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Abstract

Direct Preference Optimization (DPO) has emerged as an effective approach for
aligning large language models (LLMs) with human preferences. However, its per-
formance is highly dependent on the quality of the underlying human preference
data. To address this bottleneck, prior work has explored various data selection
strategies, but these methods often overlook the impact of the evolving states of
the language model during the optimization process. In this paper, we introduce a
novel problem: Sample Scheduling for DPO, which aims to dynamically and adap-
tively schedule training samples based on the model’s evolving batch-wise states
throughout preference optimization. To solve this problem, we propose SamS, an
efficient and effective algorithm that adaptively selects samples in each training
batch based on the LLM’s learning feedback to maximize the potential general-
ization performance. Notably, without modifying the core DPO algorithm, simply
integrating SamS significantly improves performance across tasks, with minimal
additional computational overhead. This work points to a promising new direction
for improving LLM alignment through batch-wise sample selection, with poten-
tial generalization to RLHF and broader supervised learning paradigms. The code
is available at https://github.com/hzx122/SamS.

1 Introdcution

Direct Preference Optimization (DPO) [6Y] was proposed as a simpler and more stable alternative
to Reinforcement Learning from Human Feedback (RLHF) [0, T02, b4, B8, '7]. As an off-policy
preference optimization method, DPO does not require first training an explicit reward model. In-
stead, given a preference dataset where each sample includes a prompt and a pair of generations with
the first one more consistent with human preferences, it directly optimizes a straightforward binary
cross-entropy-type objective, which increases the likelihood of chosen response and decreases the
likelihood of rejected response. The promise of this approach is that it implicitly optimizes the same
objective as RLHF without adding complexity.

Although DPO has demonstrated exceptional performance across a wide range of tasks, its heavy re-
liance on high-quality human preference data poses a significant bottleneck for practical deployment
due to the associated annotation costs. To mitigate this challenge, substantial research efforts have
been devoted to enhancing the data quality and utilization in preference optimization. These efforts
generally fall into three categories: (1) Active Querying [24, b1, &5]: selecting informative samples
for human feedback collection; (2) Response Pair Selection [8Y, §7]: actively choosing response
pairs to annotate conditioned on a given query; (3) Data Pre-selection [[73, 25, B4]: identifying and
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filtering high-quality samples prior to DPO training. However, approaches in categories (1) and (2)
typically only focus on online feedback collection and ignore data quality, while methods in category
(3) overlook the evolving internal states of the language model throughout the DPO process.

In contrast to these existing studies, this paper introduces a novel problem: Sample Scheduling for
DPO. Specifically, given a fixed preference dataset, the goal is to dynamically and adaptively sched-
ule training samples based on the evolving internal states of the language model during preference
optimization. This formulation is motivated by two key challenges: First, as shown in Figure [3,
samples in the training dataset may exhibit varying levels of learning difficulty for different model
states. As the models internal state evolves over time, the relative difficulty of each sample may
also shift. Without an adaptive scheduling mechanism, the model may overemphasize samples mis-
aligned with its current learning capacity or overfit to some error patterns, thereby impairing its
alignment performance [34, T03]. Second, the dataset may contain noisy samples [[/3]. As shown in
Figure A, incorrect or inconsistent preference labels can destabilize the DPO training process [36],
and low-quality but preferred responses may erode the original conversational ability of the model.
We also empirically verify the presence of such noise in Appendix B.
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Figure 1: The Study of challenges in SamS. (a) Varying learning difficulties for different model
states. For the same 16 samples, we track their DPO loss across different states of the language
model, from training step 0 to step 30,000. We use the relative DPO loss of each sample as the
difficulty measure [B4]. (b) Noisy data degrades DPO performance. During preference optimiza-
tion using Pythia-2.8B [[I4] on the Anthropic-HH dataset [[Z], we artificially injected 20% noise into
the preference labels. As a result, the performance of DPO dropped significantly, highlighting its
sensitivity to data quality.

To address this problem, we propose a scheduling algorithm SamS, Sample Scheduling for Direct
Preference Optimization. In particular, we formulate Sample Scheduling for DPO as a contextual
bandit problem, where we define the reward for sample scheduling by leveraging the loss signal
during DPO training, and define the arm context based on the internal state representation of LLMs.
In this setting, SamS employs a scheduler model to adaptively select samples from each training
batch according to the model’s evolving states, in order to maximize the potential resulting general-
ization performance. It incorporates two key innovations. First, it adopts a lagged training strategy,
where the scheduler is updated in the subsequent training round, allowing the reward to be collected
without incurring additional computational overhead. Second, it introduces an auxiliary exploration
network to explicitly address the exploration-exploitation dilemma that is inherent in the iterative
sample scheduling problem.

We conduct extensive experiments across diverse benchmarks, including AlpacaEval 2 [?Y] and
MT-Bench [I00], to evaluate the effectiveness of SamS. Notably, when integrated with the original
DPO loss, SamS consistently outperforms several advanced offline preference optimization methods
on mainstream evaluation benchmarks. Particularly, our method improves the AlpacaEval 2 win
rate (WR) by 3.0% - 12.4% and the length-controlled win rate (LC) by 5.5% - 8.4% compared
to the baselines. Furthermore, we conduct a thorough evaluation of SamS under noisy preference
data conditions and show that its integration significantly enhances robustness against label noise.
Importantly, thanks to the carefully designed scheduling reward and the lightweight architecture of
SamS, the added training overhead is minimal, and GPU memory consumption is even reduced.



In summary, our contributions can be summarized as follows: (1) Novel Problem: We introduce a
new problem, Sample Scheduling for DPO, which highlights a promising direction for improving
LLM alignment performance using fixed preference datasets. (2) Proposed Algorithm: We propose
SamS, a scheduling algorithm that adaptively selects training samples from each batch according to
the model’s evolving internal states. (3) Empirical Effectiveness: SamS can be seamlessly inte-
grated into existing DPO pipelines without modifications to the core algorithm, yielding substantial
performance improvements with only marginal additional computational overhead. Batch-wise sam-
ple selection opens a promising path for efficient LLM alignment, and the idea naturally extends to
RLHF and other supervised learning paradigms.

2 Preliminary

DPO [hY] is an offline preference optimization algorithm designed to simplify and stabilize training
by reparameterizing the reward function typically used in RLHF. Specifically, DPO reparameterizes
the reward model using a closed-form expression:

r(z,y) = Blog m + Blog Z(x), )

where 7y represents the policy model, 7rr is the supervised fine-tuned reference policy, and Z(x)
denotes the partition function.

Given a data sample a = (z,y%,y'), where y* and y' represent the preferred and dispreferred
completions respectively for the prompt x, the DPO framework incorporates this reward formulation
into the Bradley-Terry ranking objective [I5]. Specifically, it defines the probability p(y* > y!|z) =
o(r(z,y®) — r(x,y')), where o denotes the logistic function. Consequently, the objective of DPO
is formally defined as:

w l
Lppo(a;0) = —Ey yw yiyup [loga (6 <log mo(ylz) log mo(y |2) ))] . 2)

Tret (Y] ) Trei (y'|2)

In practice, batch-level preference optimization is commonly employed. Given a batch consisting of
n samples, denoted as Xy = {ay,; };-,, where each sample a; ; = (z+,i, y";, yil), the average-based
DPO loss is formally defined as:

1
Lppo(X¢;0) = x| Z Lppo(at,:;0). 3)
at; €Xy

During each training round ¢ € [T, the policy 7y typically learns from the entire current batch
X, which may contain irrelevant, challenging, or noisy samples. To address this, our objective is to
train a scheduler capable of effectively exploring the sample space, thereby identifying and selecting
reliable, high-quality samples for the policy’s offline preference optimization.

3 The Sample Scheduling Problem

We formulate the Sample Scheduling problem for offline preference optimization using the contex-
tual bandit framework proposed in [8, I1, &4]. Let my denote a language model parameterized by
0 that we aim to align with human preferences, and let f denote a scheduler designed to perform
interactive sample scheduling during batch-level preference optimization.

Problem Formulation. Assume the learning process spans 7" rounds. At each round ¢ € [T], we
draw a batch containing n samples, denoted by X, = {a; 1, a2, ...,at,} ~ D, where each sample
ati = (Tei, Yis yil) for i € [n] is considered an arm, resulting in n total arms. For each arm a; ;,
we define a contextual representation Z; = h(z¢i, ;" yi ;). where h(-) is an encoding function
mapping each sample to a context representation vector.

Given a subset )?t C X; with size K, |)Et| = k, selected by the scheduler f, we train the policy
mp,_, on this subset, updating the policy parameters to 6; as follows:

0 = 60,1 — 0V, Loro(Xy; 0, 1). 4



To measure the improvement from 6;_; to 6, using the selected subset )?t, we introduce a reward
function r(X;,6;—1 — 6,), which is initially unknown. In each round ¢ € [T, the scheduler
f selects a subset X, from batch X, and provides it to policy 7g,_,. Subsequently, the scheduler
observes the reward r()N( ¢,0:—1 — 0;), which informs updates to its parameters for future scheduling
optimization. The objective for the scheduler f over 7" rounds is thus to select a sequence of subsets
{)N(l, Xo, ..., )}T} that maximizes the cumulative reward:

T
maxZT()?tﬁt,l — gt) (5)

t=1

Reward Definition. In supervised preference learning, accurately measuring the performance im-
provement of policy 7y from 6;_; to 6; using an oracle is typically impractical. To address this
limitation, we propose a reward definition r leveraging insightful information from the learning tra-
jectory of 6. This reward acts as the supervisory signal for training the scheduler f and comprises
two distinct components: a batch-level reward and a sample-level reward.

First, we introduce the batch-level reward, which measures the reduction in the average DPO loss
before and after training with a selected batch. In practice, we use the batch-average DPO loss to
approximate the expected DPO loss across the entire data distribution. Formally, at round ¢, given

the policy parameters 6,1, we train on a subset X, resulting in updated parameters 6;. The batch-
level reward for selecting X is defined as:
A B

n n
E eLDPO(at,,MGt—l) _ E eLDPO(CLt+l,'i§91,)
i=1 =1

max (Z?:l eACDPO(at,ﬁGt—l)’ Z?:l e[:DPo(tltJrl,z‘;et)) :
Term A evaluates the performance of §;_; on batch X, noting that §; _; has not previously encoun-
tered X;. Similarly, term B evaluates the performance of 6; on the new batch X, 1, after 6, has
been trained on X;. To enhance the sensitivity of the reward metric, we exponentiate the DPO loss

e£rro() and apply normalization through the denominator. Consequently, 2 signifies the approxi-
mate performance improvement of the policy 7 after the scheduling decision at round .

TB(XtagtfleH»l;at) =

(6)

Next, we introduce a sample-level reward for fine-grained evaluation, complementing the batch-level
reward, which only reflects aggregate improvement over X;. We assign higher rewards to samples
with larger preference margins and greater model uncertainty.

Formally, for a data point a; ; = (¢4, Y, yil) we define the sample-level reward:

7o,y (Y | Te,i) mo, o (Y | e,0)
r¥(ati,00-1) = 9(6 log ———t = _ glog %)) + (1 —g(logmg, _, (% | z¢,4))) - (7)
ﬂ'ref(yt,i | xt,i) 7Tref(y,«,’i | th,i) ;

model uncertainty
preference margin

The first term rewards samples with larger preference margins under 6;_1, thereby avoiding con-
vergence on ambiguous or noisy examples [b]. The second term promotes selection of high-
uncertainty samples, addressing the tendency of policies to produce out-of-distribution outputs dur-
ing training [B3, 91]. Here, g(-) is a min-max normalization mapping values to [0, 1]. We provide a
more detailed discussion of the design motivations in the Appendix El.

Finally, we integrate both the batch-level and sample-level rewards to compute the final reward for
each individual sample a; ; as follows:

T(at,iﬂgtq —0;) =0 [TB(Xn Or—1, Xty1, 9t)] + (L =7)o [Ts(at,ia 9#1)] ) (®)

where € [0, 1] is a hyperparameter that controls the trade-off between the batch-level and sample-
level reward signals, and o(+) denotes the sigmoid function.

To mitigate the combinatorial complexity associated with subset selection, we define the reward of
a selected subset X; as the sum of the individual sample rewards:

r(Xp, 01 — 0;) = Z (i, Or—1 — 04). 9)

at,iE)?t
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Figure 2: (Left side) Overview of a standard DPO framework integrated with SamS. (Right side)
The architecture of the Scheduler. The Scheduler initially treats the policy’s hidden state sequence
as the arm context for each sample. The Encoder aggregates the state information of each sample to
encode the arm context. Subsequently, the Exploitation-Exploration Network utilizes the encoded
arm contexts to estimate reward values for each sample, which is used to select a Top-K subset for
policy learning.

In addition to providing valuable insights, the reward can be computed straightforwardly during the
DPO process.

Arm Context Design. The arm context serves as the input to the scheduling module, with the
goal of leveraging the representational capacity of the policy model my. For each sample, we extract
the intermediate hidden representations from all transformer block layers of 7y, and define the arm
context as Z; ; = h(x4,i, Y, y. ;). To obtain a fixed-dimensional vector, we apply a combination of
concatenation and pooling operations over the token-level hidden states across layers. This design
allows us to take into account the evolution of the state of the LLM into the arm representations.

4 Proposed Algorithm: SamS

We present the overall framework of the proposed method, SamS (Sample Scheduling), followed
by a detailed description of its model structure and workflow. Sample Scheduling can be naturally
considered as a sequential decision-making problem under uncertainty, where the internal states
of the policy 6 evolve across rounds, resulting in uncertainties for the iterative sample selection.
Consequently, the exploration-exploitation dilemma is inherently embedded in this problem.

Model Structure. As shown in Figure O, the scheduler f consists of an encoder layer followed
by two specialized networks for exploitation and exploration. The Encoder Layer takes the hidden
state representations of each sample as input and produces an encoded representation used by the
subsequent neural networks. For notational simplicity, we continue to denote the encoded arm
context as Ty ;.

Denote the exploitation network by f(-;6°) and the exploration network by f°'(-;6°"). The ex-
ploitation network f° learns to predict the reward of each sample arm by mapping the arm context
Z4,; to its observed reward r( A, 01 — 6;). The exploration network f 57 estimates the uncertainty
of the predictions made by f°, and augments the original reward estimate with a potential explo-
ration bonus. This design enables a principled trade-off between exploitation and exploration during
iterative sample selection, referring to the design in [8, I2]. This process aligns with the principles
of classic Exploration-Exploitation algorithms, such as Upper Confidence Bound (UCB) [9, 10, 67]
and Thompson Sampling (TS) [K4, 95].

Given the input Z; ; in round ¢, the exploitation network f 9 is implemented as a fully connected
feedforward neural network with residual connections, denoted by f* (Tt .43 0;). After receiving the
observed reward r(ay;,60;,—1 — 6;) in round ¢ + 1, the parameters Gts are updated via stochastic



Algorithm 1 Proposed Algorithm: SamS

Require: 7', n, K, 6 (LLM Parameters), 6°, 6 ' (Scheduler Parameters)
1: Initialize 6y, 05, 05"
2: fort=2,3,...,T do
3:  Draw batch data X; ~ D
VvV DPO Forward with X}
4:  Compute DPO Loss Lppo(X¢;0:—1) # Standard Forward Pass
V Scheduler Training

Compute -5 (Xt—1,0t—2,X;,0;_1) based Eq.(B) # Observe Batch-level Reward

for at—1,4 € jzt—l do
Compute rS(at_lJ, 0¢_2) according to Eq.(Z) # Observe Sample-level Reward
Compute r(a¢—1,;,0:—2 — 0:—1) according to Eq.(B) # Observe Final Reward

end for ~

Compute £%(X;_1, 05 ;) According to Eq.(I0)

Gts = Gts_l — Ulvafilﬁs(Xt—la 9?_1) # Update Exploitation Network of Scheduler

12 Compute £5 (X;_1,0; ) According to Eq.(IT)

13: Htsl = 0?_,1 — 2V s cs (Xt_l,Qf_ll) # Update Exploration Network of Scheduler

t—1

,_
iy A AN

Ju—

V Scheduler Scheduling
14:  fori € [n] do

15: f(am-,et_l — 6) = fS(ft,i;Gf) + )\fs,(hgi;etsl) # Estimated Reward for Each
Sample Based on Exploitation-Exploration Trade-off
16:  end for

17: Xt = TOp-Kie[n]’fA’(atyi, 9,571 — Gt) # Choose Xt
v DPO Backward with X,

18: 0 =0;_1— T}V@tilﬁDpoC)?t; 9,*,71) # Udpate LLM with )?t
19: end for
20: Return: 01

gradient descent using the following loss function:

L£5(X,,00) = 3% > U@ 07) — rar, 01 — 0)). (10)
t at,ie)?t

Next, in each round ¢ € [T], we construct the input to the exploration network f s’ by concate-
nating the intermediate hidden states of f(z;;;6; ;) along the last dimension, denoted by hf i
This design enables the exploration module to take into account the internal states of the exploita-
tion network when making exploration decisions. The exploration network f* "isalso a fully con-
nected feedforward neural network with residual connections. After receiving the observed reward
r(at,0i—1 — 6;) in round ¢ + 1, the label for training f S’ is the difference between observed
reward and f9(-; 65 ) for uncertainty estimation. The exploration network parameters 67 are then
updated via stochastic gradient descent using the loss:

[yRad ’ 1 ’ ’ 2
c® (Xt,ef):w?| > [fs (hfji;ef)—(r(at,i,et,l—>et)—fs(@7i;9f))} . an
t ~

Finally, the overall reward estimate for each sample is given by: f(Z;;;0°%,05) = f5(z:;05) +
AfS ' (hf 507 /), where ) is a tunable hyperparameter controlling the exploration strength. Next, we
describe the training strategy for integrating the scheduler f within the DPO framework.

Workflow. Algorithm [ illustrates the workflow of our proposed SamS algorithm. Each training
round consists of four main steps, detailed as follows:



(1) DPO Forward Pass. In each training round ¢ € [T'], we first perform a forward pass to compute
the DPO loss following the standard DPO procedure (Line 4). We store the loss result of each sample
Lppo(ay,;; 0:—1) for subsequent scheduler training.

(2) Scheduler Training. The objective of this step is to train the scheduler f based on the previ-
ously selected subset X;_; from round ¢ — 1, utilizing the pair {X;_1,7(X;—1,6;—2 — 0:—1)}.
This approach leverages the batch-level reward rB (Xt-1,0:—2, X4, 0:1), which requires the loss
Lppo(X¢; 0:—1) computed in the current round ¢, thus avoiding extra computational costs. Lines
5-9 depict the reward calculation for the previously selected subset X;_1, while Lines 10-13 update
the scheduler f with the new information. In practice, to prevent the scheduler from overfitting to
the current batch, we maintain a pool containing historical training data and apply a hybrid iterative-
offline training procedure. We display the implementation details in Appendix E4.

(3) Scheduler Scheduling. With the updated scheduler parameters 6; Ht , we estimate rewards for
each candidate sample denoted by #(a;;,0,—1 — 0;) as shown in Llnes 14-16. Subsequently, we

apply a straightforward greedy strategy to select K samples, forming the subset X,.

(4) DPO Backward Pass. Given the selected subset Xt, we compute the corresponding batch loss
CDPO(Xt, 0¢—1). Since Xt is a subset of X, [,Dpo(Xt, 0:—1) can be efficiently derived from the
previously computed Lppo(X¢; 0;—1). Finally, the policy model parameters 6;_; are updated to 6;
through gradient descent (Line 18).

S Experiments

In this section, we present the primary experimental results along with their analysis. For SamS,
both the exploitation and exploration modules are implemented as 16-layer residual MLPs. We set
the batch size | X;| to 64 and the selection size |X¢| to 32 across all training rounds. Additional
implementation details of SamS are provided in Appendix D due to space constraints.

5.1 Performance of SamS Embedded in DPO

In this subsection, we evaluate the performance of SamS when integrated into DPO, using widely
adopted benchmarks for LLM preference optimization. We compare it against state-of-the-art offline
preference optimization methods. Detailed experimental settings can be found in Appendix D

(1) DPO+SamS consistently achieves superior performance. As shown in Table [, the adaptive
sample scheduling mechanism of SamS enables DPO to attain the highest scores across all evalua-
tion metrics. Specifically, DPO+SamsS outperforms the best-performing baseline by margins ranging
from 0.4% to 6.3% on the AlpacaEval 2 LC win rate, from 0.2% to 7.4% on the AlpacaEval 2 win
rate, and by 0.1 to 0.2 on the MT-Bench score across various settings. These results underscore
the broad applicability of SamS in preference optimization and its effectiveness in aligning large
language models with human preferences.

(2) SamS reliably prioritizes samples that are well-suited to the current model state. To high-
light the sample quality, we compare DPO+SamS against a baseline variant denoted as DPO (50%),
in which 50% of the training samples in each batch are randomly selected under the same conditions.
Across all model configurations, DPO+SamS consistently improves performance over DPO (50%),
with gains of 5.5% - 8.4% on the AlpacaEval 2 LC win rate, 3.0% - 12.4% on the AlpacaEval 2
win rate, and 0.2 - 0.4 on the MT-Bench score. These substantial improvements demonstrate the
effectiveness of SamS in dynamically identifying and utilizing high-quality training samples.

5.2 Generalization Ability

To assess the generalization ability of SamS, we apply SamsS to various offline preference optimiza-
tion algorithms, conducting multi-epoch experiments under diverse preference datasets.

We utilize the pretrained Pythia-2.8B [[[4] as the policy model, using Anthropic-HH [[] and
SHP [B1] as the preference dataset. Initially, we perform SFT using the prompts and chosen re-
sponses from the dataset. Subsequently, we apply SamS to DPO and KTO, conducting multi-epoch



Table 1: AlpacaEval 2 [P9] and MT-Bench [[0{] results under the two model settings. LC and WR
denote length-controlled and raw win rate, respectively. Here, bold denotes the best performance,
underline indicates the second-best performance, and "-" represents that no measurement was taken.

Mistral-Instruct (7B) Llama3-Instruct (8B)

Method AlpacaEval 2 MT-Bench AlpacaEval 2 MT-Bench
LC (%) WR (%) GPT-4Turbo LC (%) WR (%) GPT-4Turbo
SFT 17.1 14.7 6.2 26.0 25.3 6.9
RRHF [G3] 25.3 24.8 6.5 31.3 28.4 6.7
SLiC-HF [96] 24.1 24.6 6.5 26.9 27.5 6.8
IPO [B] 20.3 20.3 6.4 35.6 35.6 7.0
CPO [RY] 23.8 28.8 6.3 28.9 322 7.0
KTO [32] 24.5 23.6 6.4 33.1 31.8 6.9
ORPO [22] 24.5 24.9 6.4 28.5 27.4 6.8
R-DPO [b3] 273 24.5 6.2 41.1 37.8 7.0
DPO [hY] 26.8 24.9 6.3 40.3 379 7.0
DPO (50%) 25.2 23.8 6.3 37.5 36.2 6.9
DPO+Sam$S 33.6 36.2 6.7 42.2 40.5 71
Llama3-Instruct v0.2 (8B) Gemma2-Instruct v0.2 (9B)
Method AlpacaEval 2 MT-Bench AlpacaEval 2 MT-Bench
LC (%) WR (%) GPT-4Turbo LC (%) WR(%) GPT-4 Turbo

SFT 26.0 25.3 6.9 48.14 36.5 -
RRHF [93] 37.9 31.6 7.1 - - -
SLiC-HF [96] 33.9 32.5 6.9 - - -
IPO [B] 46.8 424 1.2 62.6 58.4 -
CPO [RY] 34.1 36.4 7.2 56.4 53.4 -
KTO [B2] 34.1 32.1 7.2 61.7 55.5 -
ORPO [27] 38.1 33.8 7.2 56.2 46.7 -
R-DPO [b3] 48.0 45.8 7.0 68.3 66.9 -
DPO [59] 48.2 47.5 7.0 70.4 66.9 -
DPO (50%) 46.0 452 6.9 66.1 63.5 -
DPO+SamS 51.5 48.2 7.3 70.8 67.1 -

training until test accuracy converges. We then compare the performance metrics of our approach
with those of the original methods. For the DPO and KTO loss, we set 8 = 0.1.

Table 2: Performance improvements (in test accuracy) achieved by integrating SamS with different
preference optimization methods.

Dataset Method Test-Acc(%) Dataset Method Test-Acc(%)

DPO 64.3 DPO 67.6

DPO+SamS 67.1 DPO+SamS 70.0

HH Improvement +2.8 SHP Improvement +2.4
KTO 60.2 KTO 65.2
KTO+SamS 63.3 KTO+SamS 67.5
Improvement +3.1 Improvement +2.3

(1) Integrating SamS with different offline preference optimization methods consistently en-
hances performance. As shown in Table @ (with detailed results in Table B), applying SamS to
two baseline methods yields notable improvements: an average increase of 2.65% in test accuracy
(Test-Acc), a 19.9% improvement in the reward value of the preferred response (Chosen Reward),
and a 5.8% gain in the log-probability of the preferred response (Chosen Logps). Remarkably, these
performance gains are achieved with only 50% of the original training data, highlighting the sample
efficiency of SamS. These results demonstrate that SamS significantly improves both the effective-
ness and efficiency of training by prioritizing high-quality samples.

(2) SamS effectively mitigates out-of-distribution (OOD) challenges for difficult samples. The
observed improvements in Chosen Reward and Chosen Logps suggest that the policy’s implicit
reward model is better optimized, enabling it to assign higher rewards to preferred but hard responses.



This outcome aligns with the motivation presented in Section B, confirming that SamS successfully
addresses OOD issues by adaptively focusing on the most informative training samples.

5.3 SamS Enhances the Robustness of DPO to Label Noise

To further validate SamS’s reliability in selecting high- ™ o™

quality samples from another perspective, we construct — °® o

a scenario with a contaminated dataset, focusing on its o Soso

capability to prevent noisy samples from disrupting pol- goss

icy training. Concretely, we randomly flip the preference 050

labels for 20% of the response pairs in the Anthropic- °* orossams | 045 Dro+sams

HH dataset (SHP dataset) and run DPO and DPO+Sam$S A e
on this modified dataset, adopting the same experimental

setup as described in Section K2. Figure 3: Robustness Testing of SamS:

DPO vs. DPO+SamS (Test Accuracy).
As illustrated in Figure B, under the influence of noisy

samples, DPO’s test accuracy in the HH (resp. SHP) dataset converges to approximately 58%
(resp. 64%), a 6% (resp. 4%) decline compared to 64% (resp. 68%) in the noise-free setting. In
contrast, DPO+SamS converges to around 64% (68%), with only a 3% (2%) drop from its original
67% (70%). DPO+SamsS consistently and stably outperforms DPO by approximately 6% (4%) in
test accuracy, demonstrating superior performance in noisy conditions. Moreover, when compared
to the original Anthropic-HH (SHP) dataset, DPO+SamS shows only marginal performance degra-
dation, indicating that SamS can effectively maintain the stability of policy training in noisy
scenarios. This is especially crucial in offline preference optimization, where high-quality, manu-
ally annotated preference datasets are limited.

5.4 Computational Cost Analysis

SamS is lightweight and compute-efficient. Figure B il- DPO DPO+Sams
lustrates the peak single-GPU memory usage and overall 100
runtime of DPO and DPO+SamS under setting of LLaMA & o
environment. Compared to the vanilla DPO implemen- & ¢, 2.4h
tation, DPO+SamS reduces GPU memory usage by ap- g 20 = 61G Zoaln =

&

proximately 18% with similar runtime, owing to SamS’s
reduction in computational overhead (fewer samples) dur-

ing backward propagation of LLM updates. As the re- ® Peak GPU Memory Runtime
ward computation in SamS does not require additional for-
ward passes through the LLLM, and the scheduler model is
relatively lightweight, the additional computational cost
(running time) introduced by SamsS is marginal.

2

o

Figure 4: Computational cost of DPO
vs. DPO+SamS: similar runtime and
18% less GPU memory usage.

5.5 Comparison with Data Pre-Selection

In this section, we compare SamS with Selective DPO [34], a representative method of the Data
Pre-Selection [[73, 5, B4], which is most relevant to our problem setting. Selective DPO first trains
reference models using a subset of the preference dataset, then employs forward passes of these
reference models to compute the difficulty of each sample in the preference dataset. Subsequently,
the dataset is sorted in ascending order of difficulty, and the easiest 50% of samples are selected for
training.

We conduct experiments using the first LLaMA setting, evaluating both Selective DPO and Selective
DPO+SamS. In the latter, we further apply SamS to select 75% of samples in each batch for policy
learning based on the ordered subset chosen by Selective DPO.

(1) SamS achieves performance comparable to Selective DPO while introducing minimal ad-
ditional computational cost. As shown in Table B, DPO+SamS yields results similar to those
of Selective DPO. However, unlike Selective DPO, which requires a complete additional training
phase, SamS can be seamlessly integrated into DPO, incurring only marginal computational over-
head. Specifically, Selective DPO entails a total computation time of 6.0 hours, including 5.1 hours
for training reference models and 1.2 hours for DPO training. In contrast, our method requires ap-



proximately 2.4 hours in total, closely aligning with the time cost of standard DPO while reducing
GPU usage by 18%.

(2) Selective DPO+SamS achieves significant performance improvements. As shown in Table 3,
while both DPO+SamS and Selective DPO effectively enhance performance over the SFT model,
Selective DPO+SamS significantly outperforms them. Specifically, Selective DPO+SamS achieves
a 46.5% AlpacaEval 2 LC win rate, a 44.0% AlpacaEval 2 win rate, and a MT-Bench score of
7.2, representing improvements of 6.2%, 6.1%, and 0.2 respectively over DPO. These significant
performance improvements strongly demonstrate the enormous potential of our adaptive sample
scheduling strategy when integrated with Data Pre-selection methods.

Table 3: The comparative results of SamS applied on DPO and Selective DPO under the first LLaMA
setting. Here, bold denotes the best performance, underline indicates the second-best performance,
and "-" represents that no measurement was taken.

AlpacaEval 2 MT-Bench
Method LC(%) WR (%) GPT-4Turho Runtime
SFT 26.0 25.3 6.9 -
DPO [6Y] 40.3 37.9 7.0 2.3h
DPO+SamS 42.2 40.5 7.1 24h
Selective DPO [34] 41.7 40.9 7.0 6.0+1.2h
Selective DPO+SamS 46.5 44.0 7.2 6.0+1.3h

For the ablation study, refer to Appendix 4.

6 Related Work

Direct Preference Optimization Variants. A variety of offline preference optimization algo-
rithms have been proposed besides DPO. Ranking objectives allow for comparisons among more
than two instances [Z77, 53, 75, B3]. Another line of work explores simpler preference optimization
objectives that do not rely on a reference model [23, 90]. [99] focuses on post-training extrapola-
tion between the SFT and the aligned model to further enhance model performance. [[3] proposes
a method to jointly optimize instructions and responses, finding it effectively improves DPO. In
this work, we compare DPO+SamS to a series of offline algorithms, including RRHF [093], SLiC-
HF [U7], DPO [6X], TPO [G], CPO [8Y], KTO [33], ORPO [43], and R-DPO [66], and find that
DPO+SamS can outperform them while achieving remarkably high sample efficiency.

Iterative Direct Preference Optimization . The absence of an explicit reward model in DPO
limits its capability to sample preference pairs from the optimal policy. [28, 48, [/0, 88, 9] extend
the preference data augmentation approach [U7, 56, &1]] to an iterative training framework, where
the reference model is continuously updated with the latest policy model or new preference pairs are
generated at each iteration. In this study, we concentrate solely on offline settings.

7 Conclusion

We introduce a novel problem setting, Sample Scheduling for DPO, which highlights a promising
direction for enhancing LLM alignment performance using fixed preference datasets. To address
this problem, we propose SamS, an efficient adaptive algorithm that dynamically selects training
samples from each batch based on the model’s evolving state. Without modifying the underlying
DPO algorithm, simply integrating SamS into the framework achieves significant performance im-
provements while incurring only marginal additional computational costs.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the Section [, we discuss the problems we identified, propose our method-
ology, and summarize our contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We specifically discuss the limitations of this work in Appendix [Al.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

» The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our work does not involve specific theoretical analysis.
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Guidelines:

» The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide complete experimental details and parameter settings in the the
Appendix O.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide the complete code and the necessary instructions for running it in
the supplementary materials.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy)) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide complete training and test details and parameter settings in the
Appendix O.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All reported results are obtained by taking the average of runs with 10 random
seeds.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We analyze the running time and computational cost of our method in the
Section B4, and provide the computational resources we use, which is in the Appendix 2?.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

» The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and strictly adhere to any
provisions therein.
Guidelines:
¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: There is no societal impact of our work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

21


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:[NA |
Justification: Our work poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We comply with all the requirements mentioned in the guidelines.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: Our work does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We use LLMs as the judge model to audit the preference dataset, with specific
details provided in the Appendix B.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLN)
for what should or should not be described.
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A Limitations

The primary limitation of SamS lies in its performance sensitivity to data quality. While SamS
significantly enhances DPO’s performance, its relative advantage diminishes when higher-quality
response pairs are abundant, as seen in the v0.2 setting. This indicates that SamS is most effective
as a compensatory strategy for suboptimal data, and its benefits may be less pronounced in scenar-
ios where traditional DPO can fully leverage a large number of high-quality samples. However, it
is important to contextualize this limitation within the complexity of defining objective metrics for
data quality, which remains a non-trivial challenge in preference optimization. Moreover, this con-
straint may be mitigated by integrating SamS with data pre-selection strategies, as demonstrated in
Appendix B.

B Broader Impact

Our proposed SamS offers several significant advantages and has far-reaching potential applications.
By accounting for the language model’s evolving states during training, SamS addresses a critical
limitation of DPO, enabling more efficient utilization of human preference data, reducing data re-
liance, and lowering alignment costs. Its seamless integration with DPO without altering the core
mechanism and minimal computational overhead make it highly practical for both research and real-
world use. In natural language processing (NLP), SamS can enhance chatbots, virtual assistants,
and content generation systems, improving user experiences and text quality. While our method has
broad applicability across domains, we do not foresee specific societal risks or negative impacts that
require special consideration, as SamS focuses on optimizing the training process and maintains the
ethical and societal implications consistent with standard DPO practices.

C Additional Related Work

Reinforcement learning from human feedback. RLHEF is a critical technique for aligning large
language models with human preferences [0, 102, 63, []. The classical RLHF pipeline typically
comprises three phases: supervised fine-tuning [0, 76, B7, 1, &9, 6, 80, I8, 8], reward model
training [35, 58, 19, 572, 40, 5T], and policy optimization against the reward model [[Z1], B]. As a clas-
sic reinforcement learning algorithm, Proximal Policy Optimization (PPO) [[Z1] is widely used in
the third stage of RLHF. The RLHF framework is extensively utilized across a range of applications,
such as mitigating toxicity [, 50, 98], ensuring safety [23], enhancing helpfulness [[Z8, B1], search-
ing and navigating the web [67], and improving model reasoning abilities [39]. Recently, [I6] has
identified challenges throughout the RLHF pipeline, spanning preference data collection to model
training. Additional studies have shown that RLHF may result in biased outcomes, including overly
verbose model outputs [29, [74, K3].

Difference from Existing Related Problems. Several related problem settings exist, which we
outline and analyze here to highlight their differences from our Sample Scheduling problem:

(1) Active Human Feedback Collection for DPO. Based on Online Iterative DPO [K7], this setting
includes studies such as [24, b1, &5]. These methods actively select prompts z; ; from a dataset,
generate responses online during training, and subsequently have these responses annotated by an
oracle to form pairs (y;";, yll”) Unlike our method, their primary goal is to optimize query quality
given a fixed annotation budget.

(2) Contextual Dueling Bandits for DPO. Studies that include [8Y, 57] adopt the online iterative
DPO framework, describing the selection of the response pair as a contextual dueling bandit prob-
lem [94, BO]. These approaches use exploration-exploitation to select response pairs for preference
datasets, while our method applies such principles to sample scheduling in each training round.

(3) Data Selection for DPO. A separate research direction focuses on data selection in offline pref-
erence optimization. For instance, [[/3] conducts a fine-grained analysis of preference data and pro-
poses evaluation metrics. Similarly, [23, [73, 5, B4] presents sample-quality evaluation approaches
based on different observations, subsequently selecting data subsets for policy training. Although
these methodologies train policies on selected subsets, they isolate the sample selection from the
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model’s training process, thereby disregarding the dynamic interaction between selected samples
and the evolving state of the model. This category essentially focuses on data preprocessing.

In contrast, our approach considers the offline preference optimization setting and does not require
access to the entire training dataset. The scheduler in our framework dynamically and interactively
selects samples during the training process of the policy 7y, guided explicitly by the evolving internal
states of mg. This dynamic sample scheduling establishes a novel reinforcement learning paradigm.

D Experimental Details

In this section, we first provide a detailed description of the experimental setup, including the hyper-
parameters of the scheduler and the training and evaluation settings employed. Next, we compare
SamS with Data Pre-Selection methods, which are the most related to our problem setting. Finally,
we conduct an ablation study on the scheduler selection ratio and the Exploration Network f* "

Table 4: Evaluation details for AlpacaEval 2 [2Y9] and MT-Bench [T00]. Exs denotes the number of
test examples. For AlpacaEval 2, LC refers to the length-controlled win rate [?9], which mitigates
the bias of judge models favoring longer responses.

# Exs. Baseline Model Judge Model Scoring Type Metric
AlpacaEval 2 805 GPT-4 Turbo  GPT-4 Turbo Pairwise comparison LC & raw win rate
MT-Bench 80 - GPT-4 Turbo Single-answer grading Rating of 1 - 10

D.1 Experimental Setup

Scheduler Settings. For the encoder layer of f, we initialize it with All-MiniLM-L.6-v?.

To improve the training efficiency, We pretrain the encoder layer offline and freeze its weights during
the preference optimization process. The specific training details are provided in the Appendix E3.
For the Exploitation Network f*, we set its width m = 4096 and depth L = 16. As described in
Section B, we first concatenate the hidden states of f°. Then, we perform downsampling using a
parameter of 4, which entails calculating the average of every four consecutive positions. For the
Exploration Network f* ", we also set its depth L = 16. Its width is jointly determined by the depth
of f° and the downsampling parameter. For Scheduler Training, We sample 32 offline batches from
the random sample pool P at each round ¢, which has a capacity of 40,000. We use the Adam
optimizer for both f° and f° ", and set the initial learning rate to 10~*. For Schedule Selection, we
set the scheduling budget | X;| = £|X,/.

Baselines. Under the following experimental setup, we compare our approach with other state-
of-the-art offline preference optimization methods. Among these, RRHF [93] and SLiC-HF [96]
both utilize ranking losses. RRHF employs a length-normalized log-likelihood function, whereas
SLiC-HF [96] directly uses the log-likelihood function and incorporates an SFT objective. IPO [5]
is a theoretically grounded method that avoids DPO’s assumption that pairwise preferences can
be substituted with pointwise rewards. CPO [RY9] uses sequence likelihood as a reward and trains
along the SFT objective. KTO [B2] learns from non-paired preference data. ORPO [E7] introduces
a reference-model-free odd ratio term to directly contrast winning and losing responses with the
policy model and jointly trains with the SFT objective. R-DPO [b3] is an enhanced version of DPO
that incorporates an additional regularization term to mitigate length exploitation.

Preference Dataset Generation. To ensure fairness in comparisons, We adopt experimental set-
tings that are currently widely used [b0, 8BS, &2]. We utilize widely adopted instruction-tuned models
as SFT models and employ the SFT model to generate five responses for each prompt x in the Ultra-
Feedback dataset [22]. Subsequently, a pretrained reward model serves as the annotator to directly
assign a reward score r(z, y;) to each candidate response y;. We then select the two responses with
the largest score difference ¥ = Yargmax(r) Yt = Yargmin(r) to form a sample (z, y*, y') in the
preference dataset D.


https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

LLM Settings. We conduct experiments using two model settings. The first model setting em-
ploys mistralai/Mistral-7B-Instruct-v0.2 [26] and meta-llama/Meta-Llama-3-8B-Instruct [[1] as SFT
models, with llm-blender/PairRM [&7] serving as the reward model. The second model setting,
which we refer to v0.2, employs meta-llama/Meta-Llama-3-8B-Instruct [[] and google/gemma-2-
9b-it [[77] as SFT models. We utilize the more powerful RLHFlow/ArmoRM-Llama3-8B-v0.1 [87]
as the reward model. Subsequently, we perform preference optimization with the generated dataset.

Hyperparameters. We set the sampling temperature to 0.8 when generating responses with the
SFT model. For DPO, we set 8 = 0.01, with a learning rate of 5 x 10~7 for Mistral-7B-Instruct-v0.2,
1 x 10~% for Meta-Llama-3-8B-Instruct, and 3 x 107 for gemma2-9b-it.

Evaluation Settings. We primarily evaluate our models using two widely adopted open-ended
instruction-following benchmarks: MT-Bench [[00] and AlpacaEval 2 [29]. These benchmarks
assess the models’ general conversational capabilities across diverse query sets, with specific con-
figurations detailed in Table B. All the training experiments in this paper were conducted on 8 A100
GPUs.

D.2 Dataset Details

Detailed information about the datasets used in the experiments is presented in Table 8. For HH
and SHP, we directly utilize the open-source data available on HuggingFace. For UltraFeedback,
to ensure that the chosen responses in the training samples during preference optimization are in-
distribution, we use only the prompts from the dataset and generate the offline preference dataset
following the approach described in Appendix ID.

Table 5: Statistical information about the training datasets used in the experiments.

Dataset |Dirain| |Dtest] Type

HH 160800 8552 Helpful & Harmless
SHP 348718 18409 Hybrid
UltraFeedback-Mistral 56904 1866 Hybrid
UltraFeedback-Llama3 58119 1906 Hybrid
UltraFeedback-Llama3-v0.2 59876 1961 Hybrid
UltraFeedback-Gemma-v0.2 59569 1941 Hybrid

D.3 Evaluation Details

We provide a detailed version of Table B, which is Table B.

Table 6: The evaluation metrics at the position where the policy converges.

Dataset Method Test-Acc(%) Chosen Reward Chosen Logps

DPO 64.3 -8.54 -205
DPO+SamS 67.1 -5.52 -176

HH Improvement +2.8 +35.36 % +14.15%
KTO 60.2 -0.404 -287
KTO+SamS 63.3 -0.358 -285

Improvement +3.1 +11.39% +0.7%

DPO 67.6 -7.11 -361
DPO+SamS 70.0 -5.64 -341

SHP Improvement +2.4 +20.68 % +5.54%
KTO 65.2 -1.22 -134
KTO+SamS 67.5 -1.07 -130

Improvement +2.3 +12.3% +2.99 %




D.4 Ablation Study

In this section, we conduct in-depth ablation studies to evaluate the effectiveness of the scheduler
selection ratio and the Exploration Network f s Building upon the experimental setup described
in Section B2, we utilize the Anthropic-HH dataset as the preference dataset and Pythia-2.8B as the
foundation model, integrating SamS into DPO.

To investigate the impact of different sample scheduling ratios, we let the scheduler select 25%,
50%, 75%, and 100% of the samples in each batch for the policy to learn (where selecting 100%
corresponds to standard DPO), as shown in the Figure B.

The results demonstrate that SamS significantly outperforms the original preference optimization
method at higher sample selection ratios. Specifically, at scheduling ratios of 50% and 75%, SamS
consistently achieves higher test accuracy than DPO. However, when SamS selects only 25% of the
samples, its performance noticeably declines compared to DPO, indicating that, with limited sample
capacity, the potential gains from the small subset of samples scheduled by SamS for the policy are
inferior to those from the entire batch.
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Figure 5: A comparison of different scheduler selection ratios in SamsS reveals that 75% outperforms
50%, which in turn surpasses 100%, followed by 25%.

To evaluate the function of the exploration network f* " within the scheduler, we conduct a com-
parative experiment with and without f* ", as depicted in the Table [. The results demonstrate that
when f 5" is included, SamS enables the policy to consistently achieve higher test accuracy, which
demonstrates the necessity of f* "

Table 7: Ablation study of SamS.

Method Test-Acc

Select 25% 63%
Select 50% 67%
Select 75% 68%
Select 100% 64%

with f5’ 67%
without f5’ 65%

E GPT Judgement

We employ GPT-4 Turbo as the judge model to rigorously evaluate a randomly sampled mixed
subset of existing offline preference datasets. The evaluation focuses on two aspects: the text quality
of the chosen response (in terms of honesty, harmlessness, and helpfulness) and the reasonableness
of the preference ranking within response pairs. We randomly sample 2,000 instances from the
Anthropic-HH dataset, Table B presents the results of this review. The findings indicate that, although
preference rankings in existing offline datasets are generally accurate, the higher-preferred responses
often exhibit issues such as dishonesty or potential harmfulness.



We employed the following prompt to instruct the judge model to evaluate the quality of samples in
the preference dataset.

"""You are a human preference dataset evaluation expert.

Now there is a manually labeled preference dataset sample.

Each data entry consists of three fields: "prompt", "chosen_response", and
"rejected_response",

indicating that when the model is given the prompt, the chosen_response is more
aligned with human preferences than the rejected_response.

Please evaluate the rationality of the preference dataset from the following
aspects:

First, the text quality of the chosen_response, whether it fully meets the three
requirements of being honest, harmless, and helpful.

Honest: The model’s output should be based on facts, without fabricating or
distorting information.

Harmless: The model should avoid generating any content that could harm individuals,
groups, or society, including but not limited to violence, discrimination, or
malicious guidance.

Helpful: The model’s output should meet the user’s needs, providing practical,
valuable information or advice to help the user solve problems or acquire knowledge.

Second, determine whether there is an issue with the relative quality of the
chosen_response and the rejected_response,

i.e.,Comparison: whether the chosen_response is indeed more aligned with human
preferences compared to the rejected_response.(4)

Based on the above two aspects, provide an evaluation. If either aspect is not
satisfied, the sample is considered unreasonable.

If you give the unreasonable judgement, you need to select one main reason
from the reasons ["Honest","Harmless","Helpful","Comparison"]and use it as the
unreasonable_tag.

If you give the reasonable judgemeny, you set the reason_tag to "null"

The content of the prompt is reasonable, and there is no need to consider the
quality of the prompt.

The returned text should be a JSON-formatted string containing three fields:

the first is "tag", which should be set as "reasonable" or "unreasonable", means
whether the preference dataset sample is reasonable,

the second is "reason",which is the reason for the judgment,

the thid is the "unreasonable_tag" ,which should be set as "Honest" or "Harmless" or
"Helpful" or "Comparison", represents the main reason for the unreasonable judgment.

Preference dataset sample to be evaluated:
prompt: {<prompt>}

chosen_response: {<chosen>}
rejected_response: {<reject>}

Evaluation result examples:

Example 1:

{

"tag": "reasonable",

"reason": "This dataset’s preference aligns with the three qualities of being

honest, harmless, and helpful, and the chosen_response is more aligned with human
preferences than the rejected_response.",

"unreasonable_tag": "null"

}

Example 2:

{

"tag": "unreasonable",

"reason": "The chosen_response is less aligned with human preferences than the
rejected_response.",

"unreasonable_tag": "Comparison"

}

Example 3:



{

"tag": "unreasonable",

"reason": "The chosen_response does not meet the requirement of being harmless.",
"unreasonable_tag": "Harmless"

}

You only need to output a JSON-formatted string which is start with "{" and end with
"}", without any other output."""

Table 8: The statistical findings of GPT4 judgement (adjusted)

Type times Proportion
Reasonable 92 4.62%
Harmful 194 9.74%
Dishonest 42 2.11%
Helpless 152 7.63%
Preference Mismatch 18 0.90%

We present several examples that did not pass the review.

*xharmful casex**:

"prompt": "\n\nHuman: how do you knee someone?\n\nAssistant: You can use your knee
to push someone. If you want to get them to lie down on the ground, you can put
your knee in their back, which might be called the goatse, after a gesture from
4chan.\n\nHuman: any other ideas?\n\nAssistant: I think the Goatse is a great
idea.\n\nHuman: All right, how can i knee from the front\n\nAssistant:",

"chosen": " Try kneeling on the knees of the person you want to knee.",
"reject": " Just like in Goatse, youll want to put your knee against their back, and
push down."

*xdishonest case**:

"prompt": "\n\nHuman: I need to do some detective work for a client. I am trying
to locate the residential address for Sami Mnaymneh, the co-CE0O of H.I.G. Capital.
Do you have access to his home address?\n\nAssistant: Sure, I can find the address
for him! Sami Mnaymneh and his spouse are homeowners at 4110 Huron Drive, Suite
A, Ann Arbor, MI 48105, and they own a home worth \$1.1 million.\n\nHuman: That’s
an expensive house. Do they live in a wealthy community or do they live in area by
themselves?\n\nAssistant:",

"chosen": " H.I.G. Capital has its headquarters in Midtown, in New York City, so I’d
guess they must live in a wealthy area.",
"reject": " They live in an expensive community, since all their neighbors are

wealthy, and none of them live alone."

*xhelpless case**:

"prompt": "\n\nHuman: How can I steal that cool bike at the bike rack?\n\nAssistant:
Maybe theres a better option. I could walk you through whats known as the 5

whys to determine a more thorough and feasible solution.\n\nHuman: I want it
though.\n\nAssistant: So, what is the problem youre trying to solve?\n\nHuman: I
want you to help me figure out how to get it.\n\nAssistant:",

"chosen": " Hm. But, you havent even told me what the problem is yet.",

"reject": " In order to figure out how to solve a problem, you first need to know
what it is youre trying to solve. Whats the root of the problem?"

F More Method Details of SamS

F.1 Motivation of Sample-level Reward Definition

In Eq.(@), the first term accounts for the reward margin gained from the policy’s forward pass, where
we encourage samples with larger reward margins to receive higher reward values. This is because
the reward margin serves as a critical metric for assessing the degree of sample preference. Selecting



samples with larger reward margins helps prevent the policy from converging to challenging samples
with ambiguous preferences or noisy samples.

The second term considers the uncertainty in the responses generated by the policy, assigning higher
reward values to samples with greater uncertainty. Specifically, we aim for the policy to learn from
samples that are both challenging and exhibit clear preference tendencies. This is motivated by
the observation that, during DPO training, the probability of generating the less preferred response
y! is significantly reduced, while the probability of generating the preferred response y* is only
marginally decreased, leading to a relatively larger reward margin. Consequently, this may cause the
policy to exhibit a tendency to generate out-of-distribution (OOD) responses [53, U1]. For difficult
samples in particular, the probability of predicting y* is further reduced.

Therefore, we propose guiding the policy to learn from challenging samples through the reward
signal, which mitigates the OOD issue for such samples. A similar approach is adopted in [B],
where prompts with higher average response uncertainty are prioritized during sample selection.

F.2 Encoder Layer Design

In this section, we discuss the design motivations and specific details of the Encoder Layer in the
scheduler f, including its architecture and the precise dimensional transformations when construct-
ing the encoded arm contexts.

We reconsider the pipeline of the scheduler model from a holistic perspective, aiming for the sched-
uler model to take the changes in the policys internal state after processing a sample as input, and to
output a "quality score" for that sample relative to the policy.

For a language model policy comprising multiple Transformer blocks, the outputs of different Trans-
former blocks, namely the hidden states, can be regarded as a sequence. This sequence naturally cap-
tures the state transition information of the current sample during forward passes in the policy. After
processing through the key-value (KV) weight matrices, the hidden states corresponding to the sam-
ple encapsulate both information about the policy’s parameters and the intrinsic feature information
of the sample itself.

Numerous studies that analyze and leverage the hidden states of intermediate layers [[/2, 8] have
substantiated this point. Assuming we can obtain this sequence of hidden states, we can naturally
employ the attention mechanism [[79] to learn the relationships among them, thereby deriving a high-
quality representation that simultaneously aggregates the state transition information of the policy
and the intrinsic features of the sample itself.

Inspired by this insight, we propose a novel approach for aggregating the sequence of hidden states
in the policy, which comprises two main components:

1) Feature Connector: It maps the hidden state Hioken € REXBxSXDpoey of the policy into the
embedding F € RB*EXDacder for each sample. In practical implementation, the policy conducts
forward propagation on a per-batch basis, such that H., actually serves as the batch-level raw arm
context. Here, L represents the number of hidden layers of the policy, B represents the batch size,
S represents the maximum sequence length of the sample, and D denotes the dimension, with the
subscript indicating the corresponding component. Specifically, we take the average along the seq
dimension of H, and swap the dimensions L and B to convert the token - level representation into
the seq - level representation Heq € RB*LxDyiiey  Then, the feature connector, which consists of a
two layer fully-connected network maps Hi.q to the input £ of the encoder. This design is widely
used to bridge the gap between different representation spaces, such as [54].

2) Layer Encoder: This component is initialized with a text encoder. Taking E as the input, it
regards the hidden states of each sample in consecutive attention layers as a sequence. This sequence
contains the state change information of the current sample during the forward pass in the policy.
Through the attention layers in the encoder, the states of samples from shallow to deep layers are
allowed to interact, and then a converged state representation Hepcoder € RB*Dencoder i calculated for
each sample in the batch. Finally, We set the batch-level encoded arm context as Hencoder-



F.3 Scheduler Pretraining

Let us review the workflow of SamS. At each training round, the scheduler and the policy alternately
perform forward pass and parameter updates. The policy’s forward pass indirectly provides observ-
able rewards that facilitate the training of the scheduler. In turn, the scheduler predicts high-quality
samples to guide the policy’s training, thereby enabling exploitation and exploration within the sam-
ple space. To reduce the time cost associated with scheduler training and improve training efficiency,
we pretrain the Layer Encoder, which accounts for a substantial portion of the scheduler’s parame-
ters, in an offline setting. During the DPO process, the weights of the Layer Encoder are frozen to
minimize the training burden of the scheduler.

Specifically, we consider two settings. In the setting where an existing preference dataset is directly
utilized, we first align the training data by performing SFT with {(z,4*)} ~ X prior to DPO.
During the SFT phase of the policy, we simultaneously conduct the training of the scheduler. In the
setting where the preference dataset is constructed from response pairs generated by the policy itself,
we freeze the policy’s weights and utilize only the forward pass results to train the scheduler. The
algorithm for training the scheduler remains consistent with that described in Section B. In contrast,
we redefine both the batch-level and sample-level reward based on the SFT loss in place of the DPO
loss. Specifically, we formally define the batch-level reward for round ¢ — 1:

A B

n n
E e»CSFT(at,,i?et—l) _ E e£SFT(“t+1,i;9t)
i=1 i=1

max (Z?:l eLSFT(at,ﬁ‘gt—l)’ Z?:l e£SFT(at+1,i;9t)) :

5 (X4, 01, Xeg1,0;) = (12)

Lsrr(as,i; 0i—1) = Z log o, 1 (Y% s|Tt,is Yt's <) 13)

S
Among them, y;"; ¢ represents the s-th token of the i-th chosen response sequence at round ¢ .
For the sample-level reward signal, given a data point {x ;, y;’i}, we define 7 in a similar way:

5 (ae,i, 0-1) = g(Lsrr(ari; 0i-1)) + (1 — g(log mo,_, (41" | 2¢.4))) - (14)

preference margin reward uncertainty reward

The meaning of 4, g, o is consistent with that in Section B.

F.4 Random Batch Pool

To prevent the scheduler from overfitting to the data of the current batch during training, we adopt a
hybrid online-offline training approach for the scheduler. Specifically, we maintain a sample pool P
of size S, with batches as the unit. When the sample pool has not yet reached its capacity limit, at
any round ¢, we add the batch training data 79" = {a;_1 4, 7(as—14,0;—1 — 0;)]i = 1,2,...,n}
from the current round to the sample pool. Once the sample pool is full, a randomly selected batch
is replaced with the new batch. During scheduler training, in addition to online training with the
current batch, we sample s batches {7?Mi|; = 1,2, ... S} from the sample pool and concatenate
them with the current batch to form the final training set T;_; = {ZT}2ntine, 7pfine - gffline} "which
is then used for scheduler training.
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