minority class in multi-class imbalanced data, a wide variety of one-to-one imbalance ratios exist
within the dataset. As shown in Table 2, our method brings better imbalance handling performance
in most cases compared to other baselines. In the extreme imbalance setting, our methods clearly
outperform all baselines by large margins. For mild imbalance scenarios, our method consistently
outperforms other baselines in both cases.

4.4 ABLATION STUDY

Here, we conduct an ablation study to verify the effect of the individual components that comprise
the LITO framework: importance-aware imputation, self-authentication, and progressive imputation.
For Shoppers and Sick datasets with imbalance ratio α = 100, we compare the ML efficiency
performance by incrementally adding the respective components, as shown in Table 3. First, we ob-
serve that importance-aware imputation increases the performance over random imputation. Second,
self-authentication significantly boosts the performance. Finally, progressive imputation improves
over single-iteration imputation. These results confirm the contributions of each LITO component.
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Table 3: Ablation study investigating the individual components of LITO. We analyze the effects of
adding importance-aware imputation, self-authentication, and progressive imputation.

Sampling rounds Puncture criterion Self-authentication Shoppers Sick
F1 bAcc F1 bAcc

Single iteration
Random ✗ 53.65 ±0.33 63.32±0.38 65.70 ±1.03 77.68 ±1.03

Importance ✗ 54.31 ±0.19 64.64 ±0.26 67.13 ±0.79 79.64 ±0.38

Importance ✓ 73.39 ±0.16 73.08 ±0.16 84.53 ±0.70 84.93 ±0.60

Progressive Random ✓ 73.57 ±0.09 70.58 ±0.07 82.74 ±0.20 86.29 ±0.40

Importance ✓ 74.58 ±0.20 73.09 ±0.23 85.63 ±0.95 87.67 ±0.60

4.5 IN-CONTEXT LITO WITH BLACK-BOX LANGUAGE MODELS

Table 4: Performance of in-context LITO
for the diabetes dataset (α = 20).

Method F1 bAcc
Vanilla 49.54 54.29
SMOTE 61.06 61.28
B-SMOTE 59.77 60.46
CTGAN 55.31 55.50
SOS 49.80 54.39
GReaT (Distill-GPT2) 49.44 49.59
ICL-LITO-C (GPT3.5) 67.37 66.88
ICL-LITO-B (GPT3.5) 63.68 64.01

Section 3.4 discussed the possibilities of adopting
LITO to larger language models via in-context learn-
ing (ICL) and prompting. Here, we conduct a proof-
of-concept experiment to demonstrate the performance
of in-context LITO using OpenAI GPT-3.5-turbo
API. For the highly imbalanced (α = 20) setting of
the diabetes dataset, we report the performance
of LITO-C and LITO-B against the baselines. Ta-
ble 4 shows that oversampling minority class samples
through in-context learning is indeed effective. The de-
tailed settings and additional experiments are provided
in Appendix C.

5 RELATED WORK

Class-imbalanced learning. There are principally two overarching strategies to address class im-
balance. Model-centric approaches try to handle the imbalance problem by modifying the objective
function to alter the classifier margins (Cao et al., 2019; Tan et al., 2020; Menon et al., 2021),
reweight minority classes (Japkowicz & Stephen, 2002; Cui et al., 2019), or correct the model in a
posthoc fashion (Kang et al., 2020; Tian et al., 2020; Menon et al., 2021; Hong et al., 2021) by alter-
ing the logits in the inference phase. A data-centric approach is sampling, where synthetic minority
samples are introduced into the training data via means such as augmentation (Kang et al., 2020; Liu
et al., 2020; Ren et al., 2020) or generation (Chawla et al., 2002; Han et al., 2005; He et al., 2008;
Kim et al., 2020; Chu et al., 2020; Zhang et al., 2021; Wang et al., 2021; Kim et al., 2022).

Deep generative models for tabular data. Although tabular data is a modality where deep learn-
ing does not generally excel over classical machine learning models, tabular generative models show
distinctive advantages in modeling the generative distribution of the data. TVAE (Xu et al., 2019) is a
variational autoencoder customized for tabular data. MedGAN (Choi et al., 2017), TableGAN (Park
et al., 2018), CTGAN (Xu et al., 2019) are tabular generative model architectures based on gen-
erative adversarial networks. With the recent success of diffusion-based generative models (Ho
et al., 2020; Song et al., 2021), the methodology has been successfully adapted to the tabular do-
main. TabDDPM (Kotelnikov et al., 2023) is based on denoising diffusion probabilistic models,
while StaSy (Kim et al., 2023) is a score-based model. One unexpected tabular generative model is
GReaT (Borisov et al., 2023), which is based on a generative language model.

6 CONCLUSION

In this paper, we presented a language-interfaced oversampling framework for tabular data that com-
prehensively utilizes the generation capabilities of generative language models. By progressively
iterating class-conditioned borderline sampling and rejection sampling through self-authentication,
our framework successfully generates synthetic minority samples that benefit the learning of ma-
chine learning classifiers. We verified the performance of our framework on multiple tabular datasets
and imbalance ratios. Also, the proposed framework can be extended to black-box language models
through in-context learning.
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A DETAILED EXPERIMENTAL SETTINGS

In this section, we describe the details of the experiments we conducted. We implement our method
with the PyTorch deep learning framework and Huggingface Transformers package (Wolf et al.,
2019). For the SMOTE and B-SMOTE baselines, we use the Imbalanced-Learn (Lemaı̂tre et al.,
2017) package. For CTGAN and TVAE, we use the Synthetic Data Vault (Patki et al., 2016) package.
For SOS and GReaT, we use their respective official Github repositories. For the machine learning
models involved in measuring the Machine Learning Efficiency (MLE) metric, we use the Scikit-
Learn (Pedregosa et al., 2011) package.

A.1 DATASET DETAILS

In this subsection, we describe the 6 tabular benchmark datasets used in our experiments.

• Default : A binary classification dataset that provides information about default payment
status among credit card clients in Taiwan.

• Shoppers : A binary classification task which involves predicting the intent of online
shoppers.

• Sick : A binary classification task of medical domain that involves classifying thyroid
disease as either negative or positive. For this, we exclude the rows which have the missing
value.

• Diabetes : A binary classification dataset which contains information related to diabetes.

• Obesity : A multi-class classification task aiming to categorize obesity levels based on
individuals’ eating habits and physical condition.

• SatImage : A multi-class classification dataset, produced by the Australian Centre for
Remote Sensing, designed for categorizing different types of land use.

Table 5: Details of dataset statistics used in our experiments.

Datasets #train #test #columns #continuous #categorical
Default 24K 6K 24 13 11
Shoppers 9.8K 2.4K 18 10 8
Sick 1.7K 0.8K 29 7 22
Diabetes 0.6K 0.2K 10 7 3
Obesity 1.6K 0.4K 25 24 1
SatImage 4.4K 1.3K 37 37 0

A.2 HYPERPARAMETERS FOR EVALUATING MACHINE LEARNING EFFICIENCY

For reproducibility, we describe the hyperparameters we used for measuring machine learning effi-
ciency.

• Decision Tree : Max depth is 32, criterion is gini.

• AdaBoost : The number of ensemble estimators is 100, and the learning rate is 1.0.

• Logistic Regression : We use “lbfgs” solver and 1000 max iteration. Penalty for
training is L2 normalization.

• MLP : Used hidden layer size is (100, 100), max iteration is 200 and weight for penalty
(alpha) is 0.0001.

• Random Forest : The number of estimators is 100 and the max depth is 8.

• XGBoost : We use the muti-label softmax objective, 5 max depth and 1.0 learning rate.
The number of ensemble estimators is 100.
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A.3 HYPERPARAMETERS USED FOR FINE-TUNING GENERATIVE LANGUAGE MODELS.

First, we utilize pre-trained generative language models from the established HuggingFace frame-
work (Wolf et al., 2019). We fine-tune the Distill-GPT-2 model for each data set for 200 or 300
epochs according to convergence rate. If the loss curve is not converged, we fine-tune Distill-GPT-2
for 300 epochs, if not we fine-tune for 200 epochs. We use the constant 5e-5 learning rate following
Borisov et al. (2023).

15



Published as a conference paper at ICLR 2024

B SAMPLING QUALITY AND DIVERSITY

Here, we analyze the sampling diversity and quality of LITO and other competing baselines. First,
we conduct qualitative analysis by reporting the column-wise distributions of synthesized minority
samples w.r.t. the ground truth minority samples. Also, we provide visualizations of the synthetic
minority samples via UMAP (McInnes et al., 2018). For quantitative analysis, we report the coverage
score (Naeem et al., 2020) to assess the quality and diversity of the synthesized samples.

B.1 QUALITATIVE ANALYSIS

B.1.1 COLUMN-WISE HISTOGRAMS

We first visualize the histogram of values for individual feature columns of synthetic minority sam-
ples generated by each method, compared to the real minority distribution. Figure 2, 3, 4 shows
the histogram of column values on datasets used in our experiments. The results indicate that the
samples generated by LITO are most close to the ground truth minority class distribution.

(a) Columns [LIMIT BAL], [PAY 2] of the Default dataset.

(b) Columns [ExitRates], [Month] of the Shoppers dataset.
Figure 2: Histogram of column values of synthetic minority samples compared to the ground truth minority
distribution.
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(a) Columns [Age], [T4U] of the Sick dataset.

(b) Columns [BMI], [Insulin] of the Diabetes dataset.
Figure 3: Histogram of column values of synthetic minority samples compared to the ground truth minority
distribution.
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(a) Columns [CH2O], [Height] of the Obesity dataset.

(b) Columns [D10attr], [Cattr] of the Satimage dataset.
Figure 4: Histogram of column values of synthetic minority samples compared to the ground truth minority
distribution.
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B.1.2 UMAP VISUALIZATIONS

Here, we visualize the manifold occupied by the synthetic minority samples via UMAP. Figure
5, 6 shows that the samples generated by LITO are most close to the ground truth minority class
distribution.

(a) UMAP of ground truth training data. (b) UMAP of SOS.

(c) UMAP of GReaT. (d) UMAP of LITO.
Figure 5: UMAP visualization results for for the diabetes dataset. For comparison, the ground truth train-
ing data is superimposed as transparent points. UMAP results show that while LITO successfully generates
synthetic minority samples, while other baselines fall short in generating samples near the ground-truth minor-
ity distribution and overlap into the majority class distribution.
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(a) UMAP of ground truth training data. (b) UMAP of SOS.

(c) UMAP of GReaT. (d) UMAP of LITO.
Figure 6: UMAP visualizations for the satimage dataset. For comparison, the ground truth training data is
superimposed as transparent points. UMAP results show that LITO successfully generates synthetic minority
samples that resemble the ground truth training data.
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B.2 QUANTITATIVE ANALYSIS

To quantitatively analyze the quality and diversity of generated samples, we measure the coverage
score (Naeem et al., 2020), which measures whether at least one generated sample is contained in
the k-nn manifold of a real data sample. Although a high coverage score reflects the diversity of
the generated samples, it does not guarantee the quality of generated samples, as our main focus
is in minority oversampling. For example, sampling distribution with a high coverage score may
invade the majority class distribution, resulting in degraded downstream performance. In this sense,
we devise and report the spillage score which is the coverage score of the sampled minority data
w.r.t. the majority class samples. For minority oversampling, the generative model should obtain a
high coverage score while maintaining a low spillage score. In Table 6 and Table 7, we report the
respective scores of our method and recent competing baselines on binary and multi-class datasets
for imbalance ratio 100.

Table 6: Coverage and spillage scores for binary classification tasks.

Imbalance ratio α = 100

Dataset Default Shoppers Sick Diabetes (α = 20)
Coverage Spillage Coverage Spillage Coverage Spillage Coverage Spillage

Real 1 0.533 1 0.345 1 0.074 1 0.599
SOS 0.608 0.203 0.769 0.213 0.929 0.466 0.375 0.553
GreaT 0.859 0.883 0.969 0.884 0.943 0.457 0.798 0.931
LITO-C 0.945 0.629 0.891 0.324 0.950 0.466 0.761 0.338
LITO-B 0.951 0.656 0.870 0.440 0.936 0.485 0.676 0.376

Table 7: Coverage and spillage scores for multiclass classification tasks.

Imbalance ratio α = 100

Dataset Obesity Satimage
Coverage Spillage Coverage Spillage

Real 1 0.325 1 0.126
SOS 0.657 0.161 0.338 0.045
GreaT 0.847 0.392 0.630 0.400
LITO-C 0.912 0.370 0.672 0.108
LITO-B 0.926 0.386 0.509 0.125
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C DETAILED SETTINGS FOR IN-CONTEXT LEARNING

For in-context learning oversampling experiments, we use the OpenAI chatbot API to access
GPT-3.5-turbo-0613. For the generation step, we provide majority samples and minority sam-
ples as context and prompt the model to generate synthetic minority samples. Due to token limits,
we supply 100 majority-class samples and 17 minority-class samples (all of them) in the context
and request to generate samples or impute a given sample. The prompt structure used is described
in Figure 7, 8. For LITO-B, For self-authentication, we use in-context few-shot (17 shots) learning
to predict the labels of the generated samples. The prompt format used is described in Figure 9. In
Table 8, we provide further experiments on ICL-LITO with and without self-authentication. Results
show that self-authentication effectively increases the oversampling performance.

Table 8: In-context LITO results with and without self-authentication.

Method F1 bAcc
Vanilla 49.54 54.29
SMOTE 61.06 61.28
B-SMOTE 59.77 60.46
CTGAN 55.31 55.50
SOS 49.80 54.39
GReaT (Distill-GPT2) 49.44 49.59
ICL-LITO-C (w/o SA) 64.70 65.42
ICL-LITO-C (with SA) 67.37 66.88
ICL-LITO-B (w/o SA) 58.32 59.76
ICL-LITO-B (with SA) 63.68 64.01

ContentRole

You are a diabetes expert with a medical degree.SYSTEM

This is a diabetes record csv file. These people are label 0.

Attr0,Attr1,Attr2,Attr3,Attr4,Attr5,Attr6,Attr7,label

2,106,56,27,165,29.0,0.426,22,0

1,117,60,23,106,33.8,0.466,27,0

…

5,128,80,0,0,34.6,0.144,45,0

This is an diabetes record csv file. These people are label 1.

Attr0,Attr1,Attr2,Attr3,Attr4,Attr5,Attr6,Attr7,label
0,135,68,42,250,42.3,0.365,24,1
1,122,64,32,156,35.1,0.692,30,1
…
0,129,110,46,130,67.1,0.319,26,1

Read given record csv files. Can you synthesize 40 label 1 records for me?

USER

Figure 7: In-context learning prompt format for LITO-C.
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ContentRole

You are a diabetes expert with a medical degree.SYSTEM
This is a diabetes record csv file. These people are label class0.

Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age,label

2,106,56,27,165,29.0,0.426,22,class0

1,117,60,23,106,33.8,0.466,27,class0

…

5,128,80,0,0,34.6,0.144,45,class0

This is an diabetes record csv file. These people are label class1.

Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age,label
0,135,68,42,250,42.3,0.365,24,class1
1,122,64,32,156,35.1,0.692,30,class1
…
0,129,110,46,130,67.1,0.319,26,class1

Now, let's look at the following class1 record. It has missing values, indicated by question marks:

Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age,label
0,?,?,0,0,?,0.262,?,class1

Generalizing from the previous records, impute the missing values and output directly into CSV 
format, starting with the column names. No talking.

USER

Figure 8: In-context learning prompt format for LITO-B.

ContentRole

You are a diabetes expert with a medical degree.SYSTEM

Read a given information and questions. Think step by step, and then predict whether its value is c
lass0 or class1. You must choose in [class0, class1]. 
Dataset has Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunct
ion, Age as 8 input variables and label as output.
Question:When Pregnancies is 1, Glucose is 88, BloodPressure is 62, SkinThickness is 24, Insulin is 
44, BMI is 29.9, DiabetesPedigreeFunction is 0.422, Age is 23, then what is the label? You must cho
ose in [class0, class1]. Answer:class0
Question:When Pregnancies is 6, Glucose is 162, BloodPressure is 62, SkinThickness is 0, Insulin is 
0, BMI is 24.3, DiabetesPedigreeFunction is 0.178, Age is 50, then what is the label? You must choo
se in [class0, class1]. Answer:class1

…

Question:When Pregnancies is 1, Glucose is 97, BloodPressure is 70, SkinThickness is 15, Insulin is 
0, BMI is 18.2, DiabetesPedigreeFunction is 0.147, Age is 21, then what is the label? You must choo
se in [class0, class1]. Answer:class0
Question:When Pregnancies is 1, Glucose is 150, BloodPressure is 72, SkinThickness is 35, Insulin 
is 0, BMI is 33.5, DiabetesPedigreeFunction is 0.627, Age is 50, then what is the label? You must 
choose in [class0, class1]. Answer:

USER

Figure 9: In-context learning prompt format for self-authentication.
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