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Figure 1. MoLA achieves fast and high-quality human motion generation given textual descriptions while enabling motion editing appli-
cations. With MoLA, we can deal with various types of motion editing tasks in a single framework.

Abstract

In text-to-motion generation, controllability as well as gen-001
eration quality and speed has become increasingly criti-002
cal. The controllability challenges include generating a003
motion of a length that matches the given textual descrip-004
tion and editing the generated motions according to control005
signals, such as the start-end positions and the pelvis tra-006
jectory. In this paper, we propose MoLA, which provides007
fast, high-quality, variable-length motion generation and008
can also deal with multiple editing tasks in a single frame-009
work. Our approach revisits the motion representation used010
as inputs and outputs in the model, incorporating an ac-011
tivation variable to enable variable-length motion genera-012
tion. Additionally, we integrate a variational autoencoder013
and a latent diffusion model, further enhanced through ad-014
versarial training, to achieve high-quality and fast genera-015
tion. Moreover, we apply a training-free guided generation016
framework to achieve various editing tasks with motion con-017
trol inputs. We quantitatively show the effectiveness of ad-018
versarial learning in text-to-motion generation, and demon-019
strate the applicability of our editing framework to multiple020
editing tasks in the motion domain.021

1. Introduction 022

Human motion synthesis from text is an emerging task with 023
highly relevant applications in fields such as multimedia 024
production and computer animation. For example, an an- 025
imator might wish to create or edit a motion prototype to 026
verify their artistic intent before time-consuming animation 027
or motion capture commences, generate smooth in-between 028
motion between two motion capture clips, or generate spe- 029
cific motion that follows a predefined trajectory. In Figure 030
1, we demonstrate results of our approach on such motion 031
generation and editing tasks. To be useful in those real- 032
world applications, a method has to excel in three domains: 033
(1) motion quality, which encompasses both the general 034
motion quality and the adherence to the textual description; 035
(2) fast inference time; (3) efficient motion editing. 036

Several recent works have attempted to address these 037
desired properties: Methods based on vector quantization 038
(VQ), such as T2M-GPT [38], MoMask [11], MMM [25], 039
ParCo [43], and BAMM [24], achieve impressive genera- 040
tion quality by compressing human motion into discrete to- 041
kens and then sampling those tokens to synthesize motion. 042
Diffusion-based methods in data space, such as MDM [32], 043
provide impressive flexibility with regard to quality and mo- 044
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tion editability. To further improve motion quality and in-045
ference time, latent-space based methods such as MLD [2]046
or MotionMamba [41] operate in a learned continuous la-047
tent space.048

However, no state-of-the-art method excels in all three049
domains necessary for real-world applications. For exam-050
ple, while latent-space based approaches such as VQ-based051
methods or MLD achieve impressive motion quality and052
fast inference time, they cannot edit a given motion se-053
quence in a training-free manner. In contrast, data-space054
based methods such as MDM are able to edit motion in a055
training-free manner, which, however, comes at the cost of056
slow inference time and lower generation quality. More-057
over, while these models excel at motion generation, they058
require users to manually specify the motion length instead059
of automatically determining it from the textual input. This060
often necessitates length estimation or iterative adjustment,061
which limits their flexibility. For instance, MoMask [11]062
uses a length estimator during inference to predict motion063
length based on text input. However, inaccurate predictions064
may result in significant motion drift [34].065

To close this gap, we propose MoLA, Motion Gen-066
eration and Editing with Latent Diffusion Enhanced by067
Adversarial Training. We revisit the representation of068
motion features used as inputs and outputs of the model069
and introduce an activation variable that characterizes the070
length of the motion. We utilize a variational auto-encoder071
(VAE) [18] for its continuous latent space, which allows072
training-free editing. This is in contrast to discrete latent073
spaces that do not allow for training-free motion editing.074
We also enhance the VAE training with adversarial learning,075
which has been shown to work well in the image [6, 14, 27]076
and audio [21] domains. We empirically show that our077
model achieves variable-length motion generation aligned078
with textual descriptions and high generation performance079
on a commonly used dataset [10]. We also demonstrate that080
training-free guided diffusion can enable multiple motion081
editing tasks such as path-following, in-betweening, and082
upper body editing. These experiments also highlight the083
significant improvement in speed and performance of our084
model compared to the performance of existing training-085
free motion editing models (see Figure 2).086

The main contributions of this paper are threefold. First,087
we introduce an activation variable into the motion repre-088
sentation and show that our method can perform variable-089
length motion generation conditioned on text. Second, we090
propose a new continuous latent-based motion generation091
model that introduces adversarial training into the motion092
VAE and quantitatively show that it significantly pushes the093
limits of existing continuous-based methods. Finally, we094
demonstrate that our model not only shows high generation095
performance but also can deal with various types of motion096
editing tasks in a training-free manner.097

Discrete

Continuous

Figure 2. Comparison of inference cost, generation performance,
and editability for text-to-motion methods on HumanML3D
dataset. • means a method that can edit motion in a training-
free manner, and × means a method that cannot edit motion in a
training-free manner. All tests are performed on the same NVIDIA
A100 GPU. The pink arrow in the figure indicates that our method
significantly extends the performance boundaries (in terms of gen-
eration quality and speed) of methods categorized as enabling
training-free editing.

2. Related Work 098

2.1. Motion Generation 099

Text-to-motion generation technology has made rapid 100
progress with the diffusion models and VQ-based models. 101
MDM [32] and MotionDiffuse [40] adopt diffusion models 102
for motion generation, which leads to better performance 103
in terms of generation quality. However, these methods di- 104
rectly apply diffusion processes to raw motion sequences, 105
thus resulting in slow generation. MLD [2] mitigates this 106
issue by adopting a diffusion model in a low-dimensional 107
latent space provided by a VAE trained on motion data, in- 108
spired by latent diffusion models [27]. VQ-based models 109
have been studied as well, inspired by the success of VQ- 110
based models in image generation [1, 8, 36]. In this ap- 111
proach, a VQ-VAE model is first trained on motion data to 112
acquire discrete motion representations, and deep genera- 113
tive models are then applied to generate sequences of dis- 114
crete representations (also called tokens). T2M-GPT [38], 115
AttT2M [42], MotionGPT [15] and ParCo [43] utilize au- 116
toregressive (AR) models to generate motion tokens. How- 117
ever, AR models are slow in inference because motion 118
tokens are generated sequentially. To address this issue, 119
M2DM [19] and DiverseMotion [22] apply discrete diffu- 120
sion models to motion tokens in a latent space, whereas 121
MMM [25], MoMask [11] and BAMM [24] adopt a mask 122
prediction model. 123

2.2. Motion Editing 124

Motion editing has attracted much research interest as well. 125
MDM [32] demonstrated upper body editing and motion in- 126
betweening by applying diffusion inpainting to motion data 127
in both the spatial and temporal domains. LGD [29] demon- 128
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Figure 3. The overall framework of MoLA. Stage 1: A motion VAE enhanced by adversarial training learns a low-dimensional latent
representation of diverse motion sequences. Stage 2: A text-conditioned latent diffusion model leverages this representation for fast and
high-quality text-to-motion generation. Guided generation: During inference, a gradient-based method minimizes a loss function LMotion

for each desired editing task, enabling multiple motion editing tasks within a unified framework.

strated path-following motion generation with a guided dif-129
fusion that utilizes multiple samples from a suitable dis-130
tribution to reduce bias. GMD [16] guides the position131
of the root joint to control motion trajectories. OmniCon-132
trol [35] controls any joints at any time by guiding a pre-133
trained motion diffusion model with an analytic function.134
DNO [17] optimizes the diffusion latent noise of a pre-135
trained text-to-motion model with user-provided criteria in136
the motion space and achieves multiple editing tasks. How-137
ever, these methods employ data-space diffusion models138
similar to MDM and have not been demonstrated with a139
latent diffusion model. Recently, MMM [25] demonstrated140
motion editing by placing masked tokens in the place that141
needs editing and applying the mask prediction framework,142
and MotionLCM [4] proposed a fast controllable motion143
generation framework by introducing latent consistency dis-144
tillation and the motion ControlNet [39] manipulation in the145
latent space.146

3. Method147

The goal of this study is to develop a framework for fast and148
high-quality text-guided motion generation and to deal with149
multiple control tasks in a training-free way. To achieve150
this, we propose the following training and inference tricks151
(I)-(IV): (I) We review the representation of motion fea-152
tures to achieve improved accuracy and variable length mo-153
tion generation. We select the necessary features to reduce154
the burden on our model’s VAE encoder and add an activa-155
tion variable to the representation to determine the motion156
length (Section 3.1). (II) We train a motion VAE enhanced157
by adversarial training to achieve high generation perfor-158
mance (Section 3.2). (III) To reduce computational com-159
plexity while simultaneously enabling high-quality text-160
driven motion generation, we train a text-conditioned dif-161
fusion model on the low-dimensional latent space obtained162

by VAE model (Section 3.3). (IV) Guided generation: 163
Adopting training-free guided generation in inference en- 164
ables multiple editing functions required in motion genera- 165
tion without additional training (Section 3.4). The outline 166
of our text-to-motion generation model, MoLA, is shown in 167
Figure 3. 168

3.1. Motion representation 169

We build upon the motion representation used in [10, 26] 170
and improve the representation to enable variable length 171
generation and improve performance in our framework. 172
The pose representation used in [10, 26] is expressed as 173
m ∈ R(4+12Nj+4)×L, where Nj is the number of joints. 174
A motion can be represented as a sequence of this represen- 175
tation. The i-th (1 ≤ i ≤ L) pose is defined as follows: 176

mi = [ṙia, ṙ
i
x, ṙ

i
z, r

i
y, (j

i
p)

⊤, (jir)
⊤, (jiv)

⊤, (ci)⊤]⊤ (1) 177

where ṙia ∈ R is root angular velocity along the Y -axis, 178
ṙix and ṙiz ∈ R are root linear velocities on XZ-plane, 179
riy is root height, jip ∈ R3(Nj−1) is local joints positions, 180

jir ∈ R6(Nj−1) is rotations in root space, jiv ∈ R3Nj is 181
velocities and ci ∈ R4 is binary foot-ground contact fea- 182
tures by thresholding the heel and toe joint velocities. To 183
achieve variable-length motion generation during stage 2 184
inference (explained in Section 3.3), we concatenate an ac- 185
tivation variable ai ∈ R for the i-th pose to Equation (1) 186
as [(mi)⊤, ai]⊤. Additionally, to reduce the burden on the 187
encoder in Section 3.2, we remove the substantially redun- 188
dant information jv and c from Equation (1) as m̃i = 189
[ṙia, ṙ

i
x, ṙ

i
z, r

i
y, (j

i
p)

⊤, (ci)⊤]⊤, and then we set the vector 190
for the encoder input in Section 3.2 as follows: 191

xi = [(m̃i)⊤, ai]⊤ = [ṙia, ṙ
i
x, ṙ

i
z, r

i
y, (j

i
p)

⊤, (jir)
⊤, ai]⊤.

(2)
192
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We employ x = [x1, . . . ,xL] ∈ RN×L as motion repre-193
sentation in our model training, where N = 4 + 9Nj + 1.1194

3.2. Stage 1: Continuous Motion Latent Represen-195
tation with Adversarial Training196

3.2.1. Learning a motion latent representation with VAE-197
GAN198

We propose a motion variational autoencoder (VAE), en-199
hanced by adversarial training, to learn a low-dimensional200
latent representation for diverse human motion sequences.201
Assume an observed motion x ∈ RN×L, where N and202
L denote raw motion data dimension per frame and mo-203
tion length, respectively. To learn such a latent represen-204
tation, we first define a latent variable z ∈ Rdz×dl , which205
is assumed to generate data sample x, where dz, dl ∈ N.206
The generative process is modeled as x ∼ pψ(x|z) with a207
prior p(z). The prior is assumed to be a standard Gaussian208
distribution, i.e., p(z) = N (0, I). We model the condi-209
tional distribution as a Gaussian distribution: pψ(x|z) =210
N (gψ(z), σ

2I) with gψ : Rdz×dl → RN×L and σ2 ∈ R+,211
where R+ indicates the set of all positive real numbers. As212
in a usual VAE, we introduce an approximated posterior,213
which is modeled by qη(z|x) : RN×L → Rdz×dl . As a re-214
sult, the VAE consists of an encoder and a decoder, parame-215
terized by η and ψ, respectively. The objective function for216
the VAE is formulated as the negative evidence lower bound217
(negative ELBO) per sample x, which is a weighted sum-218
mation of mean squared error and KL regularization terms:219

JVAE(ψ,η;x) = Eqη(z|x)[∥x− gψ(z)∥22]220

+ λregDKL(qη(z|x)∥p(z)), (3)221

where λreg is a hyperparameter for balancing the two222
terms. The encoder qη can be trained to produce a low-223
dimensional latent representation, and the decoder gψ can224
also be trained to accurately reconstruct the input motion225
sequences from the latent representations. Besides, we sep-226
arate the decoder output into two components, denoted as227
gψ(z) = [(m′(z))⊤,a′(z)]⊤, where m′(z) ∈ R(N−1)×L228
and a′(z) ∈ RL correspond to the original motion and229
proposed activation variable. We adopt a binary cross en-230
tropy (BCE) loss for the activation variable. The following231
JMotionVAE is used as the loss function for the VAE part:232

JMotionVAE(ψ,η;x) = Eqη(z|x)[∥m−m
′(z)∥22233

+ λactLBCE(a,a′(z)))] + λregDKL(qη(z|x)∥p(z)),
(4)

234

where λact is a hyperparameter for weighting the BCE loss235
term.236

1In practice, during training, we pad zeros to m or m̃ in inactive
frames used to align sequence lengths. Then, ai = 0 is assigned to padded
frames, and ai = 1 is assigned to frames containing motion data.

To achieve high-quality generation, we need to push the 237
limits of compression. Hence, we propose incorporating 238
adversarial training into the motion VAE (c.f. [21, 27]). 239
More specifically, we introduce a discriminator, denoted as 240
fϕ : RN×L → R, that aims to distinguish real and recon- 241
structed motions. The adversarial training is formulated as a 242
two-player optimization between the VAE and the discrim- 243
inator. The discriminator is trained by the maximization of 244
Ep(x)LGAN(ϕ;ψ,η,x) with respect to ϕ, where 245

LGAN(ϕ;ψ,η,x) = min{0,−1 + fϕ(x)} 246

+ Eqη(z|x) [min{0,−1− fϕ(gψ(z))}] .
(5)

247

We formulate the overall loss for the VAE as the sum of the 248
negative ELBO and adversarial loss, 249

min
ϕ,ψ

Ep(x) [JMotionVAE(ψ,η;x) + λadvJGAN(ψ,η;ϕ,x)] ,

(6)

250

where λadv is a positive scalar that adjusts the balance be- 251
tween the two terms, and 252

JGAN(ψ,η;ϕ,x) = − Eqη(z|x)[fϕ(gψ(z))]. (7) 253

We train both the VAE and the discriminator with Equa- 254
tions (5) and Equation (6) in an alternating way. 255

3.2.2. From GAN- to SAN-based discriminator 256

We apply the slicing adversarial network (SAN) frame- 257
work [31] to further enhance the motion VAE, based on 258
a prior report showing SAN-based models perform better 259
than the GAN counterparts. The impact of this replacement 260
on motion generation is discussed in Section 4. 261

3.2.3. Architectures 262

We use a standard CNN-based architecture in the motion 263
VAE encoder qη , decoder gψ and discriminator fψ , con- 264
sisting of 1D convolution, a residual block, and Leaky 265
ReLU. For temporal downsampling and upsampling, we use 266
stride 2 convolution and nearest interpolation, respectively. 267
Specifically, the motion sequence x ∈ RN×L is encoded 268
into a latent vector z ∈ Rdz×dl with downsampling ratio of 269
dl = L/4. This architecture is inspired by [6, 38]. 270

3.3. Stage 2: Motion Latent Diffusion 271

3.3.1. Text-conditional motion generation 272

In this section, we train a text-conditioned diffusion model 273
on the low-dimensional motion latent space obtained by 274
the autoencoder learned in the stage 1 (Section 3.2). Us- 275
ing the trained model, we perform motion generation con- 276
ditioned on text. First, we define a time-dependent se- 277
quence z0, z1, . . . ,zt, . . . ,zT ∈ Rdz×dl (starting from the 278
VAE encoder output z0 = z ∼ qη(z|x)), which is de- 279
rived from the following Markov diffusion process in the 280
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latent space:q(zt|zt−1) = N (
√
αtzt−1, (1− αt)I), where281

T > 0 and the constant αt ∈ (0, 1) is a pre-defined noise-282
scheduling parameter that determines the forward process.283
The forward process allows for the sampling of zt at an284
arbitrary time step t in a closed form: zt =

√
ᾱtz0 +285 √

1− ᾱtϵ, where ᾱt :=
∏t
s=1 αs and ϵ ∼ N (0, I).286

As our goal is text-to-motion generation, our interest287
is in the conditional distribution p(z|c) given the text288
prompt c. Here, similar to many text-conditioned latent289
diffusion models [2, 27], we train the conditional model290
ϵθ(zt, t, τ(c)) conditioned on the output of a text encoder291
τ(c), using the following objective function:292

JcLDM(θ) = E{z0,c},ϵ,t
[
∥ϵ− ϵθ(zt, t, τ(c))∥22

]
, (8)293

where z0 and c are drawn from the joint empirical dis-294
tribution. In addition, as done in prior works, we adopt295
classifier-free guidance [13] and train the model uncondi-296
tionally, i.e., without a text prompt, with a certain probabil-297
ity during training.298

During inference, the trained diffusion model299
ϵθ(zt, t, τ(c)) is used to generate z0 through a de-300
noising process conditioned on the text prompt c. We adopt301
the sampling scheme of DDIM [28] with trailing sample302
steps [20], in which each sampling step is defined as:303

zt−1 =
√
ᾱt−1

(
zt −

√
1− ᾱt−1ϵθ(zt, t, τ(c))√

ᾱt

)
304

+
√

1− ᾱt−1 − σ2
t ϵθ(zt, t, τ(c)) + σtϵ, (9)305

where σt > 0 determines the stochasticity of the sampling306
process, and the sampling process becomes deterministic307
when σt = 0. The part (zt −

√
1− ᾱtϵθ(zt, t, τ(c)))/

√
ᾱt308

in the first term corresponds to a direct estimate of the clean309
latent z0 from the noisy sample zt using the diffusion model310
based on Tweedie’s formula [5]; this estimate is denoted as311
z0|t. In actual inference, we use the estimated z0 and the312
VAE decoder trained in stage 1 to obtain gψ(z0) as the gen-313
erated motion sequences. Variable length motion genera-314
tion is then achieved by clipping a part of gψ(z0) where315
the activation variable ai introduced in Section 3.1 satisfies316
ai < δ (0 < δ < 1). The effect of this approach is dis-317
cussed in Section 4.1.318

3.3.2. Architecture319

We employ a diffusion transformer (DiT)-based architec-320
ture in our stage 2 model. The transformer used follows321
a standard structure of stacked blocks consisting of an at-322
tention layer and gated multilayer perceptrons (MLP) con-323
nected in series, with skip connections around each. Addi-324
tionally, layer normalization is employed on the inputs of325
both the attention layer and the MLP. At the input and out-326
put of the transformer, linear mapping is used to convert327

from the latent dimension of the stage 1 model to the em- 328
bedded dimension of the transformer. Text CLIP embed- 329
ding is also added as input to the transformer, along with 330
an embedding describing the current time step of the dif- 331
fusion process. This architecture is inspired by [7], which 332
established SOTA performance in audio generation. 333

3.4. Controllable Motion Generation on Latent Dif- 334
fusion Sampling 335

In this section, we present a guided generation frame- 336
work that leverages the pre-trained motion latent diffu- 337
sion model (Section 3.3) for conditional motion generation 338
and editing tasks without extra training. Major training- 339
free methods (e.g, [3, 12, 37]) are based on the fact that 340
the conditional score function can be decomposed into 341
two additive terms: the unconditional score function and 342
the log-likelihood term. Specifically, for a new condi- 343
tion y, we have ∇zt log p(zt|c,y) = ∇zt log p(zt|c) + 344
∇zt log p(y|zt, c), which is derived from Bayes’ rule. The 345
conditional generation based on the aforementioned prop- 346
erty can be regarded as a sequential procedure implemented 347
as follows. First, a denoised sample zt−1 is obtained from 348
zt by the sampling step in Equation (9), without consider- 349
ing the given condition y (the first term in Equation (9)). 350
Subsequently, zt−1 is further updated using the gradient of 351
the log-likelihood term with respect to zt (the second term). 352

The challenge here is that the log-likelihood term is com- 353
puted based on noisy samples zt. In the classifier-guided 354
diffusion [30], time-dependent classifiers for zt have to be 355
trained, which requires additional training. In contrast, in 356
training-free methods, this term is approximated with the 357
current clean data estimate z0|t and a loss function L(x;y) 358
defined for clean data. This loss function can be flexibly 359
set depending on the task. For example, in inverse prob- 360
lems of the form y = A(x), where A is a differentiable 361
function with respect to x, the loss function can be set as 362
∥y −A(x0|t)∥22, where x0|t = gψ(z0|t) is a clean data es- 363
timate in the original data domain and obtained through the 364
VAE decoder. Here, we adopt MPGD [12], a fast yet high- 365
quality guidance method applicable to latent diffusion mod- 366
els. Following the denoising step, it updates the denoised 367
sample based on the loss function L(x;y) as follows: 368

zt−1 ← zt−1 − ρt
√
ᾱt−1∇z0|tL(gψ(z0|t);y), (10) 369

where ρt is a time-dependent step size parameter. 370
More specifically, in editing motion tasks we generate 371

motions to match given specific poses or trajectory control 372
signals. To deal with various motion editing tasks in this 373
framework, the loss function is designed as follows: 374

LMotion(gψ(z0|t);y) = ΣnΣlmnl∥R(gψ(z0|t))nl − ynl∥2,
(11)

375
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where n and l are indices of joint and frame, respectively,376
and mnl is a binary value indicating whether the control po-377
sition ynl contains a valid value at frame l for joint n, and378
R(·) is a function that converts the motion features includ-379
ing the joint’s local positions to global absolute locations.380
We set LMotion for loss function L in the guided generation381
to measure the distance between desired constraints y and382
the joint locations of the generated motion. Target loca-383
tions as constraint y can be specified for any subset of joints384
in any subset of motion frames.2 Editing a generated mo-385
tion to match specific poses or follow a specific trajectory386
is achieved by minimizing LMotion using the update rule in387
Equation (10).388

4. Experiments389

We evaluate the performance of MoLA on two tasks: mo-390
tion generation (Section 4.1) and motion editing (Sec-391
tion 4.2). Our results demonstrate that MoLA achieves its392
three key objectives: (1) fast and high-quality generation,393
(2) variable-length generation, and (3) multiple motion edit-394
ing tasks in a training-free manner. To validate these objec-395
tives, we utilize the HumanML3D [10].3396

4.1. Motion Generation397

4.1.1. Performance comparison with other text-to-398
motion models399

We evaluate our proposed MoLA in comparison to current400
SOTA methods [2, 4, 11, 19, 22, 24, 25, 32, 33, 38, 40,401
42, 43] using five metrics (R-Precision, Fréchet Inception402
Distance (FID), Multi-modal distance (MMDist), Diver-403
sity, and MultiModality (MModality)) proposed by Guo et404
al. [10]. For evaluation, we select the model that achieves405
the best FID, which is a metric that evaluates the overall406
motion quality, on the validation set and report its perfor-407
mance on the test set of HumanML3D. We show the results408
in Table 1. The methods are organized into three groups: i)409
those using VQ-based latent representations (Discrete), ii)410
those using data-space diffusion model (Continuous (raw411
data)), and iii) those using VAE-based latent representa-412
tions (Continuous (latent)). The discrete approaches per-413
form well in motion generation (e.g., [11, 22, 25]). How-414
ever, those models cannot control an arbitrary set of joints415
in a training-free manner [25] as we have discussed so far.416
MDM [32], MotionDiffuse [40] and Fg-T2M [33] adopt417

2As examples of motion editing, if y is given as the start-end positions,
we can handle the motion in-betweening. If y is given as the lower body
positions, we can edit the upper body corresponding to the lower one. If y
is given as the pelvis trajectory, it corresponds to the path-following task.
We leave the task details to Section 4.2. Note that the guided generation
framework in Equations (10) and Equation (11) has the potential to gener-
ate motion while dealing with a variety of time and spatial constraints not
limited to these three task examples.

3This dataset contains 14,616 human motions from the AMASS [23]
and HumanAct12 [9] datasets and 44,970 text descriptions.

Figure 4. Comparison of motion length distributions between the
HumanML3D test set and the generated motion samples. The
Jensen-Shannon divergence (JSD) for each distribution is as fol-
lows: JSD(GT||T2M-GPT) = 0.041, JSD(GT||MoMASK) =
0.040, and JSD(GT||MoLA) = 0.026. Similarly, the Earth
Mover’s Distance (EMD) for each distribution is given by
DEMD(GT,T2M-GPT) = 6.706, DEMD(GT,MoMASK) =
3.673, and DEMD(GT,MoLA) = 3.538 (a unit in this EMD means
1 frame).

data-space diffusion, while MLD [2], MotionLCM [4] and 418
MoLA utilize a diffusion model in a lower-dimensional la- 419
tent space. Therefore, the former are grouped in Continu- 420
ous (raw data) and the latter in Continuous (latent) in the 421
table. MoLA achieves the best performance in continuous 422
methods, especially in the R-precision, FID, and MMDist 423
metrics as shown in Table 1. Moreover, we also evaluate 424
generation quality and inference cost in comparison to ex- 425
isting text-to-motion methods that have publicly available 426
implementations [2, 11, 25, 32, 38]. As shown in Figure 2, 427
MoLA is much faster in generation than MDM, which is 428
the only existing method that performs training-free motion 429
editing. 430

4.1.2. Variable-length motion generation 431

Next, we discuss the impact of the activation variable in the 432
motion representation introduced in Section 3.1. As shown 433
in Equation (2), incorporating the activation variable into 434
the motion features enables the Stage 2 model (Section 3.3) 435
to generate variable-length motions. Figure 4 shows a com- 436
parison of the length distributions of samples generated by 437
two existing methods (T2M-GPT and MoMask) and MoLA 438
against the test set of HumanML3D. T2M-GPT represents 439
a typical auto-regressive Text-to-Motion approach, while 440
MoMask is a mask-prediction-based method that requires 441
specifying the motion length. To address this limitation, 442
MoMask introduces a length estimator that generates mo- 443
tion lengths conditioned on the input text. From Figure 4, 444
we observe that our method successfully generates variable- 445
length motions. Furthermore, the distribution of motion 446
lengths generated by MoLA is closer to the actual motion 447
distribution than those of the two existing methods, demon- 448
strating the effectiveness of our approach. 449

6



CVPR
#9

CVPR
#9

CVPR 2025 Submission #9. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Category Method R-Precision ↑ FID ↓ MMDist ↓ Diversity→ MModality ↑Top-1 Top-2 Top-3
N/A Real motion data 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

Discrete

M2DM [19] 0.497±.003 0.682±.002 0.763±.003 0.352±.005 3.134±.010 9.926±.073 3.587±.072

AttT2M [42] 0.499±.003 0.690±.002 0.786±.002 0.112±.006 3.038±.007 9.700±.090 2.452±.051

T2M-GPT [38] 0.492±.003 0.679±.002 0.775±.002 0.141±.005 3.121±.009 9.722±.081 1.831±.048

MoMask [11] 0.521±.002 0.713±.002 0.807±.002 0.045±.002 2.958±.008 - 1.241±.040

DiverseMotion [22] 0.496±.004 0.687±.004 0.783±.003 0.070±.004 3.063±.011 9.551±.068 2.062±.079

MMM [25] 0.504±.003 0.696±.003 0.794±.002 0.080±.003 2.998±.007 9.411±.058 1.164±.041

ParCo [43] 0.515±.003 0.706±.003 0.801±.002 0.109±.003 2.927±.008 9.576±.088 1.382±.060

BAMM [24] 0.525±.002 0.720±.003 0.814±.003 0.055±.002 2.919±.008 9.717±.089 1.687±.051

Continuous (data space)
MotionDiffuse [40] 0.491±.001 0.681±.001 0.782±.001 0.630±.001 3.113±.001 9.410±.049 1.553±.042

MDM [32] 0.320±.005 0.498±.004 0.611±.007 0.544±.044 5.566±.027 9.559±.086 2.799±.072

Fg-T2M [33] 0.492±.002 0.683±.003 0.783±.002 0.243±.019 3.109±.007 9.278±.072 1.614±.049

Continuous (latent)
MLD [2] 0.481±.003 0.673±.003 0.772±.002 0.473±.013 3.196±.010 9.724±.082 2.413±.079

MotionLCM [4] 0.502±.003 0.698±.002 0.798±.002 0.304±.012 3.012±.007 9.607±.066 2.259±.092

MoLA (ours) 0.516±.006 0.712±.005 0.805±.004 0.115±.004 3.008±.016 9.885±.152 2.156±.157

Table 1. Comparison with state-of-the-art methods on HumanML3D dataset. Note that discrete representations do not allow for training-
free motion editing; therefore, methods based on VQ-based latent representations (Discrete) are grayed out. The best scores for each metric
in the methods using VAE-based latent representations (Continuous (latent)) are highlighted in bold.

Editing type Methods
R-Precision

Top-3 ↑ FID ↓ Diversity→ Traj. err. ↓ Loc. err.↓ Avg. err.↓ AITS ↓

Training-based editing OmniControl 0.688 0.192 9.533 0.065 0.007 0.053 74.4
MotionLCM 0.759 0.501 9.293 0.237 0.054 0.164 0.02

Training-free editing MoLA (ours) 0.761 0.486 9.322 0.271 0.051 0.159 1.04

Table 2. Comparison of motion editing (path-following task) on HumanML3D dataset

4.2. Motion Editing450

Here, we demonstrate three types of editing tasks using451
a unified framework: path-following (motion guided by a452
specified trajectory), in-betweening (editing in the time di-453
rection), and upper-body editing (modifying specific joints).454
In particular, for path-following, we quantitatively compare455
our approach with existing models [4, 35].456

Path-following is a task of giving a trajectory (often457
the position of the pelvis) and generating the motion that458
matches the given route. Controlling the trajectory of gen-459
erated motion enables more motion variation, avoidance of460
obstacles, and the creation of motion that meets physical461
constraints. In this experimental case, the desired pelvis462
trajectory is set as the control signal y in Equation (11).463
The upper row of Figure 5 shows the editing results with464
our model when different path controls are given as y in465
the same text condition. In addition, we show a quantita-466
tive comparison with existing methods: OmniControl [35]467
and MotionLCM [4], where the former is Continuous (raw468
data) type method and the latter is Continuous (raw latent)469
one. We compare them in terms of FID, R-Precision, Di-470
versity, Trajectory err (50cm), Location err (50cm), Avger-471
age err, and Average inference time per sentence (AIST) in472
Table 2, following [4]. Table 2 demonstrates that MoLA473
achieves competitive editing performance across all com-474
pared to other editing methods. Notably, while MoLA475
shows lower performance in following control signals com-476
pared to OminiControl, it achieves significantly faster edit-477

ing. Note that OmniControl and MotionLCM have been 478
trained for this specific editing task, while MoLA performs 479
path-following without model fine-tuning. In other words, 480
MoLA can perform different tasks without additional train- 481
ing as shown in the following sections, but OmniControl 482
and MotionLCM require training a separate model for each 483
task. MoLA is a more flexible and efficient framework. 484

In-betweening is an important editing task that interpo- 485
lates or fills the gaps between keyframes or major motion 486
joints to create smooth 3D motion animation. Our frame- 487
work can coordinate and generate motion between past and 488
future contexts without additional training. We only need 489
to set the start-end positions or the motions of a few frames 490
as the control signal y in Equation (11). The middle row 491
of Figure 5 depicts the motion in-betweening results with 492
our model when different start-end controls are given as y 493
in the same text condition. 494

Upper body editing combines generated upper body 495
parts with given lower body parts. Generating some joints 496
while keeping the other body joints following a given con- 497
trol signal can be seen as the task of outpainting in the spa- 498
tial dimension of motion. The control signal y in Equa- 499
tion (11) is set to lower body positions that are not subject 500
to editing.4 The lower row of Figure 5 shows the upper 501
body editing results with our model when different lower 502
body controls are given as y in the same text condition. 503

4Note that, although we are dealing with upper body editing in this
experiment, it is in principle possible to specify a different joint subset.
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Path-followingPath control

(i) (ii)

“A person walks with their hands up.”

(i) (ii)

In-betweeningStart-End control

“A person puts their right hand to the air.”

(i) (ii) (i) (ii)

Upper body editingLower body control

“A person walks while raising their left hand.”

(i) (ii) (i) (ii)

Figure 5. Qualitative results for the three editing tasks. For the three motion editing tasks (path following, upper-body editing, and in-
betweening), we treat each control signal (i) and (ii) in the left side of the figure as y in Equation (10) and (11). The corresponding
generated results using the same input text are shown on the right side of the figure as (i) and (ii), respectively.

Method Reconstruction Generation
rFID ↓ MPJPE ↓ FID ↓ MMDist ↓

Dimension of latent space
MoLA (dz = 8) 0.110 54.2 0.183 3.099
MoLA (dz = 16) 0.030 29.3 0.115 3.008
MoLA (dz = 32) 0.028 26.8 0.904 3.536

Adversarial training
w/o GAN or SAN 0.038 29.3 0.126 3.053
w/ GAN instead of SAN 0.032 29.5 0.141 3.044

Input for the encoder qη
[(mi)T, ai]T instead of Eq. (2) 0.029 31.2 0.112 3.024

Table 3. Analysis of motion reconstruction and generation perfor-
mance on HumanML3D dataset

4.3. Ablation studies504

We discuss the impact of latent space dimensionality, ad-505
versarial training, and motion representation on the stage 1506
model. The dimensionality of the latent space may affect507
not only reconstruction quality but also influence the diffi-508
culty of training in stage 2, ultimately impacting the quality509
of the generated outputs. To investigate this, we evaluate the510
performance for cases with dz = {8, 16, 32}. Table 3 shows511
that although the case of dz = 16 does not achieve the best512
reconstruction quality compared to the other cases, it per-513
forms best in terms of FID and MMDist. Therefore, we514
adopted dz = 16 for MoLA. The results for VAE combined515
with GAN/SAN and modifying the encoder inputs are also516
shown in Table 3. As shown in Table 3, the adversarial train-517
ing is effective in the motion reconstruction task. It not only518
improves the reconstruction performance in stage 1 but also519
contributes to enhanced generation performance in stage 2.520
In particular, we can improve the performance of the stage 1521
model by adopting the SAN framework instead of the con-522
ventional GAN. A better rFID is directly related to the upper523
bound of the overall performance of a text-to-motion model.524

Method Traj. err. ↓ Loc. err.↓ Avg. err.↓
Input for the encoder qη

[(mi)T, ai]T instead of Eq. (2) 0.281 0.068 0.174
MoLA (dz = 16) 0.271 0.051 0.159

Table 4. Analysis of motion editing (path-following task) perfor-
mance on HumanML3D dataset

Furthermore, as shown in Tables 3 and 4, modifying the en- 525
coder input Equation (2) improves reconstruction quality in 526
terms of MPJPE without significantly compromising gener- 527
ation quality. As a result, this modification has a beneficial 528
effect on the performance of the motion editing task, which 529
requires fitting motion sequences into given control signals. 530
This improvement can be attributed to the quality of the de- 531
coder gψ , which contributes to the performance of the edit- 532
ing task, as indicated by Equations (10) and (11). Thus, we 533
adopted VAE trained with the SAN framework [31] and the 534
motion representation Equation (2) for MoLA. 535

5. Conclusion 536

We proposed MoLA, a text-to-motion model that achieves 537
fast, high-quality generation with multiple control tasks in a 538
single framework. We rethought the motion representation 539
and introduced an activation variable that characterizes the 540
length of the motion. In addition, we integrated latent diffu- 541
sion, adversarial training, and a guided generation frame- 542
work. Our experiments demonstrated MoLA’s ability to 543
generate variable-length motions with distributions close to 544
real motions and perform diverse motion editing tasks, sig- 545
nificantly extending the performance boundaries of meth- 546
ods categorized as enabling training-free editing. 547

8



CVPR
#9

CVPR
#9

CVPR 2025 Submission #9. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References548

[1] Huiwen Chang, Han Zhang, Jarred Barber, Aaron549
Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang,550
Kevin Patrick Murphy, William T. Freeman, Michael Ru-551
binstein, Yuanzhen Li, and Dilip Krishnan. Muse: Text-552
to-image generation via masked generative transformers.553
In Proc. International Conference on Machine Learning554
(ICML), 2023. 2555

[2] Xin Chen, Biao Jiang, Wen Liu, Zilong Huang, Bin Fu, Tao556
Chen, and Gang Yu. Executing your commands via motion557
diffusion in latent space. In Proc. IEEE/CVF Conference on558
Computer Vision and Pattern Recognition (CVPR), 2023. 2,559
5, 6, 7560

[3] Hyungjin Chung, Jeongsol Kim, Michael Thompson Mc-561
cann, Marc Louis Klasky, and Jong Chul Ye. Diffusion562
posterior sampling for general noisy inverse problems. In563
Proc. International Conference on Learning Representation564
(ICLR), 2023. 5565

[4] Wenxun Dai, Ling-Hao Chen, Jingbo Wang, Jinpeng Liu, Bo566
Dai, and Yansong Tang. Motionlcm: Real-time controllable567
motion generation via latent consistency model. In Proc. Eu-568
ropean Conference on Computer Vision (ECCV), 2024. 3, 6,569
7570

[5] Bradley Efron. Tweedie’s formula and selection bias. Jour-571
nal of the American Statistical Association, 106(496):1602–572
1614, 2011. 5573

[6] Patrick Esser, Robin Rombach, and Bjorn Ommer. Tam-574
ing transformers for high-resolution image synthesis. In575
Proc. IEEE/CVF Conference on Computer Vision and Pat-576
tern Recognition (CVPR), 2021. 2, 4577

[7] Zach Evans, Julian D Parker, CJ Carr, Zack Zukowski, Josiah578
Taylor, and Jordi Pons. Long-form music generation with579
latent diffusion. arXiv preprint arXiv:2404.10301, 2024. 5580

[8] Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo581
Zhang, Dongdong Chen, Lu Yuan, and Baining Guo. Vec-582
tor quantized diffusion model for text-to-image synthesis. In583
Proc. IEEE/CVF Conference on Computer Vision and Pat-584
tern Recognition (CVPR), 2022. 2585

[9] Chuan Guo, Xinxin Zuo, Sen Wang, Shihao Zou, Qingyao586
Sun, Annan Deng, Minglun Gong, and Li Cheng. Ac-587
tion2motion: Conditioned generation of 3d human mo-588
tions. In Proc. ACM International Conference on Multimedia589
(ACMMM), 2020. 6590

[10] Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji,591
Xingyu Li, and Li Cheng. Generating diverse and natural 3d592
human motions from text. In Proc. IEEE/CVF Conference593
on Computer Vision and Pattern Recognition (CVPR), 2022.594
2, 3, 6595

[11] Chuan Guo, Yuxuan Mu, Muhammad Gohar Javed, Sen596
Wang, and Li Cheng. Momask: Generative masked mod-597
eling of 3d human motions. In Proc. IEEE/CVF Conference598
on Computer Vision and Pattern Recognition (CVPR), 2024.599
1, 2, 6, 7600

[12] Yutong He, Naoki Murata, Chieh-Hsin Lai, Yuhta Takida,601
Toshimitsu Uesaka, Dongjun Kim, Wei-Hsiang Liao, Yuki602
Mitsufuji, J Zico Kolter, Ruslan Salakhutdinov, and Stefano603

Ermon. Manifold preserving guided diffusion. In Proc. In- 604
ternational Conference on Learning Representation (ICLR), 605
2024. 5 606

[13] Jonathan Ho and Tim Salimans. Classifier-free diffusion 607
guidance. arXiv preprint arXiv:2207.12598, 2022. 5 608

[14] Vladimir Iashin and Esa Rahtu. Taming visually guided 609
sound generation. In Proc. British Machine Vision Confer- 610
ence (BMVC), 2021. 2 611

[15] Biao Jiang, Xin Chen, Wen Liu, Jingyi Yu, Gang Yu, and 612
Tao Chen. Motiongpt: Human motion as a foreign language. 613
In Proc. Advances in Neural Information Processing Systems 614
(NeurIPS), 2023. 2 615

[16] Korrawe Karunratanakul, Konpat Preechakul, Supasorn 616
Suwajanakorn, and Siyu Tang. Guided motion diffusion for 617
controllable human motion synthesis. In Proc. IEEE/CVF 618
International Conference on Computer Vision (ICCV), 2023. 619
3 620

[17] Korrawe Karunratanakul, Konpat Preechakul, Emre Aksan, 621
Thabo Beeler, Supasorn Suwajanakorn, and Siyu Tang. Op- 622
timizing diffusion noise can serve as universal motion priors. 623
In Proc. IEEE/CVF Conference on Computer Vision and Pat- 624
tern Recognition (CVPR), 2024. 3 625

[18] Diederik P Kingma and Max Welling. Auto-encoding varia- 626
tional bayes. In Proc. International Conference on Learning 627
Representation (ICLR), 2013. 2 628

[19] Hanyang Kong, Kehong Gong, Dongze Lian, Michael Bi Mi, 629
and Xinchao Wang. Priority-centric human motion genera- 630
tion in discrete latent space. In Proc. IEEE/CVF Conference 631
on Computer Vision and Pattern Recognition (CVPR), 2023. 632
2, 6, 7 633

[20] Shanchuan Lin, Bingchen Liu, Jiashi Li, and Xiao Yang. 634
Common diffusion noise schedules and sample steps are 635
flawed. In Proc. Winter Conference on Applications of Com- 636
puter Vision (WACV), 2024. 5 637

[21] Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, 638
Danilo Mandic, Wenwu Wang, and Mark D Plumbley. Audi- 639
oLDM: Text-to-audio generation with latent diffusion mod- 640
els. In Proc. International Conference on Machine Learning 641
(ICML), 2023. 2, 4 642

[22] Yunhong Lou, Linchao Zhu, Yaxiong Wang, Xiaohan Wang, 643
and Yi Yang. Diversemotion: Towards diverse human 644
motion generation via discrete diffusion. arXiv preprint 645
arXiv:2309.01372, 2023. 2, 6, 7 646

[23] Naureen Mahmood, Nima Ghorbani, Nikolaus F Troje, Ger- 647
ard Pons-Moll, and Michael J Black. Amass: Archive of mo- 648
tion capture as surface shapes. In Proc. IEEE/CVF Confer- 649
ence on Computer Vision and Pattern Recognition (CVPR), 650
2019. 6 651

[24] Ekkasit Pinyoanuntapong, Muhammad Usama Saleem, Pu 652
Wang, Minwoo Lee, Srijan Das, and Chen Chen. Bamm: 653
bidirectional autoregressive motion model. In Proc. Euro- 654
pean Conference on Computer Vision (ECCV), 2024. 1, 2, 6, 655
7 656

[25] Ekkasit Pinyoanuntapong, Pu Wang, Minwoo Lee, and Chen 657
Chen. Mmm: Generative masked motion model. In Proc. 658
IEEE/CVF Conference on Computer Vision and Pattern 659
Recognition (CVPR), 2024. 1, 2, 3, 6, 7 660

9



CVPR
#9

CVPR
#9

CVPR 2025 Submission #9. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[26] Matthias Plappert, Christian Mandery, and Tamim Asfour.661
The kit motion-language dataset. Big data, 4(4):236–252,662
2016. 3663

[27] Robin Rombach, Andreas Blattmann, Dominik Lorenz,664
Patrick Esser, and Björn Ommer. High-resolution image665
synthesis with latent diffusion models. In Proc. IEEE/CVF666
Conference on Computer Vision and Pattern Recognition667
(CVPR), 2022. 2, 4, 5668

[28] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-669
ing diffusion implicit models. Proc. International Confer-670
ence on Learning Representation (ICLR), 2021. 5671

[29] Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mar-672
dani, Ming-Yu Liu, Jan Kautz, Yongxin Chen, and Arash673
Vahdat. Loss-guided diffusion models for plug-and-play674
controllable generation. In Proc. International Conference675
on Machine Learning (ICML), 2023. 2676

[30] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-677
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based678
generative modeling through stochastic differential equa-679
tions. In Proc. International Conference on Learning Repre-680
sentation (ICLR), 2021. 5681

[31] Yuhta Takida, Masaaki Imaizumi, Takashi Shibuya, Chieh-682
Hsin Lai, Toshimitsu Uesaka, Naoki Murata, and Yuki Mit-683
sufuji. SAN: Inducing metrizability of gan with discrimina-684
tive normalized linear layer. In Proc. International Confer-685
ence on Learning Representation (ICLR), 2024. 4, 8686

[32] Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel687
Cohen-or, and Amit Haim Bermano. Human motion diffu-688
sion model. In Proc. International Conference on Learning689
Representation (ICLR), 2023. 1, 2, 6, 7690

[33] Yin Wang, Zhiying Leng, Frederick WB Li, Shun-Cheng691
Wu, and Xiaohui Liang. Fg-t2m: Fine-grained text-driven692
human motion generation via diffusion model. In Proc.693
IEEE/CVF Conference on Computer Vision and Pattern694
Recognition (CVPR), 2023. 6, 7695

[34] Qi Wu, Yubo Zhao, Yifan Wang, Xinhang Liu, Yu-Wing696
Tai, and Chi-Keung Tang. Motion-agent: A conversational697
framework for human motion generation with llms. In arXiv698
preprint arXiv:2405.17013, 2024. 2699

[35] Yiming Xie, Varun Jampani, Lei Zhong, Deqing Sun, and700
Huaizu Jiang. Omnicontrol: Control any joint at any time for701
human motion generation. In Proc. International Conference702
on Learning Representation (ICLR), 2024. 3, 7703

[36] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gun-704
jan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yin-705
fei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han,706
Zarana Parekh, Xin Li, Han Zhang, Jason Baldridge, and707
Yonghui Wu. Scaling autoregressive models for content-rich708
text-to-image generation. Transactions on Machine Learn-709
ing Research, 2022. 2710

[37] Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and711
Jian Zhang. Freedom: Training-free energy-guided condi-712
tional diffusion model. In Proc. IEEE/CVF International713
Conference on Computer Vision (ICCV), 2023. 5714

[38] Jianrong Zhang, Yangsong Zhang, Xiaodong Cun, Shaoli715
Huang, Yong Zhang, Hongwei Zhao, Hongtao Lu, and Xi716
Shen. T2m-gpt: Generating human motion from textual de-717
scriptions with discrete representations. In Proc. IEEE/CVF718

Conference on Computer Vision and Pattern Recognition 719
(CVPR), 2023. 1, 2, 4, 6, 7 720

[39] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding 721
conditional control to text-to-image diffusion models. In 722
Proc. IEEE/CVF International Conference on Computer Vi- 723
sion (ICCV), 2023. 3 724

[40] Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou 725
Hong, Xinying Guo, Lei Yang, and Ziwei Liu. Motiondif- 726
fuse: Text-driven human motion generation with diffusion 727
model. In IEEE Transactions on Pattern Analysis and Ma- 728
chine Intelligence, 2024. 2, 6, 7 729

[41] Zeyu Zhang, Akide Liu, Ian Reid, Richard Hartley, Bohan 730
Zhuang, and Hao Tang. Motion mamba: Efficient and long 731
sequence motion generation. In Proc. European Conference 732
on Computer Vision (ECCV), 2025. 2 733

[42] Chongyang Zhong, Lei Hu, Zihao Zhang, and Shihong 734
Xia. Attt2m: Text-driven human motion generation with 735
multi-perspective attention mechanism. In Proc. IEEE/CVF 736
Conference on Computer Vision and Pattern Recognition 737
(CVPR), 2023. 2, 6, 7 738

[43] Qiran Zou, Shangyuan Yuan, Shian Du, Yu Wang, Chang 739
Liu, Yi Xu, Jie Chen, and Xiangyang Ji. Parco: Part- 740
coordinating text-to-motion synthesis. In Proc. European 741
Conference on Computer Vision (ECCV), 2024. 1, 2, 6, 7 742

10


	Introduction
	Related Work
	Motion Generation
	Motion Editing

	Method
	Motion representation
	Stage 1: Continuous Motion Latent Representation with Adversarial Training
	Learning a motion latent representation with VAE-GAN
	From GAN- to SAN-based discriminator
	Architectures

	Stage 2: Motion Latent Diffusion
	Text-conditional motion generation
	Architecture

	Controllable Motion Generation on Latent Diffusion Sampling

	Experiments
	Motion Generation
	Performance comparison with other text-to-motion models
	Variable-length motion generation

	Motion Editing
	Ablation studies

	Conclusion

