
Enhancing Scalability of Pre-trained Language Models
via Efficient Parameter Sharing

Peiyu Liu1,2∗, Ze-Feng Gao1,3∗, Yushuo Chen1,2, Wayne Xin Zhao1,2† and Ji-Rong Wen1,2

1Gaoling School of Artificial Intelligence, Renmin University of China
2Beijing Key Laboratory of Big Data Management and Analysis Methods

3Department of Physics, Renmin University of China
{liupeiyustu,zfgao,chenyushuo,jrwen}@ruc.edu.cn,

batmanfly@gmail.com

Abstract

In this paper, we propose a highly parameter-
efficient approach to scaling pre-trained lan-
guage models (PLMs) to a deeper model depth.
Unlike prior work that shares all parameters or
uses extra blocks, we design a more capable
parameter-sharing architecture based on ma-
trix product operator (MPO), an efficient tensor
decomposition method to factorize the param-
eter matrix into a set of local tensors. Based
on such a decomposition, we share the impor-
tant local tensor across all layers for reduc-
ing the model size and meanwhile keep layer-
specific tensors (also using Adapters) for en-
hancing the adaptation flexibility. To improve
the model training, we further propose a stable
initialization algorithm tailored for the MPO-
based architecture. Extensive experiments have
demonstrated the effectiveness of our proposed
model in enhancing scalability and achieving
higher performance (i.e., with fewer parame-
ters than BERTBASE, we successfully scale
the model depth by a factor of 4× and even
achieve 0.1 points higher than BERTLARGE

for GLUE score). The code to reproduce the
results of this paper can be found at https:
//github.com/RUCAIBox/MPOBERT-code.

1 Introduction

Recently, pre-trained language models (PLMs)
have achieved huge success in a variety of NLP
tasks by exploring ever larger model architec-
ture (Raffel et al., 2020; Radford et al., 2019). It
has been shown that there potentially exists a scal-
ing law between the model size and model capacity
for PLMs (Kaplan et al., 2020), attracting many ef-
forts to enhance the performance by scaling model
size (Chowdhery et al., 2022; Wang et al., 2022b).

As a straightforward approach, we can directly
increase the layer number of networks for improv-
ing the model capacity (Wang et al., 2022b; Huang

∗Authors contributed equally.
†Corresponding author.

100 150 200 250 300 350 400
#Params

0

10

20

30

40

50

De
pt

h

Small Medium Large

Deep
M

oderate
Shallow

Ours

BERT
T5 BART

ALBERT

RoBERTa

XLNet

Figure 1: A comparison of our model and representative
PLMs in the dimensions of model size and model depth.

et al., 2020). While, a very deep architecture typ-
ically corresponds to a significantly large model
size, leading to high costs in both computation and
storage (Gong et al., 2019). And, it is difficult to
deploy deep networks in resource-limited settings,
though it usually has a stronger model capacity.
Therefore, there is an urgent need for developing
a parameter-efficient way for scaling the model
depth.

To reduce the parameters in deep networks,
weight sharing has proven to be very useful to de-
sign lightweight architectures (Zhang et al., 2022;
Lan et al., 2019). As a representative one by
across-layer parameter sharing, ALBERT (Lan
et al., 2019) keeps only ten percent of the whole
parameters of BERT while maintaining compara-
ble performance. Although the idea of parameter
sharing is simple yet (to some extent) effective, it
has been found that identical weights across dif-
ferent layers are the main cause of performance
degradation (Zhang et al., 2022). To address this
issue, extra blocks are designed to elevate parame-
ter diversity in each layer (Nouriborji et al., 2022).
While they still use the rigid architecture of shared
layer weights, having a limited model capacity. Be-
sides, it is difficult to optimize very deep models,

https://github.com/RUCAIBox/MPOBERT-code
https://github.com/RUCAIBox/MPOBERT-code

especially when shared components are involved.
Although recent studies (Wang et al., 2022b; Huang
et al., 2020) propose improved initialization meth-
ods, they do not consider the case with parameter
sharing, thus likely leading to a suboptimal perfor-
mance on a parameter-sharing architecture.

To address these challenges, in this paper, we
propose a highly parameter-efficient approach to
scaling PLMs to a deeper model architecture. As
the core contribution, we propose a matrix prod-
uct operator (MPO) based parameter-sharing ar-
chitecture for deep Transformer networks. Via
MPO decomposition, a parameter matrix can be
decomposed into central tensors (containing the
major information) and auxiliary tensors (contain-
ing the supplementary information). Our approach
shares the central tensors of the parameter matrices
across all layers for reducing the model size, and
meanwhile keeps layer-specific auxiliary tensors
for enhancing the adaptation flexibility. In order to
train such a deep architecture, we propose an MPO-
based initialization method by utilizing the MPO
decomposition results of ALBERT. Further, for the
auxiliary tensors of higher layers (more than 24 lay-
ers in ALBERT), we propose to set the parameters
with scaling coefficients derived from theoretical
analysis. We theoretically show it can address the
training instability regardless of the model depth.

Our work provides a novel parameter-sharing
way for scaling model depth, which can be gen-
erally applied to various Transformer-based mod-
els (Zhao et al., 2023). We conduct extensive exper-
iments to evaluate the performance of the proposed
model on the GLUE benchmark in comparison
to PLMs with varied model sizes (tiny, small and
large). Experiments results have demonstrated the
effectiveness of the proposed model in reducing the
model size and achieving competitive performance.
With fewer parameters than BERTBASE, we scale
the model depth by a factor of 4x and achieve 0.1
points higher than BERTLARGE for GLUE score.

2 Related Work

Matrix Product Operators. Matrix product op-
erators (a.k.a. tensor-train operators (Oseledets,
2011)) were proposed for a more effective rep-
resentation of the linear structure of neural net-
works (Gao et al., 2020a), which was used to
compress deep neural networks (Novikov et al.,
2015), convolutional neural networks (Garipov
et al., 2016; Yu et al., 2017), and LSTM (Gao et al.,

2020b; Sun et al., 2020a). Based on MPO decom-
position, recent studies designed lightweight fine-
tuning and compression methods for PLMs (Liu
et al., 2021), developed parameter-efficient MoE ar-
chitecture (Gao et al., 2022), over-parametrization
PLMs (Gao et al., 2023) and empirical study the
emergency ability in quantized large language mod-
els (Liu et al., 2023). Unlike these works, our work
aims to develop a very deep PLM with lightweight
architecture and stable training.

Parameter-Efficient PLMs. Existing efforts to
reduce the parameters of PLMs can be broadly cat-
egorized into three major lines: knowledge distil-
lation, model pruning, and parameter sharing. For
knowledge distillation-based methods (Sanh et al.,
2019; Sun et al., 2020b,b; Liu et al., 2020; Wang
et al., 2022a), PLMs were distilled into student net-
works with much fewer parameters. For pruning-
based methods, they tried to remove less impor-
tant components (Michel et al., 2019; Wang et al.,
2020) or very small weights (Chen et al., 2020).
Moreover, the parameter-sharing method was fur-
ther proposed by sharing all parameters (Lan et al.,
2019) or incorporating specific auxiliary compo-
nents (Reid et al., 2021; Nouriborji et al., 2022).
Different from these works, we design an MPO-
based architecture that can reduce the model size
and enable adaptation flexibility, by decomposing
the original matrix.

Optimization for Deep Models. Although it is
simple to increase the number of layers for scal-
ing model size, it is difficult to optimize very deep
networks due to the training instability issue. Sev-
eral studies have proposed different strategies to
overcome this difficulty for training deep Trans-
former networks, including Fixup (Zhang et al.,
2019) by properly rescaling standard initialization,
T-Fixup (Huang et al., 2020) by proposing a weight
initialization scheme, and DeepNorm (Wang et al.,
2022b) by introducing new normalization function.
As a comparison, we study how to optimize the
deep MPO-based architecture with the parameter
sharing strategy, and explore the use of well-trained
PLMs for initialization, which has a different focus
from existing work.

3 Method

In this section, we describe the proposed
MPOBERT approach for building deep PLMs via
a highly parameter-efficient architecture. Our ap-

proach follows the classic weight sharing paradigm
while introducing a principled mechanism for shar-
ing informative parameters across layers and also
enabling layer-specific weight adaptation.

3.1 Overview of Our Approach
Although weight sharing has been widely explored
for building compact PLMs (Lan et al., 2019), ex-
isting studies either share all the parameters across
layers (Lan et al., 2019) or incorporate additional
blocks to facilitate the sharing (Zhang et al., 2022;
Nouriborji et al., 2022). They either have limited
model capacity with a rigid architecture or require
additional efforts for maintenance.

Considering the above issues, we motivate our
approach in two aspects. Firstly, only informa-
tive parameters should be shared across layers, in-
stead of all the parameters. Second, it should not
affect the capacity to capture layer-specific varia-
tions. To achieve this, we utilize the MPO decom-
position (Liu et al., 2021) to develop a parameter-
efficient architecture by sharing informative com-
ponents across layers and keeping layer-specific
supplementary components (Section 3.2). As an-
other potential issue, it is difficult to optimize deep
PLMs due to unstable training (Wang et al., 2022b),
especially when weight sharing (Lan et al., 2019)
is involved. We further propose a simple yet ef-
fective method to stabilize the training of PLMs
(Section 3.3). Next, we introduce the technical
details of our approach.

3.2 MPO-based Transformer Layer
In this section, we first introduce the MPO decom-
position and introduce how to utilize it for building
parameter-efficient deep PLMs.

3.2.1 MPO Decomposition
Given a weight matrix W ∈ RI×J , MPO decom-
position can decompose a matrix into a product of
n tensors by reshaping the two dimension sizes I
and J :

Wi1,...,in,j1,...,jn = T (1)[i1, j1] · · · T (n)[in, jn], (1)

where we have I =
∏n

k=1 ik, J =
∏n

k=1 jk,
and T (k)[ik, jk] is a 4-dimensional tensor with size
dk−1 × ik × jk × dk in which dk is a bond dimen-
sion linking T (k) and T (k+1) with d0 = dn = 1.
For simplicity, we omit the bond dimensions in
Eq. (4). When n is odd, the middle tensor con-
tains the most parameters (with the largest bond
dimensions), while the parameter sizes of the rest

𝑾𝑨𝒅𝒂𝒑𝒕𝒆𝒓

Sharing parameterLayer−specific parameters

𝑨𝟏
(𝒍) 𝑨𝟐

(𝒍) 𝑨𝟑
(𝒍) 𝑨𝟒

(𝒍)"(!! ") "*	𝑪(𝒍) +
𝐷(()
𝑈(()

MPO(𝑾(𝒍))

MPO−based LayerTransformer Layer

MPOBERT"

	𝑪(𝟏)

…

𝒍 = 𝟏

𝒍 = 𝑳

…𝐿	layers 𝐺	groups

MPOBERT

𝒍 = 𝟏
…
𝒍 = 𝑳/𝑮

𝒍 = 𝑳 − 𝑳/𝑮
…
𝒍 = 𝑳

FFN

MHA

𝑾(𝒍)

Figure 2: Overview architecture of MPOBERT and
MPOBERT+. We use blocks with dashed borderlines
to represent shared central tensors. Central tensors are
shared across all L Layers in MPOBERT and within
groups in MPOBERT+.

decrease with the increasing distance to the middle
tensor. Following Gao et al. (2022), we further
simplify the decomposition results of a matrix as a
central tensor C (the middle tensor) and auxiliary
tensors {Ai}n−1

i=1 (the rest tensor).
As a major merit, such a decomposition can ef-

fectively reorganize and aggregate the information
of the matrix (Liu et al., 2021): central tensor C
can encode the essential information of the original
matrix, while auxiliary tensors {Ai}n−1

i=1 serve as
its complement to exactly reconstruct the matrix.

3.2.2 MPO-based Scaling to Deep Models
Based on MPO decomposition, the essence of
our scaling method is to share the central tensor
across layers (capturing the essential information)
and keep layer-specific auxiliary tensors (model-
ing layer-specific variations). Fig. 2 shows the
overview architecture of the proposed MPOBERT.

Cross-layer Parameter Sharing. To introduce
our architecture, we consider a simplified struc-
ture of L layers, each consisting of a single ma-
trix. With the five-order MPO decomposition
(i.e., n = 5), we can obtain the decomposi-
tion results for a weight matrix (W(l)), denoted
as {C(l),A(l)

1 ,A(l)
2 ,A(l)

3 ,A(l)
4 }Ll=1, where C(l) and

{A(l)
i }4i=1 are the central tensor and auxiliary ten-

sors of the l-th layer. Our approach is to set a
shared central tensor C across layers, which means
that C(l) = C (∀l = 1 · · ·L). As shown in Ap-
pendix A.1, the central tensor contains the major
proportion of parameters (more than 90%), and
thus our method can largely reduce the parame-

ters when scaling a PLM to very deep architecture.
We implement our proposed efficient parameter-
sharing strategy upon the BERT (Devlin et al.,
2018), named MPOBERT, which shares the central
tensor across layers. Note that this strategy can
be easily applied to multiple matrices in a Trans-
former layer, and we omit the discussion for the
multi-matrix extension. Another extension is to
share the central tensor by different grouping layers.
We implement a layer-grouping strategy upon the
BERT (Devlin et al., 2018), named MPOBERT+,
which divides the layers into multiple parts and sets
unique shared central tensors in each group.

Layer-specific Weight Adaptation. Unlike AL-
BERT (Lan et al., 2019), our MPO-based architec-
ture enables layer-specific adaptation by keeping
layer-specific auxiliary tensors ({A(l)

i }4i=1). These
auxiliary tensors are decomposed from the origi-
nal matrix, instead of extra blocks (Zhang et al.,
2022). They only contain a very small propor-
tion of parameters, which does not significantly
increase the model size. While, another merit of
MPO decomposition is that these tensors are highly
correlated via bond dimensions, and a small pertur-
bation on an auxiliary tensor can reflect the whole
matrix (Liu et al., 2021). If the downstream task
requires more layer specificity, we can further in-
corporate low-rank adapters (Hu et al., 2021) for
layer-specific adaptation. Specifically, we denote
W

(l)
Adapter as the low-rank adapter for W(l). In

this way, W(l) can be formulated as a set of ten-
sors: {C(l),A(l)

1 ,A(l)
2 ,A(l)

3 ,A(l)
4 ,W

(l)
Adapter}. The

parameter scale of adapters, L× r×dtotal, is deter-
mined by the layer number L, the rank r, and the
shape of the original matrix (dtotal = din + dout
is the sum of the input and output dimensions of
a Transformer Layer). Since we employ low-rank
adapters, we can effectively control the number of
additional parameters from adapters.

3.3 Stable Training for MPOBERT

With the above MPO-based approach, we can
scale a PLM to a deeper architecture in a highly
parameter-efficient way. However, as shown in
prior studies (Lan et al., 2019; Wang et al., 2022b),
it is difficult to optimize very deep PLMs, espe-
cially when shared components are involved. In
this section, we introduce a simple yet stable train-
ing algorithm for MPO-based PLM and then dis-
cuss how it addresses the training instability issue.

3.3.1 MPO-based Network Initialization
Existing work has found that parameter initializa-
tion is important for training deep models (Huang
et al., 2020; Zhang et al., 2019; Wang et al., 2022b),
which can help alleviate the training instability. To
better optimize the scaling PLMs, we propose a
specially designed initialization method based on
the above MPO-based architecture.

Initialization with MPO Decomposition. Since
MPO-based architecture shares global compo-
nents (i.e., the central tensor) across all layers, our
idea is to employ existing well-trained PLMs based
on weight sharing for improving parameter initial-
ization. Here, we use the released 24-layer AL-
BERT with all the parameters shared across lay-
ers. The key idea is to perform MPO decompo-
sition on the parameter matrices of the ALBERT
model and obtain the corresponding central and
auxiliary tensors. We first divide the model into
several groups by structure (embedding, attention,
and feed-forward network). Then, for each group,
We initialize central tensors by the derived central
tensors from the MPO decomposition results of
ALBERT. Since they are globally shared, one sin-
gle copy is only needed for initialization regardless
of the layer depth. Next, for auxiliary tensors, we
directly copy the auxiliary tensors from the MPO
decomposition results of ALBERT.

Scaling the Initialization. A potential issue is that
ALBERT only provides a 24-layer architecture, and
such a strategy no longer supports the initialization
for an architecture of more than 24 layers (without
corresponding auxiliary tensors). As our solution,
Inspired by the idea in Wang et al. (2022b) that
avoids the exploding update by incorporating an
additional scaling coefficient and multiplying the
randomly initialized values for the auxiliary tensors
(those in higher than 24 layers) with a coefficient
of (2L)−

1
4 , where L is the layer number. Then, we

present a theoretical analysis of training stability.

3.3.2 Theoretical Analysis
To understand the issue of training instability
from a theoretical perspective, we consider a
Transformer-based model F (x,W) with x and
W as input and parameters, and consider one-step
update △F 1. According to Wang et al. (2022b), a
large model update (△F) at the beginning of train-
ing is likely to cause the training instability of deep

1△F
△
= F (x,W − η ∂

∂W
L(F (x)− y))− F (x;W).

Transformer models. To mitigate the exploding up-
date problem, the update should be bounded by a
constant, i.e., ∥△F∥ = O(1). Next, we study how
the △F is bounded with the MPOBERT.

MPO-based Update Bound. Without loss of gen-
erality, we consider a simple case of low-order
MPO decomposition: n = 3 in Eq. (4). Follow-
ing the derivation method in Wang et al. (2022b),
we simplify the matrices W, A1, C and A2 to
scalars w,u,c,v, which means the parameter wl

at the l-th layer can be decomposed as wl =
ul · cl · vl. Based on these notations, we consider
L-layer transformer-based model F (x,w)(w =
{w1, w2, ..., wL}), where each sub-layer is normal-
ized with Post-LN: xl+1 = LN(xl +Gl(xl, wl)).
Then we can prove ∥△F∥ satisfies (see Theo-
rem A.1 in the Appendix):

∥△F∥ ≤
L∑
l=1

(c1vl ∥u∗l − ul∥+ c1ul ∥v∗l − vl∥

+ vlul ∥c∗1 − c1∥), (2)

The above equation bounds the model update in
terms of the central and auxiliary tensors. Since
central tensors (cl) can be initialized using the pre-
trained weights, we can further simplify the above
bound by reducing them. With some derivations
(See Corollary A.2 in the Appendix), we can ob-
tain (v2i + u2i)(uLvL) = O(1L) in order to guar-
antee that ∥△F∥ = O(1). For simplicity, we set
ui = vi = (2L)−

1
4 to bound the magnitude of each

update independent of layer number L. In the im-
plementation, we first adopt the Xavier method for
initialization, and then scale the parameter values
with the coefficient of (2L)−

1
4 .

Comparison. Previous research has shown that
using designed values for random initialization
can improve the training of deep models (Huang
et al., 2020; Zhang et al., 2019; Wang et al., 2022b).
These methods aim to improve the initialization of
general transformer-based architectures for train-
ing from scratch. As a comparison, we explore the
use of pre-trained weights and employ the MPO
decomposition results for initialization. In partic-
ular, Gong et al. (2019) have demonstrated the ef-
fectiveness of stacking pre-trained shallow layers
for deep models in accelerating convergence, also
showing performance superiority of pre-trained
weights over random initialization.

3.3.3 Training and Acceleration
To instantiate our approach, we pre-train a 48-
layer BERT model (i.e., MPOBERT48). For a fair
comparison with BERTBASE and BERTLARGE, we
adopt the same pre-training corpus (BOOKCOR-
PUS (Zhu et al., 2015) and English Wikipedia (De-
vlin et al., 2018)) and pre-training tasks (masked
language modeling, and sentence-order predic-
tion). We first perform MPO decomposition on
the weights of ALBERT and employ the initializa-
tion algorithm in Section 3.3.1 to set the parame-
ter weights. During the training, we need to keep
an updated copy of central tensors and auxiliary
tensors: we optimize them according to the pre-
training tasks in an end-to-end way and combine
them to derive the original parameter matrix for
forward computation (taking a relatively small cost
of parallel matrix multiplication).

Typically, the speed of the pre-training process
is affected by three major factors: arithmetic band-
width, memory bandwidth, or latency. We further
utilize a series of efficiency optimization ways to
accelerate the pre-training, such as mixed preci-
sion training with FP16 (reducing memory and
arithmetic bandwidth) and fused implementation
of activation and normalization (reducing latency).
Finally, we can train the 48-layer MPOBERT at
a time cost of 3.8 days (compared with a non-
optimized cost of 12.5 days) on our server con-
figuration (8 NVIDIA V100 GPU cards and 32GB
memory). More training details are can be found
in the experimental setup Section 4.1 and Ap-
pendix A.3 (Table 6 and Algorithm 2).

4 Experiments

In this section, we first set up the experiments and
then evaluate the efficiency of MPOBERT on a
variety of tasks with different model settings.

4.1 Experimental Setup

Pre-training Setup. For the architecture, we
denote the number of layers as L, the hidden
size as H , and the number of self-attention
heads as A. We report results on four model
sizes: MPOBERT12 (L=12, H=768, A=12),
MPOBERT48 (L=48, H=1024, A=16) and
MPOBERT48+ that implement cross-layer param-
eter sharing in three distinct groups as discussed
in subsection 3.2.2. We pre-train all of the models
with a batch size of 4096 for 10k steps.

Experiments MRPC SST-2 CoLA RTE STS-B QQP MNLI QNLI SQuAD Avg. #To (M)
F1 Acc. Mcc. Acc. Spear. F1/Acc. Acc. Acc. F1

Development set
Small Models (#To < 100M)
ALBERT12 89.0 90.6 53.4 71.1 88.2 -/89.1 84.5 89.4 89.3 82.7 11
ALBERT24 84.6 93.6 52.5 79.8 90.1 -/88.1 85.0 91.7 90.6 84.0 18
T512 89.2 94.7 53.5 71.7 91.2 -/91.1 87.8 93.8 90.0 84.8 60
MPOBERT12 90.3 92.3 55.2 71.8 90.5 -/90.1 84.7 91.2 90.1 84.0 20
MPOBERT48 90.8 94.7 58.3 77.3 91.4 -/89.5 86.3 92.0 92.3 85.8 75

Base Models (#To > 100M)
BERT12 90.7 91.7 48.9 71.4 91.0 -/90.8 83.7 89.3 88.5 82.9 110
XLNet12 85.3 94.4 49.3 63.9 85.6 -/90.7 90.9 91.8 90.2 82.5 117
RoBERTa12 91.9 92.2 59.4 72.2 89.4 -/91.2 88.0 92.7 91.2 85.4 125
BART12 91.4 93.8 56.3 79.1 89.9 -/90.8 86.4 92.4 91.6 82.8 140
MPOBERT48+ 89.7 94.4 57.4 79.8 91.1 -/89.3 87.1 92.4 91.4 86.0 102

Test set
Small Models (#To < 100M)
ALBERT12 89.2 93.2 53.6 70.2 87.3 70.3/- 84.6 92.5 89.3 81.1 11
ALBERT24 88.7 94.0 51.7 73.7 86.9 69.1/- 84.9 91.8 90.6 81.2 18
MobileBERT24♦ 88.8 92.6 51.1 70.4 84.8 70.5/- 83.3 91.6 90.3 80.4 25
T512 89.7 91.8 41.0 69.9 85.6 70.0/- 82.4 90.3 90.0 78.7 60
TinyBERT6♣ 87.3 93.1 51.1 70.0 83.7 71.6/- 84.6 90.4 87.5 79.9 67
DistilBERT6♣ 86.9 92.5 49.0 58.4 81.3 70.1/- 82.6 88.9 86.2 77.3 67
MPOBERT12 89.2 91.9 52.7 70.6 87.1 69.6/- 85.0 91.0 90.1 80.8 20
MPOBERT48 90.0 94.0 55.0 74.0 88.7 71.0/- 86.5 91.8 92.3 82.6 75

Base Models (#To > 100M)
BERT12♠ 88.9 93.5 52.1 66.4 85.8 71.2/- 84.6 90.5 88.5 79.1 110
XLNet12 89.2 94.3 47.3 66.5 85.4 71.9/- 87.1 91.4 90.2 80.4 117
RoBERTa12 89.9 93.2 57.9 69.9 88.3 72.5/- 87.7 92.5 91.2 82.6 125
BART12 89.9 93.7 49.6 72.6 86.9 71.7/- 84.9 92.3 91.6 81.5 140
MPOBERT48+ 89.9 94.5 56.0 74.5 88.4 70.5/- 86.5 92.6 91.4 82.7 102

Table 1: Performance comparison of different models on natural language understanding tasks (in percent). “#
To (M)” denote the number (in millions) of total parameters. We compare MPOBERT with PLMs (i.e., BERT and
ALBERT) and Parameter-efficient Transformers (i.e., MobileBERT, TinyBERT and DistilBERT), respectively. The
best and the second-best performance in each task are highlighted in bold and underlined. ♦: Experimental results
by Sun et al. (2020b). ♣: Experimental results by Jiao et al. (2019). ♠: Experimental results by Devlin et al. (2018).

Fine-tuning Datasets. To evaluate the perfor-
mance of our model, we conduct experiments
on the GLUE (Wang et al., 2018) and SQuAD
v1.1 (Rajpurkar et al., 2016) benchmarks. Since
fine-tuning is typically fast, we run an exhaustive
parameter search and choose the model that per-
forms best on the development set to make predic-
tions on the test set. We include the details in the
Appendix(see Appendix A.4.1 for the datasets and
Appendix A.4.2 for evaluation metrics)

Baseline Models. We compare our proposed
MPOBERT to the existing competitive deep PLMs
and parameter-efficient models. In order to make
fair comparisons, we divide the models into three
major categories based on their model sizes:

• Small models (#To <100M). ALBERT12 (Lan
et al., 2019) is the most representative PLM that
achieves competitive results with only 11M. In
addition, we consider PLMs (T512) and three

compressed models that have similar parameters,
namely MobileBERT (Sun et al., 2020b), Distil-
BERT (Sanh et al., 2019) and TinyBERT (Jiao et al.,
2019). We compare these compressed models to
show the benefit of scaling to deeper models over
compressing large models to small variants.
• Base models (#To > 100M). We compare with

BERT12, XLNet12, RoBERTa12 and BART12 for
this category. Note that we only include the base
variants that have similar model sizes in order to
make a fair comparison.

More details about the experiments are described
in Appendix A.4.

4.2 Main Results

Fully-supervised setting. We present the results
of MPOBERT and other baseline models on GLUE
and Squad for fine-tuning in Table 1.

Firstly, we evaluate MPOBERT’s performance

in comparison to other models with similar num-
bers of parameters. In particular, for small mod-
els, MPOBERT48 outperforms the best baseline
models and achieves substantial improvements on
both the development set (85.8 v.s. 84.8 for T512)
and test sets (82.6 v.s. 81.2 for ALBERT24). This
highlights the benefits of increased capacity from
layer-specific parameters (i.e., the auxiliary ten-
sors and layer-specific adapters) in MPOBERT.
Furthermore, for small and base models, 48-layer
MPOBERT consistently achieves better results
than all parameter-efficient models, while also
achieving comparable results to other 12-layer
PLMs with a reduced number of parameters. This
demonstrates the significant benefits of scaling
along the model depth with layer-specific parame-
ters in MPOBERT.

Secondly, we assess MPOBERT’s parameter ef-
ficiency by comparing it to other PLMs within the
same model depth. For instance, when consider-
ing models with L=12 layers, MPOBERT achieves
comparable results or even outperforms (+1.7 for
BERT12 and +0.4 for XLNet12) PLMs while hav-
ing fewer parameters. This further highlights the
advantages of MPOBERT’s parameter-efficient ap-
proach in constructing deep models.

Multitask Fine-tuning Setting. To demon-
strate the effectiveness of our proposed parameter-
sharing model in learning shared representations
across multiple tasks, we fine-tune MPOBERT,
BERT and ALBERT on the multitask GLUE bench-
mark and report the results in Table 2. Specifi-
cally, we design two groups of experiments. (1)
Deep vs. shallow models. Comparing with
BERT12, MPOBERT48 has much deeper Trans-
former layers but still fewer total parameters (i.e.,
75M vs. 110M). We find that MPOBERT48

achieves 1.4 points higher on average GLUE score
than BERT12. (2) Central tensors sharing vs. all
weight sharing. Comparing with ALBERT12,
MPOBERT12 only shares part of weights, i.e., cen-
tral tensors, while ALBERT12 shares all of the
weights. We find that sharing central tensors may
effectively improve the average results than sharing
all weights (82.0 v.s. 81.4 for MRPC).

Few-shot Learning Setting. We evaluate the per-
formance of our proposed model, MPOBERT, in
few-shot learning setting (Huang et al., 2022) on
two tasks, SST-2 and MNLI, using a limited num-
ber of labeled examples. Results in Table 3 show

Datasets B12 M48 M12 A12

MNLI (Acc.) 83.9 85.4 82.8 82.7
QNLI (Acc.) 90.8 91.1 90.0 89.4
SST-2 (Acc.) 91.7 93.0 90.9 90.6
RTE (Acc.) 81.2 82.0 79.8 79.1
QQP (Acc.) 91.2 87.6 90.4 89.7
CoLA (Mcc.) 53.6 54.9 45.0 35.9
MRPC (F1) 84.2 91.8 89.9 89.2
STS-B (Spear.) 87.4 89.0 86.9 87.5

Avg. 83.0 84.4 82.0 80.5
#To (M) 110 75 20 11

Table 2: Performance of multi-task learning on GLUE
benchmark obtained by fine-tuning BERT12 (B12),
MPOBERT48 (M48), MPOBERT12 (M12) and
ALBERT12 (A12) (in percent).

SST-2 MNLI

Shots (K) 10 20 30 10 20 30

BERT12 54.8 59.7 61.6 37.0 35.6 35.7

ALBERT12 56.7 59.3 60.0 36.3 35.6 36.5

MPOBERT12 58.9 65.4 64.6 36.7 36.7 37.1

Table 3: Comparison of few-shot performance.

that MPOBERT outperforms BERT, which suffers
from over-fitting, and ALBERT, which does not
benefit from its reduced number of parameters.
These results further demonstrate the superiority of
our proposed model in exploiting the potential of
large model capacity under limited data scenarios.

4.3 Detailed Analysis

Analysis of Initialization Methods. This experi-
ment aims to exclude the effect of initialized pre-
trained weights on fine-tuning results. We plot the
performance of the model on SST-2 w.r.t training
steps. In particular, we compare the performance
of MPOBERT using different initialization meth-
ods (Xavier in Fig. 3(a) and decomposed weights
of ALBERT in Fig. 3(b)) for pre-training. The
results demonstrate that pre-training MPOBERT
from scratch requires around 50k steps to achieve
performance comparable to BERTBASE, while ini-
tializing with the decomposed weights of ALBERT
significantly accelerates convergence and leads to
obvious improvements within the first 10k training
steps. In contrast, the gains from continual pre-
training for ALBERT are negligible. These results
provide assurance that the improvements observed
in MPOBERT are not solely attributed to the use
of initialized pre-trained weights.

0k 10k 20k 30k 40k 50k
Pre-training Steps

90.0

91.0

92.0

93.0
Ac

c.
BERT MPOBERT

(a) Pre-training from scratch

0k 10k 20k 30k 40k
Pre-training Steps

90.0

91.0

92.0

93.0

Ac
c.

BERT
ALBERT

MPOBERT

(b) Continual Pre-training

Figure 3: Comparison of the SST-2 accuracy achieved
through pre-training from scratch and pre-training with
the initialization of decomposed ALBERT weights.

B
ER

T
M

PO
B

ER
T

A
LB

ER
T

Surface Syntactic Semantic

Low Performance High Performance

Figure 4: A visualization of layer-wise linguistic pat-
terns. Each column represents a probing task, and each
row represents a Transformer layer. The red dashed box
indicates the layer that performs best.

Ablation Analysis. To assess the individual impact
of the components in our MPOBERT model, we
conduct an ablation study by removing either the
layer-specific adapter or the cross-layer parameter-
sharing strategy. The results, displayed in Table 4,
indicate that the removal of either component re-
sults in a decrease in the model’s performance,
highlighting the importance of both components
in our proposed strategy. While the results also
indicate that cross-layer parameter sharing plays a
more crucial role in the model’s performance.

Performance Comparison w.r.t Adapter Rank.
To compare the impact of the adapter rank in layer-
specific adapters on MPOBERT’s performance, we
trained MPOBERT with different ranks (4,8 and
64) and evaluate the model on downstream tasks in
Table 5. The results demonstrate that a rank of 8 is
sufficient for MPOBERT, which further shows the
necessity of layer-specific adapters. However, we

Experiment SST-2 RTE MRPC #To (M)

MPOBERT12 92.8 72.9 91.8 20.0

w/o Adapter 92.3 71.8 90.3 19.4
w/o PS 91.4 67.9 85.8 11.9

Table 4: Ablation study on the SST-2, RTE, and MRPC
datasets (in percent).

Rank SST-2 RTE MRPC #To (M)

4 91.9 69.7 88.2 19.7
8 92.8 72.9 91.8 20.0
64 91.6 69.3 88.1 24.3

Table 5: Comparison of different adapter ranks on three
GLUE tasks (in percent). “Rank” denotes the adapter
rank in MPOBERT.

also observe a decrease in the performance of the
variant with adapter rank 64. This illustrates that
further increasing the rank may increase the risk of
over-fitting in fine-tuning process. Therefore, we
set a rank of 8 for MPOBERT in the main results.

Analysis of Linguistic Patterns. To investigate the
linguistic patterns captured by MPOBERT, BERT,
and ALBERT, we conduct a suite of probing tasks,
following the methodology of Tenney et al. (2019).
These tasks are designed to evaluate the encoding
of surface, syntactic, and semantic information in
the models’ representations. The results, shown in
Fig. 4, reveal that BERT encodes more local syntax
in lower layers and more complex semantics in
higher layers, while ALBERT does not exhibit such
a clear trend. However, MPOBERT exhibits similar
layer-wise behavior to BERT in some tasks (i.e.,
task 0,2,4), and improved results in lower layers
for others (i.e., task 3) which is similar to ALBERT.
The result demonstrates that MPOBERT captures
linguistic information differently than other models,
and its layer-wise parameters play an important role
in this difference.

5 Conclusion

We develop MPOBERT, a parameter-efficient pre-
trained language model that allows for the efficient
scaling of deep models without the need for addi-
tional parameters or computational resources. We
achieve this by introducing an MPO-based Trans-
former layer and sharing the central tensors across
layers. During training, we propose initialization
methods for the central and auxiliary tensors, which
are based on theoretical analysis to address training

stability issues. The effectiveness of MPOBERT
is demonstrated through various experiments, such
as supervised, multitasking, and few-shot where it
consistently outperforms other competing models.

Limitations

The results presented in our study are limited
by some natural language processing tasks and
datasets that are evaluated, and further research
is needed to fully understand the interpretability
and robustness of our MPOBERT models. Addi-
tionally, there is subjectivity in the selection of
downstream tasks and datasets, despite our use of
widely recognized categorizations from the litera-
ture. Furthermore, the computational constraints
limited our ability to study the scaling performance
of the MPOBERT model at deeper depths such
as 96 layers or more. This is an area for future
research.

Ethics Statement

The use of a large corpus for training large language
models may raise ethical concerns, particularly re-
garding the potential for bias in the data. In our
study, we take precautions to minimize this issue
by utilizing only standard training data sources,
such as BOOKCORPUS and Wikipedia, which are
widely used in language model training (Devlin
et al., 2018; Lan et al., 2019). However, it is im-
portant to note that when applying our method to
other datasets, the potential bias must be carefully
considered and addressed. Further investigation
and attention should be given to this issue in future
studies.

Acknowledgments

This work was partially supported by National Nat-
ural Science Foundation of China under Grants No.
62206299 and 62222215, Beijing Natural Science
Foundation under grant No. L233008, Beijing Out-
standing Young Scientist Program under Grant No.
BJJWZYJH012019100020098 and CCF-Zhipu AI
Large Model Fund. Xin Zhao is the corresponding
author.

References
Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia

Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. 2020. The lottery ticket hypothesis for pre-
trained BERT networks. In Advances in Neural In-

formation Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. CoRR, abs/2204.02311.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ze-Feng Gao, Song Cheng, Rong-Qiang He, Zhi-Yuan
Xie, Hui-Hai Zhao, Zhong-Yi Lu, and Tao Xiang.
2020a. Compressing deep neural networks by ma-
trix product operators. Physical Review Research,
2(2):023300.

Ze-Feng Gao, Peiyu Liu, Wayne Xin Zhao, Zhong-
Yi Lu, and Ji-Rong Wen. 2022. Parameter-efficient
mixture-of-experts architecture for pre-trained lan-
guage models. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
COLING 2022, Gyeongju, Republic of Korea, Oc-
tober 12-17, 2022, pages 3263–3273. International
Committee on Computational Linguistics.

Ze-Feng Gao, Xingwei Sun, Lan Gao, Junfeng Li,
and Zhong-Yi Lu. 2020b. Compressing lstm net-
works by matrix product operators. arXiv preprint
arXiv:2012.11943.

Ze-Feng Gao, Kun Zhou, Peiyu Liu, Wayne Xin Zhao,
and Ji-Rong Wen. 2023. Small pre-trained language
models can be fine-tuned as large models via over-
parameterization. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 3819–3834.

Timur Garipov, Dmitry Podoprikhin, Alexander
Novikov, and Dmitry Vetrov. 2016. Ultimate ten-
sorization: compressing convolutional and fc layers
alike. arXiv preprint arXiv:1611.03214.

https://proceedings.neurips.cc/paper/2020/hash/b6af2c9703f203a2794be03d443af2e3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b6af2c9703f203a2794be03d443af2e3-Abstract.html
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://aclanthology.org/2022.coling-1.288
https://aclanthology.org/2022.coling-1.288
https://aclanthology.org/2022.coling-1.288

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei
Wang, and Tie-Yan Liu. 2019. Efficient training of
BERT by progressively stacking. In Proceedings of
the 36th International Conference on Machine Learn-
ing, ICML 2019, 9-15 June 2019, Long Beach, Cali-
fornia, USA, volume 97 of Proceedings of Machine
Learning Research, pages 2337–2346. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Xiao Shi Huang, Felipe Pérez, Jimmy Ba, and Maksims
Volkovs. 2020. Improving transformer optimization
through better initialization. In Proceedings of the
37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume
119 of Proceedings of Machine Learning Research,
pages 4475–4483. PMLR.

Zixian Huang, Ao Wu, Jiaying Zhou, Yu Gu, Yue
Zhao, and Gong Cheng. 2022. Clues before answers:
Generation-enhanced multiple-choice QA. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL
2022, Seattle, WA, United States, July 10-15, 2022,
pages 3272–3287. Association for Computational
Linguistics.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2019.
Tinybert: Distilling bert for natural language under-
standing. arXiv preprint arXiv:1909.10351.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. CoRR,
abs/2001.08361.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Peiyu Liu, Ze-Feng Gao, Wayne Xin Zhao, Zhi-Yuan
Xie, Zhong-Yi Lu, and Ji-Rong Wen. 2021. En-
abling lightweight fine-tuning for pre-trained lan-
guage model compression based on matrix product
operators. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 5388–5398.

Peiyu Liu, Zikang Liu, Ze-Feng Gao, Dawei Gao,
Wayne Xin Zhao, Yaliang Li, Bolin Ding, and Ji-
Rong Wen. 2023. Do emergent abilities exist in
quantized large language models: An empirical study.
arXiv preprint arXiv:2307.08072.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang,
Haotang Deng, and Qi Ju. 2020. Fastbert: a self-
distilling bert with adaptive inference time. arXiv
preprint arXiv:2004.02178.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Ad-
vances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 14014–14024.

Mohammadmahdi Nouriborji, Omid Rohanian,
Samaneh Kouchaki, and David A. Clifton. 2022.
Minialbert: Model distillation via parameter-efficient
recursive transformers. CoRR, abs/2210.06425.

Alexander Novikov, Dmitry Podoprikhin, Anton Os-
okin, and Dmitry Vetrov. 2015. Tensorizing neural
networks. arXiv preprint arXiv:1509.06569.

Ivan V Oseledets. 2011. Tensor-train decomposition.
SIAM Journal on Scientific Computing, 33(5):2295–
2317.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Machel Reid, Edison Marrese-Taylor, and Yutaka Mat-
suo. 2021. Subformer: Exploring weight sharing for
parameter efficiency in generative transformers. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 16-20 November, 2021, pages
4081–4090. Association for Computational Linguis-
tics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Xingwei Sun, Ze-Feng Gao, Zhong-Yi Lu, Junfeng Li,
and Yonghong Yan. 2020a. A model compression
method with matrix product operators for speech
enhancement. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 28:2837–2847.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020b. Mobilebert:
a compact task-agnostic bert for resource-limited de-
vices. arXiv preprint arXiv:2004.02984.

http://proceedings.mlr.press/v97/gong19a.html
http://proceedings.mlr.press/v97/gong19a.html
http://proceedings.mlr.press/v119/huang20f.html
http://proceedings.mlr.press/v119/huang20f.html
https://doi.org/10.18653/v1/2022.naacl-main.239
https://doi.org/10.18653/v1/2022.naacl-main.239
http://arxiv.org/abs/2001.08361
https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
https://doi.org/10.48550/arXiv.2210.06425
https://doi.org/10.48550/arXiv.2210.06425
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/2021.findings-emnlp.344
https://doi.org/10.18653/v1/2021.findings-emnlp.344

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R. Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R. Bowman, Dipanjan
Das, and Ellie Pavlick. 2019. What do you learn from
context? probing for sentence structure in contextu-
alized word representations. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Benyou Wang, Yuxin Ren, Lifeng Shang, Xin Jiang,
and Qun Liu. 2022a. Exploring extreme parameter
compression for pre-trained language models. In The
Tenth International Conference on Learning Repre-
sentations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang,
Dongdong Zhang, and Furu Wei. 2022b. Deep-
net: Scaling transformers to 1, 000 layers. CoRR,
abs/2203.00555.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2020.
Structured pruning of large language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 6151–
6162. Association for Computational Linguistics.

Yang You, Jing Li, Sashank J. Reddi, Jonathan Hseu,
Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh.
2020. Large batch optimization for deep learning:
Training BERT in 76 minutes. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Rose Yu, Stephan Zheng, Anima Anandkumar, and
Yisong Yue. 2017. Long-term forecasting using
tensor-train rnns. Arxiv.

Hongyi Zhang, Yann N. Dauphin, and Tengyu Ma.
2019. Fixup initialization: Residual learning without
normalization. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net.

Jinnian Zhang, Houwen Peng, Kan Wu, Mengchen Liu,
Bin Xiao, Jianlong Fu, and Lu Yuan. 2022. Minivit:
Compressing vision transformers with weight mul-
tiplexing. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2022, New
Orleans, LA, USA, June 18-24, 2022, pages 12135–
12144. IEEE.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,

Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023. A survey of large language models. CoRR,
abs/2303.18223.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE in-
ternational conference on computer vision, pages
19–27.

https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=RftryyYyjiG
https://openreview.net/forum?id=RftryyYyjiG
https://doi.org/10.48550/arXiv.2203.00555
https://doi.org/10.48550/arXiv.2203.00555
https://doi.org/10.18653/v1/2020.emnlp-main.496
https://openreview.net/forum?id=Syx4wnEtvH
https://openreview.net/forum?id=Syx4wnEtvH
https://openreview.net/forum?id=H1gsz30cKX
https://openreview.net/forum?id=H1gsz30cKX
https://doi.org/10.1109/CVPR52688.2022.01183
https://doi.org/10.1109/CVPR52688.2022.01183
https://doi.org/10.1109/CVPR52688.2022.01183
https://doi.org/10.48550/arXiv.2303.18223

A Appendix

A.1 Matrix Product Operators
Formally, given a weight matrix W ∈ RI×J ,
we can factorize the two dimensions into a prod-
uct of natural numbers, and reshape it into an n-
dimension tensor Wi1,...,in,j1,...,jn , which satisfies:

n∏
k=1

ik = I,

n∏
k=1

jk = J. (3)

This decomposition can be written as:

Wi1,...,in,j1,...,jn = T (1)[i1, j1] · · · T (n)[in, jn], (4)

where the T (k)[ik, jk] is a 4-dimensional tensor
with size dk−1 × ik × jk × dk in which dk is
a bond dimension linking T (k) and T (k+1) with
d0 = dn = 1. with size dk−1 × ik × jk × dk in
which

∏n
k=1 ik = I,

∏n
k=1 jk = J and d0 = dn =

1. This bond dimension indicates the associative
strength between two adjacent tensors. For clarity,
we can rewrite the decomposition results as cen-
tral tensor C and auxiliary tensors {Ai}n−1

i=1 . As an
important merit, such a decomposition can effec-
tively reorganize and aggregate the information of
the matrix (Gao et al., 2020a): central tensor C can
encode the essential information from the original
matrix, while auxiliary tensors {Ai}n−1

i=1 serve as
its complement to precisely reconstruct the matrix.

The k-th order and k ∈ {1, . . . , D}. The bond
dimension dk is defined by:

dk = min

(k∏
m=1

im × jm,

n∏
m=k+1

im × jm

)
. (5)

From Eq. (5), we can see that is going to be large
in the middle and small on both sides. Algorithm 1
presents a thorough algorithm for MPO decompo-
sition.

Algorithm 1 MPO decomposition procedure.

Require: matrix W ∈ RI×J , the number of local tensor m
Output : local tensor set {T (k)}mk=1

1: for k = 1, . . . ,m− 1 do
2: W[dk−1 × ik × jk,−1]← Reshape(W[I, J])
3: UλV⊤ ← SVD (W)

4: T (k)[dk−1, ik, jk, dk]← Reshape(U)
5: Calculate W = λV⊤

6: end for
7: Let T (m) ←W
8: Normalization
9: return local tensor set {T (k)}mk=1

The MPO representation of W is obtained by
factorizing it into a sequential product of local ten-
sors.

A.2 Proofs

Notations. We denote L(·) as the loss function.
LN(x) as the standard layer normalization with
scale γ = 1 and bias β = 0. Let O(·) denote stan-
dard Big-O notation that suppresses multiplicative
constants. Θ

= stands for equal bound of magnitude.
We aim to study the magnitude of the model up-
dates. We define the model update as ∥△F∥.

Definition F (x, θ) is updated by Θ(η) per SGD
step after initialization as η → 0. That is,
∥△F (x)∥ = Θ(η) where △F (x) can be calcu-
lated through F (x, θ−η ∂

∂θL(F (x)−y))−F (x; θ).

Theorem A.1 Given an N -layer transformer-
based model F (x, θ)(θ = {θ1, θ2, ..., θN}), where
θl denotes the parameters in l-th layer and each
sub-layer is normalized with Post-LN: xl+1 =
LN(xl +Gl(xl, θl)). In MPOBERT, θl is decom-
posed by MPO to local tensors: θl = ul ·cl ·vl, and
we share {ci}Ni=1 across N layers: cl = c1, l =
1, 2, · · · , N . Then ∥△F∥ satisfies:

∥△F∥ ≤
N∑
i=1

(c1vi ∥u∗i − ui∥+ c1ui ∥v∗i − vi∥

+ viui ∥c∗1 − c1∥) (6)

Proof. We follow (Zhang et al., 2019) and make
the following assumptions to simplify the deriva-
tions:

1. Hidden dimension d equals to 1;

2. var(x+Gl(x))
Θ
= var(x) + var(Gl(x));

3. All relevant weights θ are positive with mag-
nitude less than 1.

Given Assumption 1, if Gl(x) is MLP with the

weight θl, then Gl(x)
Θ
= θlx. With assumption 2,

we have:

xl+1 = fl(xl, θl) =
x+Gl(x)√

V ar(x+Gl(x))
(7)

Θ
=

1 + θl√
1 + θ2l

xl, (8)

Then, with Taylor expansion, the model update

∥△F∥satisfies:

∥△F∥ = ∥F (x, θ∗)− F (x, θ∥
=
∥∥x∗N+1 − xN+1

∥∥
= ∥f(x∗N , θ∗N)− f(xN , θN)∥
= ∥f(x∗N , U∗

N , C∗
N , V ∗

N)

−f(xN , UN , CN , VN)∥

≈
∥∥∥∥∂f∂x (x∗N − xN)

+
∂f

∂θ

∂θ

∂UN
(U∗

N − UN)T

+
∂f

∂θ

∂θ

∂CN
(C∗

N − CN)T

+
∂f

∂θ

∂θ

∂VN
(V ∗

N − VN)T
∥∥∥∥ (9)

With Eq. (8), the magnitude of ∂fl
∂x and ∂fl

∂θ is
bounded by:

∂fl
∂x

Θ
=

1 + θl√
1 + θ2l

(10)

∂fl
∂θl

Θ
=

1− θl

(1 + θ2l)
3
2

xl (11)

Since we apply MPO decomposition to θl, we get:

θl = Ul · Cl · Vl (12)

For simplicity, we reduce the matrices U ,C,V to
the scalars u,c,v. Thus with Assumption 3, Eq. (9)
is reformulated as: Finally, with Assumption 3 we
have:

∥△F∥ =
∥∥x∗N+1 − xN+1

∥∥ (13)

≤
N∑
i=1

1− uic1vi

(1 + u2i c
2
1v

2
i)

3
2

(c1vi ∥u∗i − ui∥

+ c1ui ∥v∗i − vi∥) + viui ∥c∗1 − c1∥)

≈
N∑
i=1

(c1vi ∥u∗i − ui∥+ c1ui ∥v∗i − vi∥

+ viui ∥c∗1 − c1∥) (14)

2

Corollary A.2 Given that we initialise c1 in
MPOBERT with well-trained weights, it is reason-
able to assume that updates of c1 are well-bounded.
Then △F satisfies ∥△F∥ = O(1) when for all
i = 1, · · · , N :

(v2i + u2i)(uNvN) = O(
1

N
) (15)

Proof. For an N -layer MPOBERT, we have:

∥△F∥ ≤
N∑
i=1

(vi ∥u∗i − ui∥+ ui ∥v∗i − vi∥) (16)

≤η

N∑
i=1

(vi

∥∥∥∥∂L∂F
∥∥∥∥ ·

∥∥∥∥∂F∂θi
∥∥∥∥ ·

∥∥∥∥ ∂θi∂ui

∥∥∥∥
+ ui

∥∥∥∥∂L∂F
∥∥∥∥ ·

∥∥∥∥∂F∂θi
∥∥∥∥ ·

∥∥∥∥∂θi∂vi

∥∥∥∥) (17)

By assumption
∥∥ ∂L
∂F

∥∥ = O(1) and
∥∥∥ ∂F
∂θi

∥∥∥ ≤∥∥∥ ∂F
∂θN

∥∥∥ Θ
= ∥θN∥, we achieve:

η
N∑
i=1

(vi

∥∥∥∥∂L∂F
∥∥∥∥ ·

∥∥∥∥∂F∂θi
∥∥∥∥ ·

∥∥∥∥ ∂θi∂ui

∥∥∥∥
+ ui

∥∥∥∥∂L∂F
∥∥∥∥ ·

∥∥∥∥∂F∂θi
∥∥∥∥ ·

∥∥∥∥∂θi∂vi

∥∥∥∥) (18)

=η

N∑
i=1

(v2i uNvN + u2iuNvN)

=O(
N∑
i=1

(v2i + u2i)(uNvN)) = O(1), (19)

Finally, we achieve:

(v2i + u2i)(uNvN) = O(
1

N
) (20)

Due to symmetry, we set ui = u, vi = v. Thus,
from A.2, we set u = v = (2N)−

1
4 to achieve to

bound the magnitudes of each update to be inde-
pendent of model depth N , i.e., ∥△F∥ = O(1).

2

A.2.1 Details of Training
A.3 Training Details
Here we describe the details of the pre-training
process in Algorithm 2. For pre-training, we tune
the learning rate in the range of [1.0× 10−5, 1.0×
10−6] and use the LAMB optimizer (You et al.,
2020). Since fine-tuning is typically fast, we run an
exhaustive parameter search (i.e., learning rate in
the range of [2.0× 10−4, 2.0× 10−6], batch size
in {8,16,32}) and choose the model that performs
best on the development set to make predictions on
the test set.

A.3.1 Details of Training Configurations
In this part, we list the training configurations of
MPOBERT and other representative PLMs in Ta-
ble 6.

Models #To (M) Depth Samples Training time GLUR Dev. GLUE Test

T511B 11000 24 - - - 89.0

T5BASE 220 24 128× 524k 16 TPU v3
1 Day (t5-base)

84.1 82.5

BERTLARGE 330 24 256× 1000k 16 Cloud TPUs
4 Days

84.1 81.6

ALBERTXXLARGE 235 1 4096× 1.5M TPU v3
16 Days

90.0 -

BARTLARGE 407 24 8000× 500k - 88.8 -

RoBERTaLARGE 355 24 8000× 500k 1024 V100 GPUs
1 Day

88.9 -

XLNetLARGE 361 24 8192× 500k 512 TPU v3
5.5 Days

87.4 -

MPOBERT48+ 102 48 4096× 10k 8 V100 GPUs
3.8 Days

85.6 81.7

Table 6: Comparison with the strongest variants of popular PLMs. Since T511B has far more parameters than other
candidates, it’s reasonable to use T5base for a fair comparison.

Algorithm 2 The MPOBERT training procedure.

Require: W(l): Weight matrix of l-th layer in MPOBERT.
W

(0)
A : Pre-trained weight matrix in ALBERT. U(l) and

D(l): Matrices in low-rank adapter. η: Learning rate. L:
Stochastic objection function. L: Model layers number.
(MPO decomposition)

1: {A(l)
1 ,A(l)

2 , C(l),A(l)
3 ,A(l)

4 } ←MPO (W(l))
2: {A(0)

1 ,A(0)
2 , C(0),A(0)

3 ,A(0)
4 } ←MPO (W(0)

A)
(Initialization Procedure)

3: for 0 < l ≤ 24 do
4: C(l) ← C(0), {A(l)

j }
4
j=1 ← {A

(0)
j }

4
j=1

5: end for
6: for 24 < l ≤ L do
7: C(l) ← C(0), {A(l)

j }
4
j=1 ← {(2L)−

1
4A(0)

j }
4
j=1

8: end for
9: U(l) ← 0, D(l) ← N (0, σ2)

10: W(l) = A(l)
1 A

(l)
2 C(l)A

(l)
3 A

(l)
4 +W

(l)
Adapter

(Training procedure with mixed precision and fused im-
plementation techniques.)

11: while not converged do
12: t← t+ 1

13: gt ← ∂L(W
(l)
t)

∂(W
(l)
t)

14: W
(l)
t ←W

(l)
t−1 − η · gt

15: end while
16: return Converged model

A.4 Experimental Details

A.4.1 Details of Fine-tuning Datasets
GLUE benchmark covers multiple datasets (MNLI,
QNLI, QQP, CoLA, RTE, MRPC, SST-2) 2. The

2In line with Raffel et al. (2020), we do not test WNLI due
to its adversarial character with respect to the training set.

SQuAD is a collection of 100k crowd-sourced
question/answer pairs. Given a question and a pas-
sage, the task is to predict the answer text span in
the passage.

A.4.2 Details of Evaluation Metrics
Following Gao et al. (2022), we employ Matthew’s
correlation for CoLA, Spearman for STS-B, F1 for
MRPC, and accuracy for the remaining tasks as the
metrics for the GLUE benchmark. We compute and
present the average scores across all test samples
for each of the aforementioned metrics.

A.5 Analysis of Inference Speed

In this part, we provide FLOPs and inference costs
for MPOBERT-48, MPOBERT-12 and BERT-12.
Note that we have primarily focused on the FLOPs
within the Transformer layer. By conducting mul-
tiple experiments and averaging the results, we
report the results in Table 7. (1) MPOBERT-12
exhibits higher FLOPs than BERT-12. Notably,
owing to MPOBERT-12’s significantly reduced pa-
rameter count in comparison to BERT-12 (20M vs.
110M), it becomes more feasible to increase the
inference batch size within a similar GPU memory
(from 4x to 5x). (2) In the case of MPOBERT-48
compared to BERT-12, there is a higher increase in
FLOPs. The added computational load originates
from increased hyperparameters of layers "L" (48
vs. 12) and hidden dimension size "H" (1024 vs.

Table 7: Model Performance Comparison

Model GLUE GFLOPs Inference

BERT-12 79.1 96.64 1.00x
MPOBERT-12 80.8 139.80 0.94x
MPOBERT-48 82.6 670.01 5.88x

768). The remarkable enhancement in the perfor-
mance of MPOBERT-48 is clearly demonstrated
by the results of the GLUE Test (82.6 vs. 79.1), un-
derscoring the value of the computational load as-
sociated with this part. As a result, we recommend
prioritizing MPOBERT-48 in scenarios where per-
formance takes precedence.

It is important to highlight that MPOBERT holds
the promise of substantially enhancing inference
speed. This is mainly attributed to the fact that
the speed of inference is typically constrained by
memory bandwidth, which, in turn, is restricted
by the available memory capacity. To elucidate
this point, envision a situation where the model
weights utilized in matrix multiplications are stored
in a smaller yet high-bandwidth memory. In such
cases, there exists a notable potential for achieving
a significant speed boost, particularly when com-
pared with the situation where these weights must
be fetched from a larger memory characterized by
lower bandwidth.

