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ABSTRACT

Automatic sleep stage classification from cardio-respiratory signals has emerged
as a promising alternative to traditional polysomnography, which typically uses
an extensive set of sensors including electrodes attached to the scalp. Despite im-
pressive results to date, we argue that to harness the benefits of cardio-respiratory
sleep staging, we require a greater focus on building models with calibrated uncer-
tainty quantification. We describe how such models could enable important appli-
cations in sleep medicine, without necessarily requiring expert-level accuracy as
measured by conventional metrics. Our work motivates further investigation into
better-calibrated sleep staging models, to enable these applications.

1 INTRODUCTION

Given the importance of sleep monitoring and the ubiquity and ease of wearable devices such as
smartwatches, prior work has investigated using cardio-respiratory signals to classify stages of sleep
e.g. (Walch et al.,|2019j Radha et al., 2021} [Davidson et al.} |2023)). Using modalities such as the pho-
toplethysmogram (PPG) or the electrocardiogram (ECG), these methods have achieved increasingly
high levels of agreement with expert-annotated sleep stages using the American Academy of Sleep
Medicine (AASM) scoring rules (Iber, 2007). However, their performance still lags behind that of
conventional sleep monitoring i.e. polysomnography (PSG), which uses the electoencephalogram
(EEG) as the main input source. At the time of writing, no device has been cleared by a regulatory
body such as the US Food and Drug Administration (FDA) for automatic sleep stage classification
(sleep staging) from non-EEG sensors.

In this paper, we argue that a greater focus on uncertainty quantification is required to leverage the
benefits of cardio-respiratory sleep staging. In short, a model that is as accurate as a human expert
80% of the time could still have significant value, so long as it can indicate that it is uncertain the
other 20% of the time. We describe how a well-calibrate(ﬂ cardio-respiratory sleep staging model
could be used as part of a screening workflow. We then perform simple experiments which illustrate
how better uncertainty measures could be used to tailor the performance of sleep staging models
for this purpose. Our work motivates further research designing sleep staging models that exhibit
calibrated measures of uncertainty, which in turn, can have valuable applications in sleep medicine.

2 BACKGROUND AND RELATED WORK

2.1 AUTOMATED SLEEP STAGING

To reduce the manual effort of sleep assessment, many prior works have investigated automated sleep
staging from both EEG (Phan & Mikkelsen, |2022) and non-EEG sensors (Imtiaz, 2021). Typically
these methods jointly classify sleep stage sequences y1.7 from a (possibly multivariate) input time
series x1.,7 i.e. performing sequence—sequence classification. Here we use k to account for the
relative difference in sampling rate between output sleep stages, typically generated at 30-second
intervals, and the input signals, which usually have much higher sampling rates.

'i.e. the output probabilities reflect the empirical probability of correctness.
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These methods commonly produce an output distribution py(y1.7|®1.,7) Which assumes a factor-
ized posterior over the sleep stages, i.e.:

T

pyrrleir) = [ pyil@inr) €]
t=1
The vast majority of sleep staging methods, including SleepTransformer (Phan et al, [2022)) and
SleepPPG-Net (Kotzen et al.}[2023)), state-of-the-art methods for EEG- and PPG-based sleep staging,
assume this factorized output posterior. The arg max over the output probabilities from the model
are typically then taken as the output sequence of sleep stage classifications:

:I/leT = {gl;y?, oo ,Z/JT}
U = arg H;aXPG(y”wl:kT)
t
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These sequences are commonly displayed in hypnograms, such as in Figure [T} Visually, sleep
hypnograms can convey important information to clinicians that can help to form a diagnosis.

Metrics can also be derived from the sequence of sleep stages y1.7, which give a more condensed
view of a night’s sleep. For example, low REM onset latency (ROL, (3)) can indicate the presence of
narcolepsy (Mosko et al} [1984). Meanwhile, there are links between a decrease in total deep (N3)

sleep time (@) and Alzheimer’s disease (Lee et all 2020).
mror = froL(Y1.1) =tr —ts 3)
where tp = min{t € {1,...,T} : y: = REM}
and tg =min{t € {1,...,T} : y; # Wake}

mys = fns(yrr) = Y 1y = N3) “

t=1
2.2  UNCERTAINTY QUANTIFICATION AND POSTERIOR SAMPLING

(2022) showed that the predictive entropy of an EEG-based model could be used to divide
classifications into high and low-confidence sets, such that only low-confidence sleep labels are sent
for human review, thereby reducing the manual annotation time. However, this ‘human-in-the-

loop” workflow, e.g. (Kang et al., 2021} [Heremans et al.} 2023)), is only possible for an EEG-based

approach, since there are no guidelines for scoring sleep stages from cardio-respiratory signals.

By sampling from the posterior distribution over sleep stages Y1.7 ~ po(y1.7|®1.k7), and then
evaluating the resulting sleep metric M; = f;(Y1.7), samples from the sleep metric distribution
po(m;|x1.x7) can also be drawn:

i = E[Mi] = Evy.p~py [fi(Y17)] 5)
Var(M;) = By, pmp, [(fi (Vi) — 1) (6)

However, as noted by van Gorp et al.| (2023), directly sampling output sequences from a factorized
posterior (I ignores the temporal structure of sleep stages.

Wake
REM
N1/N2
N3

21:00 22:00 23:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00
Clock time (hh:mm)

Figure 1: Example of an expert-labelled sleep hypnogram y;.7. AASM scoring rules divide sleep
into five stages: Wake, N1 (light), N2 (intermediate), N3 (deep) and rapid-eye-movement (REM)
sleep. Due to low inter-scorer agreement (Danker-Hopfe et al,[2009), automatic sleep staging meth-
ods often merge N1 and N2 into a single class as shown.
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3  WHY DO WE NEED CALIBRATED UNCERTAINTY?

As with any other contact sensor, data from cardio-respiratory signals such as the PPG suffer from
noise (Charlton et al.l 2023). However, given that these devices often only measure a single sen-
sory modality, they have less redundancy. Polysomnography typically measures brain activity from
multiple sites using the EEG, plus other complementary physiological measurements, such as mus-
cle activity around the eyes and under the chin, which can all aid the classification of sleep stages.
Therefore, when using cardio-respiratory signals, we should expect a greater proportion of the data
to be unscorable due to signal noise and should design models that account for this.

Additionally, even though cardio-respiratory signals are known to encode for sleep stage informa-
tion (Shinar et al.| |2001; [Hudgel et al.l [1984), it may not always be possible to distinguish sleep
stages solely from these signals, even in the absence of noise. AASM stages are a discrete model of
sleep, whose states are ultimately defined by rules that are predominantly based on characteristic pat-
terns of brain activity. For example, a 30-second epoch is labelled as N3 (deep) sleep where at least
20% of the epoch consists of slow-wave (0.5-2 Hz) EEG activity above 75 uV (Iber, [2007). There-
fore, exact agreement between sleep stages from cardio-respiratory signals and expert-annotated
stages from PSG relies on the assumption that these specific measurements of the central nervous
system (CNS) e.g. EEG can be accurately predicted from measurements of the autonomic ner-
vous system (ANS) e.g. PPG. This is before considering that expert-annotated sleep stages are not a
ground truth, with high inter-expert disagreement (Danker-Hopfe et al., 2009; van Gorp et al.,[2022).

Numerous factors can affect CNS-ANS coupling (de Zambotti et al., 2018]), which underpins cardio-
respiratory sleep staging. Physical and mental health e.g. (Vanoli et al., [1995; Krystal, 2012),
medications (Pagel & Parnes| |2001), and factors such as caffeine (Barry et al., 2008) and alco-
hol intake (Thakkar et al.|, 2015 may all affect the observed relationship between cardio-respiratory
signals and sleep stages. We cannot expect to observe all combinations of factors that may affect
this relationship during model training. Therefore, a model must be able to identify ambiguous or
out-of-distribution inputs, to avoid producing incorrect outputs.

If the challenges outlined in this section can be overcome, the ubiquity, ease of use, and low cost of
wearables means they could have a number of novel, valuable clinical applications, such as:

* Accelerating the discovery of treatments for sleep disorders such as insomnia, by enabling
faster and cheaper clinical trials on larger study populations.

* Longitudinal monitoring of known sleep biomarkers to detect the presence of underlying
conditions. For example, the well-known decrease in N3 sleep with Alzheimer’s disease.

* The discovery of novel sleep biomarkers, using much larger study populations than can
feasibly be collected using conventional PSG.

As we illustrate in the next section, a greater focus on uncertainty quantification, rather than simple
summary statistics such as accuracy or Cohen’s « (Cohen, [1960), can help to enable these.

4 HOW CAN WE USE CALIBRATED UNCERTAINTY?

Sleep staging with polysomnography can often be used to indicate or rule out the presence of spe-
cific sleep disorders. In Figure 2] we illustrate how calibrated uncertainty could enable an imperfect
(measured by accuracy) but well-calibrated wearable-based sleep staging model pg(y1.7|Z1.k7) tO
be used as an effective screening tool. If the results are conclusive i.e. the uncertainty in the outputs
of interest are low, then these could be used to inform clinical decision making. Otherwise, the
patient could be referred for alternative tests, such as a PSG exam. Even if the outputs are only con-
clusive 80% of the time, this could still significantly reduce (5x) the need for more time-consuming
and expensive tests. An important consideration in the design of such a workflow is balancing the
interpretability and granularity of information presented to the clinician. Alternative approaches
have been proposed for presenting sleep staging uncertainty, such as hypnodensity charts (Bakker
et al.| 2023). However, if interpreting and processing the outputs results in significant additional
work for the clinician, this could limit adoption (Greenhalgh et al.| 2004).
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Figure 2: Sleep staging under uncertainty using cardio-respiratory signals from wearables.
With a calibrated model py(y1.7|®1.xT), simple and interpretable measures of uncertainty could be
used to inform a clinician about the reliability of the outputs, such as confidence intervals on sleep
metrics. If the uncertainty in the relevant outputs is low (e.g. m 3 here), then these could be used
to inform clinical decision-making. If not, the ubiquity and ease of wearables means that multiple
nights of data could be used to reduce certain forms of uncertainty e.g. sensor noise from loose
attachment. Otherwise, the patient could be referred for alternative tests, such as a full PSG exam.

5 EXPERIMENTS

We investigate the uncertainty quantification properties of the current state-of-the-art model for

sleep staging from the photoplethysmogram, SleepPPG-Net (Kotzen et al [2023) using the MESA
dataset [2015), following the setup described in the original paper.

5.1 MODEL CALIBRATION
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Figure 3: Reliability diagrams for MESA-Test before and after temperature scaling.

Figure [3| shows reliability diagrams for the SleepPPG-Net model before and after applying temper-
ature scaling to improve calibration. When aggregated over all sleep labels in the
test set, Figure [3a) gives a false impression that the model is well-calibrated. In practice, we find
that this aggregation masks the true behaviour, that the sleep stage classifications for most nights are
either highly under or overconfident, and which temperature scaling is unable to remedy, as shown

in Figures [3b]and [3c}
5.2 PERFORMANCE-YIELD TRADE-OFF

Next, we investigate the ability to mark outputs as uncertain using simple heuristics derived from
the posterior pg(y1.7|x1.57), which we believe is a desirable property to enable the workflow de-
scribed in the previous section. For a well-calibrated posterior, we expect that nights where the
posterior variance of sleep metrics (6) is lower should, on average, give lower errors in the result-
ing estimate (5). So, by marking outputs as uncertain when this variance is above a threshold i.e.

Var(M;) > 0;, we should be able to reduce errors at the expense of yield i.e. the proportion of
nights marked as certain.

Figure E| shows error—yield curves for mys and mpror as we sweep over thresholds ¢; for each
metric using SleepPPG-Net, which results in only modest error reductions in both sleep metrics.
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Figure 4: Error—yield curves using SleepPPG-Net on MESA-Test for (a) my3 and (b) mgoy,, for
varying thresholds §; on the max. posterior variance. Dashed lines indicate the best-case behaviour
of the model for the given level of accuracy i.e. if the model knew exactly when it was least accurate,
by sorting nights from highest to lowest error and marking as uncertain in perfect order.

Orthogonal to improving raw accuracy statistics i.e. the intercepts of Figure [4] better model cali-
bration could greatly improve this two-dimensional view of performance. This is illustrated by the
dashed lines, which show idealised, best-case behaviour for SleepPPG-Net. By improving the util-
ity of sleep staging models on these error-yield curves, this can, in turn, improve their utility for
applications such as the screening workflow described in Section [4]

6 CONCLUSIONS

In this paper, we have discussed how calibrated uncertainty quantification could enable important
applications of cardio-respiratory sleep staging without requiring expert-level accuracy as measured
by conventional metrics, and highlighted deficiencies in existing state-of-the-art models. We believe
there are three complementary avenues that together can address these deficiencies:

1. Further research into architectures that do not employ a factorized posterior e.g. U-
Flow (van Gorp et al.| [2023), to enable proper sampling from py (y1.7|Z1.57)-

2. Improving model calibration, by building on recent advances in Bayesian deep learning
e.g. (Lakshminarayanan et al., 2017 [Liu et al., 2020).

3. Using labels from multiple experts during training and evaluation (Fiorillo et al.}[2023)), to
account for inter-expert subjectivity (Danker-Hopfe et al., 2009).

By designing models that combine the capacity and inductive biases necessary to achieve high ac-
curacy, with calibrated measures of uncertainty that better account for the time-series nature of the
problem, we believe this can lead to valuable, new applications in sleep medicine.
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