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ABSTRACT

Existing semi-supervised learning (SSL) has been shown to be an effective
paradigm for learning with less labeled data. To improve the performance of
SSL, existing methods build sample reweighting or thresholding strategies to han-
dle the category bias or erroneous pseudo labels. However, most of these existing
methods are based on the heuristic hand-crafted rules, which require laborious
adjustment, and may lead to sub-optimal solutions that cannot improve the model
performance to the greatest extent. Here, to the best of our knowledge, we pioneer
to develop an automatic strategy that boosts the performance of SSL. We introduce
an end-to-end sample reweighting policy for semi-supervised learning, with a
delicately designed Markov Decision Process (MDP) framework. The MDP frame-
work is constructed with an agent network, which is optimized in a reward-driven
manner, and receives the carefully designed state and action representations for
decision reference. We also design a memory paradigm for computation-efficient
representation construction and MDP solving. We further introduce a "pretraining-
boosting" two-stage MDP curriculum where the agent network is firstly pretrained
and then optimized continuously in the deployment phase to catch up with the con-
stantly updated classification network. Extensive experiments demonstrate that our
method achieves state-of-the-art performance on multiple datasets, outperforming
previous advanced approaches such as FixMatch.

1 INTRODUCTION

Although having achieved great success, deep learning, in many cases, is plagued by the need for
a huge amount of labeled data. To this end, semi-supervised learning Sohn et al. (2020); Zhang
et al. (2021a); Xie et al. (2020); Gong et al. (2021); Berthelot et al. (2019b;a) has attracted much
attention in recent years due to its ability to leverage not only the labeled but also the unlabeled data
for improving model performance.

Currently, most of the semi-supervised learning methods Sohn et al. (2020); Zhang et al. (2021a);
Xie et al. (2020) are based on the "pseudo label training" mechanism with a teacher-student network
structure, in which the teacher network generates pseudo labels, and the student network uses them
for training. However, such a scheme faces challenges including erroneous pseudo labels because of
wrong predictions from the teacher network, and the category bias due to the class imbalance of the
training data. To address these issues, Sohn et al. (2020); Xie et al. (2020); Berthelot et al. (2019a)
build hard or soft thresholds and weighting scores to emphasize samples with cleaner labels based on
the entropy confidence. Meanwhile, Zhang et al. (2021a); Hu et al. (2021) set different thresholding
strategies for different categories to achieve category-unbiased training. Despite achieving significant
improvement, these existing methods are generally based on the hand-crafted rules, which are often
manually designed based on the heuristic inference. However, such hand-crafted rules that often
need careful adjustment may not lead to optimal solutions for improving performance to the greatest
extent. For example, it is hard to find the optimal thresholds that can keep the trade-off between the
cleaner labels and the sufficient training samples.

In this work, to address the above-mentioned issues, we free the need for hand-crafted strategy
designing such as the manually set thresholds and weighting functions. Instead, we propose a novel
method by performing sample reweighting for semi-supervised learning with an agent network, to au-
tomatically emphasize different samples with different degrees based on their potential contributions.
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The agent network learns a sample reweighting policy in a reward-driven manner by maximizing the
performance on an individual set, so that the obtained policy is directly performance improvement-
related. With the learned policy, the agent generates a reweighting score for the training of each
unlabeled sample, without the need for the manually designed thresholds or weights adjustment
strategies. Such a learning procedure can be formulated as a Markov Decision Process (MDP), which
is solved with Reinforcement Learning (RL). The agent receives state and action representations
for generating weighting scores. To ease the weighting decision of the agent, we carefully design
the state and action, so that they contain essential information such as pseudo label confidence and
class-wise accuracy. These information can reflect the contribution and importance of each sample
so that they can guide the agent for making a better decision. To relieve the computation burden of
constructing state and action by calculating on the whole dataset, a queued memory is also designed
in our framework. We further propose an effective dual-phase MDP method, which consists of not
only a common training phase for pretraining an initialized policy, but also a deployment boosting
phase where the agent is continuously boosted with the updating of the classification network. Such a
dual-phase mechanism enables boosted performance benefited from the dynamic adaptation to the
training status.

To the best of our knowledge, our work pioneers to deploy an automatic end-to-end policy with the
task-specific state and action representations for semi-supervised learning. Benefited from the reward-
driven optimization, the automatically learned policy results in better performance compared to the
hand-crafted counterparts. The learning policy can also be dynamically adapted and optimized going
along with the training process via our "pretraining-boosting" two-stage MDP curriculum. Experi-
mental results have demonstrated the effectiveness of our designed framework. Our method achieves
state-of-the-art performance on multiple datasets, outperforming previous advanced approaches such
as FixMatch Sohn et al. (2020).

In summary, our main contributions are: 1) We propose an MDP framework for semi-supervised
learning. This framework can automatically generate a weighting score for each sample via an agent
network, without the need for the hand-crafted adjustment strategies. This framework is achieved
in a reward-driven manner, so that the obtained policy is directly optimized to be performance
improvement-related. 2) The MDP framework is delicately designed in the network structure with
effective reference information to guide weighting decisions, the training strategy with queued
memory method to reduce the computation cost for constructing state and action representations,
and the deployment stage with a "pretraining-boosting" curriculum. 3) We evaluate our method on
multiple datasets and achieve state-of-the-art (SOTA) performance.

2 METHOD

2.1 PRELIMINARIES

We follow the settings of Sohn et al. (2020); Zhang et al. (2021a); Xie et al. (2020) to construct the
basic framework for semi-supervised learning as follows. Given the labeled dataset Dl = {(xl

i, y
l
i)}

and the unlabeled dataset Du = {(xu
i )}, the semi-supervised learning network processes the two

alternately, and can be optimized in a teacher-student learning manner. Specifically, for the labeled
data, a common cross-entropy loss is calculated as the supervised loss Ll. For the unlabeled data, the
teacher network g is input with the weak augmentation of the unlabeled image xu

i and generates the
corresponding pseudo label ŷui , while the student network f is input with the strong augmentation of
xu
i and uses ŷui as the supervision for network training. Then the unsupervised loss for each mini

batch is formulated as:

Lu =
1

Nb

Nb∑
i=1

Li
u, Li

u = Lce (f (xu
i ) , ŷ

u
i ) , (1)

where Lce denotes the cross-entropy loss and Nb denotes the number of images in each batch. The
final loss for training the student network equals to Ll + Lu. And the parameters of the teacher
network are updated by the exponential moving average of the student network. Finally, the student
network is used for inference. Such a basic framework faces challenges including the noisy pseudo
labels and the class bias issues, resulting in unsatisfactory performance, as reported by Xie et al.
(2020); Zhang et al. (2021a); Hu et al. (2021). To address this issue, some recent works Zhang
et al. (2021a); Hu et al. (2021); Gong et al. (2021) focus on performing sample reweighting for the
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Figure 1: Overview of our proposed method for semi-supervised learning. To simplify the illustration,
this figure is based on the setting where one training batch has one labeled data xl and one unlabeled
data xu, which are sampled from the labeled training set Dl and the unlabeled training set Du,
respectively. xl passes through the student network f and gets the supervised loss Ll. The weak
augmentation of xu is fed into the teacher network g to get the pseudo label ŷu, which is used as the
supervision of the prediction results of f that takes the strong augmentation of xu as the input. The
intermediate feature Iu, pseudo label ŷu, entropy confidence EC along with the queued memories
are employed to compute the state and action representations, which are then fed into the agent q,
getting the weighting score w. The weighted loss denoted as Ll + wLu is used to optimize f . The
reward rt+1 by measuring the accuracy difference after one updating step of f is used to optimize q.
The parameters of teacher network g is updated by the exponential moving average (EMA) of f . The
queued memories are updated by Ll, Lu, Il, Iu and w representing the current status.

unlabeled samples, with the following modified loss with the weighting score wi introduced:

Lu =
1

Nb

Nb∑
i=1

wiL
i
u, Li

u = Lce (f (xu
i ) , ŷ

u
i ) , (2)

where wi is designed to filter out the noisy labels or construct a class-balanced training set. Existing
works mainly use manually designed heuristic rules to generate the weighting scores, e.g, through
a threshold based on pseudo labels’ confidences to form a binary weight Xie et al. (2020), or a
class-dependent weight value according to each class’s training status Hu et al. (2021). However,
these heuristic rules are hand-crafted and require careful empirical analysis. Because of the manually
designing scheme, these heuristic hand-crafted rules may not be the optimal solutions for network
optimization. This issue motivates us to propose a brand new learning method – by automatically
learning a reweighting policy through reinforcement learning. Therefore, in this work, an agent
network q is introduced to learn the policy and generate the weighting score for each unlabeled
sample. Such an optimization process is reward-driven, by maximizing the reward calculated from
an individual dataset. Such a reward can reflect the testing performance improvement, so that the
learned reweighting policy can directly improve the performance. The overall structure of our method
is shown in Fig. 1.

2.2 MARKOV DECISION PROCESS FOR SEMI-SUPERVISED LEARNING

To automatically learn a reweighting policy, we design a reward-driven method, in which the reward
should reflect the model performance improvement. To achieve this, we separate 25% samples from
the labeled set to form a reward set Dr, and define the rest of the labeled samples as the labeled
training set Dl. Dl along with the unlabeled training set Du are used to train the classification
network, while Dr is used to compute the reward by evaluating the trained classification network on
it.
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We formulate the sample reweighting process in semi-supervised learning as a Markov Decision
Process (MDP). For the t-th iteration, the corresponding MDP can be defined as a sequence
(st, at, rt+1, st+1), where s refers to the state, a refers to the action and r denotes the reward.
Both the state and action are information captured by the classification network. Then each iteration
for agent training can be divided into the following five steps: (1) Computing the state st and action
at of the current stage by using the input images with the classification network. (2) Using the agent
q to produce the weighting score w for each unlabeled sample with the input st and at. (3) Retraining
the classification network ft using the weighted loss as in Equation. 2, which results in ft+1 and the
updated state st+1. (4) Computing the reward rt+1 on the reward set Dr using the network ft+1 and
ft. (5) Updating the agent through the reward rt+1.

We employ the Q-learning algorithm Van Hasselt et al. (2016) to solve the MDP. Specifically, we
optimize the agent so that the reward is maximized based on the network trained with the learned
reweighting policy. More concretely, such an optimization process is implemented by minimizing the
following temporal difference (TD) error:

TD
(
θ, θ̂
)
=
(
rt+1 + γq

(
st+1, at+1; θ̂

)
− q (st, at; θ)

)2
, (3)

where θ denotes the parameters of the agent’s policy network, θ̂ refers to the parameters of the agent’s
off-policy parameters. θ̂ targets at saving the learned Q-value, and is periodically updated based
on θ. We calculate the reward by evaluating the accuracy gain on Dr after an updating step of the
classification network from ft to ft+1, which is introduced detailedly in Sec 2.5.

Employing such an MDP framework into semi-supervised learning is nontrivial. Specifically, we
face three key challenges for designing this reward-driven method: 1) How to design the state and
action so that there are sufficient reference information for the agent to generate weighting scores. 2)
How to process the reference information under a reasonable computation cost. 3) How to deploy the
agent into semi-supervised learning where the classification network is continuously updated. In the
following part, we address the above-mentioned challenges throughout the designing of our method.

2.3 STATE AND ACTION

The agent network receives the state and action representations to generate weighting scores. There-
fore, the state and action not only form two components of the MDP framework, but also work
as reference information to guide the weighting decision of the agent. Thus, we capture reference
information that determines the contribution to the performance improvement through a specific
sample, and integrate the information into the state and action representations. Specifically, the state
and action are considered to reflect the global status of the dataset and the sample-specific properties,
respectively. Below we introduce the design details for the state and action representations.

State. Semi-supervised learning often suffers from the problem of class bias, as reflected by the
different training accuracies for different categories. Thus, training using the class independent
strategies can be sub-optimal. For example, using the same confidence thresholding strategies for
all classes as in Sohn et al. (2020) can lead to an imbalanced training set, since fewer samples
within the hard classes will be selected due to the generally lower confidences of these classes.
The negative effect caused by such an issue has been found in Zhang et al. (2021a). Motivated by
this, to help get a class-specific strategy, we capture the category-level performance that reflects
the properties of each class from a global view. Intuitively, samples belonging to the categories
with worse performance should get higher weighting scores, to encourage the optimizer to put more
attention on them. Therefore, the class-bias information is considered to be able to help the agent to
produce a class-unbiased policy for improving performance. To extract this information, we calculate
the average accuracy of all samples belonging to each category. The higher average accuracy reflects
the better performance for a certain class. Finally, we concatenate the average accuracy of all classes,
thus forming the state representation reflecting the global status of the dataset.

Action. The action representation reflects how an individual unlabeled sample along with its pseudo
label contributes to the training process. Confidence and diversity play important roles in such
contribution measurement. Specifically, confidence measures the possibility that a pseudo label is
correct, while diversity reflects how an unlabeled sample is different from other samples belonging to
the same category. Intuitively, the unlabeled samples with higher confidence and higher diversity
should get higher weighting scores, since training using such samples brings less noise due to the
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more reliable pseudo labels, and helps to avoid over-fitting due to the higher novelty. Therefore, for
the unlabeled sample, we capture confidence and diversity information as the action representation to
guide the agent. For confidence, we calculate the entropy of the prediction result from the teacher
network. For diversity, we use the cosine similarity of the intermediate features (features before
the fully-connected layer of the CNN) to measure the diversity of every sample. We calculate the
diversity between each unlabeled sample with other samples within the same class, getting a set of
similarity values. Finally, diversity information can be represented as the statistical properties of
these values.

Reducing Computation via Queued Memories. To capture the reference information reflecting the
current status, the state and action representations introduced above need to be calculated at each train-
ing iteration. However, such calculation brings unbearable high computation cost, since all samples
need to be fed into the new network to get the updated accuracy and intermediate features. Such high
computation cost is unacceptable for training, so that we propose a memory mechanism to relieve the
computation burden. Specifically, for a dataset with C classes, we introduce C queued memories
M = {Mc}Cc=1 to store the information of the recent training samples for each class. Each category
corresponds to one memory, storing the information of both the labeled and unlabeled samples.
Therefore, we can formulate each Mc for the c-th category as {{Lc,i

l , Ic,il }Nl
i=1, {Lc,j

u , Ic,ju , wj}Nu
j=1},

where Lc,i
l and Lc,j

u denote the loss values, Ic,il and Ic,ju denotes the intermediate features for the
i-th labeled and j-th unlabeled sample respectively of the c-th class, wj refers to the weighting score
for the j-th unlabeled sample generated from the agent. Nl : Nu = len(Dl) : len(Du), where len
refers to the length of a set. Nl +Nu = N , denoting the length of the memory. All memories are
constructed in the form of queues, in which new samples are constantly added to replace the oldest
samples in each iteration, ensuring that the most recent new samples are always used for computing,
catching up with the current training status. Since we only need to compute on the memory with a
small length rather than reprocessing all images, the computation cost can be significantly reduced,
while maintaining reasonable accuracy with always-new input information close to the current status.

With this memory mechanism, the average accuracy of the c-th category used in the state representa-
tion can be formulated as the weighted average loss:

ALc =
1

Nl +
∑Nu

j=1 wj

 Nl∑
i=1

Lc,i
l +

Nu∑
j=1

wjL
c,j
u

 . (4)

Thus, the state representation s can be formulated as {ALc}Cc=1, reflecting the global status of the
dataset.

To get the diversity used in the action representation, for a sample belonging to the c-th category, we
calculate the cosine similarities of its intermediate feature w.r.t all {Ic,il }Nl

i=1 and {Ic,ju }Nu
j=1 stored in

the memory Mc, resulting in N similarity values – the {sc,il }Nl
i=1 and {sc,ju }Nu

j=1. To capture useful
statistical information from these similarity values for constructing the action representation, an
option is to compute the simple statistics such as the average or maximum value. Here to obtain more
informative features, we instead use a histogram to compute the statistical distribution. Specifically,
the histogram H has L bins (intervals) with the equal width, so that it has the shape of RL. Each
bin corresponds to a lower bound lb and an upper bound ub. Therefore, each channel Hk of the
histogram H can be formulated as:

Hk =
1

Nl +
∑Nu

j=1 wj

 Nl∑
i=1

1
(
lbk < sc,il ≤ ubk

)
+

Nu∑
j=1

wj1
(
lbk < sc,ju ≤ ubk

) , (5)

where k ∈ [1, L], and the bounds lbk and ubk can be calculated by:

lbk =
k − 1

L
, ubk =

k

L
. (6)

Finally, the action representation a for each unlabeled sample can be formulated as {ŷu, EC,H},
where ŷu refers to the pseudo label and EC denotes the entropy confidence. By combining the
confidence and diversity information, this representation provides useful reference information
implying the potential contribution of each unlabeled sample.
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Figure 2: Structure of the agent, where ALc denotes the average loss value of the c-th class, ŷu refers
to the pseudo label , EC denotes the entropy confidence and H denotes the diversity histogram.

Algorithm 1 Training Phase Algorithm.
1: Input: an agent network q, a classification network (student network) f , a teacher network g, a dataset

D = {Dl, Du, Dr}.
2: while not done do
3: for t = 0 to T − 1 do
4: Dt

l = {xi, yi}Nb
i=1, D

t
u = {xi}Nb

i=1 ←MinibatchPartition(Dl, Du)
5: Compute supervised loss Ll from Dt

l using ft
6: Get pseudo labels Y t

u = {ŷi}Nb
i=1 from Dt

u using gt
7: Compute state st and action at using the memory M (Sec. 2.3)
8: Generate weighting scores W t

u = {wi}Nb
i=1 using q (Sec. 2.4)

9: Compute unsupervised loss Lu from Dt
u, Y t

u and W t
u using ft (Eq. 2)

10: Update ft with the optimization object Lu + Ls: ft+1 ← UPDATE(ft,Lu + Ls)
11: Compute reward on Dr: rt+1 ← ACC(ft+1) - ACC(ft)
12: Update memory M
13: Update g: gt+1 ← 0.99gt + 0.01ft+1

14: end for
15: Update q following Eq. 3
16: end while
17: Return: q

2.4 AGENT

With the state and action representations containing the global and sample-specific reference informa-
tion acquired, the agent q can use them for generating the weighting scores. Specifically, we first feed
the state and action representations into two individual linear layers with a ReLU activation, resulting
in two features. These two features are concatenated and further processed by a three-layered MLP,
whose output passes through a Sigmoid function and becomes the weighting score w. The figure for
illustrating the agent structure is presented in Fig. 2.

2.5 REWARD

The optimization of the above-introduced agent q can be achieved in a reward-driven manner.
Specifically, the reward measures how much the learned policy can benefit the classification network
f . It is calculated by evaluating the performance improvement on Dr after one updating step of f
from ft to ft+1, which is formulated as:

rt+1 = ACC(ft+1)−ACC(ft) , (7)

where ACC denotes the accuracy on Dr. Such a reward directly reflects the performance improvement
of f , so that by optimizing using it, the agent can generate a performance improvement-related policy.

2.6 TRAINING AND DEPLOYMENT

With the introduced MDP framework and the designed task-specific state and action representations,
training and deploying the agent network are also non-trivial. Typical MDP frameworks Fang et al.
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Table 1: Error rates on CIFAR-10, CIFAR-100, SVHN, STL-10 and CIFAR-100-CI datasets. The
lower error rate denotes the better performance.
Dataset CIFAR-10 CIFAR-100 STL-10 SVHN CIFAR-100-CI

Label Amount 40 250 4000 400 2500 10000 40 250 1000 40 1000 10000

PL Lee et al. (2013) 69.51±4.55 41.02±3.56 13.15±1.84 86.10±1.50 58.00±0.38 36.48±0.13 74.48±1.48 55.63±5.38 31.80±0.29 60.32±2.46 9.56±0.25 45.91±0.32

MixMatch Berthelot et al. (2019b) 47.54±11.50 11.05±0.86 6.42±0.10 67.61±1.32 39.94±0.37 28.31±0.33 - - 10.41±0.61 42.55±14.53 3.50±0.28 33.09±0.49

ReMixMatch Berthelot et al. (2019a) 19.10±9.64 5.44±0.05 4.72±0.13 44.28±2.06 27.43±0.31 23.03±0.56 37.42±8.44 9.72±1.15 6.64±0.17 3.34±0.20 2.28±0.11 27.01±0.64

AlphaMatch Gong et al. (2021) 8.65±3.38 4.97±0.29 - 38.74±2.94 25.37±0.22 - - - - 3.57±3.13 - -
UDA Xie et al. (2020) 7.33±2.03 5.11±0.07 4.20±0.12 44.99±2.28 27.59±0.24 22.09±0.19 37.31±3.03 12.07±1.50 6.65±0.25 4.40±2.31 1.93±0.01 25.17±0.22

FixMatch Sohn et al. (2020) 6.78±0.50 4.95±0.07 4.09±0.02 46.76±0.79 28.15±0.81 22.47±0.66 35.42±6.43 10.49±1.03 6.20±0.20 4.36±2.16 1.97±0.03 25.20±0.63

Ours 4.85±0.09 4.73±0.10 3.79±0.04 31.40±1.99 23.01±0.27 19.18±0.15 9.95±2.69 7.07±0.49 5.17±0.22 3.30±0.98 1.95 ±0.05 19.65±0.22

(2017); Padmakumar et al. (2018) consist of a "training stage" where the agent network is pretrained,
and a "deployment stage" where the agent network is fixed and functioning. However, in our task,
such a scheme has to be altered. Although the reweighting policy can be obtained through the initial
training stage, the constantly updated classification network prevents the agent from effectively
handling the current state and action representations in the deployment phase. Facing the challenge,
we design a pretraining – boosting curriculum for training and deploying the agent network. In
the training stage, as shown in Alg. 1, we pretrain the agent to get an initialized policy. In the
deployment stage, instead of using the fixed agent, we update the agent based on the current state and
action representations. Specifically, the classification network f and the agent network q are trained
alternately. After training f for one epoch, we update q for one step. Such an alternate training
mechanism enables to constantly boost the agent, so that the agent can always catch up with the
current training status of the classification network, avoiding the policy degeneration. Our experiments
validate the effectiveness of such the pretraining – boosting curriculum, which demonstrates good
performance. To utilize the labeled samples in the reward set Dr, in the last 10% epochs of the
deployment phase, we add Dr into the labeled training set Dl, using all labeled images for the
semi-supervised classification training.

3 EXPERIMENTS

We evaluate our method on several commonly used semi-supervised learning datasets, including
CIFAR-10/100 Krizhevsky et al. (2009), SVHN Netzer et al. (2011), STL-10 Coates et al. (2011) and
ImageNet Deng et al. (2009). To verify the effectiveness of our method, we compare it with other
advanced methods such as UDA Xie et al. (2020), MixMatch Berthelot et al. (2019b), FixMatch Sohn
et al. (2020), Pseudo-Labeling Lee et al. (2013), FlexMatch Zhang et al. (2021a) and AlphaMatch
Gong et al. (2021). These methods either do not consider reweighting different samples Lee et al.
(2013), use a fixed threshold of confidence for getting cleaner labels Sohn et al. (2020), or design
other hand-crafted strategies to address the issues caused by noisy labels Gong et al. (2021) and class
bias Zhang et al. (2021a). In contrast, our method brings a brand new perspective.

For a fair comparison, for the semi-supervised training (the boosting phase), we follow the imple-
mentation settings of FixMatch Sohn et al. (2020) and FlexMatch Zhang et al. (2021a) to set the
common hyper-parameters such as learning rate and weight decay. The details are presented in the
appendix. The bins number of histograms used in action equals to 5. For each class, we put 25%
of its labeled samples into the reward set Dr. And the memory length equals 100. Note that, our
method is non-sensitive to these specific hyper-parameters, as proven by the ablation results shown
in the appendix.

For the pretraining phase, the number of training steps is 1019 (half of the deployment phase), while
other settings remain the same as the deployment phase.

3.1 RESULTS

CIFAR-10, CIFAR-100, SVHN, STL-10 and CIFAR-100-CI. We first evaluate the proposed method
on CIFAR-10, CIFAR-100, STL-10, and SVHN, and compare it with other advanced methods. For
a fair comparison, we follow the setting of Sohn et al. (2020) by using the Wide ResNet-37-2 as
the model structure for STL-10 and the Wide ResNet-28-2 for other datasets. The results of other
compared methods are the best results reported by the previous papers. Following FixMatch and
AlphaMatch, for experiments on CIFAR-100, we add an additional distribution alignment loss into
our proposed method.
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Table 3: Ablation experimental results of state and action representations.
Method CIFAR-100 CIFAR-100-CI

w/ complete state and action 31.40 19.65

State w/o average accuracy 36.11 23.92

Action w/o confidence 36.38 24.12
Action w/o diversity histogram 34.66 23.57
Action w/o diversity histogram w/ diversity statistics 32.95 21.12

We present the comparison results in Table. 1. Results on different partition protocols are presented,
where the number of labeled images differs. Our method achieves state-of-the-art performance under
most settings, and the performance gain is especially significant under some challenging conditions.
For example, for the 400 labeled images setting on CIFAR-100, our method outperforms FixMatch
by about 15%. This demonstrates the effectiveness of the proposed method when the labeled images
are quite limited.

As previous works do, all the above comparison experiments are based on the settings where all
categories have the same number of labeled images. We further test the class-imbalanced case, which
is a more challenging and closer to real-world condition for semi-supervised learning. Specifically, we
use CIFAR-100 to construct a class-imbalanced labeled dataset named CIFAR-100-CI, with different
categories having different numbers of labeled images, ranging from 25 to 200. We evaluate different
methods on the constructed CIFAR-100-CI except for the AlphaMatch because the code of it is not
released. The results are also shown in Table. 1. We can observe that due to the class imbalance, the
performance of previous works significantly worsen, while the accuracy drop is relatively small for
our proposed method. This is due to the designed state and action representations for computing
reweighting scores, which contain the class-bias information that helps the agent to automatically
learn a class-unbiased policy.

Table 2: Error rates compari-
son on ImageNet.

Method Top-1 Top-5

FixMatch Sohn et al. (2020) 43.08 19.55
FlexMatch Zhang et al. (2021a) 35.21 13.96

Ours 34.09 13.11

ImageNet. We further conduct experiments on ImageNet to verify
the effectiveness of the proposed method on large and more complex
dataset. Following the setting of Zhang et al. (2021a), we randomly
choose 100K samples as the labeled data, with each category having
100 samples. The implementation details also follow Sohn et al.
(2020); Zhang et al. (2021a). The length of each memory is 250. We
report results after training for 220 iterations in Table. 2. The perfor-
mance of our method outperforms not only the classical FixMatch,
but also FlexMatch using the hand-crafted adjustment strategies.

3.2 ABLATION STUDY

In this part, we conduct experiments to verify the effectiveness of different settings and components
of the proposed method. Due to the paper length limitation, more ablation study results are presented
in the appendix, including the ablation for memory length and reward set length. The weight
visualization results for the qualitative analysis are also shown in the appendix.

Ablation of State and Action. State and action are treated as the reference information of the
agent to produce the weighting scores. We perform experiments to verify the contribution of each
designed component in these two representations. The experimental results are shown in Table. 3.
We conduct experiments on CIFAR-100 with 400 labeled samples and CIFAR-100-CI with 10000
labeled samples. Under these two settings, the final models by using the complete state and action
representations achieve 31.40 and 19.65 error rates respectively. Removing average accuracy in the
state representation increases the error rates to 36.11 and 23.92. The action representation contains
two parts: the entropy confidence and the similarities histogram. Removing the entropy confidence
increases the error rates to 36.38 and 24.12. And removing the similarities histogram increases the
error rates to 34.66 and 23.57. For getting the statistical information from the similarities to represent
the class-wise diversity, we employ the histogram rather than the simple statistics. We evaluate the
setting of using statistics by concatenating the minimum, maximum, average and variance values to
represent diversity. This setting increases the error rates to 32.95 and 21.12, showing the advantages
of constructing the histograms.
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Table 4: Ablation experimental results of the
pretraining-boosting mechanism.

Method CIFAR-100 CIFAR-100-CI

w/ pretraining and boosting 31.40 19.65

w/o boosting 33.65 22.71

Ablation of the Pretraining-boosting Mech-
anism. In this paper we propose a dual-phase
MDP framework. In the training phase an agent
is pretrained to get an initialized policy, which is
continuously optimized in the deployment phase
to catch up with the current status. We conduct
experiments on CIFAR-100 with 400 labeled
samples and CIFAR-100-CI with 10000 labeled samples, to demonstrate the effectiveness of this
design. The results are presented in Table. 4. Specifically, we remove the boosting operation but use
a fixed agent in the deployment phase. This setting increases the error rates from 31.40 and 19.65 to
33.65 (+2.25) and 22.71 (+3.06). This result verifies that the agent boosting plays an important role
in improving the model performance.

4 RELATED WORK

In recent years, semi-supervised learning has attracted much attention, since it provides a mechanism
to improve model performance using both the labeled and unlabeled data. The traditional semi-
supervised learning methods were usually based on the entropy minimization Grandvalet et al. (2005);
Lee et al. (2006), transductive models Demiriz et al. (1999); Joachims et al. (1999) and graph-based
models Belkin et al. (2004); Wang & Zhang (2007); Zhou et al. (2003); Blum & Chawla (2001).

Most of recent approaches employed the pseudo label training mechanism Lee et al. (2013), where
hard pseudo labels obtained from the prediction results are used for supervision. However, this simple
mechanism cannot bring satisfactory performance, mainly due to the noisy labels issue caused by
the inaccurate prediction results. This issue motivated recent works Rosenberg et al. (2005); Xie
et al. (2020); Sohn et al. (2020); Gong et al. (2021) to introduce thresholding strategies to filter out
and only use pseudo labels with sufficient confidence. Such thresholding strategies can be treated
as the sample reweighting methods Jiang et al. (2018; 2020); Zhang et al. (2020); Ren et al. (2018),
through either the soft weighting functions with a temperature Xie et al. (2020); Gong et al. (2021),
or the hard weighting one-hot strategy based on the fixed confidence Sohn et al. (2020). Another
key issue for semi-supervised learning is caused by the class imbalance, which is especially serious
when the labeled samples number is small. To address this issue, FlexMatch Zhang et al. (2021a)
set different thresholds for different classes, encouraging the optimizer to pay more attention on the
hard categories. The similar motivation was adopted and implemented by Hu et al. (2021), where
training data within different classes were randomly sampled with different sample rates computed
according to the class’s learning status. These methods are often based on the heuristic rules, relying
on hand-crafted thresholding or sample reweighting schemes. In addition to the basic classification
task, such the hand-crafted schemes were also used in semi-supervised learning for other downstream
tasks such as object detection Liu et al. (2021); Zhang et al. (2021b), semantic segmentationHu et al.
(2021); Yang et al. (2021); He et al. (2021) and action recognition Singh et al. (2021); Xiao et al.
(2021).

In this paper, motivated by the recent success of applying reinforcement learning on different tasks
Fang et al. (2017); Padmakumar et al. (2018); Bachman et al. (2017); Le et al. (2021); Arulkumaran
et al. (2017), we free the need for hand-crafted strategies designing as the above-mentioned methods,
and propose a brand new method for semi-supervised learning by using a Markov Decision Process
framework solved by reinforcement learning.

5 CONCLUSION

In this paper, we develop a novel semi-supervised learning method from a brand new perspective,
where an end-to-end learned sample reweighting policy is employed, enabled by a novel MDP
framework. We delicately design the state-action representations and the "pretraining-boosting" dual
phase training strategy. Also, the queued memories are introduced to relieve the computation burden.
Extensive experiments show that our method achieves outstanding performance, outperforming the
previous advanced approaches on multiple datasets.
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A APPENDIX

A.1 QUALITATIVE ANALYSIS

To obtain more insights into how our method works, we further visualize the relationship between the
weight decision with the state and action representations in different training epochs. The results are
shown in Fig.3, where orange dots denote the high-weight samples/classes and the blue dots denote
other samples/classes with smaller weights. In our work, state representation is measured by the
average accuracy and action representation is composed of the diversity and confidence.

As can be observed from (a) and (b), dots closer to the center denote samples with the lower diversity.
As shown by the orange dots, in the beginning stage of training, most orange dots are located in
the center region, reflecting that the learned policy tends to give the larger weighting scores to the
lower-diversity samples (i.e., the more common samples). Such samples are more common in the
dataset, helping the model to quickly fit to an acceptable performance. In the ending stage of training,
the policy gives higher weighting scores to samples with the higher diversity, since the optimizer
needs to pay more attention on such samples for avoiding overfitting and getting a more generalized
model.

As can be observed from (c) and (d), dots closer to the center denote samples with the lower
confidence. in the beginning stage, the dots are evenly distributed in the visualization space, indicating
the existence of samples with different confidence. In this stage, most orange dots are distributed
in the area far away from the center, implying that the policy prefers to give higher scores to the
high-confidence samples. In the ending stage, the model becomes more reliable so that the confidence
of all samples are relatively large. In this case, most orange dots are also distributed in the area far
away from the center. Therefore, it can be inferred that the learned policy always tend to select the
high-confidence samples for the more reliable semi-supervised learning.

As can be observed from (e) and (f), dots closer to the center denote classes with the lower average
accuracy. In both the beginning and ending stages, most orange dots that indicate classes with the
highest average weights are distributed in the area close to the center. This shows that the policy
tends to give higher weight scores to classes with lower average accuracy, helping the network to
improve such classes with bad performance.

A.2 IMPLEMENTATION DETAILS

For reproduction, as shown in Table. 5, we present the hyperparameter settings of our proposed
method. Note that most settings follow the Zhang et al. (2021a) and Sohn et al. (2020).

Table 5: Hyperparameter settings for different datasets. Most settings follow the Zhang et al. (2021a)
and Sohn et al. (2020).

Dataset CIFAR-10 CIFAR-100 STL-10 SVHN CIFAR-100-CI ImageNet

Model WRN-28-2 (Zagoruyko & Komodakis, 2016) WRN-28-2 WRN-37-2 WRN-28-2 WRN-28-2 ResNet-50 (He et al., 2016)

Weight Decay 5e-4 1e-3 5e-4 5e-4 5e-4 1e-3

Batch Size 64 128

Learning Rate 0.03

SGD Momentum 0.9

EMA Momentum 0.99

Number of Diversity Histogram Bins 5

Reward Set Length 1/4 of the labeled image number

Pretraining (training) Phase Iteration Number 221

Boosting (deployment) Phase Iteration Number 220

γ in TD Loss 0.9
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(a) Qualitative result of diversity at the begin-
ning stage

(b) Qualitative result of diversity at the ending
stage

(c) Qualitative result of confidence at the begin-
ning stage

(d) Qualitative result of confidence at the ending
stage

(e) Qualitative result of class average accuracy
at the beginning stage

(f) Qualitative result of class average accuracy
at the ending stage

Figure 3: Best viewed in color. Qualitative analysis of how different components in the state and
action representations affect the weighting scores. The left and right columns present the results at
the beginning and ending stages, respectively. The orange dots denote the samples/classes with the
largest (average) weighting scores. Dots closer to the center denote samples with the lower diversity,
the lower confidence and classes with the lower average accuracy, respectively.

B MORE DETAILS OF THE TEMPORAL DIFFERENCE (TD) ERROR

We use the temporal difference (TD) error to optimize the agent network q. In the text, due to the
paper length limitation, for simplicity, loss function is formulated under the setting where only sample
participates in the calculation:

TD
(
θ, θ̂
)
=
(
rt+1 + γq

(
st+1, at+1; θ̂

)
− q (st, at; θ)

)2
. (8)
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Actually in practice, we use the mini batch strategy with Nb unlabeled samples being processed
simultaneously. Therefore in this case, the loss function can be reformulated as:

TD
(
θ, θ̂
)
=

(
rt+1 + γ max

{aj
t+1}

Nb
j=1

q
(
st+1, a

j
t+1; θ̂

)
− max

{aj
t}

Nb
j=1

q
(
st, a

j
t ; θ
))2

, (9)

where ajt denotes the action representation of the j-th unlabeled sample in a mini batch.

We do not optimize the agent after processing each mini batch, which consumes too much computation.
Instead, as shown in Alg. 1 in the text, we update the agent after training the classification network
for one epoch. We follow Van Hasselt et al. (2016) by employing the experience replay mechanism
for training. Specifically, considering an epoch with T iterations, in the t-th iteration we get
Tt = {st, {ajt}

Nb
j=1, rt+1, st+1}. So in the whole epoch, we can get an experience replay buffer ε

storing {Tt}Tt=1. In the end of each epoch, we randomly sample several Tt from ε for computing the
loss. Thus, the final TD loss can be reformulated as:

TD
(
θ, θ̂
)
= ETt∼ε

(
rt+1 + γ max

{aj
t+1}

Nb
j=1

q
(
st+1, a

j
t+1; θ̂

)
− max

{aj
t}

Nb
j=1

q
(
st, a

j
t ; θ
))2

. (10)

In practice, γ equals 0.9 and the number of sampled Tt for computing loss equals 8.

B.1 SENSITIVITY ANALYSIS

Our method requires some hyper-parameters including the histogram bin number, the reward set
length and the memory length. Here we conduct experiments to verify that our method is non-
sensitive to such hyper-parameters. Experiments are performed on CIFAR-100 with 2500 labeled
images.

B.1.1 HISTOGRAM BIN NUMBER

As can be observed from Table. 6, the performance is insensitive to the bin number. When the number
is larger than 3, our method keeps stable and can consistently achieve good performance. It is worth
noting that on all the tested settings, the performance of our method can significantly outperform that
of the baseline method FixMatch (with 28.15 error rate), showing the robustness of our method.

Bin Number 2 3 4 5 6 8 10

Error Rate 24.17 23.55 23.12 23.01 23.14 23.09 23.20

Table 6: Ablation results of histogram bin number.

B.1.2 REWARD SET LENGTH

In our method, the reward set length equals 25% of the labeled images number. We conduct
experiments to verify different length settings and the results are shown in Table. 7. The results
indicate that our method is non-sensitive to this parameter, as the performance fluctuates less when
the length ranges from 10% to 40% of the labeled images number.

Reward Set Length 10% 15% 20% 25% 30% 35% 40%

Error Rate 23.85 23.77 23.37 23.01 23.20 23.19 23.56

Table 7: Ablation results of the reward set length.

B.1.3 MEMORY LENGTH

The memory length in our method is set to 100. From the ablation results as presented in Table. 8, we
observe that once the length is larger than 50, the performance can keep stable, and further increasing
the length cannot achieve significant improvement.
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Bin Number 40 50 75 100 150 200 300

Error Rate 23.50 23.17 23.12 23.01 23.24 23.05 23.10

Table 8: Ablation results of histogram bin number.

B.2 HAND-CRAFTED STRATEGIES EXPLOITING THE SAME INFORMATION AS THE POLICY
AGENT

One crucial contribution of our method is to automatically learn a rweighting policy using the RL
mechanism. To evaluate the effect of the automatically learning mechanism, here we evaluate the
method by using the same information (average accuracy A, confidence C and diversity D) to design
the hand-crafted strategies. Experiments are conducted on CIFAR-100 with 25 labeled images per
class. Specifically, by normalizing and adding all these indicators, a score s is generated, formulated
as s = αA + βC + γD, where α, β and γ are three hyper-parameters. Considering all these
information may be positively or negatively correlated with the weight, we test different groups of
settings, in which α, β and γ range from -1 to 1, where the negative and positive values represent the
negative and positive correlations between the information and the generated weights, respectively.
We also introduce a manually-set proportion p, such that only the p unlabeled samples with the
highest s are selected for training. We test different p ranging from 20% to 80%. In all the tested
settings, the error rates range from 26.09 to 33.72. The lowest error among all tested settings of these
hand-crafted strategies is still significantly higher than our proposed method (23.01).

As discussed above in the qualitative analysis, the model tends to give the higher scores to the
low-diversity samples in the beginning stage and high-diversity samples in the ending stage. Based
on such conclusions, we further design a hand-crafted strategy where γ is -1 in the first 50% epochs
and 1 in the last 50% epochs. Such a method achieves 25.30 error rate, which is better than all other
hand-crafted strategies, but still significantly worse than our proposed method.

The above results demonstrate that, it is really hard to manually design a hand-crafted strategy that
makes use of the same information used by the policy agent and can achieve good performance,
further showing the advantage of our MDP-based method that dose not need to design hand-crafted
strategies.

B.3 TRAINING TIME

Our method takes about 1.56 times as long as the baseline method FixMatch. Though needing more
but acceptable extra training time, it can outperform FixMatch significantly on different datasets, as
shown in Table 1 of our paper. Also note that, after the semi-supervised training is finished, at the
inference stage, the time for each prediction operation is the same as FixMatch.
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