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ABSTRACT

In the realm of machine learning, conventional techniques like neural networks
often encounter challenges when dealing with imbalanced data. Unfortunately,
imbalanced data is a common occurrence in real-world datasets, where collection
methods may fail to capture sufficient data within specific target variable ranges.
Additionally, certain tasks inherently involve imbalanced data, where the occur-
rences of normal events significantly outweigh those of edge cases. While the
problem of imbalanced data has been extensively studied in the context of clas-
sification, only a limited number of methods have been proposed for regression
tasks. Furthermore, the existing methods often yield suboptimal performance
when applied to high-dimensional data, and the domain of imbalanced high-
dimensional regression remains relatively unexplored. In response to the identified
challenge, this paper presents SwitchLoss, a novel optimization scheme for neural
networks, and SwitchLossR, a variant with a restricted search space. Diverging
from conventional approaches, SwitchLoss and SwitchLossR integrate variable
loss functions into the traditional training process. Our assessment of these meth-
ods spans 15 regression datasets across diverse imbalanced domains, 5 synthetic
high-dimensional imbalanced datasets, and two imbalanced age estimation image
datasets. Findings from our investigation demonstrate that the combined utiliza-
tion of SwitchLoss and SwitchLossR not only leads to a notable reduction in vali-
dation error, but also surpasses prevailing state-of-the-art techniques dedicated to
imbalanced regression.

1 INTRODUCTION

In recent years, the growing availability of large datasets has enabled researchers to apply machine
learning for building predictive models. However, many real-world datasets exhibit imbalanced or
skewed distributions, which can hinder model performance, particularly in regions with sparse data.
While imbalanced classification has received attention, imbalanced regression remains less explored.
Only a few methods address imbalanced regression, most focusing on sampling techniques. Notable
examples include SMOGN (Branco et al., 2017), an enhancement of SMOTER using Gaussian noise
(Torgo et al., 2013). Another example is DenseLoss (Steininger et al., 2021), a cost-sensitive method
designed for imbalanced regression, that avoids the removal of potentially useful data by focusing
on optimization challenges.

In response to this challenge, we propose a novel optimization scheme to address the problem of
imbalanced regression. This method, which we named SwitchLoss, introduces a novel approach
that leverages the dynamic switching between different loss functions during the training process of
neural networks, thereby acting as a regularization technique and mitigating the risk of optimization
converging to a local optimum.

This paper is organized as follows: Section 2 defines the problem of imbalanced regression and
presents an overview of the existing related work. The proposed optimization scheme SwitchLoss
is described in Section 3, while the results of the experimental evaluation are presented in Section
4. We provide a discussion on the obtained results in Section 5. Finally, Section 6 outlines the main
conclusions and future work.
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2 RELATED WORK

Imbalanced regression refers to regression problems where the target variable is unevenly dis-
tributed, with some ranges being underrepresented. The goal is to build models that accurately
approximate the function Y = f(x) using a training set D = (xi, yi)

N
i=1 with N samples. Unlike

classification, imbalanced regression is more complex due to the continuous nature of the target
variable.

A significant portion of existing approaches builds upon the seminal work of Torgo and Ribeiro
(2007) and Ribeiro (2011), who proposed the concept of a relevance function ϕ(y) which assigns
a quantitative score [0,1] to the range of target values. Furthermore, Ribeiro (2011) introduced an
automated method for approximating the relevance function ϕ(y) using box plot statistics. This
approximation assumes that the rare and extreme cases hold the highest relevance. Subsequently,
the relevance function is utilized to classify data samples into major (normal) and minor (rare) cate-
gories, employing a user-defined threshold tr. This division is accomplished through the following
assignment: RS = {(x, y) ∈ D : ϕ(y) ≥ tr} and NS = {(x, y) ∈ D : ϕ(y) < tr}. This catego-
rization based on the relevance function and the user-specified threshold enables the segregation of
the data set into rare and normal instances for further analysis and modeling.

Approaches for handling imbalanced data include resampling and cost-sensitive learning
(Krawczyk, 2016). A few different sampling approaches for imbalanced regression are proposed.
They are applied during data pre-processing, such as SMOTER (Torgo et al., 2013) which is based on
the original SMOTE method for classification (Chawla et al., 2002) and combines under-sampling
of common data samples with over-sampling of rare cases, in order to create a more balanced dis-
tribution. The SMOGN (Branco et al., 2017) can be considered state-of-the-art among resampling
techniques. This algorithm builds on top of SMOTER and combines it with oversampling via Gaus-
sian noise. Normally distributed noise is added to the features and the target value of rare data
samples, therefore creating additional, slightly altered replicas of existing samples (Branco et al.,
2016). Cost-sensitive methods are far less common in regression, but DenseLoss (Steininger et al.,
2021) offers a promising approach. It uses DenseWeight, a density-based weighting scheme, to
determine rarity without modifying the dataset.

3 METHODS

In this section, we introduce SwitchLoss as a versatile optimization scheme for neural networks and
provide a specific outline of its implementation for imbalanced regression problems.

3.1 GENERAL SWITCHLOSS SCHEME

In machine learning, optimizing the loss function aims to minimize the difference between a neu-
ral network’s predicted outputs and the actual outputs, thereby improving model performance. The
choice of the loss function reflects the network’s objectives, guiding it toward a more accurate input-
output relationship as training progresses (Goodfellow et al., 2016). Many machine learning prob-
lems involve multiple factors that are difficult to combine in a single loss function due to differences
in scales, units etc. In this study, we explore an alternative approach where different loss functions
are switched during the training phase, rather than merging them into one.

This approach is highly generalizable and can be used across different domains. We recognize that
a machine learning model’s success largely depends on its optimization process. To address this, we
propose a nested two-stage optimization framework. The first stage, called the exploration stage,
optimizes the scheme of loss functions for training. The second stage, traditional training, then
optimizes the neural network’s parameters using the selected scheme. The traditional training is
occurring within the broader scope of the exploration stage. Thus, the first stage evaluates different
loss schemes, while the second focuses on optimizing the model based on the chosen scheme.

The proposed approach involves randomly switching between predefined loss functions during spe-
cific epochs over a fixed number of cycles. This method explores the effect of different loss functions
on training, aiming to identify the most effective configuration. By introducing random switching,
the approach increases flexibility and diversity in optimization.
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By employing this nested two-stage optimization framework, we aim to enhance the overall per-
formance of the neural network model by effectively optimizing both the loss function scheme and
the underlying neural network parameters. The framework’s details are outlined in Procedure 1. To
demonstrate its feasibility, we implement the scheme in the context of imbalanced regression, with
detailed specifics provided in the following subsection.

Procedure 1 General SwitchLoss
Require: D - {(fi, yi)}Ni=1 data set with fi feature vectors and yi continuous target values

{Lossfi}n1 - set of n loss functions
explores - number of exploration cycles for the optimization scheme
#switches - number of changes of loss function in traditional training
epochs - number of epochs for the traditional optimization

procedure SWITCHLOSS(D)
epochs to switch = round( epochs

#switches ) ▷ Number of epochs with constant loss function

switch epochs = {epochs to switch × i}#switches−1
i=1

loss function = random({Lossfi}n1 ) ▷ Initialization
min error = ∞ ▷ Initialization
best model = Null ▷ Initialization
for e ∈ (1, explores) do ▷ First stage of exploration - different configurations

for i ∈ (1, epochs) do ▷ Nested traditional training within the exploration stage
if i ∈ switch epochs then

loss function = random({Lossfi}n1 )
end if
traditional training(D) ▷ With previously defined loss function

end for
Calculate error on a test data set ▷ Compare optimization schemes
if error < min error then ▷ Minimum error

best model = model ▷ Save the model with the minimum test error
min error = error

end if
end for
return best model ▷ Return the model that performs the best

end procedure

3.2 HYPER-PARAMETERS

Within our algorithm, we acknowledge the presence of three important parameters. The first pa-
rameter pertains to the selection of a set of n loss functions, which is a crucial decision requiring
domain knowledge and problem-specific considerations. The choice of these functions determines
the optimization criteria used during the training process. In the following subsection we propose
and justify our choices for the imbalanced regression applications.

The second parameter, denoted as #switches, represents the number of divisions of the traditional
training into continuous loss function blocks. The value of #switches can be adjusted based on the
specific characteristics of the problem.

The third parameter, denoted as explores, indicates the number of cycles dedicated to exploring
various training schemes. Increasing the value of explores enhances the likelihood of identifying
the best possible training scheme, while also requiring larger computational resources. Ideally,
setting this value to n#switches would allow for an exhaustive exploration of all available options.
In this scenario, random selection becomes inconsequential as the systematic search ensures more
meaningful and comprehensive results.

3.3 SWITCHLOSS FOR IMBALANCED REGRESSION

In this section, we provide a comprehensive elaboration of the SwitchLoss scheme’s implementation
for the specific domain of imbalanced regression.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The majority of algorithms employed in the imbalanced regression domain rely on sampling tech-
niques (Krawczyk, 2016). These algorithms typically involve either over-sampling, generating arti-
ficial samples, or under-sampling, failing to fully exploit the available information.

In our research, we believe that the suboptimal performance of neural networks in imbalanced re-
gression problems stems from issues in the optimization process. Specifically, we argue that conven-
tional optimization methods excessively prioritize the proportion of data samples within abundant
regions. Consequently, this bias towards the abundant regions leads to the attraction of optimiza-
tion towards local minima, resulting in predictions that predominantly align with values close to the
abundant region for any given input. To address this problem, we propose an alternative optimization
procedure that leverages the entire available information without resorting to intentionally induced
loss or the artificial generation of data samples.

We hypothesize that by introducing a change in the loss functions employed during training, while
maintaining the same objective - finding the best approximation of the underlying function, we can
effectively steer the optimization away from local minima. Therefore, we propose the utilization
of the SwitchLoss scheme, which involves a predefined set of three loss functions in the context of
imbalanced regression:

The first choice for a loss function is a standard root-mean-squared error, given in Equation 1.

MSE =
1

N

1∑
N

(y − ŷ)2 (1)

N refers to the number of samples in a training data set, while y and ŷ are true target values and
predicted target outputs, respectively.

We augment the list of functions by introducing what we refer to as ”optimization on the model”
instead of ”on the data”. Our second choice is Jensen-Shannon divergence (JSD), given in Equation
2.

JSD(p∥q) = 1

2
DKL(p∥m) +

1

2
DKL(m∥q) (2)

The JSD is a mathematical measure that assesses the dissimilarity between probability distributions.
It quantifies the discrepancy or divergence between two distributions by considering both their sim-
ilarities and differences (Fuglede & Topsoe, 2009).

For the last function in the optimization procedure we propose the disparity between the standard
deviations of the predicted and actual outputs of the neural network, given in Equation 3.

STDloss = ∥σ(y)− σ(ŷ)∥ (3)

In the equation σ(ŷ) represents the standard deviation of the predicted neural network output, and
σ(y) denotes the standard deviation of the actual output.

By incorporating this particular function along with JSD into the optimization process, we aim to
capture and address discrepancies in the spread of the predicted output compared to the ground
truth. Minimizing the absolute difference between these standard deviations encourages the neural
network to generate predictions that exhibit similar levels of variability as the actual output, ulti-
mately enhancing the model’s ability to accurately capture the underlying distribution’s dispersion
properties.

The conventional optimization approach encounters challenges in accurately predicting target values
within rare regions of the target distribution. As a result, the predicted target values tend to con-
centrate solely in abundant regions, leading to a narrower predicted standard deviation distribution
compared to the actual distribution. By incorporating these loss functions, the model is incentivized
to generate predictions that extend beyond the abundant region, thereby encouraging the exploration
and accurate prediction of values within rare regions of the target distribution.

Finally, for the application of SwitchLoss to imbalanced regression we propose using the following
set of loss functions, given in Equation 4. The details are outlined in Procedure 2.

{Lossfi}31 = {MSE, JSD, STDloss} (4)
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Procedure 2 SwitchLoss for Imbalanced Regression

Require: D - {(fi, yi)}Ni=1 data set with fi feature vectors and yi continuous target values
{MSE, JSD, STDloss} - set of loss functions
explores - number of exploration cycles for the optimization scheme
#switches - number of changes of loss function in traditional training
epochs - number of epochs for the traditional training

procedure SWITCHLOSS(D)
epochs to switch = round( epochs

#switches ) ▷ Number of epochs with constant loss function

switch epochs = {epochs to switch × i}#switches−1
i=1

loss function = random({MSE, JSD, STDloss}) ▷ Initialization
min error = ∞ ▷ Initialization
best model = Null ▷ Initialization
for e ∈ (1, explores) do ▷ First stage of exploration

for i ∈ (1, epochs) do ▷ Nested traditional training within the exploration stage
if i ∈ switch epochs then

loss function = random(MSE, JSD, STDloss)
end if
traditional training(D) ▷ With previously defined loss function

end for
Calculate error on a balanced test data set ▷ Compare optimization schemes
if error < min error then ▷ Minimum error

best model = model ▷ Save the model with the minimum test error
min error = error

end if
end for
return best model ▷ Return the model that performs the best

end procedure

3.3.1 RESTRICTING THE SEARCH SPACE

A crucial characteristic of this algorithm resides in the extensive array of possibilities related to the
combination of loss functions. Specifically, in the context of imbalanced regression, since three
functions have been proposed the total number of conceivable schemes amounts to 3#switches. As
the number of functions or switches increases, this count escalates significantly. In light of limited
resources such as time or computational power, we put forth techniques aimed at mitigating the
magnitude of the search space.

One of the options is assigning higher probabilities to specific loss functions that introduces a con-
trolled bias in the optimization process. These probabilities, informed by domain knowledge or
empirical observations, help manage the exploration-exploitation trade-off by focusing optimization
on certain areas while allowing exploration elsewhere.

In the domain of imbalanced regression, we conducted an investigation into the performance of
different loss function schemes. Notably, we observed that employing a fixed mean squared error
(MSE) loss for every other switch, while alternately switching between JSD and STD losses for the
remaining switches, yielded results that were comparable to those obtained through a completely
random search. This approach effectively reduced the exhaustive search space from a potentially
large pool of 3switches possible schemes to a significantly smaller set of schemes with a cardinal-
ity of 2

switches
2 , achieved by considering the binary switching pattern. By adopting this modified

search strategy, we maintain strong performance in imbalanced regression tasks while significantly
reducing the computational complexity. This focused exploration improves efficiency, enhances op-
timization, and aids in identifying near-optimal loss function configurations. We denote this method
as SwitchLossR and Procedure 3 outlines the details.

Readers should note that restricted search techniques explore only a limited subset of possible opti-
mization schemes. To maximize the chances of finding optimal results, conducting a more extensive
search is recommended.
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Procedure 3 Restricted Search Space SwitchLoss for Imbalanced Regression

Require: D - {(fi, yi)}Ni=1 data set with fi feature vectors and yi continuous target values
{MSE, JSD, STDloss} - set of loss functions
explores - number of exploration cycles for the optimization scheme
#switches - number of changes of loss function in traditional training
epochs - number of epochs for the traditional optimization

procedure SWITCHLOSSR(D)
epochs to switch = round( epochs

#switches ) ▷ Number of epochs with a constant loss function

switch epochs = {epochs to switch × i}#switches−1
i=1

loss function = MSE ▷ Initialization
min error = ∞ ▷ Initialization
best model = Null ▷ Initialization
for e ∈ (1, explores) do ▷ First stage of exploration

for i ∈ (1, epochs) do ▷ Nested traditional training within the exploration stage
if i ∈ switch epochs then

if switches.index(i)%2==0 then
loss function = MSE

else
loss function = random(JSD, STDloss)

end if
end if
traditional training(D) ▷ With previously defined loss function

end for
Calculate error on a balanced test data set ▷ Compare optimization schemes
if error < min error then ▷ Minimum error

best model = model ▷ Save the model with the minimum test error
min error = error

end if
end for
return best model ▷ Return the model that performs the best

end procedure

4 EXPERIMENTAL EVALUATION

We designed an experimental setup targeted at assessing the performance of SwitchLoss in the
context of imbalanced regression tasks.

4.1 DATA

For evaluating the performance of the presented approaches, we used three different types of datasets
- 15 standard datasets from different imbalanced domains, 5 synthetic high-dimensional imbal-
anced datasets due to a special challenge that imblanace presents in high-dimensional settings, and
two more complex age estimation image datasets IMDB-WIKI (Rothe et al., 2018) and AgeDB
(Moschoglou et al., 2017), in order to evaluate the efficacy of our proposed method on deep learn-
ing architectures. Appendix contains tables that show in greater detail the main characteristics of
these datasets and figures that show target value distributions, as well as the preprocessing that was
done with image datasets. In total, we use 22 datasets that cover a range of sizes, feature numbers,
distribution shapes and imbalance levels.

Important to note is that we split the data for the previous datasets into the training, validation,
and test datasets. We selected the balanced validation and test datasets which implies that target
values of the test and validation datasets are seeded uniformly throughout the whole target range.
Random sampling from a data set would create imbalanced test data and consequently cause a bias
towards a more abundant target value region in model performance assessment. Selected test data
and validation data cover each 15% of the whole corresponding data set for standard and synthetic
high-dimensional datasets.
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Moreover, to ensure a comprehensive and unbiased evaluation of the SwitchLoss, we employ two
distinct validation datasets. The first validation set is utilized during the traditional training stage
to determine the optimal model within a specified range of epochs. In contrast, the second valida-
tion set is employed to identify the most effective optimization scheme. Subsequently, the selected
optimization scheme is applied to train the model, and its performance is assessed using unseen
data, thereby providing a robust evaluation of the proposed approach. Note that, the utilization of
two validation sets consequently results in a smaller amount of training data used for SwitchLoss
compared to other techniques.

4.1.1 IMBALANCED REGRESSION METHODS

We applied to each of the datasets, 4 different strategies. The techniques that we tested are as
follows:

• Original data set with MSE loss

• SMOGN algorithm with MSE loss

• Original data set with generalized SwitchLoss (completely random search in exploration
phase shown in Procedure 1)

• Original data set with restricted search space SwitchLoss, denoted as SwitchLossR (Proce-
dure 3), with 32 exploration cycles

The two real image datasets are exceptions to this as, due to computational resource limitations, we
do not apply the generalized SwitchLoss. Details of the parameters are given in the Appendix.

Based on our research and experimentation, we suggest switching loss functions 10 times. It is im-
portant to note that while this default value has demonstrated effectiveness across numerous datasets
(as shown in the following section), it may not necessarily be the optimal choice for every data set.

To ensure fairness in our reporting, we adopt a single default parameter setting as the basis for
presenting the main results. This approach is consistent with our treatment of SMOGN, where we
employ only one setting despite the possibility of superior settings tailored to specific datasets.

4.1.2 LEARNING METHOD

We designed SwitchLoss to specifically address the optimization process of neural networks
(NNs). A prerequisite for NNs to perform well is that the data is approximately balanced (Castro
& Braga, 2013), (Wang et al., 2016). For standard and synthetic datasets we test 4 different
architectures (deeper, shallower, wider and narrower) in order to show that performance is not
architecture-specific: (16, 8, 4), (32, 16, 8), (40, 20, 10, 5), (64, 16, 4, 2). Listed architectures
represent a number of hidden layers and the corresponding number of neurons per layer.
Furthermore, since the real-world image datasets IMDB-WIKI and AgeDB are more complex,
we used deep ResNet architecture (He et al., 2016) for the learning process. Details of the
implementation are provided in the Appendix.

4.1.3 EVALUATION METRICS

As proposed in (Liu et al., 2019) and adapted for regression in (Yang et al., 2021), we divide the
target space into three disjoint subsets: many-shot region (bins with over 100 training samples),
medium-shot region (bins with 20-100 training samples), and few-shot region (bins with under 20
training samples), and report results on these subsets, as well as overall performance. For metrics,
we used root-mean-squared error (RMSE).

4.2 RESULTS

We present here an analysis of the performance of the different versions of the SwitchLoss algorithm
on the datasets utilized in our experiments. The important findings are summarized in Table 1 for
a combined overview including the generalized SwithLoss, and the restricted search SwitchLoss
denoted as SwitchLossR to avoid confusion. Note that SwitchLoss and SwitchLossR approaches

7
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Table 2: Evaluation of the performance for the image datasets.

DataSet Technique Overall RMSE Many Medium Few
IMDB-WIKI MSE 138.06 108.70 366.09 964.92

SMOGN 136.09 109.15 339.09 944.20
SwitchLossR 132.59 106.87 328.68 886.79

AgeDB MSE 101.60 78.40 138.52 253.74
SMOGN 117.29 101.36 133.86 232.90
SwitchLossR 99.60 77.36 125.54 240.13

can be combined, which is what the ”Combined” column shows. In such a combined approach, we
consider the algorithm as comprising 100 cycles of random search followed by 32 cycles within a
region of the restricted search (or vice versa), and therefore 132 exploration cycles in total. This will
be further discussed in the following section. For the sake of brevity, we solely report the overall
root mean squared error (RMSE) winner for each data set.

Table 1: Number of best-performing datasets per technique and per neural network architecture.
SwitchLoss and SwitchLossR against SMOGN and MSE.

DataSetType Architecture MSE SMOGN SwitchLoss SwitchLossR Combined
standard (16, 8, 4) 6 3 3 3 6

(32, 16, 8) 5 4 4 2 6
(40, 20, 10, 5) 4 2 4 5 9
(64, 16, 4, 2) 4 6 4 1 5
All 19 15 15 11 26

synth HD (16, 8, 4) 0 2 2 1 3
(32, 16, 8) 1 2 2 0 2
(40, 20, 10, 5) 2 2 1 0 1
(64, 16, 4, 2) 2 0 2 1 3
All 5 6 7 2 9

Given the increased complexity of the age estimation image datasets in terms of size and neural
network configuration, we provide detailed information regarding evaluation metrics across all target
regions, as defined in subsection 4.1.3. The results of this evaluation are presented in Table 2.

We provide more comprehensive results in the Appendix, like separate findings for the two versions
of the SwitchLoss algorithm to give a reader an idea of a tradeoff between the exploration space and
results obtained with different levels of resource limitations.

5 DISCUSSION

In the previous section results of our experimental evaluation are presented. We have shown that
generalized and restricted search SwitchLoss are comparable, while their combination outperforms
the existing state-of-the-art approaches for imbalanced regression problems. Nevertheless, there are
different aspects to discuss.

We presented individual and combined results for both generalized SwitchLoss and restricted search
SwitchLossR algorithms. A combination of these algorithms leverages the strengths of both. As pre-
viously explained the combined approach consists of 132 exploration cycles (100 cycles of random
search followed by 32 cycles within a region of the restricted search or vice versa). The two methods
are exploring two different spaces. Both of them look for the best configuration of loss functions
(among the space they search through). Combining them just expands the search space, making
them additive. When looking for the minimum for each dataset we compare all 4 possibilities in-
cluding SwitchLoss and SwitchLossR. If one of the best-performing methods is either SwitchLoss
or SwitchLossR, that means that one of the best configurations is among the 132 possibilities ex-
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Figure 1: Convergence of validation error (Y
axis) per epoch (X axis), for Accel data set,
and (32,16,8) NN architecture, with MSE loss
function.
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Figure 2: Convergence of validation error (Y
axis) per epoch (X axis), for Accel data set, and
(32,16,8) NN architecture, with SwitchLoss.
Red dots represent switching epochs.

plored by the combination of methods. By integrating these two strategies, the aim is to achieve a
balance between exploration and exploitation, harnessing the advantages of both approaches. The
randomized nature of the generalized search helps in avoiding local optima and discovering diverse
regions of the search space, while the restricted search focuses on refining the solutions within a
specific region.

Figures 1 and 2 provide a visual representation of the convergence of validation error per epoch, for
Accel data set and (32,16,8) NN architecture. An important observation is that optimization with
mean squared error (MSE) exhibits greater stability during training. However, despite its relative
instability, optimization with SwitchLoss achieves a validation error 50% smaller than that of MSE.
The inherent instability associated with the switch of loss functions is a direct consequence of utiliz-
ing multiple functions instead of a single one. While this characteristic may lead to fluctuations in
the optimization process, it also serves as a mechanism to prevent the optimization from becoming
trapped in local minima, as commonly experienced with MSE in imbalanced regression problems.
By employing the switch of loss functions, the optimization process gains the ability to explore a
wider range of solution spaces, thereby increasing the likelihood of finding more favorable minima.
Consequently, although the convergence may not exhibit the same level of stability as MSE, the
resulting validation error achieved through SwitchLoss is significantly reduced. It is important to
highlight that we do not extend the training duration for the SwitchLoss experiments. The same
number of epochs is used as in the original data and MSE loss experiments. This deliberate choice
ensures that SwitchLoss does not gain any undue advantage, maintaining a fair comparison across
all experiments.

Another substantial aspect of this research is the comparison between the generalized SwitchLoss
and the restricted search space variant, SwitchLossR. Our analysis shows that SwitchLoss wins in
55% of standard dataset cases and 75% in the high-dimensional domain, benefiting from exploring
a wider range of optimization schemes. However, SwitchLossR performs better in nearly half of
the standard datasets, as its more focused approach allows it to explore specific areas more effi-
ciently, leading to quicker and often better results in certain cases. Although the exploration space
of SwitchLoss is three times larger than that of SwitchLossR, it remains limited in comparison to
the vast array of all conceivable possibilities. This implies that with the larger exploration stage,
SwitchLoss is more likely to encompass some of the schemes depicted by SwitchLossR. Nonethe-
less, it is worth noting that the exploration space of these two algorithms could but does not neces-
sarily overlap.

The speed of execution is a relevant consideration when evaluating an algorithm such as SwitchLoss.
In our study, we have deliberately chosen to report results based on only 100 exploration cycles,
out of a total of 59,049 possible schemes. This decision is made to ensure that the computational
complexity of the algorithm remains manageable, without demanding extensive resources in terms
of time or computational power.

9
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It is worth noting that the speed of execution for SwitchLoss follows a time complexity of O(e),
where e represents the number of exploration cycles. In summary, while acknowledging the potential
benefits of a more exhaustive exploration stage, our study demonstrates that even a limited number
of exploration cycles can lead to competitive performance compared to alternative techniques.

Table 2 shows an important feature of SwitchLoss. It does not only improve overall errors but also
errors in distinct target regions. It can be noted that SMOGN worsens ”many” shots region for
IMDB-WIKI (Rothe et al., 2018) despite improving the overall RMSE. Depending on the prob-
lem, some regions can be more valuable for prediction than others. Our research shows that deep
architectures are better able to leverage the benefits offered by SwitchLoss. Furthermore, when
more data is available, heuristics such as Jensen-Shannon divergence and standard deviation exhibit
greater precision, resulting in amplified advantages derived from SwitchLoss. The level of class
imbalance also plays a role, as we find that for less skewed distributions, the regular mean-squared
error more frequently outperforms SwitchLoss. Conversely, in highly imbalanced cases, SwitchLoss
contributes more significantly.

Furthermore, the work by Blagus and Lusa (2013) suggests that SMOTE-based techniques introduce
bias and perform worse than baseline methods in high-dimensional settings. Our experiments align
with these findings, as we observe that SMOGN under-performs on image datasets in comparison to
standard datasets.

We did not assess the combined usage of SMOGN and SwitchLoss in our research, even though there
are no technical barriers to combining them. SMOGN addresses data, while SwitchLoss focuses on
optimization. However, the core concept of SwitchLoss aims to prevent under- or over-sampling,
rendering its combination with SMOGN inconsequential.

In summary, our comparative analysis demonstrates that SwitchLoss exhibits superior performance
on datasets with ample samples, high imbalance, and complex NN architectures.

6 CONCLUSION

In conclusion, this research paper presents the novel optimization scheme SwitchLoss which repre-
sents a versatile approach to the optimization procedure for neural networks. While the applicability
of this scheme is not limited by any problem type, the specific focus of this paper is directed towards
addressing the challenges associated with imbalanced regression.

The SwitchLoss approach entails a nested framework that combines the exploration of diverse loss
function schemes with the conventional training methodology employed in neural network opti-
mization. It comprises two stages: the exploration stage and the traditional neural network training
stage. In the exploration stage, various loss function schemes are investigated, with a predefined
number of cycles. The goal is to assess the impact of different loss function configurations on the
optimization process and identify the most effective scheme for improving model performance. In
the subsequent traditional training stage, the neural network model is trained using the optimized
loss function scheme obtained from the exploration stage.

This paper makes significant contributions in several key areas. Firstly, it introduces the opti-
mization scheme SwitchLoss, which is specifically tailored to address the challenges of imbal-
anced regression. Additionally, a variant of SwitchLoss, called SwitchLossR, is presented as a
means to reduce computational complexity while maintaining effectiveness. The effectiveness of
both SwitchLoss and SwitchLossR is thoroughly evaluated on 15 standard and 5 synthetic high-
dimensional datasets, representing diverse data distributions. The results demonstrate that the com-
bination of SwitchLoss and SwitchLossR outperforms other existing techniques. While SwitchLoss
generally performs better than SwitchLossR, particularly in the high-dimensional domain, it is note-
worthy that SwitchLossR surpasses SwitchLoss for nearly half of the standard datasets despite its
smaller search space. Furthermore, experiments conducted on more complex age estimation im-
age datasets, specifically AgeDB (Moschoglou et al., 2017) and IMDB-WIKI (Rothe et al., 2018),
highlight the superior performance of SwitchLossR compared to other techniques within the context
of deep learning architectures. Finally, we observe that the SwitchLoss schemes exhibit superior
performance on datasets with abundant samples, high imbalance, and complex neural network ar-
chitectures.
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A APPENDIX

A.1 DATA

Table 3 shows characteristics of standard datasets. N represents the number of samples in a data
set, f.total is the number of features, f.nom is the number of nominal features and f.num is the
number of numeric predictors. nRare is the number of samples with relevance value (determined
by Ribeiro (2011)) higher than the threshold (0.8) and finally %Rare represents a percent of rare
samples compared to the entire data set size. Figure 3 shows target value distributions for each of
the 15 standard datasets.

Table 3: Standard datasets information.

DataSet N f.total f.nom f.num nRare %Rare
Abalone 4177 8 1 7 679 16.3

Accel 1732 15 3 12 89 5.1
a1 198 11 3 8 28 14.1
a2 198 11 3 8 22 11.1
a3 198 11 3 8 32 16.2
a4 198 11 3 8 31 15.7
a6 198 11 3 8 33 16.7
a7 198 11 3 8 27 13.6

availPwr 1802 16 7 9 157 8.7
bank8FM 4499 9 0 9 288 6.4

boston 506 13 0 13 65 12.8
cpuSm 8192 13 0 13 713 8.7

fuelCons 1764 38 12 26 164 9.3
heat 7400 11 3 8 664 8.9

maxTorque 1802 33 13 20 129 7.2

Table 4 shows details of synthetic high-dimensional datasets. We use two different methods for
generating the synthetic data. In the first method, the target value is generated by applying a ran-
dom linear regression model to the previously generated input and a Gaussian-centered noise with
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Table 4: Synthetic high-dimensional datasets information.

DataSet N f.total nRare %Rare Method
synthHD 1 293 1000 82 27.9 make regression
synthHD 2 2228 6000 89 23.3 make regression
synthHD 3 500 20000 44 8.8 MLP
synthHD 4 300 15000 22 7.3 MLP
synthHD 5 700 15000 37 5.2 MLP

Table 5: Image datasets information.

DataSet N im.dim nRare %Rare test.size val.size
IMDB-WIKI 213553 224 × 224 17315 8.1 11022 11022

AgeDB 16488 224 × 224 293 1.8 2140 2140

an adjustable scale (make regression) (Pedregosa et al., 2011). We also resort to a Multilayer Per-
ceptron (MLP) as a random function to generate the remaining synthetic datasets. This assumes
that the function can be learned again by an MLP. Our network’s parameters are initialized with a
standard Gaussian distribution. The features are also drawn from a standard Gaussian distribution.
The network consists of 3 hidden layers (30, 10, 3 neurons per layer, respectively) and ReLU (Nair
& Hinton, 2010) activation. The final hidden layer is connected to a single neuron with linear acti-
vation to obtain target values for a regression task. We designed the datasets to cover a wide range
of sample and feature sizes, their ratios, the percentage of rare data and to have present one or two
extremes. Figure 4 shows target value distributions for 5 synthetic datasets.

Table 5 shows the main features of image age estimation datasets. im.dim represents a dimension of
images once processed. Since the sizes of these datasets are more significant than the previous ones
columns test.size and val.size show the corresponding test/validation number of samples. Figure 5
show the age distribution in these datasets. The test and validation data is balanced as well.

IMDB-WIKI

The IMDB-WIKI dataset (Rothe et al., 2018) is a large face image dataset for age estimation from
a single input image. The original version contains 523.0K face images and the corresponding
ages, where 460.7K face images are collected from the IMDB website and 62.3K images from the
Wikipedia website. We construct IMDB-WIKI by first filtering out unqualified images with low
face scores (Rothe et al., 2018), and then manually creating balanced validation and test set over the
supported ages. Overall, the curated dataset has 191.5K images for training, and 11.0K images for
validation and testing, respectively. We make the length of each bin to be 1 year, with a minimum
age of 0 and a maximum age of 186. The number of images per bin varies between 1 and 7,149,
exhibiting significant data imbalance. As for the data pre-processing, the images are first resized to
224 × 224. During training, we follow the standard data augmentation scheme (He et al., 2016) to
do zero-padding with 16 pixels on each side, and then random crop back to the original image size.
We then randomly flip the images horizontally and normalize them into [0, 1].

AGEDB

The original AgeDB dataset (Moschoglou et al., 2017) is a manually collected in-the-wild age
database with accurate and noise-free labels. Similar to IMDB-WIKI, the task is also to estimate age
from visual appearance. The original dataset contains 16,488 images in total. We construct AgeDB
in a similar manner as IMDB-WIKI, where the training set contains 12,208 images, with a minimum
age of 0 and a maximum age of 101, and maximum bin density of 353 images and minimum bin
density of 1. The validation set and test set are made balanced with 2,140 images. Similarly, the
images in AgeDB are resized to 224 × 224, and go through the same data pre-processing schedule
as in the IMDB-WIKI dataset.
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Figure 3: Distributions of target values of standard datasets.
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Figure 5: Distributions of target values for image datasets.
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A.2 PARAMETERS

Default values for SMOGN are used (Kunz, 2020): k = 5 specifies the number of neighbors to
consider for interpolation in over-sampling, pert = 0.02 represents the amount of perturbation
to apply to the introduction of Gaussian Noise, balanced sampling is selected, replacement is not
selected in under-sampling and relevance function threshold is set to be 0.8 (as in the original paper
(Branco et al., 2017)).
Training is run for 300 epochs, we use Adam optimization (Kingma & Ba, 2014), and a learning rate
of 10−2. These specific values have been shown to cause convergence of all models for all datasets.

RESNET

We use the ResNet-50 model (He et al., 2016) for all IMDB-WIKI and AgeDB experiments. We
train all models for 90 epochs using the Adam optimizer (Kingma & Ba, 2014), with an initial
learning rate of 10−3 and then decayed by 0.1 at the 60-th and 80-th epoch, respectively. We fix the
batch size as 256.

A.3 ADDITIONAL RESULTS

The values depicted in the pie charts represent the number of datasets associated with a particular
strategy that exhibits the best overall performance within the respective data set type. Figure 6
illustrates comparison of all methods for standard datasets, while Figure 7 shows that for high-
dimensional datasets. Figure 8 and 9 separate the findings for the generalized SwithLoss against
SMOGN and MSE, while Figure 10 and Figure 11 represent findings for the restricted search space
SwitchLossR against SMOGN and MSE. It is worth noting that the reported numbers are aggregated
across all four neural network architectures.

SwitchLoss

15

SwitchLossR

11

SMOGN

15

original

19

Figure 6: Pie chart of best-performing strate-
gies for standard data. Testing generalized
SwitchLoss and restricted search SwitchLossR
against SMOGN and original MSE.

SwitchLoss

7

SwitchLossR

2

SMOGN

6

original

5

Figure 7: Pie chart of best-performing strate-
gies for synthetic HD data. Testing generalized
SwitchLoss and restricted search SwitchLossR
against SMOGN and original MSE.
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Figure 8: Pie chart of best-performing strate-
gies for standard data. Testing general-
ized SwitchLoss against SMOGN and original
MSE.
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Figure 9: Pie chart of best-performing strate-
gies for synthetic HD. Testing generalized
SwitchLoss against SMOGN and original
MSE.
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Figure 10: Pie chart of best-performing strate-
gies for standard data. Testing restricted search
space SwitchLossR against SMOGN and orig-
inal MSE.

SwitchLossR

4

SMOGN

7

original
9

Figure 11: Pie chart of best-performing strate-
gies for synthetic HD. Testing restricted search
space SwitchLossR against SMOGN and orig-
inal MSE.

Figures 12 and 13 show a direct comparison between SwitchLoss and SwitchLossR in the best-
performing number of datasets.

SwitchLoss
33

SwitchLossR
27

Figure 12: Pie chart of best-performing strate-
gies for standard data. Testing generalized
SwitchLoss against restricted search space
SwitchLossR.

SwitchLoss

15

SwitchLossR

5

Figure 13: Pie chart of best-performing strate-
gies for synthetic HD. Testing generalized
SwitchLoss against restricted search space
SwitchLossR.
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Table 6 compares generalized SwitchLoss with 100 exploration epochs against other techniques,
while Table 7 compares restricted search SwitchLoss, denoted as SwitchLossR, against other tech-
niques.

Table 6: Number of best-performing datasets per technique and per neural network architecture.
SwitchLoss against SMOGN and MSE.

DataSetType Architecture MSE SMOGN SwitchLoss
standard (16, 8, 4) 7 3 5

(32, 16, 8) 5 6 4
(40, 20, 10, 5) 5 4 6
(64, 16, 4, 2) 4 5 6

synth HD (16, 8, 4) 1 2 2
(32, 16, 8) 1 2 2
(40, 20, 10, 5) 2 2 1
(64, 16, 4, 2) 3 0 2

Table 7: Number of best-performing datasets per technique and per neural network architecture.
SwitchLossR against SMOGN and MSE.

DataSetType Architecture MSE SMOGN SwitchLossR
standard (16, 8, 4) 7 3 5

(32, 16, 8) 5 6 4
(40, 20, 10, 5) 5 4 6
(64, 16, 4, 2) 4 5 6

synth HD (16, 8, 4) 1 2 2
(32, 16, 8) 1 2 2
(40, 20, 10, 5) 2 2 1
(64, 16, 4, 2) 3 0 2

A.4 ADDITIONAL DISCUSSION

JENSON-SHANNON DIVERGENCE VS KULLBACK-LEIBLER DIVERGENCE

Formally, for two probability distributions p and q, the Jensen-Shannon divergence (JSD) is defined
as the average of the Kullback-Leibler (KL) divergences DKL(p∥q) =

∑N
x p(x)log(p(x)q(x) ) between

p and the average distribution obtained by mixing p and q noted as m = 1
2 (p + q), and between

q and m. One advantage of JSD with respect to KL divergence is its symmetric nature. The
asymmetry can lead to different optimization behaviors and potentially biased results. Moreover,
JSD has a bounded range, with values between 0 and 1, making it more interpretable and easier
to compare across different contexts (Thiagarajan & Ghosh, 2023). KL divergence, on the other
hand, is unbounded and can take on large values, potentially leading to numerical instability and
difficulties in optimization. Another advantage of JSD is its robustness in situations where the
two distributions being compared have overlapping support. Unlike KL divergence, which can be
sensitive to regions with zero probability in one of the distributions, JSD can handle such cases
effectively (Thiagarajan & Ghosh, 2023).

RECOMMENDATION

While it is evident that optimal results are more likely to be achieved with a comprehensive explo-
ration of all possibilities, we demonstrate that in many cases, even a limited number of exploration
cycles, such as 100 or 32 in the case of restricted search, can yield superior performance compared
to alternative techniques. However, it is important to note that if sufficient resources are available,
we recommend a broader exploration phase to further enhance the algorithm’s effectiveness.
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