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Abstract

LLMs have demonstrated remarkable abilities001
across various tasks, with Chain-of-Thought002
(CoT) prompting emerging as a key technique003
to enhance reasoning capabilities. However, ex-004
isting research primarily focuses on improving005
performance, lacking a comprehensive frame-006
work to explain and understand the fundamen-007
tal factors behind CoT’s success. To bridge this008
gap, we introduce a novel perspective grounded009
in the Hopfieldian view of cognition in cogni-010
tive neuroscience. We establish a connection011
between CoT reasoning and key cognitive el-012
ements such as stimuli, actions, neural popu-013
lations, and representation spaces. From our014
view, we can understand the reasoning process015
as the movement between these representation016
spaces. Building on this insight, we develop017
a method for localizing reasoning errors in018
the response of CoTs. Moreover, we propose019
the Representation-of-Thought (RoT) frame-020
work, which leverages the robustness of low-021
dimensional representation spaces to enhance022
the robustness of the reasoning process in CoTs.023
Experimental results demonstrate that RoT im-024
proves the robustness and interpretability of025
CoT reasoning while offering fine-grained con-026
trol over the reasoning process.027

1 Introduction028

Large Language Models (LLMs) have demon-029

strated exceptional capabilities in following the030

natural language instructions (Ouyang et al., 2022;031

Jin et al., 2024) and excelling across a variety of032

downstream tasks (Hu et al., 2023a; Zhang et al.,033

2023). As reasoning skills are crucial for tasks034

such as commonsense and mathematical reason-035

ing (Rae et al., 2021), there is a growing focus036

on enhancing these capabilities. One prominent037

approach is Chain-of-Thought (CoT) prompting038

(Wei et al., 2022; Kojima et al., 2022), a simple yet039

highly effective technique to unleash the reasoning040

capability of LLMs. However, despite its success, a041

natural and fundamental research question remains: 042

How does the reasoning capability emerge through 043

CoT prompting? 044

Numerous studies have sought to identify the 045

key factors or elements that enable CoT to enhance 046

the reasoning capabilities of LLMs (Kojima et al., 047

2022; Wang et al., 2023a; Tang et al., 2023; Mer- 048

rill and Sabharwal, 2023). Some works focus on 049

improving CoT reasoning through query-based cor- 050

rections (Kim et al., 2023), knowledge-enhanced 051

frameworks (Zhao et al., 2023), and symbolic rea- 052

soning chains for faithful CoT (Lyu et al., 2023; 053

Lanham et al., 2023). Other research has examined 054

how the sequence of demonstrations, random la- 055

bels (Min et al., 2022), or even meaningless tokens 056

(Pfau et al., 2024) can positively influence reason- 057

ing performance. However, these works primarily 058

focus on improving the model’s reasoning perfor- 059

mance, and they do not provide a comprehensive 060

framework to explain the underlying factors driving 061

CoT’s success. 062

To understand the reasoning process in CoTs 063

more deeply, we draw inspiration from cognitive 064

neuroscience, specifically the relationship between 065

cognition and brain function. In this field, the Hop- 066

fieldian view (Hopfield, 1982) and the Sherringto- 067

nian view (Sherrington, 1906) represent two dif- 068

ferent ways of understanding neural computational 069

models and cognitive mechanisms. While the Sher- 070

ringtonian view of cognitive explanation focuses 071

on specific connections between neurons in the 072

brain, the Hopfieldian view emphasizes distributed 073

computation across neural populations, where in- 074

formation is not encoded by a single neuron but 075

rather by the cooperative activity of many neurons. 076

This perspective is particularly suited to explain- 077

ing complex cognitive functions like memory stor- 078

age, pattern recognition, and reasoning. Thus, the 079

Hopfieldian view is generally considered more ad- 080

vanced than the Sherringtonian view, especially in 081

the context of explaining distributed computation 082
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and the dynamics of neural networks (Barack and083

Krakauer, 2021). Based on these, a natural ques-084

tion is: whether we can understand the reasoning085

in CoTs from the Hopfieldian view of cognition?086

The Hopfieldian view explains the production087

of behavioral actions as emerging from transfor-088

mations or movements within neural populations089

in response to stimuli in the brain (Barack and090

Krakauer, 2021) (cf. Figure 1). This perspective091

approaches cognition at the level of representa-092

tions, disregarding the detailed roles of individual093

molecules, cells, and circuits, thus allowing the094

potential for a more conceptual and semantic un-095

derstanding of complex cognitive systems. View-096

ing the CoT-triggered reasoning process in LLMs097

through this lens is intuitive: CoT prompting in-098

duces shifts in the model’s trajectory in much the099

same way that external stimuli shape cognitive re-100

sponses, driving representation changes without101

altering the underlying system. Specifically, simi-102

lar to the Hopfieldian mechanism, where the shift103

or movement in neural populations happens dur-104

ing cognition itself, CoT influences reasoning dur-105

ing inference, controlling the logical steps without106

modifying the model’s parameters.107

Given the parallels between the CoT-triggered108

reasoning process and the Hopfieldian view of109

cognition in the brain, we first establish a con-110

nection between these two by aligning key ele-111

ments: stimuli and actions, neural populations,112

and representation spaces. Particularly, we pro-113

vide a general framework for identifying the “rep-114

resentation spaces” of the “stimuli” given by CoTs.115

We conceptualize the reasoning process elicited116

by CoT prompting as movement between rep-117

resentation spaces, enabling us to improve and118

deepen our understanding of CoTs. Based on119

these connections, we then leverage the strength120

of the Hopfieldian view to improve or further un-121

derstand CoTs. Specifically, by leveraging the122

“representation spaces” in CoTs, we develop a123

method for localizing the reasoning error in the124

responses. Moreover, by leveraging the robust-125

ness of low-dimensional representation spaces, we126

propose a new framework, namely Representation-127

of-Thought (RoT), which enhances the robustness128

of CoTs. We summarize the key contributions of129

our work as follows:130

1. We establish a connection between the reason-131

ing process in CoTs and the Hopfieldian view of132

cognition, grounded in cognitive neuroscience, to133

identify the key factors driving CoT’s success in134

zero-shot and few-shot settings. To the best of our 135

knowledge, this is the first known attempt to lever- 136

age cognitive science for CoT interpretability by 137

associating its core elements with the Hopfieldian 138

framework. 139

2. Based on these connections, we leverage the 140

strength of the Hopfieldian view to understand 141

and further improve CoTs. We first consider how 142

to localize the reasoning error based on the low- 143

dimensional representation spaces. Then, by lever- 144

aging the robustness of the Hopfieldian view, we 145

propose a new framework, RoT, to enhance the 146

robustness of CoTs’ performance. 147

3. Comprehensive experiments on three tasks, in- 148

cluding arithmetic reasoning, commonsense rea- 149

soning, and symbolic reasoning, reveal that our 150

framework can provide intuitive and interpretable 151

analysis, allowing error tracing and control for CoT 152

reasoning. 153

Due to space limit, related work and prelimi- 154

naries sections are included in Appendix A and B, 155

respectively. 156

2 Bridging Reasoning in CoTs and the 157

Hopfieldian View 158

In this section, we aim to build a bridge between 159

the reasoning process in CoTs and the cognitive 160

brain from the Hopfieldian view. We will particu- 161

larly associate the main elements (stimuli, neural 162

populations, and representation spaces) in the Hop- 163

fieldian view. After understanding these elements, 164

we can leverage the strength of the Hopfieldian 165

view to deepen our understanding of the reason- 166

ing process in current CoTs and further improve 167

it. Note that we will leave other elements in the 168

Hopfieldian view, such as attractors and state space, 169

as future work. 170

Stimuli and Actions. Stimuli and actions are key 171

components of how the brain processes information 172

and interacts with the environment. Actions refer 173

to the motor responses or behaviors that result from 174

cognitive processing, which are responses given by 175

LLMs through CoTs. 176

Stimuli refer to external or internal events, ob- 177

jects, or changes in the environment that are de- 178

tected by the sensory systems and can influence 179

cognitive processes and behavior. Based on this, 180

we can adopt the term “stimuli” from cognitive 181

science in the context of CoTs to refer to specific 182

prompt text or instructions that trigger CoT reason- 183

ing. Specifically, in the zero-shot setting, we define 184

the stimulus as szero to represent a set of supple- 185
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Figure 1: Illustration of the emergence of cognition in the brain and CoT reasoning from the Hopfieldian view.

mentary instructions in the prompt that encourage186

the model to provide more intermediate reasoning187

steps before arriving at a final answer. For example,188

it can be “let’s think step by step” or “make sure to189

give steps before your answer”. In the few-shot set-190

ting, the stimulus sfew is defined as the sequence191

of demonstrations D = {(q̃1, ã1), (q̃2, ã2), . . . } in192

the prompt, where q̃i represents the query and ãi193

is the corresponding response. In the following194

discussion, we use s+ to indicate that stimuli are195

included in the model’s input and s− to indicate196

that no stimuli are added. Note that we avoid using197

explicitly negative stimuli, such as “please be care-198

less and answer the following question”, because a199

well-aligned model would likely refuse to behave200

in such a manner (Ouyang et al., 2022).201

Neural Populations. As we mentioned, in the202

Hopfieldian view, representations are realized by203

various forms of neural organization, especially204

populations. Identifying these “neural populations”205

in CoTs is especially important. In our framework,206

there are two steps for finding them.207

(i) Stimulus Set Designing. Here our goal is208

to elucidate the sensitivity of LLMs to different209

CoT prompts with stimuli. Understanding such210

sensitivity could help us know the neural popula-211

tions raised from the stimuli. In detail, we con-212

struct a prompt set. For each query q, we con-213

sider two forms of prompts: positive one (with214

stimuli) as p+ = T (s+, q) and negative one (with-215

out stimuli) as p− = T (s−, q), where T is the216

prompt template. Specifically, for each query qi,217

we construct M number of prompts for both of218

them with different stimuli, which is denoted as219

Pi = {pi,−1 , pi,+1 , pi,−2 , pi,+2 , . . . , pi,−M , pi,+M }. Such220

construction is to make our following neural pop-221

ulations less dependent on the specific template222

form. Thus, in total, we have a stimulus set 223

P ∗ = {P1, P2, · · · , PN}, where N is the num- 224

ber of queries. These contrastive pairs of prompts 225

will be used to identify neural populations given by 226

these stimuli. 227

(ii) Identifying Neural Populations. Intuitively, 228

the neural populations should be the most influen- 229

tial activation vectors of these prompts or stim- 230

uli. In detail, for each prompt in P ∗, the next 231

step is capturing the network architecture’s cor- 232

responding neural populations. Since LLMs rely 233

on transformer-based architecture to store distinct 234

representations intended for different purposes, it 235

is crucial to design the extraction process to cap- 236

ture task-specific representations carefully. For a 237

given prompt p+ or p−, we will find the “most 238

representative token”, which encapsulates rich and 239

highly generalizable representations of the stimuli. 240

Here we select the last token after tokenizing the 241

prompt, which is based on the observation in Zou 242

et al. (2023) that it is the most informative token for 243

decoder-only or auto-regressive architecture mod- 244

els. 245

Once the last token position is identified, we 246

can naturally select some of its activations (hid- 247

den state) in hidden layers. Previous studies (Fan 248

et al., 2024; Cosentino and Shekkizhar, 2024) have 249

shown that not all layers store important informa- 250

tion about reasoning; thus we focus on a subset 251

of them to reduce the computation cost, whose 252

indices are denoted as a set K (in practice, K is 253

always the last several layers). Thus, we have a 254

collection of activation vectors. However, since we 255

are focusing on the reasoning of CoT, studying the 256

neural populations raised from the stimuli rather 257

than the whole prompt is more important. Thus, 258

we consider the difference in the activations of 259
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pairs of prompts. Specifically, for a pair (p+, p−),260

we can get their activations for all selected layers261

K: {hk(p+)}k∈K and {hk(p−)}k∈K, where hk(p)262

refers to the activation vector of the k-th layer for263

a given input prompt p. Then the differences of264

activations {h̃k(p)}k∈K are the neural populations265

for such stimuli, where h̃k(p) = hk(p
+)− hk(p

−)266

represents the most influential information we get267

from the stimuli for the query. Based on this, for268

each hidden layer in K, we have the neural popula-269

tion for all queries, which is denoted as270

h∗k = {h̃k(P1), h̃k(P2), . . . , h̃k(PN )}. (1)271

Representation Spaces. After we have the neural272

populations for each selected hidden layers, our273

final goal is to find the representation space. In274

the Hopfieldian view, the representation of infor-275

mation is thought to occur within low-dimensional276

space embedded within higher-dimensional neural277

spaces. Thus, these representation spaces will be278

the most informative subspaces of the neural popu-279

lations. Here we adopt the s-PCA to find such an280

s dimensional subspace. Specifically, for the k-th281

layer where k ∈ K, we perform PCA analysis on282

h∗k:283

Rk = PCA(h∗k). (2)284

Then, the space spanned by this eigenvector will be285

the representation space for this layer. Motivated286

by the previous linear representation introduced in287

Appendix Section B, here we set s = 1, i.e., we288

only consider the principal component. Intuitively,289

this means each representation space will focus on290

one “concept”.291

3 Applications of Hopfieldian View292

In the previous section, we mainly discussed how293

each element in the Hopfieldian view corresponds294

to the reasoning in CoTs. From our previous view,295

we can understand the reasoning process as the296

movement between these representation spaces.297

Based on these connections, we can leverage the298

strength of the Hopfieldian view to improve or fur-299

ther understand CoTs. In this section, we first con-300

sider how to localize the reasoning error based on301

the low dimensional representation spaces. Then,302

by leveraging the robustness of the Hopfieldian303

view, we propose a new framework, namely Rep-304

resentation of Thought, that enhances the perfor-305

mance robustness of CoTs.306

3.1 Reasoning Error Localization 307

In this task, for a given query, we want to check 308

if there are some reasoning errors in the response 309

by CoTs. If so, we aim to localize these errors. As 310

in the Hopfieldian view, cognition occurs within 311

low-dimensional representation spaces. Reasoning 312

errors can be identified by analyzing the structure 313

of these spaces, such as when certain directions Rk 314

(representing specific cognitive factors) are dispro- 315

portionately activated or suppressed. This can help 316

localize the source of the error within the cognitive 317

process. Motivated by this, we can leverage the 318

internal structure of spaces we have learned via 319

PCA to locate the reasoning error for a given query 320

in CoTs. 321

Intuitively, since the reasoning occurs within 322

these representation spaces, if there is a reasoning 323

error in the response, then during the reasoning 324

process, some tokens make the activations (hidden 325

states) of the response far from the corresponding 326

representation spaces. This is because if these acti- 327

vations are far from the spaces, CoTs do not reason 328

the corresponding “concepts” in the response. Mo- 329

tivated by this, our idea is to iteratively check the 330

tokens in the response to see whether they are far 331

from the representation spaces. 332

Mathematically, for a given prompt T via CoT 333

of query x with its response y = (y1, y2, · · · , ym), 334

we will iteratively feed the prompt with a part of 335

the response, i.e., Ti = T ⊕ y≤i, where ⊕ is the 336

string concatenation. If the activations of Ti−1 are 337

close to while those of Ti are very far from the 338

representation spaces {Rk}k∈K in (2), then we can 339

think the i-th token yi makes a reasoning error. We 340

use the following criterion to access and/or evaluate 341

the quality of the rationale for Ti: 342

scores(Ti) = Mean({scoresk(Ti)}k∈K), 343

where scoresk(Ti) = hk(Ti)
⊤Rk − δ. (3) 344

Here δ is the threshold, scoresk(Ti) is the rationale 345

for the k-th representation space, and scores(Ti) is 346

the average score across all layers in K. When the 347

score is less than 0, it indicates that the activations 348

of prompt Ti are far from the representation spaces. 349

See Algorithm 1 for details. 350

3.2 Representation of Thought 351

The Hopfieldian view of cognition offers a frame- 352

work that can potentially be used to control or influ- 353

ence cognitive processes. Specifically, influencing 354

neural populations directly offers a more robust 355
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way to control cognition compared to simply pro-356

viding different stimuli. Firstly, influencing neural357

populations directly allows the manipulation of the358

core dynamics of neural state spaces, including at-359

tractor states, bifurcations, and transitions between360

cognitive states. This direct intervention bypasses361

the variability and unpredictability associated with362

external stimuli, which depend on the individual’s363

perception, attention, and prior experiences. More-364

over, external stimuli are subject to various forms365

of noise and variability, including sensory process-366

ing errors, environmental distractions, and individ-367

ual differences in interpretation. Direct manipula-368

tion of neural populations can reduce these sources369

of noise, providing a cleaner and more consistent370

pathway to controlling cognitive states.371

Algorithm 1 Reasoning Error Localization

Require: Prompt T for query q; response y =
(y1, · · · , ym) of the prompt T via a CoT;
threshold δ > 0; representation vectors
{Rk}k∈K in (2) with layer set K.

1: for i = 1, · · · ,m do
2: Denote a new prompt Ti = T ⊕y≤i. Using

the same process as in Section 2 to get the
activations of Ti in layers in the set K, which
are denoted as hk(Ti), k ∈ K.

3: Calculate scores(Ti) =
Mean({scoresk(Ti)}k∈K) in (3).

4: if scores(Ti) < 0 and scores(Ti−1) ≥ 0
then

5: Mark token yi as a “reasoning error”.
6: end if
7: end for

Our RoT leverages representation spaces’ struc-372

ture to enhance the robustness of reasoning in CoTs.373

Intuitively, we can manipulate a given query’s ac-374

tivations to be closer to the representation spaces375

to enhance robustness since these spaces are the376

inherent entities in the reasoning process. After the377

manipulation, the hidden states will be less depen-378

dent on the specific form of the prompt, query, and379

stimuli but will be more dependent on the intrinsic380

entities of the reasoning task.381

Mathematically, for a given prompt T via CoTs382

of query x. By using a similar procedure as in the383

Neural Populations section, we can get its neural384

populations {hk(T )}k∈K. In RoT, motivated by385

(Zou et al., 2023; Arditi et al., 2024), we can ma-386

nipulate them by injecting the directions of their387

corresponding representation spaces to make them388

closer to these spaces: 389

h′k(T ) =

{
hk(T ) + αRk if k ∈ K
hk(p) otherwise ,

(4) 390

where h′k(T ) denotes the manipulated hidden state, 391

α is a scaling factor controlling the manipula- 392

tion strength. Its sign should follow the sign of 393

hk(T )
⊤Rk. 394

By directly manipulating neural populations, 395

RoT offers a more precise and interpretable method 396

for influencing the model’s output compared to tra- 397

ditional prompt engineering techniques. This ap- 398

proach not only enhances control over the model’s 399

behavior but also improves the transparency and 400

predictability of the generation process. 401

4 Experiments 402

We will perform experimental studies on the above 403

two applications to verify the correctness of our 404

understanding from the Hopfieldian view. We first 405

give some experimental setup, and additional setup 406

can be found in Appendix C. 407

4.1 Experimental Setup 408

Baselines. We focus on three baselines in our study: 409

1) Base: as the simplest approach with LLMs for 410

reasoning, feed the model with only one question 411

query. 2) CoTZ (Kojima et al., 2022): the most 412

common zero-shot CoT is employed to provide 413

a thought path. 3) CoTF (Wei et al., 2022): di- 414

rectly using some demonstrations before asking a 415

question to LLMs. 416

Evaluation Metrics. We consider the performance 417

of RoT zero-shot (RoTZ) and few-shot (RoTF ) set- 418

tings. Besides the utility of performance, which 419

is evaluated by accuracy, we also conducted re- 420

sults on the robustness against forms of prompts. 421

For zero-shot settings, we selected three different 422

specific instructions: (1) Let’s think step by step. 423

(2) Let’s think about this logically. (3) Let’s solve 424

this problem by splitting it into steps. For few- 425

shot settings, we conducted two studies: 1) Us- 426

ing the original order of the given demonstrations, 427

shown in Appendix E.3. 2) Based on experiment 428

1, we randomly shuffled the order of the demon- 429

strations. Then we use the accuracy difference to 430

consider the robust performance of our approach. 431

Specifically, given a list of accuracy results from 432

A = {Ã1, Ã2, · · · , Ãn} given by different prompts 433

mentioned above, the robust score is calculated by 434

their pairwise difference:
∑n

i=1

∑n
j=i+1 |Ãi− Ãj |. 435
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The answer extraction process is based on the436

methodology outlined by Kojima et al. (2022). De-437

tailed procedures and results are provided in the438

Appendix E.2.439

4.2 Experimental Results440

Utility Performance. We first consider the utility441

performance of RoT. As shown in Table 1, we can442

see that: 1) The original CoT performs unstable443

on different tasks. Generally speaking, CoTZ and444

CoTF appear better, but they are lower than Base445

in some datasets, such as the CSQA dataset in the446

zero-shot scenario, which is consistent with the ob-447

servation in (Kojima et al., 2022). At the same time,448

for few-shot, CoTF performs extremely poorly in449

the GSM8k dataset because Llama-2-7B-Chat re-450

peats the given demonstrations, resulting in a re-451

duction in the number of valid tokens. Compared452

to CoTs, our RoT performs strongly in generaliza-453

tion on these datasets but may have lower accuracy454

in some cases. This is because, in RoT, we add455

additional directions to the hidden states of the456

prompt. These manipulations will cause a loss of457

information regarding the original query, making458

the accuracy lower. 2) In terms of different models,459

the Llama-3-8B-Instruct model has been improved460

more significantly. For example, with Llama-2-461

7B-Chat as the backbone, RoTZ is improved by462

only 0.23 and 0.33 compared with Base on the463

GSM8K and SVAMP datasets, respectively; with464

Llama-3-8B-Instruct, the improvements are 1.52465

and 2.66, respectively. This is primarily because466

the model is trained on a larger corpus and has467

learned more knowledge, so the activations contain468

richer information and can better capture related469

representations.470

Robustness Analysis. We also conducted exper-471

iments on robustness, and the results are shown472

in Table 8 (more results are included in Ap-473

pendix D.2). From this table, we can observe474

that RoT demonstrates a remarkable advancement475

over CoT in terms of robustness. We found that476

CoT methods are very sensitive to prompt design477

and sometimes fail to output the corresponding478

response based on the given instruction. How-479

ever, our RoT extracts more essential information480

from the representation engineering level, making481

it more adaptable to various prompts. Note that482

for Llama-3-8B-Instruct, there are two datasets483

(SVAMP and Coin Flip) that do not provide robust484

performance gains. This is because Llama-3-8B-485

Instruct is a very strong model, while Coin Flip486

and SVAMP are two relatively easy tasks (as can 487

be seen from the Table 1, the accuracy of CoTs 488

in the SVAMP dataset is greater than 81%, and in 489

the Coin Flip dataset is greater than 90%). These 490

two factors may cause it to over-capture too many 491

irrelevant concepts from the stimuli, thus pointing 492

to the wrong reasoning direction. 493

Results on Larger Models. To further demon- 494

strate the effectiveness of our approach, we conduct 495

research on a larger scale. Specifically, we follow 496

the few-shot settings, and evaluate two larger mod- 497

els (Llama-2-13B-Chat and Llama-2-70B-Chat) on 498

the GSM8K dataset. From Figure 2a, we can see 499

that our approach has improved performance on 500

both 13B and 70B, but the improvement on 70B 501

is smaller. We speculate that this is because the 502

70B model contains very rich knowledge, and the 503

knowledge contained in a few demonstrations has 504

limited improvement on the model. 505

Case Study of Reasoning Error Localization. 506

We conducted a reasoning error localization exper- 507

iment. We can calculate the token-level score with 508

Algorithm 1 through our approach. Figure 3 shows 509

that our approach can localize those errors in the re- 510

sponse through CoT. In this case, Llama-2-7B-Chat 511

did not really understand the known information 512

in the given question and calculated different units 513

(hour and minute). Specifically, before calculating 514

the hour and minute tokens, the scores of the tokens 515

are all greater than zero, indicating no potential er- 516

rors, while when calculating the hour and minute 517

tokens, our method detects potential conflicts with 518

previous knowledge and thus obtains a score less 519

than zero. We also show our additional case study 520

in Appendix F. 521

4.3 Ablation Study 522

Number of Samples. We conducted an ablation 523

study on how to select samples and how many sam- 524

ples N in the stimulus set for constructing neural 525

populations are sufficient. For the sample selection 526

strategy, we focus on two different strategies and 527

evaluate these on the GSM8K dataset: 1) Random 528

strategy. We randomly select samples in the train- 529

ing dataset using three random seeds. 2) Low Per- 530

plexity strategy. We select samples based on low 531

perplexity. 3) High Perplexity strategy. Similar to 532

the low perplexity strategy, we select samples based 533

on high perplexity. As shown in Table 3, we can 534

observe that the high perplexity strategy has better 535

and more generalized performance. This is because 536

high perplexity usually means low confidence in 537
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Method
Arithmetic Commonsense Symbolic

GSM8K SVAMP CSQA StrategyQA Coin Flip Random Letter

Llama-2-7B-Chat

Base 26.00 54.00 47.75 63.62 44.80 20.33
+ CoTZ 26.31 46.00 43.41 62.05 52.75 24.33
+ RoTZ 26.23 54.33 48.24 63.54 45.45 20.67

+ CoTF 4.62 38.67 53.07 59.26 47.60 31.00
+ RoTF 25.55 56.00 48.16 63.80 45.50 20.33

Llama-3-8B-Instruct

Base 73.31 80.67 72.65 65.07 68.90 44.00
+ CoTZ 74.45 82.33 72.24 66.07 90.45 43.00
+ RoTZ 74.83 83.33 72.89 65.24 76.35 47.67

+ CoTF 72.02 81.00 73.63 62.75 96.50 50.67
+ RoTF 74.37 83.67 73.30 65.94 70.30 43.66

Qwen2.5-7B-Instruct

Base 82.71 86.67 79.44 65.81 86.30 25.33
+ CoTZ 82.87 90.00 80.67 68.56 81.55 50.00
+ RoTZ 83.09 86.67 80.34 66.03 86.25 25.33

+ CoTF 89.54 91.00 81.90 70.96 99.50 47.00
+ RoTF 82.94 87.00 80.26 66.29 86.55 25.33

Table 1: Results of RoT and CoT based on different LLMs on a variety of reasoning tasks. Green indicates an equal
or improved accuracy compared to the Base method, while red indicates an accuracy decrease. It can be observed
that, compared to CoT prompting, RoT achieves more consistent accuracy improvements across a variety of tasks.
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Figure 2: Ablation study of our approch. (a) Results on a larger scale on the GSM8K dataset. (b) Results on the
number of samples on the SVAMP dataset. (c) Results on the number of selected layers on the SVAMP dataset.

LLMs. Therefore, if a question has a higher per-538

plexity, the question has more latent knowledge539

information.540

For the number of samples N , we consider541

the set N = {32, 64, 128, 256, 512} and calcu-542

late their average accuracy scores on the SVAMP543

dataset using three different seeds. From Figure 2b,544

we can see that the performance is quite stable545

for different numbers of samples. However, there546

is still a little decrease when N is large enough.547

This is because when N is large enough, the repre-548

sentation spaces contain richer information. Thus,549

adding the directions in (4) will make the query550

lose more of its query information, causing a lower551

accuracy.552

Number of Selected Layers. Here we study the553

effect of different numbers of selected layers |K| 554

for neural populations. While LLMs have many 555

layers, such as Llama-2-7B, which contains 32 lay- 556

ers, recent studies have shown that not all layers 557

store important information about reasoning and 558

that this information is usually found in the last 559

layers of the model (Fan et al., 2024; Cosentino 560

and Shekkizhar, 2024). Therefore, we consider the 561

last L layers, where L = {1, 3, 5, 10, 15}. 562

In this experiment, we evaluate it with three dif- 563

ferent seeds. Figure 2c displays the result of aver- 564

age accuracy scores on the SVAMP dataset. From 565

this figure, we can see that the accuracy first in- 566

creases and then shows a decreasing trend as the 567

number of control layers increases. This is because 568

when the number of layers is very small, each ma- 569
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Method
Arithmetic Commonsense Symbolic

GSM8K SVAMP CSQA StrategyQA Coin Flip Random Letter

Llama-2-7B-Chat

CoTZ 5.46 11.34 6.54 6.04 8.80 14.00
RoTZ 3.02 1.32 1.64 0.70 0.30 0.68
CoTF 1.44 0.00 2.78 0.48 2.70 2.00
RoTF 0.08 0.67 0.00 1.88 0.00 0.00

Llama-3-8B-Instruct

CoTZ 33.36 85.32 2.94 5.94 13.80 18.66
RoTZ 2.58 2.66 0.82 1.14 16.40 11.34
CoTF 0.23 0.33 0.74 0.26 0.45 1.00
RoTF 0.37 0.34 0.33 0.26 0.45 1.00

Qwen2.5-7B-Instruct

CoTZ 1.22 6.00 2.94 4.72 17.40 6.66
RoTZ 0.30 0.68 0.66 0.26 0.40 0.66
CoTF 0.68 0.33 0.08 1.27 0.25 0.33
RoTF 0.07 0.33 0.57 0.39 0.05 0.00

Table 2: The robust results of our approach and different general baselines with CoT on each task. Bold text
indicates optimal results in a single dataset.

John collects peaches for 3 hours. He can collect 2 peaches a minute. How many peaches does
he collect?

To find out how many peaches John collects, we need to multiply the time he spends collecting 

peaches (3 hours) by the number of peaches he can collect per minute (2 peaches/minute). So

-0.090.62    

John collects: 3 hours x 2 peaches/minute = 6 peaches. Therefore, John collects 6 peaches.
-0.15 0.62 -0.32 0.62   0.62 -0.06

Figure 3: A real case of reasoning error localization by using Llama-2-7B-Chat in a zero-shot scenario on GSM8K
using Algorithm 1. The green bar indicates that the reasoning snippet is correct, and the red bar means that the
reasoning snippet may be wrong. The numbers in the bar are the scores calculated by Algorithm 1.

Model
Perlexity Random

Low High Seed1 Seed2 Seed3 Seed Avg.

Llama-2-7B-Chat 23.43 25.55 25.32 25.24 25.32 25.30
Llama-3-8B-Instruct 74.22 74.37 74.52 74.37 73.92 74.27

Table 3: The robust results of our approach and different general baselines with CoT on each task. Bold text
indicates optimal results in a single dataset.

nipulation will correct some of the reasoning errors.570

However, in RoT we have to manipulate each acti-571

vation in the layer of the set K, and each manipu-572

lation will lose some information about the query.573

Thus, the accuracy decreases when the number of574

layers is larger.575

5 Conclusion576

In this paper, we proposed a novel framework to577

explain and understand the fundamental factors578

behind CoT’s success. Specifically, we first con- 579

nected CoT reasoning and the Hopfieldian view 580

of cognition in cognitive neuroscience. Then, we 581

developed a method for localizing reasoning errors 582

and proposed the RoT framework to enhance the 583

robustness of the reasoning process in CoTs. Ex- 584

perimental results demonstrate that RoT improves 585

the robustness and interpretability of CoT reason- 586

ing while offering fine-grained control over the 587

reasoning process. 588
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Limitations589

Our current problem formulation is primarily fo-590

cused on text data. We consider multi-modal sce-591

narios, i.e., analyzing concepts from multiple dif-592

ferent modalities as a future research direction.593
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A Related Work923

Chain-of-Thought (CoT). The CoT is a prompt-924

ing technique that engages LLMs in step-by-step925

reasoning rather than directly providing the an-926

swers (Nye et al., 2021). Studies have shown that927

introducing intermediate steps or learning from928

demonstrations can significantly improve the rea-929

soning performance of LLMs (Wei et al., 2022;930

Kojima et al., 2022). Given the success of CoT,931

numerous studies have explored its application to a932

variety of complex problems, including arithmetic,933

commonsense, symbolic reasoning (Wang et al.,934

2023c; Zhou et al., 2023; Wang and Zhou, 2024),935

and logic tasks (Creswell and Shanahan, 2022; Pan936

et al., 2023; Weng et al., 2023). Recently, numer-937

ous endeavors have been made to enhance the rea-938

soning capabilities in LLMs (Wang et al., 2023a;939

Dutta et al., 2024). For example, Kim et al. (2023)940

proposed a query-based approach to correct erro-941

neous reasoning steps within a CoT. Zhao et al.942

(2023) introduced a knowledge-enhanced method943

to improve the factual correctness for multi-pole944

open-domain QA tasks. Lyu et al. (2023) developed945

“faithful CoT”, i.e., a framework that first translates946

natural language queries into symbolic reasoning947

chains and then solves the problem using CoT. Ad-948

ditionally, several studies have also focused on the949

sequence and quantity of demonstrations within the950

context, investigating their contributions to the final951

reasoning performance. For this, Min et al. (2022)952

discovered that even random labels or ineffective953

reasoning steps can still improve the model’s rea-954

soning performance. Lanham et al. (2023) demon-955

strated the impact of intervening in the CoT pro-956

cess by adding mistakes or paraphrases. Pfau et al.957

(2024) showed that using meaningless filler to-958

kens in place of a chain-of-thought can surpris-959

ingly boost reasoning performance. However, these960

studies primarily focused on how to improve the961

CoT’s reasoning performance and do not provide a962

framework to analyze the fundamental reasons, i.e.,963

how does the reasoning capability emerge through964

CoT? Dutta et al. (2024) investigates the neural965

sub-structures within LLMs that manifest Chain-966

of-Thought (CoT) reasoning on the Llama-2-7B967

model. Similarly, Rai and Yao (2024) explores968

neurons in the feed-forward layers of LLMs to ana-969

lyze their arithmetic reasoning capabilities on the970

Llama-2-7B model. Both studies are grounded971

in the Sherringtonian view of neural activity. In972

contrast, we adopt the Hopfieldian perspective to973

bridge this gap, focusing on representations rather 974

than individual neurons. We apply our approach 975

across three different downstream tasks and can 976

further extend our analysis to larger models like 977

Llama-2-70B. 978

Interpretability of LLMs. Interpretability plays a 979

key role in a deeper understanding of LLMs to iden- 980

tify potential risks and better meet human require- 981

ments (Zou et al., 2023). Common interpretability 982

strategies include (i) Salience maps, which rely 983

on highlighting the regions in the input that are 984

attended by the model (Simonyan et al., 2014; 985

Smilkov et al., 2017; Clark et al., 2019; Hu et al., 986

2023c,b; Lai et al., 2024); (ii) Feature visualiza- 987

tion, which creates representative inputs indica- 988

tive of particular neurons’ activations (Szegedy 989

et al., 2014; Nguyen et al., 2016; Fong and Vedaldi, 990

2018; Nguyen et al., 2019); and (iii) Mechanistic in- 991

terpretability, which employs reverse-engineering 992

tools to explain networks based on circuits and 993

node-to-node connections (Olah et al., 2020; Ols- 994

son et al., 2022; Wang et al., 2023b). However, 995

these methods often require substantial human in- 996

tervention and are limited in terms of scalability or 997

interpretability, especially for the large language 998

models (Fong and Vedaldi, 2018; Jain and Wal- 999

lace, 2019; Hu et al., 2024). Thus, these methods 1000

cannot be directly used to interpret CoT reason- 1001

ing. Additionally, most current approaches focus 1002

on representation-level analysis without consid- 1003

ering how these representations connect to con- 1004

cepts learned during pre-training (Bricken et al., 1005

2023; Templeton et al., 2024). Other works inves- 1006

tigate the localization and representation of con- 1007

cepts in the network (Kim et al., 2018; Li et al., 1008

2024), linear classifier probing to uncover input 1009

properties (Belinkov, 2022), fact localization and 1010

editing (Meng et al., 2022; Zhong et al., 2023; 1011

Cheng et al., 2024a,b), concept erasure (Shao et al., 1012

2023; Gandikota et al., 2023), and corrective anal- 1013

ysis (Burns et al., 2023), etc. These observations 1014

are aligned with RepE (Zou et al., 2023), which 1015

emphasized the nearly linear nature of LLM rep- 1016

resentations (Park et al., 2024). However, none of 1017

these approaches directly address the inner work- 1018

ings of CoT reasoning. While recent work has 1019

begun exploring connections between LLM inter- 1020

pretability and cognitive neuroscience (Vilas et al., 1021

2024). However, it does not discuss the Hopfiel- 1022

dian view and also does not discuss how to explain 1023

the reasoning process in CoTs via cognitive neu- 1024

roscience. Our work provides the first attempt to 1025
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interpret CoT reasoning from the Hopfieldian per-1026

spective.1027

B Preliminaries1028

Large Language Models and Prompting.1029

Prompts can take various forms, such as a sin-1030

gle sentence or longer paragraphs, and may in-1031

clude additional information or constraints to guide1032

the model’s behavior. Let M : X 7→ Y1033

be an LLM that takes an input sequence x =1034

(x1, x2, . . . , xq) ∈ X and produces an output se-1035

quence y = (y1, y2, . . . , ym) ∈ Y . The model is1036

typically trained to optimize the conditional proba-1037

bility distribution pr(y|x), which assigns a proba-1038

bility to each possible output sequence y given x.1039

To incorporate a prompt w with the input sequence1040

x, we can concatenate them into a new sequence1041

x̂ = (w, x1, x2, . . . , xq). The conditional probabil-1042

ity distribution pr(ŷ|x̂) is then computed using x̂.1043

Formally, the probability of the output sequence ŷ1044

given x̂ is:1045

pr(ŷ|x̂) =
m∏
i=1

pr(yi|y<i, x̂),1046

where y<i represents the prefix of the sequence y1047

up to position i− 1, and pr(yi|y<i, x̂) denotes the1048

probability of generating yi given y<i and x̂.1049

The Hopfieldian View. In cognitive neuroscience,1050

two prominent perspectives aim to explain cogni-1051

tion: the Sherringtonian view and the Hopfieldian1052

view.1 The Hopfieldian view focuses on under-1053

standing behavior through computation and rep-1054

resentation within neural spaces, rather than the1055

specific biological details of neurons, ion flows,1056

or molecular interactions (Hopfield, 1982, 1984;1057

Hopfield and Tank, 1986). It operates at a higher1058

level of abstraction, emphasizing the role of rep-1059

resentations and the computations performed on1060

them.1061

This approach conceptualizes cognition as trans-1062

formations between representation spaces. At the1063

implementation level, the collective activity of neu-1064

rons is mapped onto a representation space, which1065

contains a low-dimensional representational man-1066

ifold. Algorithmically, Hopfieldian computation1067

views these representation spaces as fundamental1068

entities, with movements within or transformations1069

1See Appendix ?? for an introduction to the Sherringtonian
view. For a detailed comparison between these two views,
refer to (Barack and Krakauer, 2021) and (Bechtel, 2007).

between them as the central operations. The repre- 1070

sentations themselves are structured as basins of at- 1071

traction within a state space, and while they are im- 1072

plemented by neural structures (whether individual 1073

neurons, neural populations, or other components), 1074

the focus is on the dynamics of the system rather 1075

than its specific biological mechanisms. Most Hop- 1076

fieldian models, in practice, center on the activity 1077

of neural populations. 1078

A parameter space defines the dimensions of 1079

variation within these representational spaces, 1080

aligning with quality-space approaches from philos- 1081

ophy, where content is similarly structured. Com- 1082

putations over these representations are understood 1083

as dynamic transformations between spaces or 1084

shifts within them, characterized by features like 1085

attractors, bifurcations, limit cycles, and trajecto- 1086

ries. Ultimately, cognitive functions are realized 1087

through these dynamic movements within or be- 1088

tween representational spaces. 1089

The Sherringtonian View. Unlike the Hopfieldian 1090

perspective, the Sherringtonian view (Sherrington, 1091

1906; Barlow, 1953) of cognitive explanation em- 1092

phasizes the importance of direct neuron-to-neuron 1093

connections in the brain. This view posits that the 1094

primary explanation for cognition lies in the spe- 1095

cific interactions between neurons and the compu- 1096

tations these neurons perform within well-defined 1097

circuits (Mogenson, 2018). 1098

At an algorithmic level, the Sherringtonian view 1099

conceptualizes cognition as networks of nodes 1100

(neurons) with weighted connections (synapses) 1101

between them. In this framework, neurons per- 1102

form distinct computational transformations on the 1103

signals they receive from other neurons in the net- 1104

work. Cognitive processes are described by how 1105

individual neurons receive inputs, process these in- 1106

puts through neural transfer functions, and transmit 1107

the resulting signals to connected neurons. Thus, 1108

cognition is explained through the computations 1109

occurring at the level of individual neurons and the 1110

signal flow across their connections. 1111

Zero-shot CoT. Zero-shot CoT is a simple but ef- 1112

fective chain of thought (CoT) prompting approach 1113

proposed by Kojima et al. (2022). It allows lan- 1114

guage models to generate a step-by-step explana- 1115

tion or thought process to solve problems without 1116

requiring prior demonstrations or specific training 1117

by simply adding “Let’s think step by step” before 1118

each answer. Specifically, given a query q and a 1119

model M with weights θ, the generation process 1120
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can be defined as:1121

R = arg max pr(R|q, t; θ) (5)1122

where R is the response text of the model, which1123

is generated from all potential responses R, and t1124

is a prompt text like “Let’s think sttep by step.”1125

Few-shot CoT. Similar to zero-shot CoT, few-1126

shot CoT (Wei et al., 2022) is also a prompting tech-1127

nique that gives a few examples with step-by-step1128

reasoning processes to stimulate the model’s rea-1129

soning ability. Formally, given the query q and a set1130

of demonstrations D = {(q̃1, ã1), (q̃2, ã2), . . . },1131

our aim is to generate a response with intermediate1132

reasoning steps:1133

R = arg max pr(R|D, q; θ) (6)1134

Linear Representations in Language Models.1135

Recent investigations into the internal mechanics1136

of LLMs have revealed intriguing properties of1137

their learned representations. Park et al. (2024)1138

posited that high-level semantic features such as1139

gender or honesty could be linearly represented1140

as directions within the model’s representation1141

space. This can be illustrated by the well-known1142

word analogy task using a word embedding model1143

(Mikolov et al., 2013). By defining M(·) as a func-1144

tion of extracting the representations of a given1145

word by a word embedding model, the opera-1146

tion M(Spain) − M(Madrid) + M(Paris) often1147

results in an output close to M(France), where1148

M(Spain)−M(Madrid) can be considered as the1149

representation vector of the abstract “capital of”1150

feature in the embedding space. Concurrently, re-1151

search on interpretable neurons (Dale et al., 2023;1152

Ortiz-Jiménez et al., 2023; Voita et al., 2024) has1153

identified neurons that consistently activate for spe-1154

cific input features or tasks, suggesting that these1155

features may also be represented as directions in1156

the LLMs’ neuron space. For instance, Tigges et al.1157

(2023) use the PCA vector between LLMs’ hidden1158

states on instructions “positive” and “negative” to1159

find the sentiment direction in LLMs. Additionally,1160

recent works (Zou et al., 2023; Arditi et al., 2024)1161

show the effectiveness of engineering on language1162

models using these directions. For example, adding1163

multiples of the “honesty” direction to some hidden1164

states has been sufficient to make the model more1165

honest and reduce hallucinations.1166

C Additional Experimental Setup 1167

Datasets. Our experiments are performed on 1168

benchmark datasets for diverse reasoning problems. 1169

We consider 6 datasets for 3 different tasks: Arith- 1170

metic Reasoning, Commonsense Reasoning, and 1171

Symbolic Reasoning. Specifically, for Arithmetic 1172

Reasoning, we select GSM8K (Cobbe et al., 2021) 1173

and SVAMP (Patel et al., 2021); we study Strate- 1174

gyQA (Geva et al., 2021) and CommonsenseQA 1175

(CSQA) (Talmor et al., 2019) for Commonsense 1176

Reasoning; lastly, for Symbolic Reasoning, we 1177

choose the Coin Flip (Wei et al., 2022) and Ran- 1178

dom Letter datasets, where the latter one is con- 1179

structed from the Last Letter dataset (Wei et al., 1180

2022). More details and statistics of the datasets 1181

are provided in Appendix D.1. 1182

LLMs. We employ Llama-2-7B-Chat (Touvron 1183

et al., 2023), Llama-3-8B-Instruct (Meta, 2024), 1184

Qwen2.5-3B-Instruct (Team, 2024) and Qwen2.5- 1185

7B-Instruct (Team, 2024) to evaluate their precision 1186

performance (accuracy) both before and after ap- 1187

plying RoT to different datasets. Furthermore, we 1188

use Llama-2-13B-Chat (Touvron et al., 2023) and 1189

Llama-2-70B-Chat (Touvron et al., 2023) to show 1190

that our method performs effectively in larger-scale 1191

models. 1192

Experimental Settings. If not explicitly stated, 1193

in all experiments, we set the number of stimuli 1194

prompts M = 1, the sample number N = 128, and 1195

select the samples by high perplexity. At the same 1196

time, we set the max new tokens to 512 in the gen- 1197

eration stage and pick the last 5 layers to control. 1198

We choose α based on the accuracy performance 1199

on each dataset. In the reasoning error localiza- 1200

tion experiment, we set δ = 10. We use float16 1201

to load large language models and employ greedy 1202

search as our decoding strategy. All experiments 1203

are conducted using one NVIDIA L20 GPU (ex- 1204

cept Llama-2-70B-Chat which uses three NVIDIA 1205

A100 GPUs). 1206

D Other Experimental Details 1207

D.1 Dataset 1208

The statistics of the data is shown in Table 4. The 1209

details about each data set are as follows: 1210

Arithmetic Reasoning. The arithmetic reason- 1211

ing benchmarks aim to analyze and/or understand 1212

the model’s mathematical reasoning skills. These 1213

include: (i) GSM8K (Cobbe et al., 2021), a math 1214

word problems benchmark encompassing a vari- 1215

15



Dataset Task Domain # Samples Answer Format

GSM8K Arithmetic 1319 Number
SVAMP Arithmetic 300 Number
CSQA Commonsense 1221 Multiple Choices

StrategyQA Commonsense 2290 Yes or No
Coin Flip Symbolic 2000 Yes or No

Random Letter Symbolic 300 Letter

Table 4: Statistics of the data set.

ety of reasoning steps; (ii) SVAMP (Patel et al.,1216

2021), containing math word problems with multi-1217

ple structures.1218

Commonsense Reasoning. These data sets aim1219

to analyze the ability of the model on common-1220

sense reasoning tasks. These include: (i) Strate-1221

gyQA (Geva et al., 2021), a commonsense bench-1222

mark requiring multi-level strategy to answer the1223

question; (ii) CSQA (Talmor et al., 2019) bench-1224

mark dataset of multiple-choice questions that re-1225

quire different types of commonsense knowledge1226

to predict the correct answers.1227

Symbolic Reasoning. These data sets aim to test1228

the abilities of the model requiring advanced sym-1229

bolic capabilities. For this task, we curated two1230

new datasets, as follows. (i) Coin Flip dataset, we1231

employ the data curation strategy of a previous1232

study (Wei et al., 2022) using the number of oper-1233

ations as 2, 4 and 7 to come up with the complete1234

dataset; (ii) Random Letter, an advanced version1235

of the last letter concatenation with reference to1236

the previously studied form of word assembly (Wei1237

et al., 2022), where 2-4 words are randomly formed1238

and characters are randomly drawn from them, in-1239

stead of taking the beginning or the end of each1240

word at a fixed point.1241

zero-shot CoT
USER: <question>
ASSISTANT: Let’s think step by step.
USER: <question>
ASSISTANT:

few-shot CoT

USER: <n different examples>
<question>
ASSISTANT:
USER: <question>
ASSISTANT:

Table 5: The stimulus prompting design for CoT-style
methods.

Task Extraction Template

StrategyQA Therefore, the answer (Yes or No) is
CSQA Therefore, among A through E, the answer is

Coin Flip Therefore, the answer (Yes or No) is
Random Letter Therefore, the answer is

Table 6: Extraction templates for various tasks.

D.2 Details of Robust Experiment 1242

We show our detailed results of the robustness in 1243

Table 9 and 10. For zero-shot settings, the terms 1244

Z1, Z2, and Z3 refer to the use of three different 1245

prompts, respectively (as shown in Section 4). For 1246

few-shot settings, the terms F1 and F2 also refer 1247

to two different experiments, as shown in Section 1248

4. 1249

E Prompts 1250

E.1 Prompt Templates 1251

Table 5 illustrates the design of stimulus prompts 1252

utilized for Chain of Thought (CoT) prompting, 1253

distinguishing between zero-shot CoT and few- 1254

shot CoT methodologies. In the zero-shot CoT ap- 1255

proach, the model is presented with a question de- 1256

void of preceding examples, in contrast to the few- 1257

shot CoT method, where the model is furnished 1258

with multiple exemplars. For each method, the 1259

first row is a positive prompt and the second is a 1260

negative prompt. Red indicates stimulus token. 1261

E.2 Answer Extract Prompts 1262

The demonstration of our answer extraction method 1263

is in Table 6. 1264

E.3 Example Prompts for Few-shot Setting 1265

We demonstrate our example prompts for few-shot 1266

setting in Table 11, 12, 13, 14 and 15. 1267

F Case Demonstrations 1268

We show our additional cases on arithmetic, com- 1269

monsense, and symbolic reasoning tasks in Fig- 1270
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Method
Arithmetic Commonsense Symbolic

GSM8K SVAMP CSQA StrategyQA Coin Flip Random Letter

Qwen2.5-3B-Instruct

Base 75.06 81.00 71.42 60.22 51.85 20.67
+ CoTZ 76.96 85.67 73.30 60.17 60.65 30.00
+ RoTZ 75.36 83.00 72.24 60.92 52.00 21.33

+ CoTF 81.96 87.67 64.78 61.00 96.85 33.00
+ RoTF 75.36 82.00 71.33 60.39 52.00 21.00

Table 7: Results of RoT and CoT based on different LLMs on a variety of reasoning tasks. Green indicates an equal
or improved accuracy compared to the Base method, while red indicates an accuracy decrease.

Method
Arithmetic Commonsense Symbolic

GSM8K SVAMP CSQA StrategyQA Coin Flip Random Letter

Qwen2.5-3B-Instruct

CoTZ 2.74 2.66 0.66 3.16 3.60 12.66
RoTZ 1.06 0.66 1.64 0.88 0.40 1.32
CoTF 1.06 1.34 4.83 0.78 1.55 0.67
RoTF 0.45 0.33 0.41 0.05 0.00 0.00

Table 8: The robust results of our approach and different general baselines with CoT on each task. Bold text
indicates optimal results in a single dataset.

ure 4, 5, 6, and 7.1271
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Method
Arithmetic Commonsense Symbolic

GSM8K SVAMP CSQA StrategyQA Coin Flip Random Letter
Llama-2-7B-Chat

CoTZ1 26.31 46.00 43.41 62.05 52.75 24.33
CoTZ2 26.23 48.33 43.90 60.52 48.35 17.67
CoTZ3 23.58 51.67 46.68 63.54 50.10 17.33
RoTZ1 26.23 54.33 48.24 63.54 45.45 20.67
RoTZ2 24.72 53.67 47.91 63.58 45.50 20.67
RoTZ3 25.09 53.67 47.42 63.23 45.35 20.33

Llama-3-8B-Instruct
CoTZ1 74.45 82.33 72.24 66.07 90.45 43.00
CoTZ2 74.83 83.33 72.65 63.32 83.55 42.00
CoTZ3 58.15 40.67 73.71 63.10 89.40 33.67
RoTZ1 74.83 83.33 72.89 65.24 76.35 47.67
RoTZ2 74.91 83.33 72.73 64.93 71.95 46.67
RoTZ3 73.62 82.00 72.48 65.50 68.15 42.00

Qwen2.5-3B-Instruct
CoTZ1 76.96 85.67 73.30 60.17 60.65 30.00
CoTZ2 75.59 84.67 73.38 60.44 60.90 36.33
CoTZ3 76.88 86.00 73.05 61.75 62.45 33.33
RoTZ1 75.36 83.00 72.24 60.92 52.00 21.33
RoTZ2 74.91 83.33 71.74 60.48 51.85 21.00
RoTZ3 74.83 83.00 71.42 60.66 52.05 20.67

Qwen2.5-7B-Instruct
CoTZ1 82.87 90.00 80.67 68.56 81.55 50.00
CoTZ2 82.79 87.00 80.26 66.33 82.25 53.33
CoTZ3 83.40 87.67 79.20 68.69 90.25 52.67
RoTZ1 83.09 86.67 80.34 66.03 86.25 25.33
RoTZ2 82.94 86.33 80.01 66.03 86.10 25.00
RoTZ3 83.02 86.67 80.26 65.90 86.30 25.00

Table 9: The detailed robust results in the zero-shot settings.
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Method
Arithmetic Commonsense Symbolic

GSM8K SVAMP CSQA StrategyQA Coin Flip Random Letter
Llama-2-7B-Chat

CoTF1 4.62 38.67 53.07 59.26 47.60 31.00
CoTF2 3.18 38.67 50.29 59.74 50.30 29.00
RoTF1 25.55 56.00 48.16 63.80 45.50 20.33
RoTF2 25.63 55.33 48.16 65.68 45.50 20.33

Llama-3-8B-Instruct
CoTF1 72.02 81.00 73.63 62.75 96.50 50.67
CoTF2 72.25 80.67 72.89 67.47 95.00 50.67
RoTF1 74.37 83.67 73.30 65.94 70.30 43.67
RoTF2 74.00 83.33 73.63 65.68 69.85 42.67

Qwen2.5-3B-Instruct
CoTF1 81.96 87.67 64.78 61.00 96.85 33.00
CoTF2 83.02 86.33 59.95 60.22 95.30 32.33
RoTF1 75.36 82.00 71.33 60.39 52.00 21.00
RoTF2 74.91 81.67 - - - -

Qwen2.5-7B-Instruct
CoTF1 89.54 91.00 81.90 70.96 99.50 47.00
CoTF2 88.86 91.33 81.82 69.69 99.25 47.33
RoTF1 82.94 87.00 80.26 66.29 86.55 25.33
RoTF2 82.87 86.67 79.69 65.90 86.60 25.33

Table 10: The detailed robust results in the few-shot settings.
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PROMPT FOR GSM8K AND SVAMP
Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are
done, there will be 21 trees. How many trees did the grove workers plant today?

A: There are 15 trees originally. Then there were 21 trees after some more were planted. So there must
have been 21 - 15 = 6. The answer is 6.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

A: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in
total?

A: Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74. After eating
35, they had 74 - 35 = 39. The answer is 39.

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many
lollipops did Jason give to Denny?

A: Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he gave Denny 20 -
12 = 8. The answer is 8.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys
does he have now?

A: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4 more toys. 5 +
4 = 9. The answer is 9.

Q: There were nine computers in the server room. Five more computers were installed each day, from
Monday to Thursday. How many computers are now in the server room?

A: There were originally 9 computers. For each of 4 days, 5 more computers were added. So 5 * 4 = 20
computers were added. 9 + 20 is 29. The answer is 29.

Q: Michael had 58 golf balls. On Tuesday, he lost 23 golf balls. On Wednesday, he lost 2 more. How
many golf balls did he have at the end of Wednesday?

A: Michael started with 58 golf balls. After losing 23 on Tuesday, he had 58 - 23 = 35. After losing 2
more, he had 35 - 2 = 33 golf balls. The answer is 33.

Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?

A: Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars. So she has 23 - 15
dollars left. 23 - 15 is 8. The answer is 8.

Table 11: Few-shot exemplars for the full chain of thought prompt for the arithmetic reasoning task. The highlighted
part refers to the reasoning steps.

20



PROMPT FOR STRATEGYQA
Q: Do hamsters provide food for any animals?

A: Hamsters are prey animals. Prey are food for predators. Thus, hamsters provide food for some
animals. So the answer is yes.

Q: Could Brooke Shields succeed at University of Pennsylvania?

A: Brooke Shields went to Princeton University. Princeton University is about as academically rigor-
ous as the University of Pennsylvania. Thus, Brooke Shields could also succeed at the University of
Pennsylvania. So the answer is yes.

Q: Yes or no: Hydrogen’s atomic number squared exceeds number of Spice Girls?

A: Hydrogen has an atomic number of 1. 1 squared is 1. There are 5 Spice Girls. Thus, Hydrogen’s
atomic number squared is less than 5. So the answer is no.

Q: Yes or no: Is it common to see frost during some college commencements?

A: College commencement ceremonies can happen in December, May, and June. December is in the
winter, so there can be frost. Thus, there could be frost at some commencements. So the answer is yes.

Q: Yes or no: Could a llama birth twice during War in Vietnam (1945-46)?

A: The War in Vietnam was 6 months. The gestation period for a llama is 11 months, which is more
than 6 months. Thus, a llama could not give birth twice during the War in Vietnam. So the answer is no.

Q: Yes or no: Would a pear sink in water?

A: The density of a pear is about 0.6g/cm3, which is less than water. Objects less dense than water
float. Thus, a pear would float. So the answer is no.

Table 12: Few-shot exemplars for the full chain of thought prompt for StrategyQA. The highlighted part refers to
the reasoning steps.
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PROMPT FOR CSQA
Q: What do people use to absorb extra ink from a fountain pen? Answer Choices: (a) shirt pocket (b)
calligrapher’s hand (c) inkwell (d) desk drawer (e) blotter

A: The answer must be an item that can absorb ink. Of the above choices, only blotters are used to
absorb ink. So the answer is (e).

Q: What home entertainment equipment requires cable?
Answer Choices: (a) radio shack (b) substation (c) television (d) cabinet

A: The answer must require cable. Of the above choices, only television requires cable. So the answer
is (c).

Q: The fox walked from the city into the forest, what was it looking for? Answer Choices: (a) pretty
flowers (b) hen house (c) natural habitat (d) storybook

A: The answer must be something in the forest. Of the above choices, only natural habitat is in the
forest. So the answer is (b).

Q: Sammy wanted to go to where the people were. Where might he go? Answer Choices: (a) populated
areas (b) race track (c) desert (d) apartment (e) roadblock

A: The answer must be a place with a lot of people. Of the above choices, only populated areas have a
lot of people. So the answer is (a).

Q: Where do you put your grapes just before checking out? Answer Choices: (a) mouth (b) grocery
cart (c)super market (d) fruit basket (e) fruit market

A: The answer should be the place where grocery items are placed before checking out. Of the above
choices, grocery cart makes the most sense for holding grocery items. So the answer is (b).

Q: Google Maps and other highway and street GPS services have replaced what? Answer Choices: (a)
united states (b) mexico (c) countryside (d) atlas

A: The answer must be something that used to do what Google Maps and GPS services do, which is to
give directions. Of the above choices, only atlases are used to give directions. So the answer is (d).

Q: Before getting a divorce, what did the wife feel who was doing all the work? Answer Choices: (a)
harder (b) anguish (c) bitterness (d) tears (e) sadness

A: The answer should be the feeling of someone getting divorced who was doing all the work. Of the
above choices, the closest feeling is bitterness. So the answer is (c).

Table 13: Few-shot exemplars for the full chain of thought prompt for CSQA. The highlighted part refers to the
reasoning steps. There are newlines between the answer choices that are omitted in the table for space reasons.

PROMPT FOR RONDOM LETTER CONCATENATION
Q: Take the first letters of the words in "James Hickman " and concatenate them.

A: The first letter of "James" is "J". The first letter of "Hickman" is "H". Concatenating them is "JH".
The answer is JH.

Q: Take the second letters of the words in "Carl Mccall Bonilla " and concatenate them.

A: The second letter of "Carl" is "a". The second letter of "Mccall" is "c". The second letter of "Bonilla"
is "o" Concatenating them is "aco". The answer is aco.

Q: Take the third letters of the words in "Randy Tanner " and concatenate them.

A: The third letter of "Randy" is "n". The third letter of "Tanner" is "n". Concatenating them is "nn".
The answer is nn.

Q: Take the first letters of the words in "Kenny Kim " and concatenate them.

A: The first letter of "Kenny" is "K". The first letter of "Kim" is "K". Concatenating them is "KK". The
answer is KK.

Table 14: Few-shot exemplars for the full chain of thought prompt for the random letter concatenation task. The
highlighted part refers to the reasoning steps.
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PROMPT FOR COIN FLIP
Q: A coin is heads up. Ka flips the coin. Sherrie flips the coin. Is the coin still heads up?

A: The coin was flipped by Ka and Sherrie. So the coin was flipped 2 times, which is an even number.
The coin started heads up, so after an even number of flips, it will still be heads up. So the answer is
yes.

Q: A coin is heads up. Jamey flips the coin. Teressa flips the coin. Is the coin still heads up?

A: The coin was flipped by Jamey and Teressa. So the coin was flipped 2 times, which is an even
number. The coin started heads up, so after an even number of flips, it will still be heads up. So the
answer is yes.

Q: A coin is heads up. Maybelle flips the coin. Shalonda does not flip the coin. Is the coin still heads
up?

A: The coin was flipped by Maybelle. So the coin was flipped 1 time, which is an odd number. The
coin started heads up, so after an odd number of flips, it will be tails up. So the answer is no.

Q: A coin is heads up. Millicent does not flip the coin. Conception flips the coin. Is the coin still heads
up?

A: The coin was flipped by Conception. So the coin was flipped 1 time, which is an odd number. The
coin started heads up, so after an odd number of flips, it will be tails up. So the answer is no.

Q: A coin is heads up. Sal flips the coin. Raymond does not flip the coin. Is the coin still heads up?

A: The coin was flipped by Sal. So the coin was flipped 1 time, which is an odd number. The coin
started heads up, so after an odd number of flips, it will be tails up. So the answer is no.

Q: A coin is heads up. Conception flips the coin. Kristian does not flip the coin. Is the coin still heads
up?

A: The coin was flipped by Conception. So the coin was flipped 1 time, which is an odd number. The
coin started heads up, so after an odd number of flips, it will be tails up. So the answer is no.

Q: A coin is heads up. Inga does not flip the coin. Elanor does not flip the coin. Is the coin still heads
up?

A: The coin was flipped by no one. So the coin was flipped 0 times. The coin started heads up, and it
was not flipped, so it is still heads up. So the answer is yes.

Q: A coin is heads up. Ryan flips the coin. Shaunda flips the coin. Is the coin still heads up?

A: The coin was flipped by Ryan and Shaunda. So the coin was flipped 2 times, which is an even
number. The coin started heads up, so after an even number of flips, it will still be heads up. So the
answer is yes.

Table 15: Few-shot exemplars for the full chain of thought prompt for the coin flip task. The highlighted part refers
to the reasoning steps.
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To find the total number of bolts needed for the robe, we need to calculate the total
amount of blue fiber and white fiber required, and then divide that by the amount of
blue fiber required per bolt. The problem states that a robe takes 2 bolts of blue fiber
and half that much white fiber. 

So, the total amount of blue fiber required is 2 bolts x 1 bolt = 2 bolts.

The total amount of white fiber required is half of 2 bolts, which is 1 bolt.

Therefore, the total number of bolts needed for the robe is 2 + 1 = 3 bolts.

Q: A robe takes 2 bolts of blue fiber and half that much white fiber.  How many bolts in
total does it take?

To find the total number of bolts needed for the robe, we need to calculate the total
amount of blue fiber and white fiber required, and then divide that by the amount of
blue fiber required per bolt. The problem states that a robe takes 2 bolts of blue fiber
and half that much white fiber. 

To find the total amount of blue fiber required, we can multiply the number of bolts by
the amount of blue fiber per bolt:
2 bolts x 2 = 4 bolts of blue fiber

To find the total amount of white fiber required, we can multiply the number of bolts by
the amount of white fiber per bolt:
2 bolts x 0.5 = 1 bolt of white fiber

Now, we need to divide the total amount of blue fiber by the amount of blue fiber
required per bolt to find the total number of bolts needed:
4 bolts of blue fiber / 2 = 2 bolts of blue fiber per bolt

Therefore, it takes 2 bolts of blue fiber and 1 bolt of white fiber to make the robe.

+ Control

Figure 4: A real case predicted by Llama-2-7B-Chat with zero-shot CoT on the GSM8K dataset. The segment
highlighted in blue represents the correct output of the model. The red part shows that the model starts to reason in
the wrong direction without control, while the green portion indicates the model reason in the correct direction after
adding control.
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Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today.
After they are done, there will be 21 trees. How many trees did the grove workers plant
today?
A: There are 15 trees originally. Then there were 21 trees after some more were
planted. So there must have been 21 - 15 = 6.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in
the parking lot?
A: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5.}  The answer is 5.
...

Q: Carla is downloading a 200 GB file. Normally she can download 2 GB/minute, but
40% of the way through the download, Windows forces a restart to install updates,
which takes 20 minutes. Then Carla has to restart the download from the beginning.
How load does it take to download the file?

Let's break this problem down step by step!
Initially, Carla can download 2 GB/minute. To find out how many minutes it would take
to download the entire file, we can divide the file size (200 GB) by the download rate (2
GB/minute):
200 GB / 2 GB/minute = 100 minutes

However, Windows forces a restart after 40% of the download is complete. To find out
how many GB are left to download, we can calculate 40% of the total file size:
40% of 200 GB = 0.4 x 200 GB = 80 GB

So, Carla has to restart the download from the beginning, and she has 80 GB left to
download. To find out how many minutes it will take to download the remaining 80 GB,
we can divide the remaining file size by the download rate:
80 GB / 2 GB/minute = 40 minutes.

Adding the initial 100 minutes to the additional 40 minutes, Carla will need a total of:
100 minutes + 40 minutes = 140 minutes to download the entire file.

Let's break it down step by step:
1. Carla can download 2 GB/minute, so it would normally take her:
200 GB / 2 GB/minute = 100 minutes to download the file.

2. But, 40% of the way through the download, Windows forces a restart. This means
she has downloaded:
40% of 200 GB = 80 GB at that point. This means she still has: 200 GB - 80 GB = 120
GB left to download.

3. The restart takes 20 minutes, so Carla loses 20 minutes of download time.

4. After the restart, Carla has to start the download from the beginning, which means
she has to re-download the 80 GB she already had. This adds another 80 GB / 2
GB/minute = 40 minutes to the total download time.

Therefore, the total download time is: 
100 minutes (original download time) + 20 minutes (restart time) + 40 minutes (re-
downloading already downloaded portion) = 160 minutes.+ Control

Figure 5: A real case predicted by Llama-3-8B-Instruct with few-shot CoT on the GSM8K dataset. The purple part
is an example of input-output pairs given by user. The segment highlighted in blue represents the correct output of
the model. The red part shows that the model starts to reason in the wrong direction without control, while the green
portion indicates the model reason in the correct direction after adding control.
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Q: Do hamsters provide food for any animals?
A: Hamsters are prey animals. Prey are food for predators. Thus, hamsters provide food
for some animals. So the answer is yes.

Q: Could Brooke Shields succeed at University of Pennsylvania?
A: Brooke Shields went to Princeton University. Princeton University is about as
academically rigorous as the University of Pennsylvania. Thus, Brooke Shields could also
succeed at the University of Pennsylvania. So the answer is yes.
...

Q: Is a platypus immune from cholera?

I think I can help you with that!  

A: Platypuses are mammals.

Cholera is a bacterial infection that can affect many animals, including mammals. 
Platypuses do not have a natural immunity to cholera.  So, the answer is no.

According to scientific research, platypuses are resistant to cholera.

This is because they have a unique immune system that is adapted to their aquatic
environment. Platypuses have a low body temperature, which makes it difficult for many
pathogens, including cholera, to replicate and cause disease. 

Additionally, their immune system is highly effective at recognizing and eliminating
pathogens, and they have a strong response to bacterial infections.

In fact, studies have shown that platypuses are resistant to a range of bacterial
infections, including cholera, and that they are able to recover quickly from infections
that would be fatal to other animals.

So, to answer your question, yes, platypuses are generally immune from cholera!+ Control

Figure 6: A real case predicted by Llama-3-8B-Instruct with few-shot CoT on the strategyQA dataset. The purple
part is an example of input-output pairs given by user. The segment highlighted in blue represents the correct output
of the model. The red part shows that the model starts to reason in the wrong direction without control, while the
green portion indicates the model reason in the correct direction after adding control.
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Q: A coin is heads up. Ka flips the coin. Sherrie flips the coin. Is the coin still heads up?
A: The coin was flipped by Ka and Sherrie. So the coin was flipped 2 times, which is an
even number. The coin started heads up, so after an even number of flips, it will still be
heads up. So the answer is yes.

Q: A coin is heads up. Jamey flips the coin. Teressa flips the coin. Is the coin still heads
up?
A: The coin was flipped by Jamey and Teressa. So the coin was flipped 2 times, which is
an even number. The coin started heads up, so after an even number of flips, it will still
be heads up. So the answer is yes.
...

Q: A coin is heads up. verley flips the coin. nytavious does not flip the coin. alsiha does
not flip the coin. leroyal does not flip the coin.  Is the coin still heads up?

The coin was flipped by Verley. So the coin was flipped 1 time, which is an odd number.
The coin started heads up, so after an odd number of flips, it will be tails up. 

However, no one else flipped the coin, so the coin was not flipped again. Since the coin
was flipped an odd number of times initially, it will still be heads up. So the answer is
yes.

The only person who flipped the coin is Verley. Since the coin was initially heads up,
Verley's flip would change the side of the coin. 

Therefore, the coin is no longer heads up.+ Control

Figure 7: A real case predicted by Llama-3-8B-Instruct with few-shot CoT on the coin flip dataset. The purple part
is an example of input-output pairs given by user. The segment highlighted in blue represents the correct output of
the model. The red part shows that the model starts to reason in the wrong direction without control, while the green
portion indicates the model reason in the correct direction after adding control.
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