
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DGS: ROBUST AND DIVERSE WATERMARKS FOR DIF-
FUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in diffusion-based generative models, such as Stable Diffusion,
have transformed image generation, making it possible to create high-quality and
diverse content from textual prompts. However, these advancements also raise
concerns about intellectual property theft and the authenticity of generated con-
tent. A promising solution to these issues is watermarking, which embeds hidden
information into generated content to ensure traceability and protect intellectual
property. In this paper, we propose Dynamic Gaussian Shading (DGS), a novel
watermarking method specifically designed for diffusion models. DGS uses a
dynamic, distance-aware re-localization approach for watermark embedding that
adapts to the latent space of generative models, enhancing both the robustness of
the watermark and the diversity of the generated images. We evaluate DGS in
terms of its watermarking effectiveness, resistance to various attacks, and the di-
versity of generated images. Our experimental results show that DGS achieves
high watermark accuracy, maintains robustness against attacks, and preserves im-
age quality. Furthermore, we introduce a new metric, Encoded Feature Diversity
(EFD), to measure the diversity of generated images across different watermark-
ing methods. Compared to existing baseline methods, DGS strikes a significantly
improved balance between watermark reliability and image generation diversity.
The proposed method provides a promising approach to embedding watermarks
in generative models, supporting the secure use of AI-generated content while
maintaining the creative potential of these powerful tools.

1 INTRODUCTION

In recent years, deep learning-based LeCun et al. (2015) image generation models Song et al. (2020);
Ho et al. (2020); Rombach et al. (2022); Nichol et al. (2021); Kingma (2013); Goodfellow et al.
(2020); Ramesh et al. (2022); Razzhigaev et al. (2023), particularly those using diffusion processes,
have shown remarkable progress in generating high-quality, diverse images from textual prompts.
These models have become central to various applications, including artistic creation, drug design
Huang et al. (2024); Guan et al. (2023), material design Xie et al. (2021); Li et al. (2022), and even
data synthesis Zhu et al. (2024); Trabucco et al. (2023) for machine learning tasks. However, as
with many powerful generative models, there are concerns regarding the intellectual property and
authenticity of the generated content.

In recent years, deep learning-based image generation models, especially those using diffusion
processes, have made significant strides in generating high-quality, diverse images from textual
prompts. These advancements have been driven by models like Denoising Diffusion Probabilistic
Models (DDPM) and its variants Song et al. (2020); Ho et al. (2020); Rombach et al. (2022); Nichol
et al. (2021), along with others such as VAEs Kingma (2013), GANs Goodfellow et al. (2020),
and hierarchical methods Ramesh et al. (2022); Razzhigaev et al. (2023). These models are now at
the forefront of numerous applications, including artistic creation, drug design Huang et al. (2024);
Guan et al. (2023), material design Xie et al. (2021); Li et al. (2022), and data synthesis Zhu et al.
(2024); Trabucco et al. (2023) for machine learning tasks. However, the rise of these powerful
generative models has also led to concerns about the intellectual property and authenticity of the
generated content.
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Recently, there has been growing concern over the misuse of content generated by these models.
Typical forms of misuse include presenting AI-generated works as human-made for commercial pur-
poses, or using generative models to plagiarize existing content. The ability to distinguish whether
a piece of content has been generated by a model and to trace its origin has become a key issue in
the field. To address these challenges, watermarking Cox et al. (2007); Wolfgang & Delp (1996) has
emerged as a popular solution.

Watermarking, a classic technique used for protecting the intellectual property of works, has long
been a mainstream approach Cox et al. (2007); Chang et al. (2005); Razzhigaev et al. (2023); Zhu
(2018) to such issues. It involves embedding preset watermark information into a piece of content
to resolve copyright disputes and ensure the work’s authenticity. Compared to traditional water-
marking techniques that directly hide watermarks within images, recent advances in diffusion-based
watermarking methods Fernandez et al. (2023); Cui et al. (2023); Xiong et al. (2023); Zhao et al.
(2023); Asnani et al. (2024); Jang et al. (2024) have shown superior robustness against various image
manipulations, such as cropping, dropping, and noise addition. For instance, Wen et al. introduced
the Tree-Ring method Wen et al. (2023), based on Fourier transforms, and Yang et al. proposed the
Gaussian Shading method Yang et al. (2024), which uses distribution-preserving sampling. Both
of these methods are plug-and-play and can be applied to any diffusion model without requiring
modifications to the underlying model. They also maintain watermark effectiveness against a wide
range of attacks while preserving the quality of generated images. However, our experiments show
that these methods compromise the diversity of the generated images.

To address this limitation, we propose Dynamic Gaussian Shading (DGS), a novel watermarking
method that improves upon the Gaussian Shading technique. In the Gaussian Shading method, the
latent Gaussian space is divided into several non-overlapping subspaces, each corresponding to a
specific watermark information. Sampling from a particular subspace embeds the watermark infor-
mation associated with that subspace. We believe that this limitation of the fixed sampling space is
the primary cause of the reduction in image diversity observed in this method. Based on this ob-
servation, we extend the original watermark by introducing randomly generated watermarks. These
random watermarks shift the corresponding fixed subspace of the original watermark, allowing the
subspaces to randomly change within the Gaussian space. This expansion of the sampling space in-
creases the diversity of the generated images. Furthermore, we introduce a distance-weighted voting
method in the watermark extraction phase, further improving the robustness of watermark detection.

We evaluate DGS through a series of experiments, comparing it with existing baseline methods in
terms of watermark effectiveness, robustness against attacks, and image generation quality. Fur-
thermore, we introduce a new metric, Encoded Feature Diversity (EFD), to assess the diversity
of generated images across different watermarking methods. Our results show that DGS achieves
superior watermark accuracy with minimal impact on image quality, while also maintaining high
diversity in generated content. The proposed method offers a promising step forward in secure and
diverse watermarking for generative models, opening up new possibilities for content protection in
the age of AI-generated media. To the best of our knowledge, we are the first to investigate the im-
pact of watermarking based on diffusion models on the diversity of generated images. We introduce
a novel evaluation metric, Encoded Feature Diversity (EFD), which provides a fresh perspective on
assessing diffusion model watermarking methods, beyond the traditional focus on image quality.

Our contributions can be summarized as follows:

• Introduction of Dynamic Gaussian Shading (DGS): We propose a novel watermarking
method, DGS, which introduces a theoretically grounded distance-aware re-localization
and distance-weighted voting mechanism to embed the watermark into a dynamically
shifted latent subspace. These enhancement significantly increases the diversity of gen-
erated images while maintaining watermark robustness against various attacks.

• Encoded Feature Diversity (EFD): We introduce EFD, a new metric for evaluating the di-
versity of generated images under watermarking techniques. This metric provides a unique
perspective, complementing traditional quality measures such as FID and CLIP scores.

• Comprehensive Evaluation of Watermarking Methods: Our work is the first to explore the
effect of watermarking based on diffusion models on the diversity of generated images
under a fixed prompt, filling a gap in the existing literature and providing insights into
balancing watermark robustness and image diversity.
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2 RELATED WORK

Diffusion Models. Recently, diffusion models have emerged as a powerful class of image gener-
ation techniques. Their foundation was laid by Sohl-Dickstein et al. Sohl-Dickstein et al. (2015),
who introduced the concept of fitting data distributions through an inverse asymptotic noise process.
This was further developed by Ho et al. Ho et al. (2020), who integrated the principles of score-
based generative models Song & Ermon (2019; 2020) to propose Denoising Diffusion Probabilistic
Models (DDPM). These models excel at generating high-quality images by sampling from an initial
Gaussian distribution. More recently, Song et al. Song et al. (2020) introduced Denoising Diffu-
sion Implicit Models (DDIM), which optimize the inverse process computation, allowing for image
generation in fewer steps while maintaining quality.

Image Watermarking. Copyright protection has always been a hot topic of concern. For images, a
popular method is to insert a watermark Cox et al. (2007); Wolfgang & Delp (1996) containing pre-
defined information into the image. Traditional image watermarking methods, such as those Cox
et al. (2007); Chang et al. (2005) based on Discrete Cosine Transform (DCT) and Discrete Wavelet
Transform (DWT), have long been used for embedding information in images. However, the rise of
generative models has driven the development of deep learning-based watermarking approaches, in-
cluding adversarial methods Zhu (2018) and feature-based techniques Zhang et al. (2019). Although
these methods show robustness to conventional attacks (e.g., compression and random cropping),
they often struggle to embed watermarks in AI-generated content without degrading the quality or
interpretability of the images.

Watermarking for Diffusion Models. As diffusion models became more widely adopted, re-
searchers developed watermarking techniques uniquely suited to these models. Unlike traditional
methods that embed watermarks directly into images, current watermarking techniques for diffusion
models can be classified into two categories based on the watermark carrier. The first category in-
volves embedding the watermark within the model itself. These methods Fernandez et al. (2023);
Kim et al. (2024); Liu et al. (2023); Jiang et al. (2023) typically require fine-tuning the diffusion
model or modifying its parameters. The second category Wen et al. (2023); Yang et al. (2024)
adds the watermark to the initial latent variables, allowing for a plug-and-play approach that does
not require any modifications to the underlying model, allowing compatibility with any diffusion
model.

3 BACKGROUNDS

DDIM Inversion. Embedding watermark information directly into the initial latent variable Zs
T

has become a popular approach in diffusion-based watermarking. In the watermark detection and
extraction stages, it is essential to retrieve the initial latent variable Z ′s

T corresponding to the target
image. This process is the inverse of the typical denoising pathway in diffusion models; here, the
target image is used as the input and the corresponding latent variable Z ′s

T is the output.

Currently, the most widely used method for this inversion is the DDIM inversion Dhariwal & Nichol
(2021). By estimating the additive noise at each step, DDIM Inversion can gradually reconstruct the
initial latent Zs

T , ensuring that the resulting Z ′s
T closely approximates the original latent variable

used during embedding.

Gasussian Shading. Gaussian Shading is a watermarking technique that embeds information di-
rectly into a model’s latent variable. This is achieved by partitioning the Gaussian latent space
into distinct, non-overlapping subspaces, with each subspace corresponding to a unique watermark.
To enhance robustness, the watermark is repeated multiple times before being encrypted using the
ChaCha20Bernstein et al. (2008) algorithm. This encryption step generates a uniformly distributed
binary string of length l, ensuring that the probability distribution p(y) = 1

2l
is maintained. Finally,

the initial latent variable Zs
T is sampled on the basis of this encoding, as specified in Eq. equation 1,

ppf is the quantile function of the Gaussian distribution and F is the cumulative distribution func-
tion, so that any sample drawn from a given subspace inherently carries the associated watermark
information.

Zs
T = ppf(

F (Zs
T |y = i) + i

2l
). (1)

3
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This approach, known as Distribution-Preserving Sampling, ensures that the latent variable Zs
T is

sampled exclusively within the subspace corresponding to a particular watermark, thereby preserv-
ing a predefined distribution as outlined in Eq. equation 2. This method secures the watermark’s
integrity by aligning Zs

T distribution with the watermark-specific subspace, enabling reliable and
consistent watermark detection.

p(Zs
T |y = i) =

{
2l ∗ f(Zs

T ), ppf( i
2l
) < Zs

T < ppf( i+1
2l

),

0, otherwise.
(2)

4 THE PROPOSED METHOD

In this section, we begin by introducing the threat model considered in this work, outlining the
potential risks and adversarial scenarios that our watermarking method aims to address. Follow-
ing this, we provide a detailed explanation of the watermark embedding and extraction processes,
highlighting how Dynamic Gaussian Shading (DGS) ensures robustness and diversity within these
procedures.

4.1 THREAT MODEL

We begin by defining two roles: the model owner, who publishes an API for users to generate im-
ages using the model, and the attacker, a user who attempts to use generated images for prohibited
purposes. The purpose of watermarking is twofold: to verify whether an image was generated by
the model published by the model owner and to invisibly encode generation information (e.g., user
ID).

In this setup, the model owner integrates the watermarking algorithm directly into the API, so that
a watermark is embedded each time a user calls the API to generate an image. When an attacker
generates an image, they may attempt to remove the watermark through attacks like image transfor-
mations and other methods before using the image in unauthorized ways.

If a dispute arises, the model owner can extract the watermark from the image for verification. The
watermark typically has two components: (1) Fixed information that verifies the image as generated
by the model owner’s model, and (2) Dynamic information, such as unique user IDs, that identifies
the specific user who generated the image.

4.2 WATERMARK EMBEDDING

We propose a method called Distance-aware Re-localization, which embeds watermarks by filling
randomly generated noise into the latent variable. The overall pipeline is illustrated in Fig. 1(a).

We begin with the target watermark sequence Winit and a set of randomly generated Gaussian noise
samples N . The watermark Winit is a binary string of length l, while N contains c×h×w Gaussian
noise values, where c, h, and w denote the channel and spatial dimensions of the latent variable.

Next, we randomly generate a binary sequence Wrand of length l
fl

, where the hyperparameter fl
controls the trade-off between watermark robustness and diversity. The initial watermark Winit is
then transformed by a shift function M , yielding a binary sequence Wshift of equal length. Here, we
implement M as a broadcast XOR operation.

Following the Gaussian Shading paradigm, both Wshift and Wrand are expanded by repeating them
gshift and grand times, respectively. The resulting sequences are further transformed using the
ChaCha20 algorithm to yield two encrypted binary sequences: EWshift of length l × gshift, and
EWrand of length l

fl
× grand. These lengths are chosen such that l× gshift +

l
fl

× grand = c× h×w.

We then construct a binary mask sequence Maskrand from Wrand, with the same length as EWrand.
This mask is used to form a ternary sequence MEW, consisting of three symbols: P, N, and R.
Specifically, if a bit in Maskrand equals 0, the corresponding entry in MEW is set to R; otherwise,
its value is determined by EWshift, where 1 maps to P and 0 maps to N.

Based on the number of P, N, and R entries in MEW, we split the Gaussian noise set N into three
subsets: the positive set, negative set, and remaining set. The partitioning is performed according to
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a) Watermark Embedding

b) Watermark Extraction

Figure 1: The pipeline of Dynamic Gaussian Shading. Distance-aware Re-localization splits Gaus-
sian noise by absolute magnitude and fills it into the latent variable according to the watermark
sequence and a random binary string Wrand, enabling diverse watermark embedding.

the absolute magnitude of noise values: large positive values are assigned to the positive set, large
negative values to the negative set, and the smaller values to the remaining set.

Finally, we randomly sample noise from these three subsets and fill them into the positions specified
by MEW, resulting in the noise sequence Zshift. Meanwhile, the noise sequence Zrand is gener-
ated directly from Wrand via Distribution-Preserving Sampling. Concatenating Zrand and Zshift, and
reshaping the result, yields the latent variable Zs

T that encodes the watermark.

Below we give an explanation of how Distance-aware Re-localization improves the robustness of
watermark embedding. Our approach is inspired by an intriguing observation: the closer a sampled
latent variable is to the boundary of its subspace, the more likely it is that, after an attack, the inverted
latent variable will cross this boundary. To illustrate this, consider a simple example in a two-
dimensional Gaussian space, divided into four equal subspaces by the coordinate axes (see Figure
2(a)). Here, both samples within the first subspace encode binary information “00”. However, the
green sample point is located very close to the boundary between the first and fourth subspaces. We
hypothesize that different types of attack on the image will have a similar impact on both sample
points, but, as shown in Figure 2(b) (the three images on the right), the green point is particularly
prone to cross the boundary after inversion after various attacks.

Next, we give a theoretical proof. Consider zi as the value at the i-th position of the initial latent
Z, and z′i as the corresponding value at the i-th position of the latent Z ′ after a certain attack and
subsequent DDIM reverse process. We compute the probability P (sign(zi) ̸= sign(z′i)). Assuming

5
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a) origin sampled latent b) reversed latent after attacked

Figure 2: The green and orange dots represent latent variables randomly sampled twice. The latent
variables sampled close to the boundary line (the green ones) are more likely to change the subspace
they belong to when the image is attacked.

that the specific attack modifies zi by a random variable X following a probability distribution X ,
we express this as:

z′i = zi +X. (3)

Let fX be the probability density function of X . Then, we have:

P (sign(zi) ̸= sign(z′i)) =

{∫ −zi
−∞ fX(x) dx, if zi > 0∫∞
−zi

fX(x) dx, if zi < 0
(4)

Since fX is non-negative, as the absolute value of zi increases, meaning the distance of zi to the
boundary of a certain dimension in space increases, the probability P (sign(zi) ̸= sign(z′i)) de-
creases. This implies that zi exhibits greater robustness in preserving its sign against arbitrary at-
tacks.

In the following, we explain how shifting Winit using the randomly generated Wrand and the func-
tion M influences the diversity of the generated latent variable ZT

s . Starting with a fixed Winit, as
described in the threat model, each user is assigned a unique watermark for identification. This
watermark remains constant whenever the user generates an image via the API. Given the uniform
distribution of the encrypted watermark, for a fixed Winit, we can consider the encrypted watermark
EWshift as a specific integer k such that k ∈

[
0, 2l

)
, corresponding to the k-th Gaussian subspace

out of the 2l subspaces.

Now, by randomly generating a uniformly distributed binary string Wrand, which can be regarded as
an integer in the range

[
0, 2

l
fl

)
, and applying the shift function M to Winit, the resulting Wshift will

follow a uniform distribution, as shown in Eq. equation 5.

p(y = i) =

{
1

2
l
fl

, i ∈ M(k, u),

0, otherwise.
(5)

In this way, the subspace corresponding to Wshift can dynamically vary with different values of Wrand.
For a fixed Winit, this results in an upgrade from a single fixed subspace to a dynamic range of 2

l
fl

subspaces. In other words, the range from which the latent variable Zs
T can be sampled expands

by a factor of 2
l
fl . At the same time, different Wrand values correspond to different positions for

assigning free elements from the remaining set. These elements do not contain watermark informa-
tion, which further increases the size of the subspace corresponding to Wshift. In the next section,
our experimental results will demonstrate the significant improvement this brings to the diversity of
generated images.

4.3 WATERMARK EXTRACTION

The watermark embedding pipeline is illustrated in Figure 1(b). The watermark extraction process
mirrors the embedding procedure. First, the image undergoes a DDIM inversion to retrieve the latent
variable Z ′s

T . Following the positions used in the watermark embedding’s concatenation process,
we split the latent variable into two parts Z ′

shift and Z ′
rand to extract both the randomly shifted

watermark and the randomly generated watermark. The extraction process for each part is identical,
based on identifying the subspace corresponding to each segment of the split variable. The decrypted
RW ′

shift and RW ′
rand then correspond to the repeated structure RWshift and RWrand used in the

6
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embedding process. Conventionally, a voting-like method reverses this repetition to recover the
original watermark W ′

shift and W ′
rand. To enhance extraction accuracy, we introduce a distance-

weighted voting method, which assigns weights based on distance, further refining the accuracy of
the extracted watermark.

Based on previous theory, similarly, we can compute P (sign(zi) ̸= sign(z′i)) using z′i:

P (sign(zi) ̸= sign(z′i)) =

{∫∞
z′
i
fX(x) dx, if z′i > 0∫ z′

i

−∞ fX(x) dx, if z′i < 0
(6)

Since a larger absolute value of z′i increases the probability of maintaining the sign of zi, we enhance
the robustness against various attacks by introducing the distance to the boundary as a weighted sum
when computing the vote. This process is illustrated in Eq. equation 7, using W ′

shift as an example.
For a two-dimensional binary matrix RW ′

shift with dimensions l × g, where l is the length of the
initial watermark W ′

shift, and g represents the number of groups in the repeat operation, we perform
a reverse reduction on RW ′

shift[i,j]
across groups to compute the corresponding W ′

shift[i]
. Notably,

Z ′
shift and RW ′

shift are mapped one-to-one, so we assign weights to their absolute values based
on the distance from Z ′

shift to each boundary line. Notably, RW ′
shift contains free elements from

the remaining set that do not include watermark information. To mitigate their influence, we first
reconstruct W ′

rand and then set the corresponding positions’ weights to zero based on W ′
rand.

W ′
shift[i] =

1,

g∑
j=1

|Z ′
shift[i,j]| ∗RW ′

shift[i,j] >

g∑
j=1

∣∣∣∣∣Z
′
shift[i,j]

2

∣∣∣∣∣ ,
0, otherwise.

(7)

5 EXPERIMENTS

In this section, we present analyses of DGS’s watermark effectiveness, robustness against various
attacks, diversity in generated images, and ablation studies.

5.1 WATERMARK EFFECTIVENESS AND IMAGE GENERATION QUALITY

In this subsection, we compare the propsoed DGS with the baselines. we selected DwtDct Cox et al.
(2007), DwtDctSvd Cox et al. (2007), RivaGAN Zhang et al. (2019), Stable Signature Fernandez
et al. (2023), Tree-Ring Wen et al. (2023), and Gaussian Shading Yang et al. (2024) for comparison.
Specifically the average bit accuracy and TPR after applying the nine attacks mentioned above, as
well as the quality of the generated images in terms of FID Heusel et al. (2017) and CLIP scores
Radford et al. (2021).

The average bit accuracy corresponds to the localization requirement in Section 4.1’s threat model,
where dynamic watermarks are extracted from images to locate relevant information. We randomly
generate 1,000 sets of watermarks, embed each watermark into images using each method, apply
attacks to these images, and then extract the watermark from each attacked image. By comparing
the extracted watermarks bit-by-bit with the original watermark, we calculate the overall average
accuracy. Since the Tree-Ring method cannot extract watermarks, we also compute TPR as a base-
line comparison. TPR corresponds to the first requirement in the throat model, which is to detect
whether an image contains a fixed preset information watermark.

For image quality, we follow previous work using FID and CLIP score metrics. FID is calculated
using 5,000 images from the COCO dataset Lin et al. (2014) and their corresponding prompts as
ground truth, generating images with the same prompts to compute FID similarity. CLIP score
measures the cosine similarity between the generated image and its prompt in the CLIP model’s
Cherti et al. (2023) encoded space.

The experimental results are shown in Table 1. Since the experimental setup is identical in this
section, we directly copied the baseline results from Gaussian Shading. From the results, we can see
that, in terms of watermark effectiveness, DGS achieved the highest average bit accuracy, improving

7
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Methods TPR (Clean) TPR (Adversarial) Bit Acc. (Clean) Bit Acc. (Adversarial) FID CLIP-Score

Stable Diffusion - - - - 25.23±.18 0.3629±.0006

DwtDct Cox et al. (2007) 0.825/0.881/0.866 0.172/0.178/0.173 0.8030/0.8059/0.8023 0.5696/0.5671/0.5622 24.97±.19 0.3617±.0007
DwtDctSvd Cox et al. (2007) 1.000/1.000/1.000 0.597/0.594/0.599 0.9997/0.9987/0.9987 0.6920/0.6868/0.6905 24.45±.22 0.3609±.0009
RivaGAN Zhang et al. (2019) 0.920/0.945/0.963 0.697/0.697/0.706 0.9762/0.9877/0.9921 0.8986/0.9124/0.9019 24.24±.16 0.3611±.0009
Tree-Ring Wen et al. (2023) 1.000/1.000/1.000 0.894/0.898/0.906 - - 25.43±.13 0.3632±.0006
Stable Signature Fernandez et al. (2023) 1.000/1.000/1.000 0.502/0.505/0.496 0.9987/0.9978/0.9979 0.7520/0.7472/0.7500 25.45±.18 0.3622±.0027
Gaussian Shading Yang et al. (2024) 1.000/1.000/1.000 0.997/0.998/0.996 0.9999/0.9999/0.9999 0.9753/0.9749/0.9724 25.20±.22 0.3631±.0005
DGS (Ours) 1.000/1.000/1.000 0.994/0.993/0.993 1.0000/1.0000/1.0000 0.9852/0.9838/0.9833 25.24±.12 0.3655±.0004

Table 1: Our proposed DGS is capable of embedding large-capacity watermarks without compro-
mising image generation quality, and it maintains robustness against various attacks.

by 1.1% on average over Gaussian Shading, which was ranked second. The TPR of DGS is slightly
lower than that of Gaussian Shading, averaging 0.3%, but remains highly reliable with a TPR greater
than 99% in verification scenarios.

In terms of image generation quality, DGS performs comparably to other diffusion-based water-
marking methods. In the FID test, DGS only scores 0.01 higher than standard Stable Diffusion,
outperforming Tree-ring and Stable Signature, but slightly behind Gaussian Shading. However, in
the CLIP score test, DGS achieves the highest score, surpassing standard Stable Diffusion by 0.26%,
and outperforming Tree-ring, Stable Signature, and Gaussian Shading.

5.2 DIVERSITY OF GENERATED IMAGES

In the previous subsection, we observed that diffusion-based watermarking methods achieve high
watermark effectiveness while barely affecting image generation quality, compared to directly em-
bedding watermarks in images. It may appear that these methods allow watermark embedding with
no trade-off. In this subsection, we reveal the trade-off through experiments, showing that these
methods incur a loss in diversity among generated images.

Inspired by the CLIP score Radford et al. (2021) calculation, we propose the Encoded Feature Diver-
sity (EFD) metric to evaluate the diversity of images generated by each method. First, we randomly
generate a watermark, fixing it to generate n images for each method, under a fixed prompt and n
random seeds. Then, we obtain features for each image via the CLIP model’s Cherti et al. (2023)
encoder. Unlike in CLIP score calculation, we compute the cosine distance between each pair of
features. As shown in Eq. equation 8, the mean of all pairwise cosine distances serves as a measure
of image diversity, where X represents the generated image and ε denotes the CLIP encoder. When
the generated images are more diverse, the features are more dispersed, resulting in a higher mean
cosine distance, i.e., a higher EFD.

EFD =
1

n2

n∑
i=1

n∑
j=1

cosine− distance(ε(Xi), ε(Xj)). (8)

For all the methods to be compared, we use the diffusion model version 2.1 and generate 1,000
images with exactly the same prompt and watermark to simulate the scenario of a single user repeat-
edly generating images. The experimental results are shown in Table 2. The normal Stable Diffusion
has an EFD of 0.213, while methods such as DwtDct, DwtDctSvd, and RivaGAN show only a slight
decrease in EFD. This is because they directly embed the watermark in the image without affecting
the diffusion model generation process.

Among the diffusion-based watermarking methods, DGS achieves the highest EFD. It reduces the
EFD by 0.075% compared to Stable Diffusion, while improving by 3.11% compared to Gaussian
Shading. The results demonstrate that DGS provides a significant improvement in image diversity
while maintaining watermark effectiveness and image generation quality comparable to Gaussian
Shading.

Based on the above experimental data, it is evident that the current mainstream watermarking meth-
ods have minimal impact on image generation quality. The main trade-off lies between watermark
effectiveness and image diversity. Methods like DwtDct, DwtDctSvd, and RivaGAN, which di-
rectly embed the watermark into the image, maintain high image diversity but lose robustness when
subjected to attacks. On the other hand, diffusion model-based watermarking methods achieve ro-
bustness against various attacks at the cost of sacrificing image diversity. Besides providing a clearer

8
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Methods EFD

Stable Diffusion 0.21337326

DwtDct Cox et al. (2007) 0.21342951
DwtDctSvd Cox et al. (2007) 0.20842214
RivaGAN Zhang et al. (2019) 0.20892236

Tree-Ring Wen et al. (2023) 0.19838478
Gaussian Shading Yang et al. (2024) 0.18146528
DGS (Ours) 0.21261603

Table 2: Our proposed DGS achieves the highest EFD among the diffusion-based watermarking
methods.

a) Guidance Scale b) JPEG c) Random Crop d) Random Drop e) Gaussian Blur

f) Median Filter g) Gaussian Noise h) Salt and Pepper Noise i) Image resized j) Brightness adjustment

Figure 3: Ablation studies results.

numerical trade-off, EFD is also more meaningful in real-world applications compared to FID and
CLIP score. In practical generative model applications, an individual user cannot perceive the over-
all quality of images generated for all users but can only assess the images produced from their own
prompts. Since EFD is computed based on a fixed user ID, improvements in EFD directly enhance
the user experience.

5.3 ABLATION STUDIES

In this section, we conduct ablation experiments to evaluate the performance of DGS under various
key parameters, including guidance scales and attack scales.

Guidance Scales. Guidance scales control the balance between the importance of the text condition.
Following the setup used in Tree-Ring Wen et al. (2023), we varied the guidance scales from 2 to 18.
The results are shown in Figure 3 (a). DGS consistently maintains high watermark effectiveness,
even when the guidance scale is set to 18, where the use of an empty string as a prompt during
DDIM inversion introduces minor errors that do not affect DGS robustness.

Attack Scales. The scale of an attack is an important hyperparameter, as larger attack scales pose a
greater challenge to watermark robustness. We followed the attack settings from Gaussian Shading
Yang et al. (2024) and tested each attack with increasing scales. The results are shown in Figure 3
(b)-(j). Except for more destructive attacks, such as random crop and Gaussian noise, DGS success-
fully defends against large-scale attacks from other methods.

6 CONCLUSION

In this paper, we propose Dynamic Gaussian Shading (DGS), a diffusion model watermarking
method that strikes a balance between watermark effectiveness and image generation diversity. Our
experimental results demonstrate that DGS can maintain watermark robustness against various at-
tacks while preserving both image generation quality and diversity. In particular, DGS maintains
over 98.3% accuracy in watermark extraction even under various attack scenarios, while achieving
competitive performance in terms of image quality (FID and CLIP scores). Compared to baseline
methods, DGS shows significant improvements in image diversity without sacrificing watermark
reliability. Additionally, we introduce Encoded Feature Diversity (EFD) , the first metric to eval-
uate the impact of watermarking on the diversity of images generated by diffusion models, which
enhances the assessment of diffusion model watermarking methods.

9
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A APPENDIX

This document provides additional experimental results and visualizations. First, we present the
TPR and bit accuracy results of DGS under individual attacks. Next, we offer additional ablation
experiments, comparing the performance of DGS and Gaussian Shading using Edict for inference
and inversion. Finally, we include various visualizations to intuitively demonstrate the advantages
of DGS.

A.1 EXPERIMENTAL SETUPS

Following the setup used in Gaussian Shading Yang et al. (2024), all experiments were conducted on
a single NVIDIA RTX 3090 GPU. The diffusion model used was the text-to-image model Rombach
et al. (2022) provided by Hugging Face, specifically versions V1.4, V2.0, and V2.1. The image
generation used 50 denoising steps with DPM Solver Lu et al. (2022) as the denoising method,
using prompts from Stable-Diffusion-Prompt. For the reverse process, we also set 50 steps using the
DDIM inversion Song et al. (2020) with an empty string as a prompt. The watermark consists of a
binary string with a capacity of 256 bits, and we calculate both the average accuracy per bit and the
true positive rate (TPR) at a fixed false positive rate (FPR) of 10−6.

The generated images are sized 512× 512. Following previous works Yang et al. (2024); Wen et al.
(2023), we calculate the FID Heusel et al. (2017) and CLIP Radford et al. (2021) scores to assess
generation quality.

For the watermark robustness experiments, the attack methods and parameter settings are as follows:

1. JPEG Compression with Quality Factor (QF) set to 25.
2. Random crop applied to 60% of the image area.
3. Random drop applied to 80% of the image area.
4. Gaussian blur with a radius (r) of 4 pixels.
5. Median filter with a kernel size (k) of 7× 7 pixels.
6. Gaussian noise with mean (µ) of 0 and standard deviation (σ) of 0.05.
7. Salt and Pepper Noise with a probability (p) of 0.05 for each pixel to be altered.
8. Image resized to 25% of its original size, then restored to the original size.
9. Brightness adjustment with a factor of 6.
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Noise Methods

DwtDct Cox et al. (2007) DwtDctSvd Cox et al. (2007) RivaGAN Zhang et al. (2019) Tree-Ring Wen et al. (2023) Stable Signature Fernandez et al. (2023) Gaussian ShadingYang et al. (2024) Ours

None 0.825/0.881/0.866 1.000/1.000/1.000 0.920/0.945/0.963 1.000/1.000/1.000 1.000/1.000/1.000 1.000/1.000/1.000 1.000/1.000/1.000
JPEG 0/0/0 0.013/0.019/0.015 0.156/0.085/0.214 0.997/1.000/0.994 0.210/0.217/0.198 0.999/1.000/0.997 1.000/1.000/0.999
RandCr 0.982/0.967/0.952 1.000/0.998/0.999 0.868/0.878/0.891 0.997/1.000/0.998 1.000/0.998/0.993 1.000/1.000/1.000 1.000/1.000/1.000
RandDr 0/0/0 0/0/0 0.887/0.885/0.862 1.000/1.000/0.998 0.971/0.980/0.972 1.000/1.000/1.000 1.000/1.000/0.999
GauBlur 0/0/0.001 0.430/0.419/0.432 0.328/0.331/0.316 1.000/1.000/0.997 0/0/0 1.000/1.000/1.000 1.000/1.000/1.000
MedFilter 0/0/0.001 0.996/0.999/1.000 0.863/0.832/0.873 1.000/1.000/1.000 0.001/0/0 1.000/1.000/1.000 1.000/1.000/1.000
GauNoise 0.354/0.353/0.364 0.842/0.862/0.884 0.441/0.457/0.535 0/0.006/0.077 0.424/0.406/0.404 0.996/0.995/0.995 0.968/0.978/0.976
S&PNoise 0.089/0.160/0.102 0/0/0 0.477/0.411/0.431 0.972/0.986/0.994 0.072/0.078/0.052 1.000/0.998/0.997 0.985/0.991/0.991
Resize 0/0.005/0.008 0.985/0.977/0.983 0.850/0.886/0.887 1.000/1.000/1.000 0/0/0 1.000/1.000/1.000 1.000/1.000/1.000
Brightness 0.126/0.114/0.124 0.110/0.072/0.074 0.480/0.404/0.386 0.084/0.089/0.092 0.843/0.862/0.849 0.974/0.991/0.979 0.989/0.973/0.975
Average of Adversarial 0.172/0.178/0.173 0.597/0.594/0.599 0.697/0.697/0.706 0.894/0.898/0.906 0.502/0.505/0.496 0.997/0.998/0.996 0.994/0.993/0.993

Table 3: results of TPR under each attack. DGS demonstrates slightly lower TPR compared to
Gaussian Shading.

Noise Methods

DwtDct Cox et al. (2007) DwtDctSvd Cox et al. (2007) RivaGAN Zhang et al. (2019) Stable Signature Fernandez et al. (2023) Gaussian ShadingYang et al. (2024) Ours

None 0.8030/0.8059/0.8023 0.9997/0.9987/0.9987 0.9762/0.9877/0.9921 0.9987/0.9978/0.9949 0.9999/0.9999/0.9999 1.0000/1.0000/1.0000
JPEG 0.5018/0.5047/0.5046 0.5197/0.5216/0.5241 0.7943/0.7835/0.8181 0.7901/0.7839/0.7893 0.9918/0.9905/0.9872 0.9941/0.9941/0.9940
RandCr 0.7849/0.7691/0.7673 0.8309/0.7942/0.8151 0.9761/0.9723/0.9735 0.9933/0.9903/0.9883 0.9803/0.9747/0.9669 0.9987/0.9980/0.9977
RandDr 0.5540/0.5431/0.5275 0.5814/0.5954/0.6035 0.9678/0.9720/0.9683 0.9768/0.9747/0.9736 0.9676/0.9687/0.9649 0.9983/0.9978/0.9965
GauBlur 0.5000/0.5027/0.5039 0.6579/0.6466/0.6459 0.8323/0.8538/0.8368 0.4137/0.4110/0.4112 0.9874/0.9846/0.9858 0.9948/0.9943/0.9940
MedFilter 0.5171/0.5243/0.5199 0.9208/0.9287/0.9208 0.9617/0.9585/0.9696 0.6374/0.6399/0.6587 0.9987/0.9970/0.9990 0.9993/0.9994/0.9998
GauNoise 0.6502/0.6294/0.6203 0.7960/0.7950/0.8159 0.8404/0.9648/0.8776 0.7831/0.7766/0.7768 0.9636/0.9556/0.9592 0.9460/0.9460/0.9528
S&PNoise 0.5784/0.6021/0.5845 0.5120/0.5267/0.5250 0.8881/0.8838/0.8634 0.7192/0.7170/0.7144 0.9406/0.9433/0.9385 0.9491/0.9530/0.9491
Resize 0.5067/0.5184/0.5135 0.8743/0.8498/0.8630 0.9602/0.9731/0.9733 0.5278/0.5051/0.5177 0.9970/0.9975/0.9976 0.9981/0.9993/0.9993
Brightness 0.5336/0.5097/0.5175 0.5346/0.5234/0.5016 0.8666/0.8496/0.8369 0.9276/0.9267/0.9204 0.9508/0.9623/0.9527 0.9815/0.9718/0.9667
Average of Adversarial 0.5696/0.5671/0.5622 0.6920/0.6868/0.6905 0.8986/0.9124/0.9019 0.7520/0.7472/0.7500 0.9753/0.9749/0.9724 0.9852/0.9838/0.9833

Table 4: results of Bit accuracy under each attack. DGS achieves the best Bit accuracy.

A.2 ADDITIONAL EXPERIMENTS

Tables 3 and 4 present the TPR and bit accuracy of DGS and other baselines under individual attack
scenarios. As the experimental settings are identical, the baseline results are reproduced from Gaus-
sian Shading. From the results, it can be observed that the performance under individual attacks is
consistent with the overall averages. DGS demonstrates slightly lower TPR compared to Gaussian
Shading but achieves the best bit accuracy overall. Notably, while Gaussian Shading performs worse
than Tree Ring in Random Cropping and Random Dropping scenarios, DGS completely overcomes
this limitation, achieving over 99

Since the watermark information is embedded into the initial latent variables, the accuracy of recon-
structing the image back into latent variables is critical. In prior works, DDIM has been consistently
used as the inverse algorithm without ablation studies. Here, we select the eDICT method as both
the inference and inverse algorithm for ablation experiments and additionally evaluate the perfor-
mance of Gaussian Shading as a comparison. Tables 5 and 6 present the experimental results for
TPR and bit accuracy under these settings. The experimental results reveal a consistent trend: DGS
exhibits slightly lower TPR than Gaussian Shading but achieves higher bit accuracy. A comparison
of the results in Tables 1 and 2 demonstrates that improvements in reverse accuracy lead to a more
significant enhancement in the watermarking effectiveness of DGS compared to Gaussian Shading.

A.3 VISUAL RESULTS

To visually demonstrate the diversity enhancement of DGS compared to Gaussian Shading, we
designed a series of visualization experiments. Figure 4 shows the visualization of 1,000 latent
variables generated under the fixed watermark setting for both DGS and Gaussian Shading. Using
PCA, the high-dimensional latent variables were reduced to two dimensions for display. As shown,
the latent variable sampling subspace of DGS is significantly broader than that of Gaussian Shading.

Figure 5 visualizes the features of the corresponding images in the CLIP-encoded space, with PCA
applied again to reduce feature dimensions to two for illustration. The results indicate that DGS
produces more dispersed feature distributions compared to Gaussian Shading, reflecting a higher
EFD score and showcasing more diverse image generation.

Figure 6 and 7 illustrate the visual comparison of image generation diversity between DGS and
Gaussian Shading using prompts from the MS-COCO 2017 dataset. To provide a clearer depiction
of the diversity, we applied a fixed watermark and restricted the sampling of latent variables to
a narrow, randomly generated plane. This ensures that all latent variables are sampled from the
intersection of this plane and the subspace corresponding to the watermark.
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Noise Methods

Gaussian ShadingYang et al. (2024) Ours

None 1.000 1.000
JPEG 1.000 1.000
RandCr 1.000 1.000
RandDr 1.000 1.000
GauBlur 1.000 1.000
MedFilter 1.000 1.000
GauNoise 0.996 0.984
S&PNoise 0.999 0.996
Resize 1.000 1.000
Brightness 0.975 0.969
Average of Adversarial 0.9966 0.9943

Table 5: results of TPR under each attack using Edict for Inference and Inversion. Improved reverse
methods can significantly enhance the watermarking effectiveness of DGS.

Noise Methods

Gaussian ShadingYang et al. (2024) Ours

None 1.0000 1.0000
JPEG 0.9538 0.9628
RandCr 0.9767 0.9969
RandDr 0.9715 0.9970
GauBlur 0.9862 0.9927
MedFilter 0.9990 0.9994
GauNoise 0.9659 0.9586
S&PNoise 0.9301 0.9372
Resize 0.9988 0.9994
Brightness 0.9538 0.9628
Average of Adversarial 0.9745 0.9819

Table 6: results of Bit accuracy under each attack using Edict for Inference and Inversion

As shown in the figure, under identical constraints and random seeds, Gaussian Shading produces
images that are very similar, with only minor differences. In contrast, DGS generates significantly
more diverse images, highlighting its ability to enhance diversity.

A.4 LLM USE DECLARATION

Large Language Models (ChatGPT) were used exclusively to improve the clarity and fluency of
English writing. They were not involved in research ideation, experimental design, data analysis, or
interpretation. The authors take full responsibility for all content.
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Figure 4: The visualization of latent variable distributions demonstrates that DGS exhibits greater
diversity compared to Gaussian Shading.

Figure 5: The visualization of generated image feature distributions shows that DGS achieves greater
diversity compared to Gaussian Shading.
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Gaussian Shading

Ours
a) A bathroom is painted in white and orange.

Gaussian Shading

Ours
b) A black Honda motorcycle parked in front of a garage

Figure 6: The visualization of images generated by DGS and Gaussian Shading under prompts from
the MS-COCO2017 dataset demonstrates the diversity in outputs between the two methods. (Part 1)
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Gaussian Shading

Ours
c) A couple of women sitting outside in a court yard.

Gaussian Shading

Ours
d) A plaster external wall with multiple old paper images attached.

Figure 7: The visualization of images generated by DGS and Gaussian Shading under prompts
from the MS-COCO2017 dataset demonstrates the diversity in outputs between the two methods.
(Part 2)
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