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Abstract

The performance of machine learning models on new data is critical for their
success in real-world applications. However, the model’s performance may
deteriorate if the new data is sampled from a different distribution than the
training data. Current methods to detect shifts in the input or output data
distributions have limitations in identifying model behavior changes. In this
paper, we define explanation shift as the statistical comparison between how
predictions from training data are explained and how predictions on new data
are explained. We propose explanation shift as a key indicator to investigate
the interaction between distribution shifts and learned models. We introduce
an Explanation Shift Detector that operates on the explanation distributions,
providing more sensitive and explainable changes in interactions between
distribution shifts and learned models. We compare explanation shifts
with other methods that are based on distribution shifts, showing that
monitoring for explanation shifts results in more sensitive indicators for
varying model behavior. We provide theoretical and experimental evidence
and demonstrate the effectiveness of our approach on synthetic and real
data. Additionally, we release an open-source Python package, skshift,
which implements our method and provides usage tutorials for further
reproducibility.

1 Introduction

ML theory provides means to forecast the quality of ML models on unseen data, provided
that this data is sampled from the same distribution as the data used to train and evaluate
the model. If unseen data is sampled from a different distribution than the training data,
model quality may deteriorate, making monitoring how the model’s behavior changes crucial.

Recent research has highlighted the impossibility of reliably estimating the performance of
machine learning models on unseen data sampled from a different distribution in the absence
of further assumptions about the nature of the shift (Ben-David et al., 2010; Lipton et al.,
2018; Garg et al., 2021b). State-of-the-art techniques attempt to model statistical distances
between the distributions of the training and unseen data (Diethe et al., 2019; Labs, 2021)
or the distributions of the model predictions (Garg et al., 2021b;a; Lu et al., 2023). However,
these measures of distribution shifts only partially relate to changes of interaction between
new data and trained models or they rely on the availability of a causal graph or types of
shift assumptions, which limits their applicability. Thus, it is often necessary to go beyond
detecting such changes and understand how the feature attribution changes (Kenthapadi
et al., 2022; Haug et al., 2022; Mougan & Nielsen, 2023; Diethe et al., 2019).

The field of explainable AI has emerged as a way to understand model decisions (Barredo
Arrieta et al., 2020; Molnar, 2019) and interpret the inner workings of ML models (Guidotti
et al., 2018). The core idea of this paper is to go beyond the modeling of distribution shifts
and monitor for explanation shifts to signal a change of interactions between learned models
and dataset features in tabular data. We newly define explanation shift as the statistical
comparison between how predictions from training data are explained and how predictions
on new data are explained. In summary, our contributions are:
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• We propose measures of explanation shifts as a key indicator for investigating the
interaction between distribution shifts and learned models.

• We define an Explanation Shift Detector that operates on the explanation distribu-
tions allowing for more sensitive and explainable changes of interactions between
distribution shifts and learned models.

• We compare our monitoring method that is based on explanation shifts with methods
that are based on other kinds of distribution shifts. We find that monitoring for
explanation shifts results in more sensitive indicators for varying model behavior.

• We release an open-source Python package skshift, which implements our “Expla-
nation Shift Detector ”, along usage tutorials for reproducibility (cf. Statement 7).

2 Foundations and Related Work

2.1 Basic Notions

Supervised machine learning induces a function fθ : dom(X) → dom(Y ), from training
data Dtr = {(xtr0 , ytr0 ) . . . , (xtrn , y

tr
n )}. Thereby, fθ is from a family of functions fθ ∈ F

and Dtr is sampled from the joint distribution P(X,Y ) with predictor variables X and
target variable Y . fθ is expected to generalize well on new, previously unseen data Dnew

X =
{xnew0 , . . . , xnewk } ⊆ dom(X). We write Dtr

X to refer to {xtr0 , . . . , xtrn } and Dtr
Y to refer to

Dtr
Y = {ytr0 . . . , ytrn }. For the purpose of formalizations and to define evaluation metrics, it

is often convenient to assume that an oracle provides values Dnew
Y = {ynew0 , . . . , ynewk } such

that Dnew = {(xnew0 , ynew0 ), . . . , (xnewk , ynewk )} ⊆ dom(X)× dom(Y ).

The core machine learning assumption is that training data Dtr and novel data Dnew are
sampled from the same underlying distribution P(X,Y ). The twin problems of model
monitoring and recognizing that new data is out-of-distribution can now be described as
predicting an absolute or relative performance drop between perf(Dtr) and perf(Dnew),
where perf(D) =

∑
(x,y)∈D ℓeval(fθ(x), y), ℓeval is a metric like 0-1-loss (accuracy), but Dnew

Y

is unknown and cannot be used for such judgment in an operating system.

Therefore related work analyses distribution shifts between training and newly occurring
data. Let two datasets D,D′ define two empirical distributions P(D),P(D′), then we write
P(D)≁P(D′) to express that P(D) is sampled from a different underlying distribution than
P(D′) with high probability p > 1− ϵ allowing us to formalize various types of distribution
shifts.
Definition 2.1 (Input Data Shift). We say that data shift occurs from Dtr to Dnew

X , if
P(Dtr

X )≁P(Dnew
X ).

Specific kinds of data shift are:
Definition 2.2 (Univariate data shift). There is a univariate data shift between P(Dtr

X ) =
P(Dtr

X1
, . . . ,Dtr

Xp
) and P(Dnew

X ) = P(Dnew
X1

, . . . ,Dnew
Xp

), if ∃i ∈ {1 . . . p} : P(Dtr
Xi

)≁P(Dnew
Xi

).

Definition 2.3 (Covariate data shift). There is a covariate data shift between P (Dtr
X) =

P(Dtr
X1
, . . . ,Dtr

Xp
) and P(Dnew

X ) = P(Dnew
X1

, . . . ,Dnew
Xp

) if P(Dtr
X)≁P(Dnew

X ), which cannot
only be caused by univariate shift.

The next two types of shift involve the interaction of data with the model fθ, which
approximates the conditional P (Dtr

Y )
P (Dtr

X )
. Abusing notation, we write fθ(D) to refer to the

multiset {fθ(x)|x ∈ D}.
Definition 2.4 (Predictions Shift). There is a predictions shift between distributions P(Dtr

X )
and P(Dnew

X ) related to model fθ if P(fθ(Dtr
X ))≁P(fθ(Dnew

X )).
Definition 2.5 (Concept Shift). There is a concept shift between P(Dtr) = P(Dtr

X ,Dtr
Y )

and P(Dnew) = P(Dnew
X ,Dnew

Y ) if conditional distributions change, i.e. P(Dtr
Y )

P(Dtr
X )

≁ P(Dnew
Y )

P(Dnew
X ) .

In practice, multiple types of shifts co-occur together and their disentangling may constitute
a significant challenge that we do not address here.
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2.2 Related Work on Tabular Data

We briefly review the related works below. See Appendix A for a more detailed related work.

Classifier two-sample test: Evaluating how two distributions differ has been a widely
studied topic in the statistics and statistical learning literature (Hastie et al., 2001; Quiñonero-
Candela et al., 2009; Liu et al., 2020a) and has advanced in recent years (Park et al., 2021a;
Lee et al., 2018; Zhang et al., 2013). The use of supervised learning classifiers to measure
statistical tests has been explored by Lopez-Paz & Oquab (2017) proposing a classifier-based
approach that returns test statistics to interpret differences between two distributions. We
adopt their power test analysis and interpretability approach but apply it to the explanation
distributions instead of input data distributions.

Detecting distribution shift and its impact on model behaviour: A lot of related work
has aimed at detecting that data is from out-of-distribution. To this end, they have created
several benchmarks that measure whether data comes from in-distribution or not (Koh et al.,
2021; Sagawa et al., 2021; Malinin et al., 2021a; 2022; 2021b). In contrast, our main aim is
to evaluate the impact of the distribution shift on the model.

A typical example is two-sample testing on the latent space such as described by Rabanser
et al. (2019). However, many of the methods developed for detecting out-of-distribution data
are specific to neural networks processing image and text data and can not be applied to
traditional machine learning techniques. These methods often assume that the relationships
between predictor and response variables remain unchanged, i.e., no concept shift occurs.
Our work is applied to tabular data where techniques such as gradient boosting decision
trees achieve state-of-the-art model performance (Grinsztajn et al., 2022; Elsayed et al., 2021;
Borisov et al., 2021).

Impossibility of model monitoring: Recent research findings have formalized the limita-
tions of monitoring machine learning models in the absence of labelled data. Specifically (Garg
et al., 2021b; Chen et al., 2022b) prove the impossibility of predicting model degradation
or detecting out-of-distribution data with certainty (Fang et al., 2022; Zhang et al., 2021;
Guerin et al., 2022). Although our approach does not overcome these limitations, it provides
valuable insights for machine learning engineers to better understand changes in interactions
between learned models and shifting data distributions.

Model monitoring and distribution shift under specific assumptions: Under specific
types of assumptions, model monitoring and distribution shift become feasible tasks. One
type of assumption often found in the literature is to leverage causal knowledge to identify
the drivers of distribution changes (Budhathoki et al., 2021; Zhang et al., 2022; Schrouff
et al., 2022). For example, Budhathoki et al. (2021) use graphical causal models and feature
attributions based on Shapley values to detect changes in the distribution. Similarly, other
works aim to detect specific distribution shifts, such as covariate or concept shifts. Our
approach does not rely on additional information, such as a causal graph, labelled test data,
or specific types of distribution shift. Still, by the nature of pure concept shifts, the model
behaviour remains unaffected and new data need to come with labelled responses to be
detected.

Explainability and distribution shift: Lundberg et al. (2020a) applied Shapley values to
identify possible bugs in the pipeline by visualizing univariate SHAP contributions. Following
this line of work, Nigenda et al. (2022) compare the order of the feature importance using
the NDCG between training and unseen data. We go beyond their work and formalize the
multivariate explanation distributions on which we perform a two-sample classifier test to
detect how distribution shift impacts interaction with the model. Furthermore, we provide a
mathematical analysis of how the SHAP values contribute to detecting distribution shift. In
Appendix D we provide a formal comparison against Nigenda et al. (2022).

2.3 Explainable AI: Local Feature Attributions

Attribution by Shapley values explains machine learning models by determining the relevance
of features used by the model (Lundberg et al., 2020a; Lundberg & Lee, 2017b). The Shapley
value is a concept from coalition game theory that aims to allocate the surplus generated by
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the grand coalition in a game to each of its players (Shapley, 1953). The Shapley value Sj
for the j’th player is defined via a value function val : 2N → R of players in T :

Sj(val) =
∑

T⊆N\{j}

|T |!(p− |T | − 1)!

p!
(val(T ∪ {j})− val(T )) (1)

where valf,x(T ) = EX|XT=xT [f(X)]− EX [f(X)] (2)

In machine learning, N = {1, . . . , p} is the set of features occurring in the training data. Given
that x is the feature vector of the instance to be explained, and the term valf,x(T ) represents
the prediction for the feature values in T that are marginalized over features that are not
included in T . The Shapley value framework satisfies several theoretical properties (Molnar,
2019; Shapley, 1953; Winter, 2002; Aumann & Dreze, 1974). Our approach is based on the
efficiency and uninformative properties:

Efficiency Property. Feature contributions add up to the difference of prediction from x⋆

and the expected value,
∑
j∈N Sj(f, x⋆) = f(x⋆)− E[f(X)])

Uninformativeness Property. A feature j that does not change the predicted value has a
Shapley value of zero.∀x, xj , x′j : f({xN\{j}, xj}) = f({xN\{j}, x

′
j}) ⇒ ∀x : Sj(f, x) = 0.

Our approach works with explanation techniques that fulfill efficiency and uninformative
properties, and we use Shapley values as an example. It is essential to distinguish between
the theoretical Shapley values and the different implementations that approximate them, in
Appendix H we provide an experimental comparison of different aproaches.

LIME is another explanation method candidate for our approach (Ribeiro et al., 2016b;a)
that can potentially satisfy efficiency and uninformative properties, even thought several
research has highlighted unstability and difficulties with the definition of neighborhoods.
In Appendix G, we analyze LIME’s relationship with Shapley values for the purpose of
describing explanation shifts.

3 A Model for Explanation Shift Detection

Our model for explanation shift detection is sketched in Fig. 1. We define it as follows:
Definition 3.1 (Explanation distribution). An explanation function S : F × dom(X) → Rp
maps a model fθ ∈ F and data x ∈ Rp to a vector of attributions S(fθ, x) ∈ Rp. We call
S(fθ, x) an explanation. We write S(fθ,D) to refer to the empirical explanation distribution
generated by {S(fθ, x)|x ∈ D}.

We use local feature attribution methods SHAP and LIME as explanation functions S.
Definition 3.2 (Explanation shift). Given a model fθ learned from Dtr, explanation shift
with respect to the model fθ occurs if S(fθ,Dnew

X )≁ S(fθ,Dtr
X ).

Definition 3.3 (Explanation shift metrics). Given a measure of statistical distances d,
explanation shift is measured as the distance between two explanations of the model fθ by
d(S(fθ,Dtr

X ),S(fθ,Dnew
X )).

We follow Lopez et al. (Lopez-Paz & Oquab, 2017) to define an explanation shift metrics based
on a two-sample test classifier. We proceed as depicted in Figure 1. To counter overfitting,
given the model fθ trained on Dtr, we compute explanations {S(fθ, x)|x ∈ Dval

X } on an
in-distribution validation data set Dval

X . Given a dataset Dnew
X , for which the status of in- or

out-of-distribution is unknown, we compute its explanations {S(fθ, x)|x ∈ Dnew
X }. Then, we

construct a two-samples dataset E = {(S(fθ, x), ax)|x ∈ Dval
X , ax = 0} ∪ {(S(fθ, x), ax)|x ∈

Dnew
X , ax = 1} and we train a discrimination model gψ : Rp → {0, 1} on E, to predict if an

explanation should be classified as in-distribution (ID) or out-of-distribution (OOD):

ψ = argmin
ψ̃

∑
x∈Dval

X ∪Dnew
X

ℓ(gψ̃(S(fθ, x)), ax), (3)
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where ℓ is a classification loss function (e.g. cross-entropy). gψ is our two-sample test classifier,
based on which AUC yields a test statistic that measures the distance between the Dtr

X
explanations and the explanations of new data Dnew

X .

Explanation shift detection allows us to detect that a novel dataset Dnew changes the model’s
behavior. Beyond recognizing explanation shift, using feature attributions for the model gψ,
we can interpret how the features of the novel dataset Dnew

X interact differently with model
fθ than the features of the validation dataset Dval

X . These features are to be considered for
model monitoring and for classifying new data as out-of-distribution.

Explanations 

Train Classifier for
Two-Sample Test

No Explanation ShiftExplanation Shift

Explain
Explanation Shift Detector

Not
Reject

Reject

Explanations 

Train Classifier 

Figure 1: Our model for explanation shift detection. The model fθ is trained on Dtr implying
explanations for distributions Dval

X ,Dnew
X . The AUC of the two-sample test classifier gψ decides for

or against explanation shift. If an explanation shift occurred, it could be explained which features
of the Dnew

X deviated in fθ compared to Dval
X .

4 Relationships between Common Distribution Shifts and
Explanation Shifts

This section analyses and compares data shifts and prediction shifts with explanation shifts.
Appendix B extends this into a detailed analysis, and Appendix C draws from these analyses
to derive experiments with synthetic data.

4.1 Explanation Shift vs Data Shift

One type of distribution shift that is challenging to detect comprises cases where the
univariate distributions for each feature j are equal between the source Dtr

X and the
unseen dataset Dnew

X , but where interdependencies among different features change.
Multi-covariance statistical testing is a hard taks with high sensitivity that can lead to false
positives. The following example demonstrates that Shapley values account for co-variate
interaction changes while a univariate statistical test will provide false negatives.

Example 4.1. (Covariate Shift) Let Dtr ∼ N
([

µ1
µ2

]
,
[
σ2
X1

0

0 σ2
X2

])
× Y . We fit a linear

model fθ(x1, x2) = γ + a · x1 + b · x2. If Dnew
X ∼ N

([
µ1
µ2

]
,
[

σ2
X1

ρσX1
σX2

ρσX1
σX2

σ2
X2

])
, then P(Dtr

X1
)

and P(Dtr
X2

) are identically distributed with P(Dnew
X1

) and P(Dnew
X2

), respectively, while this
does not hold for the corresponding Sj(fθ,Dtr

X ) and Sj(fθ,Dnew
X ).

False positives frequently occur in out-of-distribution data detection when a statistical test
recognizes differences between a source distribution and a new distribution, though the
differences do not affect the model behavior (Grinsztajn et al., 2022; Huyen, 2022). Shapley
values satisfy the Uninformativeness property, where a feature j that does not change the
predicted value has a Shapley value of 0 (equation 2.3).
Example 4.2. Shifts on Uninformative Features. Let the random variables X1, X2

be normally distributed with N(0; 1). Let dataset Dtr ∼ X1 × X2 × Y tr, with Y tr = X1.
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Thus Y tr⊥X2. Let Dnew
X ∼ X1 ×Xnew

2 and Xnew
2 be normally distributed with N(µ;σ2) and

µ, σ ∈ R. When fθ is trained optimally on Dtr then fθ(x) = x1. P(Dtr
X2

) can be different
from P(Dnew

X2
) but S2(fθ,Dtr

X ) = 0 = S2(fθ,Dnew
X ).

4.2 Explanation Shift vs Prediction Shift

Analyses of the explanations detect distribution shifts that interact with the model. In
particular, if a prediction shift occurs, the explanations produced are also shifted.

Proposition 1. Given a model fθ : DX → DY . If fθ(x′) ̸= fθ(x), then S(fθ, x′) ̸= S(fθ, x).

By efficiency property of the Shapley values (Aas et al., 2021) (equation ((2.3))), if the
prediction between two instances is different, then they differ in at least one component of
their explanation vectors.

The opposite direction does not always hold: Thus, an explanation shift does not always
imply a prediction shift.

Example 4.3. (Explanation shift not affecting prediction distribution) Given
Dtr is generated from (X1 × X2 × Y ), X1 ∼ U(0, 1), X2 ∼ U(1, 2), Y = X1 + X2 + ϵ
and thus the optimal model is f(x) = x1 + x2. If Dnew is generated from Xnew

1 ∼
U(1, 2), Xnew

2 ∼ U(0, 1), Y new = Xnew
1 + Xnew

2 + ϵ, the prediction distributions
are identical fθ(Dtr

X), fθ(Dnew
X ) ∼ U(1, 3), but explanation distributions are different

S(fθ,Dtr
X )≁S(fθ,Dnew

X ), because Si(fθ, x) = αi · xi.

4.3 Explanation Shift vs Concept Shift

Concept shift comprises cases where the covariates retain a given distribution, but their
relationship with the target variable changes (cf. Section 2.1). This example shows the
negative result that concept shift cannot be indicated by the detection of explanation shift.

Example 4.4. Concept Shift Let Dtr ∼ X1 × X2 × Y , and create a synthetic target
ytri = a0 + a1 · xi,1 + a2 · xi,2 + ϵ. As new data we have Dnew

X ∼ Xnew
1 × Xnew

2 × Y ,
with ynewi = b0 + b1 · xi,1 + b2 · xi,2 + ϵ whose coefficients are unknown at prediction stage.
With coefficients a0 ̸= b0, a1 ̸= b1, a2 ̸= b2. We train a linear regression fθ : Dtr

X → Dtr
Y .

Then explanations have the same distribution, P(S(fθ,Dtr
X)) = P(S(fθ,Dnew

X )), input data
distribution P(Dtr

X ) = P(Dnew
X ) and predictions P(fθ(Dtr

X )) = P(fθ(Dnew
X )). But there is no

guarantee on the performance of fθ on Dnew
X (Garg et al., 2021b)

In general, concept shift cannot be detected because Dnew
Y is unknown (Garg et al., 2021b).

Some research studies have made specific assumptions about the conditional P (Dnew
Y )

P (Dnew
X ) in

order to monitor models and detect distribution shift (Lu et al., 2023; Alvarez et al., 2023).
In Appendix B.2.2, we analyze a situation in which an oracle — hypothetically — provides
Dnew
Y .

5 Empirical Evaluation

We evaluate the effectiveness of explanation shift detection on tabular data by comparing it
against methods from the literature, which are all based on discovering distribution shifts.
For this comparison, we systematically vary models f , model parametrizations θ, and input
data distributions DX . We complement core experiments described in this section by adding
further experimental results in the appendix that (i) add details on experiments with synthetic
data (Appendix C), (ii) add experiments on further natural datasets (Appendix E), (iii)
exhibit a larger range of modeling choices (Appendix F),and (iv) contrast our SHAP-based
method against the use of LIME, an alternative explanation approach (Appendix G). Core
observations made in this section will only be confirmed and refined but not countered in
the appendix.
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5.1 Baseline Methods and Datasets

Baseline Methods. We compare our method of explanation shift detection (Section 3) with
several methods that aim to detect that input data is out-of-distribution: (B1) statistical
Kolmogorov Smirnov test on input data (Rabanser et al., 2019), (B2) prediction shift
detection by Wasserstein distance (Lu et al., 2023), (B3) NDCG-based test of feature
importance between the two distributions (Nigenda et al., 2022), (B4) prediction shift
detection by Kolmogorov-Smirnov test (Diethe et al., 2019), and (B5) model agnostic
uncertainty estimation (Mougan & Nielsen, 2023; Kim et al., 2020). All Distribution
Shift Metrics are scaled between 0 and 1. We also compare against Classifier Two-Sample
Test (Lopez-Paz & Oquab, 2017) on different distributions as discussed in Section 4, viz.
(B6) classifier two-sample test on input distributions (gϕ) and (B7) classifier two-sample test
on the predictions distributions (gΥ):

ϕ = argmin
ϕ̃

∑
x∈Dval

X ∪Dnew
X

ℓ(gϕ̃(x)), ax) Υ = argmin
Υ̃

∑
x∈Dval

X ∪Dnew
X

ℓ(gΥ̃(fθ(x)), ax) (4)

Datasets. In the main body of the paper we base our comparisons on the UCI Adult
Income dataset Dua & Graff (2017) and on synthetic data. In the Appendix, we extend
experiments to several other datasets, which confirm our findings: ACS Travel Time (Ding
et al., 2021b), ACS Employment, Stackoverflow dataset (Stackoverflow, 2019).

5.2 Experiments on Synthetic Data

Our first experiment on synthetic data showcases the two main contributions of our method:
(i) being more sensitive than prediction shift and input shift to changes in the model and
(ii) accounting for its drivers. We first generate a synthetic dataset Dρ, with a parametrized
multivariate shift between (X1, X2), where ρ is the correlation coefficient, and an extra
variable X3 = N(0, 1) and generate our target Y = X1 · X2 + X3. We train the fθ on
Dtr,ρ=0 using a gradient boosting decision tree, while for gψ : S(fθ,Dval,ρ

X ) → {0, 1}, we
train on different datasests with different values of ρ. For gψ we use a logistic regression. In
Appendix F, we benchmark other models fθ and detectors gψ.
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Figure 2: In the left figure, we compare the Classifier Two-Sample Test on explanation distribution
(ours) versus input distribution (B6) and prediction distribution (B6). Explanation distribution
shows the highest sensitivity. The right figure, related work comparison of distribution shift
methods(B1-B5), as the experimental setup has a gradual distribution shift, good indicators should
follow a progressive steady positive slope, following the correlation coefficient, as our method does.

The left image in Figure 2 compares our approach against C2ST on input data distribution(B6)
and on the predictions distribution (vii) different data distributions, for detecting multi-
covariate shifts on different distributions. In our covariate experiment, we observed that
using the explanation shift led to higher sensitivity towards detecting distribution shift. We
interpret the results with the efficiency property of the Shapley values, which decomposes
the vector fθ(DX) into the matrix S(fθ,DX). Moreover, we can identify the features that
cause the drift by extracting the coefficients of gψ, providing global and local explainability.
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The right image features the same setup comparing against the other out-of-distribution
detection methods previously discused. We can see how our method behaves favorably
compared to the others.

5.2.1 Novel Group Shift

The distribution shift in this experimental setup is constituted by the appearance of a
hitherto unseen group at prediction time (the group information is not present in the training
features). We vary the ratio of presence of this unseen group in Dnew

X data. As fθ we
use a gradient-boosting decision tree (fθ) and a logistic regression(gϕ). We compare the
performance of different algorithms for fθ and gψ in Appendix F.1, vary hyperparameters in
Appendix F.2 and extend experiments in Appendix D.
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Figure 3: Novel group shift experiment on the US Income dataset. Sensitivity (AUC) increases
with the growing fraction of previously unseen social groups. Left figure: The explanation shift
indicates that different social groups exhibit varying deviations from the distribution on which
the model was trained. Middle Figure: We vary the model fθ by training it using both XGBoost
(solid lines) and Logistic Regression (dots), excluding the black ethnicity group, and compare it
with models trained on different distributions (comparison against (B5) and (B6)). Right figure:
Comparison against Exp. NDCG (B4) we see how this monitoring methods is more unstable with a
linear model and with an xgboost it erroneously finds a horizontal asymptote.

5.2.2 Geopolitical and Temporal Shift
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Figure 4: In the left figure, comparison of the performance of Explanation Shift Detector in different
states. In the right figure, strength analysis of features driving the change in the model, in the
y-axis the features and on the x-axis the different states. Explanation shifts allow us to identify how
the distribition shift of different features impacted the model.

In this section, we tackle a geopolitical and temporal distribution shift; for this, the training
data Dtr for the model fθ is composed of data from California in 2014 and Dnew from rest of
the states in 2018. The model gψ is trained each time on each state using only the Dnew

X in
the absence of the label, and a 50/50 random train-test split evaluates its performance. As
models, we use xgboost as fθ and logistic regression for the Explanation Shift Detector (gψ).

We hypothesize that the AUC of the Explanation Shift Detector on new data will be
distinct from that on in-distribution data, primarily owing to the distinctive nature of
out-of-distribution model explanations. Figure 4 illustrates the performance of our method
on different data distributions, where the baseline is a ID hold-out set of CA14. The AUC
for CA18, where there is only a temporal shift, is the closest to the baseline, and the OOD
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detection performance is better in the rest of the states. The most disparate state is Puerto
Rico (PR18).

Our next objective is to identify the features where the explanations differ between Dtr
X

and Dnew
X data. To achieve this, we compare the distribution of linear coefficients of the

detector between both distributions. We use the Wasserstein distance as a distance measure,
generating 1000 in-distribution bootstraps using a 63.2% sampling fraction from California-14
and 1000 bootstraps from other states in 2018. In the right image of Figure 4, we observe
that for PR18, the most crucial feature is the Place of Birth.

Furthermore, we conduct an across-task evaluation by comparing the performance of the
“Explanation Shift Detector” on another prediction task in the Appendix E. Although some
features are present in both prediction tasks, the weights and importance order assigned by
the "Explanation Shift Detector" differ. One of this method’s advantages is that it identifies
differences in distributions and how they relate to the model.

6 Discussion
In this study, we conducted a comprehensive evaluation of explanation shift by systematically
varying models (f), model parametrizations (θ), feature attribution explanations (S), and
input data distributions (DX). Our objective was to investigate the impact of distribution shift
on the model by explanation shift and gain insights into its characteristics and implications.

Our approach cannot detect concept shifts, as concept shift requires understanding the
interaction between prediction and response variables. By the nature of pure concept shifts,
such changes do not affect the model. To be understood, new data need to come with
labelled responses. We work under the assumption that such labels are not available for
new data, nor do we make other assumptions; therefore, our method is not able to predict
the degradation of prediction performance under distribution shifts. All papers such as
(Garg et al., 2021b; Baek et al., 2022; Chen et al., 2022b; Fang et al., 2022; Miller et al.,
2021; Lu et al., 2023) that address the monitoring of prediction performance have the same
limitation. Only under specific assumptions, e.g., no occurrence of concept shift or causal
graph availability, can performance degradation be predicted with reasonable reliability.

The potential utility of explanation shifts as distribution shift indicators that affect the
model in computer vision or natural language processing tasks remains an open question.
We have used feature attribution explanations to derive indications of explanation shifts,
but other AI explanation techniques may be applicable and come with their advantages.

7 Conclusions

Commonly, the problem of detecting the impact of the distribution shift on the model has
relied on measurements for detecting shifts in the input or output data distributions or relied
on assumptions either on the type of distribution shift or causal graphs availability. In this
paper, we have provided evidence that explanation shifts can be a more suitable indicator
for detecting and identifying distribution shifts’ impact on machine learning models. We
provide software, mathematical analysis examples, synthetic data, and real-data experimental
evaluation. We found that measures of explanation shift can provide more insights than
input distribution and prediction shift measures when monitoring machine learning models.

Reproducibility Statement

To ensure reproducibility, we make the data, code repositories, and experiments pub-
licly available https://anonymous.4open.science/r/ExplanationShift-C0C0/README.
md. Also, an open-source Python package skshift https://anonymous.4open.science/r/
skshift-65A5/README.md is attached with methods routines and tutorials. For our experi-
ments, we used default scikit-learn parameters Pedregosa et al. (2011). We describe the
system requirements and software dependencies of our experiments. Experiments were run
on a 4 vCPU server with 32 GB RAM.

9

https://anonymous.4open.science/r/ExplanationShift-C0C0/README.md
https://anonymous.4open.science/r/ExplanationShift-C0C0/README.md
https://anonymous.4open.science/r/skshift-65A5/README.md
https://anonymous.4open.science/r/skshift-65A5/README.md


References

Kjersti Aas, Martin Jullum, and Anders Løland. Explaining individual predictions when
features are dependent: More accurate approximations to shapley values. Artif. Intell.,
298:103502, 2021. doi: 10.1016/j.artint.2021.103502. URL https://doi.org/10.1016/j.
artint.2021.103502.

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian J. Goodfellow, Moritz Hardt, and Been
Kim. Sanity checks for saliency maps. In NeurIPS, pp. 9525–9536, 2018.

Julius Adebayo, Michael Muelly, Ilaria Liccardi, and Been Kim. Debugging tests for model
explanations. In Proceedings of the 34th International Conference on Neural Information
Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

Jose M. Alvarez, Kristen M. Scott, Salvatore Ruggieri, and Bettina Berendt. Domain adaptive
decision trees: Implications for accuracy and fairness. In Proceedings of the 2023 ACM
Conference on Fairness, Accountability, and Transparency. Association for Computing
Machinery, 2023.

Robert J Aumann and Jacques H Dreze. Cooperative games with coalition structures.
International Journal of game theory, 3(4):217–237, 1974.

Christina Baek, Yiding Jiang, Aditi Raghunathan, and J Zico Kolter. Agreement-on-
the-line: Predicting the performance of neural networks under distribution shift. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=EZZsnke1kt.

Chiara Balestra, Bin Li, and Emmanuel Müller. Enabling the visualization of distributional
shift using shapley values. In NeurIPS 2022 Workshop on Distribution Shifts: Connecting
Methods and Applications, 2022. URL https://openreview.net/forum?id=HxnGNo2ADT.

Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham
Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard
Benjamins, Raja Chatila, and Francisco Herrera. Explainable artificial intelligence (xai):
Concepts, taxonomies, opportunities and challenges toward responsible ai. Information
Fusion, 58:82–115, 2020. ISSN 1566-2535. doi: https://doi.org/10.1016/j.inffus.2019.12.012.
URL https://www.sciencedirect.com/science/article/pii/S1566253519308103.

Shai Ben-David, Tyler Lu, Teresa Luu, and Dávid Pál. Impossibility theorems for domain
adaptation. In Yee Whye Teh and D. Mike Titterington (eds.), Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, AISTATS 2010, Chia
Laguna Resort, Sardinia, Italy, May 13-15, 2010, volume 9 of JMLR Proceedings, pp.
129–136. JMLR.org, 2010. URL http://proceedings.mlr.press/v9/david10a.html.

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and
Gjergji Kasneci. Deep neural networks and tabular data: A survey, 2021. URL https:
//arxiv.org/abs/2110.01889.

Kailash Budhathoki, Dominik Janzing, Patrick Blöbaum, and Hoiyi Ng. Why did the distri-
bution change? In Arindam Banerjee and Kenji Fukumizu (eds.), The 24th International
Conference on Artificial Intelligence and Statistics, AISTATS 2021, April 13-15, 2021,
Virtual Event, volume 130 of Proceedings of Machine Learning Research, pp. 1666–1674.
PMLR, 2021. URL http://proceedings.mlr.press/v130/budhathoki21a.html.

Hugh Chen, Joseph D. Janizek, Scott M. Lundberg, and Su-In Lee. True to the model or true
to the data? CoRR, abs/2006.16234, 2020a. URL https://arxiv.org/abs/2006.16234.

Hugh Chen, Joseph D. Janizek, Scott M. Lundberg, and Su-In Lee. True to the model or
true to the data? CoRR, abs/2006.16234, 2020b.

10

https://doi.org/10.1016/j.artint.2021.103502
https://doi.org/10.1016/j.artint.2021.103502
https://openreview.net/forum?id=EZZsnke1kt
https://openreview.net/forum?id=EZZsnke1kt
https://openreview.net/forum?id=HxnGNo2ADT
https://www.sciencedirect.com/science/article/pii/S1566253519308103
http://proceedings.mlr.press/v9/david10a.html
https://arxiv.org/abs/2110.01889
https://arxiv.org/abs/2110.01889
http://proceedings.mlr.press/v130/budhathoki21a.html
https://arxiv.org/abs/2006.16234


Hugh Chen, Ian C. Covert, Scott M. Lundberg, and Su-In Lee. Algorithms to estimate shapley
value feature attributions. CoRR, abs/2207.07605, 2022a. doi: 10.48550/arXiv.2207.07605.
URL https://doi.org/10.48550/arXiv.2207.07605.

Jianbo Chen, Le Song, Martin J. Wainwright, and Michael I. Jordan. L-shapley and
c-shapley: Efficient model interpretation for structured data. In 7th International Confer-
ence on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=S1E3Ko09F7.

Lingjiao Chen, Matei Zaharia, and James Y. Zou. Estimating and explaining model perfor-
mance when both covariates and labels shift. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems,
2022b. URL https://openreview.net/forum?id=BK0O0xLntFM.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’16, pp. 785–794, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4232-2.
doi: 10.1145/2939672.2939785. URL http://doi.acm.org/10.1145/2939672.2939785.

Jonathan Crabbé, Zhaozhi Qian, Fergus Imrie, and Mihaela van der Schaar. Explaining
latent representations with a corpus of examples. In NeurIPS, pp. 12154–12166, 2021.

Anupam Datta, Shayak Sen, and Yair Zick. Algorithmic transparency via quantitative input
influence: Theory and experiments with learning systems. In IEEE Symposium on Security
and Privacy, pp. 598–617. IEEE Computer Society, 2016.

Tom Diethe, Tom Borchert, Eno Thereska, Borja Balle, and Neil Lawrence. Continual
learning in practice. ArXiv preprint, https://arxiv.org/abs/1903.05202, 2019.

Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New datasets
for fair machine learning. In NeurIPS, pp. 6478–6490, 2021a.

Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New
datasets for fair machine learning. In Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems 34: Annual Conference on Neural In-
formation Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 6478–6490, 2021b. URL https://proceedings.neurips.cc/paper/2021/hash/
32e54441e6382a7fbacbbbaf3c450059-Abstract.html.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

Shereen Elsayed, Daniela Thyssens, Ahmed Rashed, Lars Schmidt-Thieme, and Hadi Samer
Jomaa. Do we really need deep learning models for time series forecasting? CoRR,
abs/2101.02118, 2021. URL https://arxiv.org/abs/2101.02118.

Zhen Fang, Yixuan Li, Jie Lu, Jiahua Dong, Bo Han, and Feng Liu. Is out-of-distribution
detection learnable? In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=sde_7ZzGXOE.

Stanislav Fort, Jie Ren, and Balaji Lakshminarayanan. Exploring the limits of out-of-
distribution detection. Advances in Neural Information Processing Systems, 34, 2021. URL
https://arxiv.org/abs/2106.03004.

Christopher Frye, Colin Rowat, and Ilya Feige. Asymmetric shapley values: incor-
porating causal knowledge into model-agnostic explainability. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin
(eds.), Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
0d770c496aa3da6d2c3f2bd19e7b9d6b-Abstract.html.

11

https://doi.org/10.48550/arXiv.2207.07605
https://openreview.net/forum?id=S1E3Ko09F7
https://openreview.net/forum?id=BK0O0xLntFM
http://doi.acm.org/10.1145/2939672.2939785
https://arxiv.org/abs/1903.05202
https://proceedings.neurips.cc/paper/2021/hash/32e54441e6382a7fbacbbbaf3c450059-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/32e54441e6382a7fbacbbbaf3c450059-Abstract.html
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://arxiv.org/abs/2101.02118
https://openreview.net/forum?id=sde_7ZzGXOE
https://openreview.net/forum?id=sde_7ZzGXOE
https://arxiv.org/abs/2106.03004
https://proceedings.neurips.cc/paper/2020/hash/0d770c496aa3da6d2c3f2bd19e7b9d6b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0d770c496aa3da6d2c3f2bd19e7b9d6b-Abstract.html


Saurabh Garg, Yifan Wu, Sivaraman Balakrishnan, and Zachary Lipton. A unified view of
label shift estimation. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 3290–3300.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/
file/219e052492f4008818b8adb6366c7ed6-Paper.pdf.

Saurabh Garg, Sivaraman Balakrishnan, Zico Kolter, and Zachary Lipton. Ratt: Leveraging
unlabeled data to guarantee generalization. In International Conference on Machine
Learning, pp. 3598–3609. PMLR, 2021a.

Saurabh Garg, Sivaraman Balakrishnan, Zachary Chase Lipton, Behnam Neyshabur, and
Hanie Sedghi. Leveraging unlabeled data to predict out-of-distribution performance. In
NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and Applications,
2021b.

Amirata Ghorbani and James Y. Zou. Data shapley: Equitable valuation of data for machine
learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pp. 2242–2251.
PMLR, 2019. URL http://proceedings.mlr.press/v97/ghorbani19c.html.

Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. Why do tree-based models still
outperform deep learning on typical tabular data? In Thirty-sixth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2022. URL https:
//openreview.net/forum?id=Fp7__phQszn.

Joris Guerin, Kevin Delmas, Raul Sena Ferreira, and Jérémie Guiochet. Out-of-distribution
detection is not all you need. In NeurIPS ML Safety Workshop, 2022. URL https:
//openreview.net/forum?id=hxFth8JGGR4.

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and
Dino Pedreschi. A survey of methods for explaining black box models. ACM Comput.
Surv., 51(5), August 2018. ISSN 0360-0300.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc., New York, NY, USA, 2001.

Johannes Haug and Gjergji Kasneci. Learning parameter distributions to detect concept drift
in data streams. In 2020 25th International Conference on Pattern Recognition (ICPR),
pp. 9452–9459. IEEE, 2021.

Johannes Haug, Alexander Braun, Stefan Zürn, and Gjergji Kasneci. Change detection for
local explainability in evolving data streams. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management, pp. 706–716, 2022.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-
distribution examples in neural networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=Hkg4TI9xl.

Fabian Hinder, André Artelt, Valerie Vaquet, and Barbara Hammer. Contrasting explanation
of concept drift. In ESANN, 2022.

Rui Huang, Andrew Geng, and Yixuan Li. On the importance of gradients for detecting
distributional shifts in the wild. Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
abs/2110.00218, 2021. URL https://arxiv.org/abs/2110.00218.

Chip Huyen. Designing Machine Learning Systems: An Iterative Process for Production-
Ready Applications. O’Reilly, 2022. URL ISBN-13:978-1098107963.

12

https://proceedings.neurips.cc/paper/2020/file/219e052492f4008818b8adb6366c7ed6-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/219e052492f4008818b8adb6366c7ed6-Paper.pdf
http://proceedings.mlr.press/v97/ghorbani19c.html
https://openreview.net/forum?id=Fp7__phQszn
https://openreview.net/forum?id=Fp7__phQszn
https://openreview.net/forum?id=hxFth8JGGR4
https://openreview.net/forum?id=hxFth8JGGR4
https://openreview.net/forum?id=Hkg4TI9xl
https://arxiv.org/abs/2110.00218
ISBN-13:978-1098107963


Krishnaram Kenthapadi, Himabindu Lakkaraju, Pradeep Natarajan, and Mehrnoosh Sameki.
Model monitoring in practice: Lessons learned and open challenges. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
’22, pp. 4800–4801, New York, NY, USA, 2022. Association for Computing Machinery.
ISBN 9781450393850. doi: 10.1145/3534678.3542617. URL https://doi.org/10.1145/
3534678.3542617.

Byol Kim, Chen Xu, and Rina Foygel Barber. Predictive inference is free with the jackknife+-
after-bootstrap. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/2b346a0aa375a07f5a90a344a61416c4-Abstract.html.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay
Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony
Lee, Etienne David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran Haque, Sara M.
Beery, Jure Leskovec, Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and
Percy Liang. WILDS: A benchmark of in-the-wild distribution shifts. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pp. 5637–5664. PMLR, 2021. URL http://proceedings.
mlr.press/v139/koh21a.html.

Yongchan Kwon, Manuel A. Rivas, and James Zou. Efficient computation and analysis of
distributional shapley values. In Arindam Banerjee and Kenji Fukumizu (eds.), The 24th
International Conference on Artificial Intelligence and Statistics, AISTATS 2021, April
13-15, 2021, Virtual Event, volume 130 of Proceedings of Machine Learning Research, pp.
793–801. PMLR, 2021. URL http://proceedings.mlr.press/v130/kwon21a.html.

Cloudera Fastforward Labs. Inferring concept drift without labeled data. https://
concept-drift.fastforwardlabs.com/, 2021.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for
detecting out-of-distribution samples and adversarial attacks. In Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pp. 7167–7177, 2018. URL https://proceedings.neurips.cc/paper/2018/
hash/abdeb6f575ac5c6676b747bca8d09cc2-Abstract.html.

Zachary C. Lipton, Yu-Xiang Wang, and Alexander J. Smola. Detecting and correcting
for label shift with black box predictors. In Jennifer G. Dy and Andreas Krause (eds.),
Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of
Machine Learning Research, pp. 3128–3136. PMLR, 2018. URL http://proceedings.
mlr.press/v80/lipton18a.html.

Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, and Danica J. Sutherland.
Learning deep kernels for non-parametric two-sample tests. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine Learning Research, pp. 6316–6326. PMLR,
2020a. URL http://proceedings.mlr.press/v119/liu20m.html.

Weitang Liu, Xiaoyun Wang, John D. Owens, and Yixuan Li. Energy-based out-of-distribution
detection. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020b. URL https://proceedings.neurips.cc/paper/2020/hash/
f5496252609c43eb8a3d147ab9b9c006-Abstract.html.

13

https://doi.org/10.1145/3534678.3542617
https://doi.org/10.1145/3534678.3542617
https://proceedings.neurips.cc/paper/2020/hash/2b346a0aa375a07f5a90a344a61416c4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/2b346a0aa375a07f5a90a344a61416c4-Abstract.html
http://proceedings.mlr.press/v139/koh21a.html
http://proceedings.mlr.press/v139/koh21a.html
http://proceedings.mlr.press/v130/kwon21a.html
https://concept-drift.fastforwardlabs.com/
https://concept-drift.fastforwardlabs.com/
https://proceedings.neurips.cc/paper/2018/hash/abdeb6f575ac5c6676b747bca8d09cc2-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/abdeb6f575ac5c6676b747bca8d09cc2-Abstract.html
http://proceedings.mlr.press/v80/lipton18a.html
http://proceedings.mlr.press/v80/lipton18a.html
http://proceedings.mlr.press/v119/liu20m.html
https://proceedings.neurips.cc/paper/2020/hash/f5496252609c43eb8a3d147ab9b9c006-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f5496252609c43eb8a3d147ab9b9c006-Abstract.html


David Lopez-Paz and Maxime Oquab. Revisiting classifier two-sample tests. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=SJkXfE5xx.

Yuzhe Lu, Zhenlin Wang, Runtian Zhai, Soheil Kolouri, Joseph Campbell, and Katia P.
Sycara. Predicting out-of-distribution error with confidence optimal transport. In ICLR
2023 Workshop on Pitfalls of limited data and computation for Trustworthy ML, 2023.
URL https://openreview.net/forum?id=dNGxmwRpFyG.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
NIPS, pp. 4765–4774, 2017a.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, pp. 4765–4774, 2017b. URL https://proceedings.
neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html.

Scott M Lundberg, Bala Nair, Monica S Vavilala, Mayumi Horibe, Michael J Eisses, Trevor
Adams, David E Liston, Daniel King-Wai Low, Shu-Fang Newman, Jerry Kim, et al.
Explainable machine-learning predictions for the prevention of hypoxaemia during surgery.
Nature biomedical engineering, 2(10):749–760, 2018.

Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M. Prutkin, Bala Nair,
Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local explanations
to global understanding with explainable ai for trees. Nature Machine Intelligence, 2(1):
2522–5839, 2020a.

Scott M. Lundberg, Gabriel G. Erion, Hugh Chen, Alex J. DeGrave, Jordan M. Prutkin,
Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local
explanations to global understanding with explainable AI for trees. Nat. Mach. Intell., 2
(1):56–67, 2020b.

Andrey Malinin, Neil Band, German Chesnokov, Yarin Gal, Mark JF Gales, Alexey Noskov,
Andrey Ploskonosov, Liudmila Prokhorenkova, Ivan Provilkov, Vatsal Raina, et al. Shifts:
A dataset of real distributional shift across multiple large-scale tasks. arXiv preprint
arXiv:2107.07455, 2021a.

Andrey Malinin, Neil Band, Yarin Gal, Mark J. F. Gales, Alexander Ganshin, Ger-
man Chesnokov, Alexey Noskov, Andrey Ploskonosov, Liudmila Prokhorenkova, Ivan
Provilkov, Vatsal Raina, Vyas Raina, Denis Roginskiy, Mariya Shmatova, Pana-
giotis Tigas, and Boris Yangel. Shifts: A dataset of real distributional shift
across multiple large-scale tasks. In Joaquin Vanschoren and Sai-Kit Yeung (eds.),
Proceedings of the Neural Information Processing Systems Track on Datasets and
Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual,
2021b. URL https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/ad61ab143223efbc24c7d2583be69251-Abstract-round2.html.

Andrey Malinin, Andreas Athanasopoulos, Muhamed Barakovic, Meritxell Bach Cuadra,
Mark JF Gales, Cristina Granziera, Mara Graziani, Nikolay Kartashev, Konstantinos
Kyriakopoulos, Po-Jui Lu, et al. Shifts 2.0: Extending the dataset of real distributional
shifts. arXiv preprint arXiv:2206.15407, 2022.

Masayoshi Mase, Art B. Owen, and Benjamin Seiler. Explaining black box decisions by
shapley cohort refinement. CoRR, abs/1911.00467, 2019.

John Miller, Rohan Taori, Aditi Raghunathan, Shiori Sagawa, Pang Wei Koh, Vaishaal
Shankar, Percy Liang, Yair Carmon, and Ludwig Schmidt. Accuracy on the line: on
the strong correlation between out-of-distribution and in-distribution generalization. In
Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on

14

https://openreview.net/forum?id=SJkXfE5xx
https://openreview.net/forum?id=SJkXfE5xx
https://openreview.net/forum?id=dNGxmwRpFyG
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/ad61ab143223efbc24c7d2583be69251-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/ad61ab143223efbc24c7d2583be69251-Abstract-round2.html


Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pp. 7721–7735. PMLR, 2021. URL http://proceedings.
mlr.press/v139/miller21b.html.

Christoph Molnar. Interpretable Machine Learning. ., 2019. https://christophm.github.
io/interpretable-ml-book/.

Carlos Mougan and Dan Saattrup Nielsen. Monitoring model deterioration with explainable
uncertainty estimation via non-parametric bootstrap. In AAAI, pp. 15037–15045. AAAI
Press, 2023.

David Nigenda, Zohar Karnin, Muhammad Bilal Zafar, Raghu Ramesha, Alan Tan, Michele
Donini, and Krishnaram Kenthapadi. Amazon sagemaker model monitor: A system for
real-time insights into deployed machine learning models. In KDD, pp. 3671–3681. ACM,
2022.

Chunjong Park, Anas Awadalla, Tadayoshi Kohno, and Shwetak N. Patel. Reliable and
trustworthy machine learning for health using dataset shift detection. In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, pp. 3043–3056, 2021a. URL https://proceedings.neurips.cc/paper/2021/
hash/17e23e50bedc63b4095e3d8204ce063b-Abstract.html.

Chunjong Park, Anas Awadalla, Tadayoshi Kohno, and Shwetak N. Patel. Reliable and
trustworthy machine learning for health using dataset shift detection. Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, abs/2110.14019, 2021b. URL https://arxiv.org/abs/
2110.14019.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.
Scikit-learn: Machine learning in python. the Journal of machine Learning research, 12:
2825–2830, 2011.

Liudmila Ostroumova Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika
Dorogush, and Andrey Gulin. Catboost: unbiased boosting with categorical features.
In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-
Bianchi, and Roman Garnett (eds.), Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pp. 6639–6649, 2018. URL https://proceedings.
neurips.cc/paper/2018/hash/14491b756b3a51daac41c24863285549-Abstract.html.

Joaquin Quiñonero-Candela, Masashi Sugiyama, Neil D Lawrence, and Anton Schwaighofer.
Dataset shift in machine learning. Mit Press, 2009.

Stephan Rabanser, Stephan Günnemann, and Zachary C. Lipton. Failing loudly: An empirical
study of methods for detecting dataset shift. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 1394–1406, 2019. URL https://proceedings.neurips.cc/paper/
2019/hash/846c260d715e5b854ffad5f70a516c88-Abstract.html.

Jie Ren, Peter J. Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark A. DePristo,
Joshua V. Dillon, and Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution
detection. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Infor-
mation Processing Systems 32: Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pp. 14680–14691, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
1e79596878b2320cac26dd792a6c51c9-Abstract.html.

15

http://proceedings.mlr.press/v139/miller21b.html
http://proceedings.mlr.press/v139/miller21b.html
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://proceedings.neurips.cc/paper/2021/hash/17e23e50bedc63b4095e3d8204ce063b-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/17e23e50bedc63b4095e3d8204ce063b-Abstract.html
https://arxiv.org/abs/2110.14019
https://arxiv.org/abs/2110.14019
https://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daac41c24863285549-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daac41c24863285549-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/846c260d715e5b854ffad5f70a516c88-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/846c260d715e5b854ffad5f70a516c88-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1e79596878b2320cac26dd792a6c51c9-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1e79596878b2320cac26dd792a6c51c9-Abstract.html


Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Model-agnostic interpretability of
machine learning, 2016a.

Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust you?":
Explaining the predictions of any classifier. In Balaji Krishnapuram, Mohak Shah,
Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi (eds.), Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Francisco, CA, USA, August 13-17, 2016, pp. 1135–1144. ACM, 2016b. doi:
10.1145/2939672.2939778. URL https://doi.org/10.1145/2939672.2939778.

Shiori Sagawa, Pang Wei Koh, Tony Lee, Irena Gao, Sang Michael Xie, Kendrick Shen,
Ananya Kumar, Weihua Hu, Michihiro Yasunaga, Henrik Marklund, Sara Beery, Etienne
David, Ian Stavness, Wei Guo, Jure Leskovec, Kate Saenko, Tatsunori Hashimoto, Sergey
Levine, Chelsea Finn, and Percy Liang. Extending the WILDS benchmark for unsupervised
adaptation. CoRR, abs/2112.05090, 2021. URL https://arxiv.org/abs/2112.05090.

Jessica Schrouff, Natalie Harris, Oluwasanmi O Koyejo, Ibrahim Alabdulmohsin, Eva Schnider,
Krista Opsahl-Ong, Alexander Brown, Subhrajit Roy, Diana Mincu, Chrsitina Chen,
Awa Dieng, Yuan Liu, Vivek Natarajan, Alan Karthikesalingam, Katherine A Heller,
Silvia Chiappa, and Alexander D’Amour. Diagnosing failures of fairness transfer across
distribution shift in real-world medical settings. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?id=K-A4tDJ6HHf.

L. S. Shapley. A Value for n-Person Games, pp. 307–318. Princeton University
Press, 1953. doi: doi:10.1515/9781400881970-018. URL https://doi.org/10.1515/
9781400881970-018.

Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju. Fool-
ing LIME and SHAP: adversarial attacks on post hoc explanation methods. In
Annette N. Markham, Julia Powles, Toby Walsh, and Anne L. Washington (eds.),
AIES ’20: AAAI/ACM Conference on AI, Ethics, and Society, New York, NY, USA,
February 7-8, 2020, pp. 180–186. ACM, 2020. doi: 10.1145/3375627.3375830. URL
https://doi.org/10.1145/3375627.3375830.

Stackoverflow. Developer survey results 2019, 2019. URL https://insights.
stackoverflow.com/survey/2019/.

Erik Strumbelj and Igor Kononenko. Explaining prediction models and individual pre-
dictions with feature contributions. Knowl. Inf. Syst., 41(3):647–665, 2014. doi:
10.1007/s10115-013-0679-x. URL https://doi.org/10.1007/s10115-013-0679-x.

Mukund Sundararajan and Amir Najmi. The many shapley values for model explanation. In
ICML, volume 119 of Proceedings of Machine Learning Research, pp. 9269–9278. PMLR,
2020.

Haoran Wang, Weitang Liu, Alex Bocchieri, and Yixuan Li. Can multi-label classifica-
tion networks know what they don’t know? In Marc’Aurelio Ranzato, Alina Beygelz-
imer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 29074–29087, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
f3b7e5d3eb074cde5b76e26bc0fb5776-Abstract.html.

Eyal Winter. Chapter 53 the shapley value. In ., volume 3 of Handbook of Game
Theory with Economic Applications, pp. 2025–2054. Elsevier, 2002. doi: https://doi.
org/10.1016/S1574-0005(02)03016-3. URL https://www.sciencedirect.com/science/
article/pii/S1574000502030163.

Artjom Zern, Klaus Broelemann, and Gjergji Kasneci. Interventional shap values and
interaction values for piecewise linear regression trees. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2023.

16

https://doi.org/10.1145/2939672.2939778
https://arxiv.org/abs/2112.05090
https://openreview.net/forum?id=K-A4tDJ6HHf
https://doi.org/10.1515/9781400881970-018
https://doi.org/10.1515/9781400881970-018
https://doi.org/10.1145/3375627.3375830
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://doi.org/10.1007/s10115-013-0679-x
https://proceedings.neurips.cc/paper/2021/hash/f3b7e5d3eb074cde5b76e26bc0fb5776-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f3b7e5d3eb074cde5b76e26bc0fb5776-Abstract.html
https://www.sciencedirect.com/science/article/pii/S1574000502030163
https://www.sciencedirect.com/science/article/pii/S1574000502030163


Haoran Zhang, Harvineet Singh, and Shalmali Joshi. ”why did the model fail?”: Attributing
model performance changes to distribution shifts. In ICML 2022: Workshop on Spurious
Correlations, Invariance and Stability, 2022. URL https://openreview.net/forum?id=
DARoSj6S6vm.

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, and Zhikun Wang. Domain adaptation
under target and conditional shift. In Proceedings of the 30th International Conference
on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, volume 28
of JMLR Workshop and Conference Proceedings, pp. 819–827. JMLR.org, 2013. URL
http://proceedings.mlr.press/v28/zhang13d.html.

Lily H. Zhang, Mark Goldstein, and Rajesh Ranganath. Understanding failures in out-of-
distribution detection with deep generative models. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research,
pp. 12427–12436. PMLR, 2021. URL http://proceedings.mlr.press/v139/zhang21g.
html.

17

https://openreview.net/forum?id=DARoSj6S6vm
https://openreview.net/forum?id=DARoSj6S6vm
http://proceedings.mlr.press/v28/zhang13d.html
http://proceedings.mlr.press/v139/zhang21g.html
http://proceedings.mlr.press/v139/zhang21g.html


Contents

1 Introduction 1

2 Foundations and Related Work 2

2.1 Basic Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Related Work on Tabular Data . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Explainable AI: Local Feature Attributions . . . . . . . . . . . . . . . . . . . 3

3 A Model for Explanation Shift Detection 4

4 Relationships between Common Distribution Shifts and Explanation Shifts 5

4.1 Explanation Shift vs Data Shift . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2 Explanation Shift vs Prediction Shift . . . . . . . . . . . . . . . . . . . . . . . 6

4.3 Explanation Shift vs Concept Shift . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Empirical Evaluation 6

5.1 Baseline Methods and Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.2 Experiments on Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.2.1 Novel Group Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.2.2 Geopolitical and Temporal Shift . . . . . . . . . . . . . . . . . . . . . 8

6 Discussion 9

7 Conclusions 9

A Extended Related Work 19

A.1 Out-Of-Distribution Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.2 Explainability and Distribution Shift . . . . . . . . . . . . . . . . . . . . . . . 20

B Extended Analytical Examples 20

B.1 Explanation Shift vs Prediction Shift . . . . . . . . . . . . . . . . . . . . . . . 20

B.2 Explanation Shifts vs Input Data Distribution Shifts . . . . . . . . . . . . . . 21

B.2.1 Multivariate Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

B.2.2 Concept Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

C Further Experiments on Synthetic Data 22

C.1 Detecting multivariate shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

C.2 Detecting concept shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

C.3 Uninformative features on synthetic data . . . . . . . . . . . . . . . . . . . . 23

C.4 Explanation shift that does not affect the prediction . . . . . . . . . . . . . . 23

D Experimental Comparison against Specific Related Work 23

18



D.1 Summary Comparison on Synthetic data . . . . . . . . . . . . . . . . . . . . . 24

D.2 Comparison Against Changes on Feature Attribution Relevance . . . . . . . . 24

D.2.1 Novel Group Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

D.2.2 Synthetic Data Comparison . . . . . . . . . . . . . . . . . . . . . . . . 25

D.2.3 Analytical Comparison under Monotonous Uniform Shift . . . . . . . 25

E Further Experiments on Real Data 26

E.1 ACS Employment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

E.2 ACS Travel Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

E.3 ACS Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

E.4 StackOverflow Survey Data: Novel Covariate Group . . . . . . . . . . . . . . 28

F Experiments with Modeling Methods and Hyperparameters 28

F.1 Varying Models and Explanation Shift Detectors . . . . . . . . . . . . . . . . 29

F.2 Hyperparameters Sensitivity Evaluation . . . . . . . . . . . . . . . . . . . . . 29

G LIME as an Alternative Explanation Method 30

G.1 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

H True to the Model or True to the Data? 32

A Extended Related Work

This section provides an in-depth review of the related theoretical works that inform our
research.

A.1 Out-Of-Distribution Detection

Evaluating how two distributions differ has been a widely studied topic in the statistics and
statistical learning literature Hastie et al. (2001); Quiñonero-Candela et al. (2009); Liu et al.
(2020a), that have advanced recently in last years Park et al. (2021a); Lee et al. (2018);
Zhang et al. (2013). Rabanser et al. (2019) provides a comprehensive empirical investigation,
examining how dimensionality reduction and two-sample testing might be combined to
produce a practical pipeline for detecting distribution shifts in real-life machine learning
systems. Other methods to detect if new data is OOD have relied on neural networks
based on the prediction distributions Fort et al. (2021); Garg et al. (2020). They use the
maximum softmax probabilities/likelihood as a confidence score Hendrycks & Gimpel (2017),
temperature or energy-based scores Ren et al. (2019); Liu et al. (2020b); Wang et al. (2021),
they extract information from the gradient space Huang et al. (2021), relying on the latent
space Crabbé et al. (2021), they fit a Gaussian distribution to the embedding, or they use the
Mahalanobis distance for out-of-distribution detection Lee et al. (2018); Park et al. (2021b).

Many of these methods are explicitly developed for neural networks that operate on image
and text data, and often, they can not be directly applied to traditional ML techniques.
For image and text data, one may build on the assumption that the relationships between
relevant predictor variables (X) and response variables (Y ) remain unchanged, i.e., that
no concept shift occurs. For instance, the essence of how a dog looks remains unchanged
over different data sets, even if contexts may change. Thus, one can define invariances on
the latent spaces of deep neural models, which do not apply to tabular data in a similar
manner. For example, predicting buying behaviour before, during, and after the COVID-19
pandemic constitutes a conceptual shift that is not amenable to such methods. We focus
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on such tabular data where techniques such as gradient boosting decision trees achieve
state-of-the-art model performance Grinsztajn et al. (2022); Elsayed et al. (2021); Borisov
et al. (2021).

A.2 Explainability and Distribution Shift

An approach using Shapley values by Balestra et al. (2022) allows for tracking distributional
shifts and their impact among for categorical time series using slidSHAP, a novel method for
unlabelled data streams. This approach is particularly useful for unlabelled data streams,
offering insights into the changing data distribution dynamics. In contrast, our work focuses
on defining explanation distributions and leveraging their theoretical properties in the context
of distribution shift detection, employing a two-sample classifier test for detection.

Another perspective in the field of explainability is explored by Adebayo et al. (2020; 2018),
who investigate the effectiveness of post-hoc model explanations for diagnosing model errors.
They categorize these errors based on their source. While their work is geared towards
model debugging, our research takes a distinct path by aiming to quantify the influence of
distribution shifts on the model.

Hinder et al. (2022) proposes to explain concept drift by contrasting explanations describing
characteristic changes of spatial features. Haug & Kasneci (2021) track changes in the
distribution of model parameter values that are directly related to the input features to
identify concept drift early on in data streams. In a more recent paper, Haug et al. (2022)
also exploits the idea that local changes to feature attributions and distribution shifts are
strongly intertwined and uses this idea to update the local feature attributions efficiently.
Their work focuses on model retraining and concept shift, in our work, the original model fθ
remains unaltered, and since we are in an unsupervised monitoring scenario, we can’t detect
concept shifts see discussion in Section 6

B Extended Analytical Examples

This appendix provides more details about the analytical examples presented in Section 4.1.

B.1 Explanation Shift vs Prediction Shift

Proposition 2. Given a model fθ : DX → DY . If fθ(x′) ̸= fθ(x), then S(fθ, x′) ̸= S(fθ, x).

Given fθ(x) ̸= fθ(x
′) (5)

p∑
j=1

Sj(fθ, x) = fθ(x)− EX [fθ(DX)] (6)

then S(f, x) ̸= S(f, x′) (7)

Example B.1. Explanation shift that does not affect the prediction distribution
Given Dtr is generated from (X1, X2, Y ), X1 ∼ U(0, 1), X2 ∼ U(1, 2), Y = X1 +X2 + ϵ and
thus the model is f(x) = x1+x2. If Dnew is generated from Xnew

1 ∼ U(1, 2), Xnew
2 ∼ U(0, 1),

the prediction distributions are identical fθ(Dtr
X ), fθ(Dnew

X ), but explanation distributions are
different S(fθ,Dtr

X ) ̸= S(fθ,Dnew
X )

∀i ∈ {1, 2} Si(fθ, x) = αi · xi (8)
∀i ∈ {1, 2} ⇒ Si(fθ,DX)) ̸= Si(fθ,Dnew

X ) (9)
⇒ fθ(DX) = fθ(Dnew

X ) (10)
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B.2 Explanation Shifts vs Input Data Distribution Shifts

B.2.1 Multivariate Shift

Example B.2. Multivariate Shift Let Dtr
X = (Dnew

X1
,Dnew

X2
) ∼

N
([

µ1
µ2

]
,
[
σ2
x1

0

0 σ2
x2

])
,Dnew

X = (Dnew
X1

,Dnew
X2

) ∼ N
([

µ1
µ2

]
,
[

σ2
x1

ρσx1
σx2

ρσx1
σx2

σ2
x2

])
. We fit

a linear model fθ(X1, X2) = γ + a ·X1 + b ·X2. DX1
and DX2

are identically distributed
with Dnew

X1
and Dnew

X2
, respectively, while this does not hold for the corresponding SHAP

values Sj(fθ,Dtr
X ) and Sj(fθ,Dval

X ).

S1(fθ, x) = a(x1 − µ1) (11)
S1(fθ, x

new) = (12)

=
1

2
[val({1, 2})− val({2})] + 1

2
[val({1})− val(∅)] (13)

val({1, 2}) = E[fθ|X1 = x1, X2 = x2] = ax1 + bx2 (14)
val(∅) = E[fθ] = aµ1 + bµ2 (15)

val({1}) = E[fθ(x)|X1 = x1] + bµ2 (16)

val({1}) = µ1 + ρ
ρx1

σx2

(x1 − σ1) + bµ2 (17)

val({2}) = µ2 + ρ
σx2

σx1

(x2 − µ2) + aµ1 (18)

⇒ S1(fθ, x
new) ̸= a(x1 − µ1) (19)

B.2.2 Concept Shift

One of the most challenging types of distribution shift to detect are cases where distributions
are equal between source and unseen data-set P(Dtr

X) = P(Dnew
X ) and the target variable

P(Dtr
Y ) = P(Dnew

Y ) and what changes are the relationships that features have with the target
P(Dtr

Y |Dtr
X ) ̸= P(Dnew

Y |Dnew
X ), this kind of distribution shift is also known as concept drift or

posterior shift (Huyen, 2022) and is especially difficult to notice, as it requires labeled data
to detect. The following example compares how the explanations change for two models fed
with the same input data and different target relations.

Example B.3. Concept shift Let DX = (X1, X2) ∼ N(µ, I), and Dnew
X =

(Xnew
1 , Xnew

2 ) ∼ N(µ, I), where I is an identity matrix of order two and µ = (µ1, µ2). We
now create two synthetic targets Y = a+α ·X1+β ·X2+ ϵ and Y new = a+β ·X1+α ·X2+ ϵ.
Let fθ be a linear regression model trained on fθ : DX → DY ) and hϕ another linear model
trained on hϕ : Dnew

X → Dnew
Y ). Then P(fθ(X)) = P(hϕ(X

new)), P (X) = P(Xnew) but
S(fθ, X) ̸= S(hϕ, X).

X ∼ N(µ, σ2 · I), Xnew ∼ N(µ, σ2 · I) (20)
→ P (DX) = P (Dnew

X ) (21)

Y ∼ a+ αN(µ, σ2) + βN(µ, σ2) +N(0, σ
′2) (22)

Y new ∼ a+ βN(µ, σ2) + αN(µ, σ2) +N(0, σ
′2) (23)

→ P (DY ) = P (Dnew
Y ) (24)

S(fθ,DX) =

(
α(X1 − µ1)
β(X2 − µ2)

)
∼

(
N(µ1, α

2σ2)
N(µ2, β

2σ2)

)
(25)

S(hϕ,DX) =

(
β(X1 − µ1)
α(X2 − µ2)

)
∼

(
N(µ1, β

2σ2)
N(µ2, α

2σ2)

)
(26)

If α ̸= β → S(fθ,DX) ̸= S(hϕ,DX) (27)
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C Further Experiments on Synthetic Data

This experimental section explores the detection of distribution shifts in the previous synthetic
examples.

C.1 Detecting multivariate shift

Given two bivariate normal distributions DX = (X1, X2) ∼ N

(
0,

[
1 0
0 1

])
and Dnew

X =

(Xnew
1 , Xnew

2 ) ∼ N

(
0,

[
1 0.2
0.2 1

])
, then, for each feature j the underlying distribution is

equally distributed between DX and Dnew
X , ∀j ∈ {1, 2} : P (DXj

) = P (Dnew
Xj

), and what
is different are the interaction terms between them. We now create a synthetic target
Y = X1 ·X2 + ϵ with ϵ ∼ N(0, 0.1) and fit a gradient boosting decision tree fθ(DX). Then
we compute the SHAP explanation values for S(fθ,DX) and S(fθ,Dnew

X )

Table 1: Displayed results are the one-tailed p-values of the Kolmogorov-Smirnov test comparison
between two underlying distributions. Small p-values indicate that compared distributions would be
very unlikely to be equally distributed. SHAP values correctly indicate the interaction changes that
individual distribution comparisons cannot detect

Comparison p-value Conclusions
P(DX1

), P(Dnew
X1

) 0.33 Not Distinct
P(DX2

), P(Dnew
X2

) 0.60 Not Distinct
S1(fθ,DX), S1(fθ,Dnew

X ) 3.9e−153 Distinct
S2(fθ,DX), S2(fθ,Dnew

X ) 2.9e−148 Distinct

Having drawn 50, 000 samples from both DX and Dnew
X , in Table 1, we evaluate whether

changes in the input data distribution or in the explanations are able to detect changes in co-
variate distribution. For this, we compare the one-tailed p-values of the Kolmogorov-Smirnov
test between the input data distribution and the explanations distribution. Explanation
shift correctly detects the multivariate distribution change that univariate statistical testing
can not detect.

C.2 Detecting concept shift

As mentioned before, concept shift cannot be detected if new data comes without target
labels. If new data is labelled, the explanation shift can still be a useful technique for
detecting concept shifts.

Given a bivariate normal distribution DX = (X1, X2) ∼ N(1, I) where I is an identity matrix
of order two. We now create two synthetic targets Y = X2

1 ·X2 + ϵ and Y new = X1 ·X2
2 + ϵ

and fit two machine learning models fθ : DX → DY ) and hΥ : DX → Dnew
Y ). Now we

compute the SHAP values for S(fθ,DX) and S(hΥ,DX)

Table 2: Distribution comparison for synthetic concept shift. Displayed results are the one-tailed
p-values of the Kolmogorov-Smirnov test comparison between two underlying distributions

Comparison Conclusions
P(DX), P(Dnew

X ) Not Distinct
P(DY ), P(Dnew

Y ) Not Distinct
P(fθ(DX)), P(hΥ(Dnew

X )) Not Distinct
P(S(fθ,DX)), P(S(hΥ,DX)) Distinct

In Table 2, we see how the distribution shifts are not able to capture the change in the
model behavior while the SHAP values are different. The “Distinct/Not distinct” conclusion
is based on the one-tailed p-value of the Kolmogorov-Smirnov test with a 0.05 threshold
drawn out of 50, 000 samples for both distributions. As in the synthetic example, in table 2
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SHAP values can detect a relational change between DX and DY , even if both distributions
remain equivalent.

C.3 Uninformative features on synthetic data

To have an applied use case of the synthetic example from the methodology section, we
create a three-variate normal distribution DX = (X1, X2, X3) ∼ N(0, I3), where I3 is an
identity matrix of order three. The target variable is generated Y = X1 · X2 + ϵ being
independent of X3. For both, training and test data, 50, 000 samples are drawn. Then
out-of-distribution data is created by shifting X3, which is independent of the target, on test
data Dnew

X3
= Dte

X3
+ 1.

Table 3: Distribution comparison when modifying a random noise variable on test data. The input
data shifts while explanations and predictions do not.

Comparison Conclusions
P(Dte

X3
), P(Dnew

X3
) Distinct

fθ(Dte
X), fθ(Dnew

X ) Not Distinct
S(fθ,Dte

X), S(fθ,Dnew
X ) Not Distinct

In Table 3, we see how an unused feature has changed the input distribution, but the expla-
nation distributions and performance evaluation metrics remain the same. The “Distinct/Not
Distinct” conclusion is based on the one-tailed p-value of the Kolmogorov-Smirnov test drawn
out of 50, 000 samples for both distributions.

C.4 Explanation shift that does not affect the prediction

In this case we provide a situation when we have changes in the input data distributions
that affect the model explanations but do not affect the model predictions due to positive
and negative associations between the model predictions and the distributions cancel out
producing a vanishing correlation in the mixture of the distribution (Yule’s effect 4.2).

We create a train and test data by drawing 50, 000 samples from a bi-uniform distribution
X1 ∼ U(0, 1), X2 ∼ U(1, 2) the target variable is generated by Y = X1 + X2 where
we train our model fθ. Then if out-of-distribution data is sampled from Xnew

1 ∼ U(1, 2),
Xnew

2 ∼ U(0, 1)

Table 4: Distribution comparison over how the change on the contributions of each feature can
cancel out to produce an equal prediction (cf. Section 4.2), while explanation shift will detect this
behaviour changes on the predictions will not.

Comparison Conclusions
f(Dte

X), f(Dnew
X ) Not Distinct

S(fθ,Dte
X2

), S(fθ,Dnew
X2

) Distinct
S(fθ,Dte

X1
), S(fθ,Dnew

X1
) Distinct

In Table 4, we see how an unused feature has changed the input distribution, but the expla-
nation distributions and performance evaluation metrics remain the same. The “Distinct/Not
Distinct” conclusion is based on the one-tailed p-value of the Kolmogorov-Smirnov test drawn
out of 50, 000 samples for both distributions.

D Experimental Comparison against Specific Related Work

In this section, we expand upon our comparison with related work by providing a summary
table that encompasses all the methods examined under synthetic shift scenarios.
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D.1 Summary Comparison on Synthetic data

To assess the effectiveness of different detection methods in identifying and accounting for
synthetic shifts, we present a conceptual comparison in Table 5. We evaluate these methods
based on their capacity to capture synthetic shifts, following the methodology detailed in
the main body of the paper (cf. Section 5.2). We illustrate this comparison by considering
two scenarios: a multicovariate shift (cf. Example 4.1) and a shift involving uninformative
features (cf. Example 4.2).

This comparison focuses on their ability to detect synthetic distribution shifs using the
examples of covariate shift and uninformative shifts, and provides valuable insights while
ensuring accountability.

Table 5: Conceptual comparison of different detection methods over the examples discussed
in the mathematical analsyis of the main body of the paper(cf. Section 4): a multicovariate
shift(cf. Example 4.1 )and a uninformative features shift(cf. Example 4.2) . Learning a Classifier
Two-Sample test g over the explanation distributions is the only method that achieves the desired
results (✓) and is accountable. We evaluate accountability by checking if the feature attributions of
the detection method correspond to the synthetic shift generated in both scenarios

Detection Method Covariate Uninformative Accountability
Input distribution(gϕ) ✓ ✗ ✗

Prediction distribution(gΥ) ✓ ✓ ✗
Input KS ✗ ✗ ✗

Classifier Drift ✓ ✗ ✗
Output KS ✓ ✓ ✗

Output Wasserstein ✓ ✓ ✗
Uncertainty ∼ ✓ ✓

NDCG ✗ ✓ ✗
Explanation distribution (gψ)

✓ ✓ ✓Explanation Shift Detector

D.2 Comparison Against Changes on Feature Attribution Relevance

In this section, we present a comparative analysis against the work of (Nigenda et al., 2022),

which involves assessing the disparity in feature importance orders between training data
and out-of-distribution data. To quantify this disparity, we employ the normalized discount
cumulative gain (NDCG) metric. This method is versatile, accommodating both individual
sample analysis and distribution-level assessments. In cases involving distributions, we
aggregate the average feature importance.

D.2.1 Novel Group Shift

Experimental Set-Up:This experiment extends the core experiment detailed in Section 5,
where distribution shifts arise due to the emergence of previously unseen groups during the
prediction phase.

Datasets: We use ACS Income, ASC Employment, ACS Mobility and ACS Travel time (Ding
et al., 2021b). The group that is not present on the features is the black ethnicity.

Baseline: We compare against the method proposed by Nigenda et al. (2022), (B6) of the
experimental comparison of the main body, that compares the order of the feature importance
using the NDCG between train and unseen data. We vary fθ to be a xgboost and a Logistic
regression. For the “Explanation Shift Detector”, gψ , we use a logistic regression in both

Metrics:To facilitate a direct comparison with the Area Under the Curve (AUC) metric, we
adapt the NDCG metric, to have the same interval range as follows: (1 −NDCG) + 0.5,
ensuring a consistent metric range.

This extended experiment aims to further validate the effectiveness of the “Explanation Shift
Detector” under novel group shifts in real-world datasets. It demonstrates how the approach
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Figure 5: Novel group shift experiment conducted on the 4 Datasets. Sensitivity (AUC) increases
as the proportion of previously unseen social groups grows. As the experimental setup has a gradual
distribution shift, ideal indicators should exhibit a steadily increasing slope. However, in all figures,
NDCG exhibits saturation and instability. These observations align with the analysis presented in
the synthetic experiment section, as discussed in Section 5.2 of the main paper

performs consistently across multiple datasets and provides insights into the sensitivity of
model behavior as previously unseen social groups become a larger part of the prediction
data. The results are presented in Figure 5, where our proposed method is compared against
Exp. NDCG (B6) across the four datasets. We can see how Exp. NDCG (B6) is more
unstable and finds often an horizontal asymptot, in all the situations, this is due to changes
on the feature importance order do not have information about the value, where our approach
of performing a Classifier Two Sample Test on the distributions of explanations do.

D.2.2 Synthetic Data Comparison

In this section, we evaluate changes in the distribution of explanations and the order of
feature importance when faced with a synthetic data shift scenario. We begin with a bivariate
normal distribution Dtr

X = (X1, X2) ∼ N(1, I), where I represents the identity matrix of
order two. We create a synthetic target variable Y = X2

1 ·X2 + ϵ, and develop a machine
learning model fθ : DX → DY using a non-linear model, specifically an xgboost model.
Subsequently, we generate new data from Dnew

X = (X1, X2) ∼ N(2, I), which constitutes a
shift of Dnew

X = DtrX + 1. We then compute SHAP values for S(fθ,DX) and compare the
average contributions’ orders.

Having sampled 50, 000 instances from both Dtr
X and Dnew

X , we analyze whether alterations
in explanation distributions and explanation importance orders can detect these changes.
To achieve this, we compare one-tailed p-values from the Kolmogorov-Smirnov test for
explanation shifts and the order of average SHAP values between the distributions.

D.2.3 Analytical Comparison under Monotonous Uniform Shift

In this section, we conduct an analytical comparison between changes in explanation distri-
butions and changes in the order of feature importance.
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Table 6: Comparison between distribution shifts in explanations and shifts in feature attribution
importance orders(previous work of (Nigenda et al., 2022)). Explanation distributions exhibit
differences, while the importance order remains consistent

Comparison Conclusions
P(Dte

X), P(Dnew
X ) Distinct

P(S(fθ,Dte
X)), P(S(fθ,Dnew

X )) Distinct
P(S1(fθ,Dte

X) > S2(fθ,Dte
X)), P(S1(fθ,Dnew

X ) > S2(fθ,Dnew
X )) Not Distinct

Example D.1. Comparison against NDCG Let Dtr
X = (Dtr

X1
,Dtr

X2
) ∼ N([µ1, µ1], I)

and Dnew
X = (Dnew

X1
,Dnew

X2
) ∼ N([µ2, µ2], I) where the relationship between µ1 and µ2 is

monotonous uniform shift characterized by µ2 = µ1 + N where N is a real number. We
fit a linear model fθ(X1, X2) = γ + a1 · X1 + a2 · X2, where a1 > a2. Then even if the
distribution of SHAP values are distinct between S(fθ,Dtr

X) and S(fθ,Dnew
X ), the order

of importance between the distributions is not distinct. If S1(fθ,Dtr
X) > S2(fθ,Dtr

X) then
S1(fθ,Dnew

X ) > S2(fθ,Dnew
X ). But the distributions are distinct S1(fθ,Dtr

X) ̸= S1(fθ,Dnew
X )

and S2(fθ,Dtr
X ) ̸= S2(fθ,Dnew

X )

Sj(fθ,DX) = aj · (DXj
− µ1),Sj(fθ,Dnew

X ) = aj · (Dnew
Xj

− µ2) (28)

µ2 = µ1 +N (29)
Then Sj(fθ,DX) ̸= Sj(fθ,Dnew

X ) (30)
But S1(fθ,DX) > S2(fθ,DX) ⇔ S1(fθ,Dnew

X ) > S2(fθ,Dnew
X ) (31)

Conclusion of the comparison to Nigenda et al. (2022) In the context of natural data,
when confronted with a novel covariate shift, our findings indicate that NDCG demonstrates
limited sensitivity and fails to detect shifts when the fraction of data from previously unseen
groups exceeds ratios 0.2 to 0.4 threshold.

Furthermore, in our analyses both synthetic and natural data, we observe that NDCG
struggles to provide accurate and consistent estimates when faced with multicovariate shifts.

Both analytically and in our experiments with synthetic data, it becomes evident that NDCG
lacks robustness and sensitivity when confronted with even a basic, uniform, and monotonous
shift.

E Further Experiments on Real Data

In this section, we extend the prediction task of the main body of the paper. The methodology
used follows the same structure. We start by creating a distribution shift by training the
model fθ in California in 2014 and evaluating it in the rest of the states in 2018, creating a
geopolitical and temporal shift. The model gθ is trained each time on each state using only
the XNew in the absence of the label, and its performance is evaluated by a 50/50 random
train-test split. As models, we use a gradient boosting decision tree(Chen & Guestrin, 2016;
Prokhorenkova et al., 2018) for fθ, approximating the Shapley values by TreeExplainer
(Lundberg et al., 2020a), and using logistic regression for the Explanation Shift Detector.

For further understanding of the meaning of the features the ACS PUMS data dic-
tionary contains a comprehensive list of available variables https://www.census.gov/
programs-surveys/acs/microdata/documentation.html.

E.1 ACS Employment

The objective of this task is to determine whether an individual aged between 16 and 90
years is employed or not. The model’s performance was evaluated using the AUC metric in
different states, except PR18, where the model showed an explanation shift. The explanation
shift was observed to be influenced by features such as Citizenship and Military Service. The
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performance of the model was found to be consistent across most of the states, with an AUC
below 0.60. The impact of features such as difficulties in hearing or seeing was negligible
in the distribution shift impact on the model. The left figure in Figure 6 compares the
performance of the Explanation Shift Detector in different states for the ACS Employment
dataset.
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Figure 6: The left figure shows a comparison of the performance of the Explanation Shift Detector
in different states for the ACS Employment dataset. The right figure shows the feature importance
analysis for the same dataset.

Additionally, the feature importance analysis for the same dataset is presented in the right
figure in Figure 6.

E.2 ACS Travel Time

The goal of this task is to predict whether an individual has a commute to work that is longer
than +20 minutes. For this prediction task, the results are different from the previous two
cases; the state with the highest OOD score is KS18, with the “Explanation Shift Detector”
highlighting features as Place of Birth, Race or Working Hours Per Week. The closest state
to ID is CA18, where there is only a temporal shift without any geospatial distribution shift.
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Figure 7: In the left figure, comparison of the performance of Explanation Shift Detector, in
different states for the ACS TravelTime prediction task. In the left figure, we can see how the state
with the highest OOD AUC detection is KS18 and not PR18 as in other prediction tasks; this
difference with respect to the other prediction task can be attributed to “Place of Birth”, whose
feature attributions the model finds to be more different than in CA14.

E.3 ACS Mobility

The objective of this task is to predict whether an individual between the ages of 18 and
35 had the same residential address as a year ago. This filtering is intended to increase the
difficulty of the prediction task, as the base rate for staying at the same address is above
90% for the population (Ding et al., 2021b).
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The experiment shows a similar pattern to the ACS Income prediction task (cf. Section
4), where the inland US states have an AUC range of 0.55− 0.70, while the state of PR18
achieves a higher AUC. For PR18, the model has shifted due to features such as Citizenship,
while for the other states, it is Ancestry (Census record of your ancestors’ lives with details
like where they lived, who they lived with, and what they did for a living) that drives the
change in the model.

As depicted in Figure 8, all states, except for PR18, fall below an AUC of explanation
shift detection of 0.70. Protected social attributes, such as Race or Marital status, play an
essential role for these states, whereas for PR18, Citizenship is a key feature driving the
impact of distribution shift in model.
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Figure 8: Left figure shows a comparison of the Explanation Shift Detector ’s performance in
different states for the ACS Mobility dataset. Except for PR18, all other states fall below an AUC of
explanation shift detection of 0.70. The features driving this difference are Citizenship and Ancestry
relationships. For the other states, protected social attributes, such as Race or Marital status, play
an important role.

E.4 StackOverflow Survey Data: Novel Covariate Group

This experimental section evaluates the proposed Explanation Shift Detector approach on
real-world data under novel group distribution shifts. In this scenario, a new unseen group
appears at the prediction stage, and the ratio of the presence of this unseen group in the new
data is varied. The model fθused is a gradient-boosting decision tree or logistic regression,
and a logistic regression is used for the detector. The results show that the AUC of the
Explanation Shift Detector varies depending on the quantification of OOD explanations, and
it show more sensitivity w.r.t. to model variations than other state-of-the-art techniques.

The dataset used is the StackOverflow annual developer survey has over 70,000 responses
from over 180 countries examining aspects of the developer experience (Stackoverflow, 2019).
The data has high dimensionality, leaving it with +100 features after data cleansing and
feature engineering. The goal of this task is to predict the total annual compensation.

F Experiments with Modeling Methods and Hyperparameters

In the next sections, we are going to show the sensitivity or our method to variations of the
model f , the detector g, and the parameters of the estimator fθ.

As an experimental setup, In the main body of the paper, we have focused on the UCI Adult
Income dataset. The experimental setup has been using Gradient Boosting Decision Tree
as the model fθ and then as “Explanation Shift Detector” gψ a logistic regression. In this
section, we extend the experimental setup by providing experiments by varying the types of
algorithms for a given experimental set-up: the UCI Adult Income dataset using the Novel
Covariate Group Shift for the “Asian” group with a fraction ratio of 0.5 (cf. Section 5).
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Figure 9: Both images represent the AUC of the Explanation Shift Detector for different countries
on the StackOverflow survey dataset under novel group shift. In the left image, the detector is a
logistic regression, and in the right image, a gradient-boosting decision tree classifier. By changing
the model, we can see that low-complexity models are unaffected by the distribution shift, while
when increasing the model complexity, the out-of-distribution model behaviour starts to be tangible

F.1 Varying Models and Explanation Shift Detectors

OOD data detection methods based on input data distributions only depend on the type
of detector used, being independent of the model fθ. OOD Explanation methods rely
on both the model and the data. Using explanations shifts as indicators for measuring
distribution shifts impact on the model enables us to account for the influencing factors of
the explanation shift. Therefore, in this section, we compare the performance of different
types of algorithms for explanation shift detection using the same experimental setup. The
results of our experiments show that using Explanation Shift enables us to see differences in
the choice of the original model fθ and the Explanation Shift Detector gϕ

Estimator fθ
Detector gϕ XGB Log.Reg Lasso Ridge Rand.Forest Dec.Tree MLP

XGB 0.583 0.619 0.596 0.586 0.558 0.522 0.597
LogisticReg. 0.605 0.609 0.583 0.625 0.578 0.551 0.605

Lasso 0.599 0.572 0.551 0.595 0.557 0.541 0.596
Ridge 0.606 0.61 0.588 0.624 0.564 0.549 0.616

RandomForest 0.586 0.607 0.574 0.612 0.566 0.537 0.611
DecisionTree 0.546 0.56 0.559 0.569 0.543 0.52 0.569

Table 7: Comparison of explanation shift detection performance, measured by AUC, for different
combinations of explanation shift detectors and estimators on the UCI Adult Income dataset using
the Novel Covariate Group Shift for the “Asian” group with a fraction ratio of 0.5 (cf. Section
5). The table shows that the algorithmic choice for fθ and gψ can impact the OOD explanation
performance. We can see how, for the same detector, different fθ models flag different OOD
explanations performance. On the other side, for the same fθ model, different detectors achieve
different results.

F.2 Hyperparameters Sensitivity Evaluation

This section presents an extension to our experimental setup where we vary the model
complexity by varying the model hyperparameters S(fθ, X). Specifically, we use the UCI
Adult Income dataset with the Novel Covariate Group Shift for the “Asian” group with a
fraction ratio of 0.5 as described in Section 5.

In this experiment, we changed the hyperparameters of the original model: for the decision
tree, we varied the depth of the tree, while for the gradient-boosting decision, we changed
the number of estimators, and for the random forest, both hyperparameters. We calculated
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the Shapley values using TreeExplainer (Lundberg et al., 2020a). For the Detector choice of
model, we compare Logistic Regression and XGBoost models.
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Figure 10: Both images represent the AUC of the Explanation Shift Detector, in different states
for the ACS Income dataset under novel group shift. In the left image, the detector is a logistic
regression, and in the right image, a gradient-boosting decision tree classifier. By changing the
model, we can see that vanilla models (decision tree with depth 1 or 2) are unaffected by the
distribution shift, while when increasing the model complexity, the out-of-distribution impact of the
data in the model starts to be tangible

The results presented in Figure 10 show the AUC of the Explanation Shift Detector for the
ACS Income dataset under novel group shift. We observe that the distribution shift does
not affect very simplistic models, such as decision trees with depths 1 or 2. However, as we
increase the model complexity, the out-of-distribution data impact on the model becomes
more pronounced. Furthermore, when we compare the performance of the Explanation Shift
Detector across different models, such as Logistic Regression and Gradient Boosting Decision
Tree, we observe distinct differences(note that the y-axis takes different values).

In conclusion, the explanation distributions serve as a projection of the data and model
sensitive to what the model has learned. The results demonstrate the importance of
considering model complexity under distribution shifts.

G LIME as an Alternative Explanation Method

Another feature attribution technique that satisfies the aforementioned properties (efficiency
and uninformative features Section 2) and can be used to create the explanation distributions
is LIME (Local Interpretable Model-Agnostic Explanations). The intuition behind LIME is
to create a local interpretable model that approximates the behavior of the original model
in a small neighbourhood of the desired data to explain (Ribeiro et al., 2016b;a) whose
mathematical intuition is very similar to the Taylor series. In this work, we have proposed
explanation shifts as a key indicator for investigating the impact of distribution shifts on
ML models. In this section, we compare the explanation distributions composed by SHAP
and LIME methods. LIME can potentially suffers several drawbacks:

• Computationally Expensive: Its currently implementation is more computation-
ally expensive than current SHAP implementations such as TreeSHAP (Lundberg
et al., 2020a), Data SHAP (Kwon et al., 2021; Ghorbani & Zou, 2019) or Local
and Connected SHAP (Chen et al., 2019), the problem increases when we produce
explanations of distributions. Even though implementations might be improved,
LIME requires sampling data and fitting a linear model which is a computationally
more expensive approach than the aforementioned model-specific approaches to
SHAP.

• Local Neighborhood: The definition of a local “neighborhood”, which can lead to
instability of the explanations. Slight variations of this explanation hyperparameter
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lead to different local explanations. In (Slack et al., 2020) the authors showed that
the explanations of two very close points can vary greatly.

• Dimensionality: LIME requires as a hyperparameter the number of features to
use for the local linear approximation. This creates a dimensionality problem as for
our method to work, the explanation distributions have to be from the exact same
dimensions as the input data. Reducing the number of features to be explained
might improve the computational burden.
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Figure 11: Comparison of the explanation distribution generated by LIME and SHAP. The left
plot shows the sensitivity of the predicted probabilities to multicovariate changes using the synthetic
data experimental setup of 2 on the main body of the paper. The right plot shows the distribution
of explanation shifts for a New Covariate Category shift (Asian) in the ASC Income dataset.

Figure 11 compares the explanation distributions generated by LIME and SHAP. The left
plot shows the sensitivity of the predicted probabilities to multicovariate changes using the
synthetic data experimental setup from Figure 2 in the main body of the paper. The right
plot shows the distribution of explanation shifts for a New Covariate Category shift (Asian)
in the ASC Income dataset. The performance of OOD explanations detection is similar
between the two methods, but LIME suffers from two drawbacks: its theoretical properties
rely on the definition of a local neighborhood, which can lead to unstable explanations (false
positives or false negatives on explanation shift detection), and its computational runtime
required is much higher than that of SHAP (see experiments below).

G.1 Runtime

We conducted an analysis of the runtimes of generating the explanation distributions using
the two proposed methods. The experiments were run on a server with 4 vCPUs and 32
GB of RAM. We used shap version 0.41.0 and lime version 0.2.0.1 as software packages.
In order to define the local neighborhood for both methods in this example we use all the
data provided as background data. As an fθ model, we use an xgboost and compare the
results of TreeShap against LIME. When varying the number of samples we use 5 features
and while varying the number of features we use 1000 samples.

Figure 12, shows the wall time required for generating explanation distributions using SHAP
and LIME with varying numbers of samples and columns. The runtime required of generating
an explanation distributions using LIME is much higher than using SHAP, especially when
producing explanations for distributions. This is due to the fact that LIME requires training a
local model for each instance of the input data to be explained, which can be computationally
expensive. In contrast, SHAP relies on heuristic approximations to estimate the feature
attribution with no need to train a model for each instance. The results illustrate that this
difference in computational runtime becomes more pronounced as the number of samples
and columns increases.

We note that the computational burden of generating the explanation distributions can
be further reduced by limiting the number of features to be explained, as this reduces
the dimensionality of the explanation distributions, but this will inhibit the quality of the
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Figure 12: Wall time for generating explanation distributions using SHAP and LIME with
different numbers of samples (left) and different numbers of columns (right). Note that the y-scale
is logarithmic. The experiments were run on a server with 4 vCPUs and 32 GB of RAM. The
runtime required to create an explanation distributions with LIME is far greater than SHAP for a
gradient-boosting decision tree

explanation shift detection as it won’t be able to detect changes on the distribution shift
that impact model on those features.

Given the current state-of-the-art of software packages we have used SHAP values due to
lower runtime required and that theoretical guarantees hold with the implementations. In
the experiments performed in this paper, we are dealing with a medium-scaled dataset with
around ∼ 1, 000, 000 samples and 20 − 25 features. Further work can be envisioned on
developing novel mathematical analysis and software that study under which conditions
which method is more suitable.

H True to the Model or True to the Data?

The “Explanation Shift Detector” proposed in this work relies on the explanation distributions
that satisfy efficiency and uninformative theoretical properties. We have used the Shapley
values as an explainable AI method that satisfies these properties. A variety of (current)
papers discusses the application of Shapley values for feature attribution in machine learning
models (Strumbelj & Kononenko, 2014; Lundberg et al., 2020b; Lundberg & Lee, 2017a;
Lundberg et al., 2018). However, the correct way to connect a model to a coalitional game,
which is the central concept of Shapley values, is a source of controversy, with two main
approaches (i) an interventional (Aas et al., 2021; Frye et al., 2020; Zern et al., 2023) or (ii)
an observational formulation of the conditional expectation(Sundararajan & Najmi, 2020;
Datta et al., 2016; Mase et al., 2019).

In the following experiment, we compare what are the differences between estimating the
Shapley values using one or the other approach. We benchmark this experiment on the four
prediction tasks based on the US census data (Ding et al., 2021a) and using the “Explanation
Shift Detector”, where both the model fθ(X) and gψ(S(fθ, X)) are linear models. We will
calculate the Shapley values using the SHAP linear explainer. 1

The comparison depends on a feature perturbation hyperparameter: whether the approach to
compute the SHAP values is either interventional or correlation dependent. The interventional
SHAP values break the dependence structure between features in the model to uncover how
the model would behave if the inputs were changed (as it was an intervention). This option
is said to stay “true to the model”, meaning it will only give allocation credit to the features
that the model actually uses (Aas et al., 2021).

On the other hand, the full conditional approximation of the SHAP values respects the
correlations of the input features. If the model depends on one input that is correlated with
another input, then both get some credit for the model’s behaviour. This option is said to
say “true to the data”, meaning that it only considers how the model would behave when
respecting the correlations in the input data (Chen et al., 2020b; 2022a; Frye et al., 2020;
Chen et al., 2020a).

1https://shap.readthedocs.io/en/latest/generated/shap.explainers.Linear.html
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In our case, we will measure the difference between the two approaches by looking at the
linear coefficients of the model gψ and comparing the performance using the geo-political
and temporal experiment of the previous section 5, for this case between California 2014 and
Puerto Rico 2018.

Table 8: AUC comparison of the “Explanation Shift Detector” between estimating the Shapley
values between the interventional and the correlation-dependent approaches for the four prediction
tasks based on the US census dataset (Ding et al., 2021a). The % character represents the relative
difference. The performance differences are negligible.

Interventional Correlation %
Income 0.736438 0.736439 1.1e-06
Employment 0.747923 0.747923 4.44e-07
Mobility 0.690734 0.690735 8.2e-07
Travel Time 0.790512 0.790512 3.0e-07

Table 9: Linear regression coefficients comparison of the “Explanation Shift Detector” between
estimating the Shapley values between the interventional and the correlation-dependent approaches
for one of the US census-based prediction tasks (ACS Income). The % character represents the
relative difference. The coefficients show negligible differences between the calculation methods

Interventional Correlation %
Marital 0.348170 0.348190 2.0e-05
Worked Hours 0.103258 -0.103254 3.5e-06
Class of worker 0.579126 0.579119 6.6e-06
Sex 0.003494 0.003497 3.4e-06
Occupation 0.195736 0.195744 8.2e-06
Age -0.018958 -0.018954 4.2e-06
Education -0.006840 -0.006840 5.9e-07
Relationship 0.034209 0.034212 2.5e-06

In Table 8 and Table 9, we can see the comparison of the effects of using the aforementioned
approaches to learn our proposed method, the “Explanation Shift Detector”. Even though
the two approaches differ theoretically, the differences become negligible when explaining
the protected characteristic, i.e. when providing the linear regression coefficients.
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