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Abstract

Competive programming benchmarks are widely used in scenarios such as pro-
gramming contests and large language model assessments. However, the growing
presence of duplicate or highly similar problems raises concerns not only about
competition fairness, but also about the validity of competitive programming as a
benchmark for model evaluation. In this paper, we propose a new problem—similar
question retrieval—to tackle the problem. Due to the lack of both data and models,
solving this problem is challenging. To this end, we introduce CPRet, a retrieval-
oriented benchmark suite for competitive programming, covering four retrieval
tasks: two code-centric (i.e., Text-to-Code, Code-to-Code) and two newly proposed
problem-centric tasks (i.e., Problem-to-Duplicate, Simplified-to-Full)—built from a
combination of automatically crawled problem—solution data and manually curated
annotations. Our contribution includes both high-quality training data and tempo-
rally separated test sets for reliable evaluation. Besides, we further develop two
task-specialized retrievers based on this dataset: CPRetriever-Code, trained with a
novel Group-InfoNCE loss for problem—code alignment, and CPRetriever-Prob,
fine-tuned for indentifying problem-level similarity. Both models achieve strong
results and are open-sourced for local use. Finally, we analyze LiveCodeBench and
find that high-similarity problems inflate model pass rates and reduce differentia-
tion, underscoring the need for similarity-aware evaluation in future benchmarks.

Github: https://github.com/coldchair/CPRet

Online Demo: https://www.cpret.online/

1 Introduction

Competitive programming contests—from high-school Olympiads like the IOI to university-level
events such as the [ICPC—<challenge participants to solve algorithmic problems under tight time and
memory limits, requiring both strong coding skills and deep algorithmic insight. Because problem
statements are precisely specified in natural language and solutions can be graded automatically, these
problems have become a canonical benchmark for assessing the reasoning and coding abilities of large
language models (LLMs) [1} 2]. Recent advances in code-oriented LLMs—spanning commercial
flagships such as OpenAl 04-mini [3]], Gemini-2.5-Pro [4]], and Grok-3-Mini (High) [5]], alongside
research releases like DeepSeek-R1 [6] highlight the value of competitive programming as a testbed
for algorithmic reasoning, program synthesis, and computer-science education.

Competitive programming has witnessed rapid growth over the past three decades, with thousands
of new problems introduced annually. This expansion has led to a growing concern: the increasing
presence of similar or repetitive problems within large repositories. As shown in Figure [T} our

*Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.


https://github.com/coldchair/CPRet
https://www.cpret.online/

collected data reveals a significant rise in community discussions around duplicate problems in recent
years. However, it is often difficult to determine whether a new problem is a duplicate of existing ones,
as this typically relies on the memory and judgment of human problem setters. Unchecked duplication
brings concrete downsides. In human programming contests, repeated or highly similar problems
give an unfair advantage to participants who have seen them before. In competitive programming
benchmarks for LLMs, the presence of repeated or highly similar problems can lead to inflated
performance scores, as models may rely on memorized instances of past competition problems from
their training data rather than demonstrating genuine algorithmic reasoning. This compromises the
evaluation of their true ability to solve novel and unfamiliar challenges.

Competitive programming problem retrieval

poses unique challenges compared to standard Growth of Duplicate Problem Discussions Over Time

code retrieval: problem statements are often ab- - 785
—eo— Trend Line

stract, narrative-driven, and may admit multi-
ple fundamentally different solutions, requiring
models to capture high-level algorithmic ideas
rather than surface code patterns. This motivates
the need for specialized problem-level retrieval
models.

N N
o w
o o

Number of Discussions
=
(9]
o

A promising way to address the issue of dupli- 1001
cate problems is to leverage retrieval models that
identify semantically similar problems based on 50
learned representations. Such models offer a

scalable and model-agnostic solution for redun- 0+
dancy detection in large problem repositories.
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petitive programming retrieval have primarily

focused on code-centric tasks, such as retrieving

solution code given a problem description (Zext-to-Code) or retrieving alternative correct solutions
given a reference implementation (Code-to-Code), which overlook the dimension of retrieving similar
problems themselves—an essential capability for both redundancy detection and educational search.

To fill this gap, we introduce two new problem-centric retrieval tasks. (I) Problem-to-Duplicate
asks a model to retrieve the most semantically or structurally similar problem to a given target. We
manually annotated 700 duplicate pairs; 200 pairs form a held-out test set in which the model must
locate the duplicate among a corpus of 10,000+ problems, and the remaining ~ 500 pairs are used
for training. (I) Simplified-to-Full supplies a simplified or paraphrased statement and requires the
model to find the original full version. We collected 17,000 human-written simplifications aligned
with their source problems; 10,000 pairs constitute the test set and the remaining ~ 7, 000 pairs serve
as training data. These tasks target practical problem-retrieval needs—spotting duplicate or highly
similar problems and retrieving the original statement from a simplified description. In addition,
we perform a temporal analysis of the two code-centric tasks and uncover severe train-test leakage:
models fare markedly worse on the newest problems. To this end, we rebuild both benchmarks,
drawing the test sets exclusively from the most recent problems to enforce strict temporal separation.

Furthermore, to address the real-world retrieval demands, we develop two task-specialized models
CPRetriever-Code and CPRetriever-Prob using our new corpus: (I) the first one is trained on 38
k problems and 2.9 M multi-language solutions with a new Group-InfoNCE loss that treats every
correct solution of the same problem as a positive and penalizes similarity within that positive
set. This encourages alignment across diverse implementations, and it achieves the overall best
performance on all code-centric tasks. (II) The second one is fine-tuned from CPRetriever-Code on
our duplicate-detection and simplified-to-full datasets, and it performs the overall best results on the
two problem-centric tasks.

Finally, we apply CPRetriever-Prob to analyze problems in LiveCodeBench released after September
2024 by computing each problem’s maximum similarity to earlier data. We observe two key trends: (I)
Pass rates increase with similarity—problems more similar to prior examples are consistently easier
for models to solve, regardless of difficulty; (Il) High similarity reduces model differentiation—as



similarity grows, performance gaps between models shrink, suggesting that models may solve such
problems by relying on memorized patterns rather than demonstrating true reasoning ability in
novel scenarios. These findings highlight the importance of accounting for problem similarity when
constructing benchmarks to avoid overestimating model capabilities.

Overall, our key contributions can be summarized as follows:

e Comprehensive Benchmark: We construct a large-scale, high-quality dataset for competitive
programming, covering four key retrieval tasks (two focused on code retrieval and two newly proposed
for problem retrieval). Our benchmark reflects realistic retrieval needs in programming contests and
addresses issues such as problem repetition and dataset leakage.

o Effective Models: We develop two task-specialized retrieval models with strong performance,
trained with our newly designed Group-InfoNCE loss. Both models are open-sourced and can be run
locally—an important feature given the privacy constraints in contest settings—providing practical
tools for code and problem retrieval and helping mitigate the growing issue of duplicate problems in
competitive programming.

o Similarity-Aware Evaluation: We provide insightful studies on the impact of problem similarity in
competitive programming, and find that problems with high similarity to prior data yield inflated pass
rates and reduced model differentiation, especially for weaker models. These results highlight the
importance of controlling for similarity when designing benchmarks and suggest that future datasets
should stratify or filter test problems based on their similarity to past content.

2 Related Work

2.1 Datasets for Competitive Programming

Several datasets have been proposed to train and evaluate LLMs on competitive programming tasks.
Early efforts include Description2Code [7l], which gathered problems and solutions from CodeChef
and Codeforces, followed by the APPS dataset [8], which became a widely used benchmark across
a mix of competition-style and introductory problems. CodeContests [9], used in DeepMind’s
AlphaCode, expanded coverage but remained limited in scale. More recently, TACO [[10] constructed
the largest dataset (26K problems) by aggregating multiple sources. In the retrieval setting, ColR
[L1]] built on APPS and CodeTransOcean [12] to define two retrieval tasks: text-to-code and code-to-
code, helping assess model capabilities in aligning problem descriptions and solution code. Despite
their contributions, these datasets have several limitations: (i) many were collected before 2023
and suffer from potential data leakage, (ii) problem types are often narrow in scope, and (iii) both
problem statements and solutions are typically limited to English and Python, reducing linguistic and
implementation diversity.

For evaluating programming ability, HumanEval [2] remains a widely used standard, featuring hand-
written Python problems with corresponding unit tests for functional correctness. LiveCodeBench
[1] improves upon earlier efforts by continuously collecting real-world problems from LeetCode,
AtCoder, and Codeforces, and applies temporal separation to reduce data contamination. However,
these benchmarks do not account for problem-level similarity between new and historical problems—a
distinct issue from data leakage—which can still lead to overly optimistic assessments of model
performance due to hidden redundancy.

2.2 Embedding Models for Retrieval

Dense retrieval models learn to map queries and candidates into a shared embedding space for
efficient similarity search. Early methods like DSSM [13]] and Sentence-BERT [[14] paved the way
for supervised contrastive training, leading to influential retrievers such as Dense Passage Retrieval
(DPR) [15].

Recent efforts have focused on building general-purpose embedding models (e.g., E5-Mistral [16],
GTE-Qwen?2 [17], SFR-Embedding [18]], NV-Embed [[19, 20], Ling-Embed|[21]]) that perform well
across a wide range of retrieval tasks. These models are commonly evaluated on MTEB [22]], a
standardized benchmark suite covering diverse tasks such as semantic search, classification, and
reranking. For the code domain, specialized models like CodeSage [23]], SFR-Embedding-Code
[24], Qodo-Embed[25] use code-specific data and retrieval-aware objectives to significantly improve



performance on benchmarks such as CoIR. While both general-purpose and code-specific embedding
models can be applied to competitive programming, we find their performance on code-centric
and problem-centric retrieval tasks remains limited—highlighting the need for a dedicated solution
tailored to the unique characteristics of this domain.

High-quality retrieval has been shown to benefit downstream tasks like code generation via Retrieval-
Augmented Generation (RAG), where an LLM leverages retrieved problem-solution pairs as context.
For example, Shi et al. [26] explored solving Olympiad-level problems with RAG, Li et al. [27]
proposed critic-guided retrieval-augmented planning, and Mapcoder [28] introduced MapCoder,
a multi-agent code generation framework using retrieval. These studies suggest that problem-
level retrieval can substantially enhance LLM performance, motivating specialized embeddings for
competitive programming.

While temporal splits and duplicate-problem detection are not new concepts—having been explored
in other domains such as finance [29] and software community question answering [30]—their
systematic application to competitive programming remains underexplored. Existing benchmarks
(e.g., MTEBJ22]], CoIR[11]]) often lack strict temporal separation, potentially inflating evaluation
results. Our work extends these established principles to programming contests, where duplicate or
temporally overlapping problems introduce unique challenges: algorithmically similar tasks may
differ superficially in text but still bias performance. By constructing a benchmark with rigorous
temporal splits and fine-grained similarity filtering, we aim to build fairer evaluation standards and
reveal new insights into the relationship between problem similarity and model discrimination ability.

3 Method

3.1 Overview of Retrieval Tasks

We define and evaluate four distinct retrieval tasks, each capturing a different dimension of semantic
understanding and reuse in competitive programming:

* Text-to-Code Retrieval: Given the full natural language description of a problem, retrieve
one or more correct solution codes. This task assesses a model’s ability to align problem
semantics with executable implementations.

* Code-to-Code Retrieval: Given one accepted solution, retrieve alternative correct solutions
to the same problem. This task evaluates a model’s capacity to understand code functionality
and identify semantically equivalent but syntactically diverse implementations.

* Problem-to-Duplicate Retrieval: Given a problem description, retrieve other problems that
are duplicated, including exact matches or closely related in terms of solution strategy. This
task is useful for identifying redundancy and measuring problem novelty across platforms.

 Simplified-to-Full Retrieval: Given a simplified version of a problem, retrieve the corre-
sponding one with full description. This task examines cross-abstraction retrieval capabili-
ties, bridging accessibility-oriented rewrites and original problem statements.

These tasks jointly form a comprehensive benchmark for evaluating retrieval models in the context of
competitive programming, covering problem-code alignment, solution diversity, duplication detection,
and abstraction-level matching. Table [T summarizes the statistics of each retrieval task, including
training and test set sizes, as well as average token lengths for both queries and corpus items.

3.2 Dataset and Benchmark Construction
3.2.1 Problems and Codes Data

We construct a large-scale dataset of programming contest problems and their corresponding accepted
solutions to support both model training and the evaluation of retrieval tasks. Compared to existing
datasets, our dataset provides broader temporal coverage, richer language diversity, and more varied
contest formats. It includes recent problems from multiple online judges, spans several programming
languages, and covers both ICPC-style (International Collegiate Programming Contest) and OI-
style (Olympiad in Informatics) problems—the latter involving partial scoring and more complex
algorithmic requirements. Each problem is paired with one or more solutions and annotated with



Table 1: Statistics of the four retrieval tasks in CPRet. We report the number of training and test
items, where #Train-Code indicates the number of distinct solution codes, and #Train-Pair refers
to the number of (anchor, positive) pairs used for training. Lquery and Lcorpus denote average token
lengths.

#Train-  #Train- #Train- #Test-  #Test-  #Test-

Retrieval Task  proplem  Code Pair  Query Corpus Qrels Louery Lcompus

Text-to-Code 38.8K 203M  2.93M 4.9k 41.6k  41.6k 1038 1210
Code-to-Code 4.8k 39.8k  39.8k 1132 1185
Problem-to-Duplicate 874 / 491 168 10.9k 202 565 765
Simplified-to-Full ~ 7.6k / 7.6k 10k 10k 10k 226 697
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Figure 2: Left: NDCG@10 scores on CoIR/APPS across model release dates, showing steady
performance improvement as models evolve. Right: Performance on the Text-to-Code task grouped
by problem release year, revealing sharp degradation on older problems, especially around major
dataset release points (Description2Code, APPS, CodeContests).

precise timestamp information, enabling temporally-aware training and evaluation across semantic
retrieval tasks. As summarized in Table [2} our dataset—CPRet-PCPCD—offers wider coverage
across problem sources, types, and languages, and serves as a stronger foundation for retrieval-based
modeling in competitive programming.

Table 2: Comparison of competitive programming datasets. #Src: Number of data sources (e.g.,
online judges). #P-Type: Number of problem types (e.g., ICPC-style with full-score only vs Ol-style
with partial scoring). #Lang-P: Number of languages used for problem descriptions. #Lang-C:
Number of programming languages used in solutions. See Appendix [A.5]for more detailed dataset
statistics.

Dataset #Prob #Code #Src #P-Type #Lang-P #Lang-C  Cut-off
Description2Code [7] 78K 309K 3 1 1 2 2016/08
APPS[8] 10K 232K 7 1 1 1 2020/10
CodeContests[9] 13.6K  4.5M 5 1 1 4+ 2021/07
TACO[10] 264K 1.55M 10 1 1 1 2023/02
CPRet-PCPCD (ours) 422K 29M 12 2 3 20+ 2024/12

As shown in Figure 2] on the Text-to-Code task using the historical APPS dataset, model performance
improves over time as newer and stronger models are introduced. However, we observe a clear drop
in performance when problems are grouped by their original release year—only stabilizing after
2022. This indicates potential data leakage or memorization in earlier benchmarks and underscores
the need for temporally separated evaluation. Accordingly, we use problems and solutions from 2023
onward in our collected dataset as the test set for both the Text-to-Code and Code-to-Code tasks.



3.2.2 Duplicate Programming Problem Pairs

In many instances, when a newly released contest problem closely resembles or duplicates a previ-
ously published one, participants will highlight this in the associated discussion threads or contest
forums. To leverage this observation, we collected all publicly available discussion threads and blog
posts from two major competitive programming platforms: Codeforces and Luogu. We applied
a combination of keyword-based heuristics and large language model (LLM)-based classification
to identify approximately 5,000 potentially relevant entries. These candidates were subsequently
verified through manual annotation by several experienced competitive programmers.

To ensure consistency and clarity in annotation, we defined three levels of duplication between
problems:

* Exact Match: An accepted (AC) solution for one problem can directly pass the other without
modification.

* Near Match: An AC solution for one problem can be adapted to solve the other with minor
edits that could reasonably be made by someone unfamiliar with the second problem.

* Method Match: The core idea and solution approach are the same, but the code differs in
non-essential or implementation-specific details.

We ultimately identified around 700 pairs of duplicate problems. Since some problems may belong
to duplication clusters involving more than two problems, we first performed clustering to group
mutually duplicate problems. We then randomly selected 30% of the clusters to construct the test set
for the Problem-to-Duplicate retrieval task. Within each selected cluster, one problem was randomly
designated as the query, while the remaining ones were placed in the corpus. To further increase task
difficulty and realism, we added all other Codeforces problems to the corpus as distractors.

3.2.3 Simplified and Full Problem Description Pairs

To support beginners and non-native speakers, users on the Luogu platform have contributed Chinese
translations and simplified versions of competitive programming problems originally written in
English (e.g., on Codeforces) or Japanese (e.g., on AtCoder). We crawled these user-generated
simplifications and applied filtering procedures to remove low-quality entries, particularly those
stemming from direct or unedited machine translation.

After cleaning, we obtained approximately 17,000 high-quality pairs of full problem descriptions
and their corresponding simplified versions. From this set, we randomly selected 10,000 pairs to
construct the test set for the Simplified-to-Full retrieval task, where the simplified description serves
as the query and the full version is used as the corpus. The remaining around 7,000 pairs are used for
training.

3.3 Competitive Programming Retrievers
3.3.1 CPRetriever-Code: Multi-Positive Contrastive Learning for Problem-Code Alignment

We train CPRetriever-Code using a supervised contrastive learning framework tailored for aligning
problem descriptions with diverse correct solutions. Each problem is paired with multiple valid codes,
and the model learns to capture this alignment while preserving representation diversity.

We begin with the standard InfoNCE loss [31], where each (problem, solution) pair (x;, xj) is
contrasted against others in the batch:

exp(sim(x;, fj—)/T)

. 1
Z;‘Vﬂ exp(sim(x;, $j_)/7') M

Linfonce = — log

Limitation of Single-Positive Loss. In practice, many problems have multiple correct solutions
G; = :rZH, ...,z A common extension averages the similarities over all positives [32]:

", exp (sim(z;, 2i7) /7
Liuttipos = — log 2 - ( . ( )/7) : @)
Zj;éi exp (sim(z;, z;)/7)




However, this ignores the internal structure of the positive set and does not encourage consistency
among the positives.

Group-InfoNCE. To better utilize multiple correct solutions, we propose Group-InfoNCE, which
treats the positive set as a whole. The loss promotes similarity between the query x; and its group G,
while contrasting against other problems and groups:

exp (simg(z;, G;)/7)
exp (simg (i, Gi)/T) + 32,4 [exp (sim(xi, ;) /7) + exp (simg(z:, G)/7)]
n Penalty(z;, G;)

LGroup = - 1Og

2
3
Here, group similarity is defined as:
. 1 m ' .
simg(x;, G;) = - Z&m(wi,xj )s 4
k=1

and the variance-based regularization encourages consistency within the group:

Penalty(z;, G;) = Varj_,; (sim(:z:i, xf+)) . (5)

This group-based formulation improves representation quality by explicitly modeling the structure of
multiple correct solutions, resulting in more stable and discriminative embeddings for code-centric
tasks. Although Group-InfoNCE enforces consistency between a problem embedding and its set of
correct solutions, it does not constrain the diversity of the solutions themselves. The variance-based
regularization ensures that each solution maintains a consistent similarity to the problem embedding,
effectively "surrounding" it in the code space without collapsing distinct approaches. In practice,
these similarities converge around an average value, allowing the problem representation to capture
the essential idea while accommodating diverse algorithmic strategies. Empirical results on both
base models (see Tables 4] and [5)) show consistent improvements in retrieval performance and robust,
discriminative embeddings.

Format Masking for Robustness. To reduce reliance on superficial cues, we apply random masking
to non-essential parts of the problem description during training, including I/O format explanations,
sample inputs/outputs, and explicit data constraints. This encourages the model to focus on the
core algorithmic intent rather than overfitting to formatting patterns, and improves generalization to
problems with diverse or unfamiliar layouts.

3.3.2 CPRetriever-Prob: Fine-Tuning on Problem-Level Tasks

CPRetriever-Prob is obtained by fine-tuning CPRetriever-Code on problem-level retrieval tasks.
While CPRetriever-Code captures general alignment between problems and solutions, this stage
specializes the model for retrieving semantically or structurally related problems—such as duplicates
or simplified versions.

In particular, we jointly train on data from the Problem-to-Duplicate and Simplified-to-Full tasks
(Section [3.1)), enabling the model to learn fine-grained alignment between problems that are either
functionally equivalent or differ primarily in abstraction level.

Training Format and Loss. Each training example is structured as a triplet (z, 2™, x~), where x is
the query, 2™ is a semantically aligned problem, and 2~ is a hard negative. We use the triplet margin
loss [33]]:

Etriplet = max (07 Sim(‘ra ‘Ti) - sim(x, $+) + a) ) (6)

where sim(-, -) is cosine similarity and « is the margin.

Hard Negative Mining. As our dataset primarily contains positive pairs, we construct hard negatives
by first retrieving the top-10 most similar candidates for each query using a pretrained retriever
(SFR-Embedding-Code-2B_R[24]]) and randomly sampling one as a negative. To ensure the sampled
negative is not a false match, we use Qwen-2.5-Max[34]] to verify that it is not equivalent to the
query in terms of problem intent. This automatic filtering yields challenging yet reliable negatives
without requiring manual annotation.



4 Experiment

4.1 Experimental Setup

We develop two retrieval models based on the SFR-Embedding-Code-2B_R[24] embedding model,
which is built on top of Gemma-2-2B[35]] and further pre-trained on code-related tasks. We further
evaluate our method on the Qwen3-Embedding-4B[36] model, released in June 2025, which demon-
strates stronger retrieval capabilities. Detailed training configurations are provided in Appendix

4.2 Main Results

Table 3: Retrieval performance across models with different scales. We use NDCG@ 10 [37] as the
primary metric to measure ranking quality across tasks. T2C: Text-to-Code. C2C: Code-to-Code.
P2Dup: Problem-to-Duplicate. S2Full: Simplified-to-Full. Avg: Average of the four tasks.

Scale Model Type Size T2C C2C P2Dup S2Full Avg

contriever-msmarco [38] general 109M 1.06 7.49 5.26 43.04 14.21
multilingual-e5-small [39 general 110M 2.73 13.52 14.90 52.07 20.80

Ty esesmaiva@z  code  130M  10.16 2224 1742 67.07 29.22
gte-modernbert-base [40 general 149M 14.99 36.22 21.12 77.45 37.44
bge-large-zh-v1.5 [41] general 324M  2.58 7.49 14.75 3734 15.54
stella_en_400M_v5 [42] general 400M  2.12 9.76 13.14 57.56 20.64
multilingual-e5-base [39] general 278M 196 13.66 17.24 58.26  22.78
bge-m3 [43 general 569M  5.69 12.67 20.12 63.81 25.57

Small codesage-base-v2 [23] code 356M  17.30 29.38 19.97 7436 35.25
SFR-Emb.-Code-400M [24] ~ code 400M 943 4359 1940 7531  36.93
multilingual-e5-large [39] general S560M  4.27 18.51 19.19 65.02 26.75
multi.-e5-large-instruct [39] general 560M 6.64 28.84 23.31 61.28 30.02
Qwen3-Embedding-0.6B [36] general 600M 48.96 60.49  36.26 81.63 56.83
gte-Qwen2-1.5B-inst. [44] ~ general 1.5B 10.76 2341 27.06 69.15 32.60
stella_en_1.5B_v5 [42] general 1.5B 922 2140 2945 7291 33.24
inf-retriever-v1-1.5b [43] general 1.5B 1831 28.17  30.11 74.19  37.70
codesage-large-v2 [23] code 1.3B 20.78 35.23 2243 78.70 39.28
Qodo-Embed-1-1.5B [25] code 1.5B 2293 36.52 33.37 84.05 44.22

Medium SFR-Embedding-2 [18 general 2B 20.57 50.38 35.96 73.02 4498
SFR-Emb.-Code-2B [24] code 2B 39.60 68.05 4526 86.43 59.84
CPRetriever-Code code 2B 7040 70.59 38.68 8145 6528
CPRetriever-Prob code 2B 56.50 70.68 60.06 90.74  69.50
Qwen3-Embedding-4B [36] ~ general 4B 66.62 7197 56.59 89.39 71.15
CPRetriever-Code-Qwen3-4B code 4B 86.22 86.70 41.14 88.10 75.54
CPRetriever-Prob-Qwen3-4B code 4B 80.84 87.10 74.33 96.15 84.60
GritLM-7B [46] general 7B 0.22 8.74 11.18 29.81 12.49
NV-Embed-v2 [20][19 general 7B 7.09 34.88 25.49 63.14  32.65
inf-retriever-v1 [43] general 7B 17.43 2538  30.85 78.46  38.03

Large gte-Qwen2-7B-instruct [44]  general 7B 1796 30.72 35.95 78.41  40.76

SFR-Emb.-Mistral [I8] general 7B 22.15 5092 31.88 69.38  43.58
Ling-Embed-Mistral [21] general 7B 21.99 52.06 36.51 72779  45.84
Qodo-Embed-1-7B [25] code 7B 36.47 51091 47.15 91.17 56.68
Qwen3-Embedding-8B [36]  general 8B 60.54 7297 53.23 87.95 68.67

We evaluate over 20 strong embedding models drawn from top-performing entries on the MTEB[22]
and CoIR[11]] benchmarks, as summarized in Table [3] Models trained specifically for the code
domain continue to outperform general-purpose models by a significant margin. Among them, our
two proposed models—CPRetriever-Code and CPRetriever-Prob—achieve the best overall results
across tasks.

CPRetriever-Code, trained with Group-InfoNCE on problem-code pairs, excels on the code-centric
tasks—Text-to-Code (T2C) and Code-to-Code (C2C). After fine-tuning on problem-level data,



Pass Rate vs. Similarity by Difficulty Level Pass Rate Distribution in Similarity Bins

1.0
1.0
0.8
()
e = 0.6
£ 06 g = = 8 nt— 5
e T A =y
2 . ¥ B RR S £ o4
8 0.4 e TN b
o %0 m% %
83@":‘g§%'8a.3 o 0.2
e L ® easy
0.2 | % £ = \ .
2%g w, - B medium 0.0
LR E: T s FE |
0.0 67 » fuff whard 0P 0P o® (@ (O (15 (0 (@ (90
5 O T D A0 A5 O g
05 0.6 07 058 0.9 0¥ 0% 027 o o© oM Q17 o® o?
Max Similarity to Past Problems Max Similarity Bin

Figure 3: Impact of similarity to prior problems on pass rate. Left: For 388 post-2024.9.1
LiveCodeBench problems, we plot average model pass rate vs. maximum similarity to historical
CPRet problems, computed via CPRetriever-Prob. Regression lines are shown by difficulty, with the
gray line indicating the overall trend across all problems. Right: Pass rates increase monotonically
across similarity bins, confirming a strong link between retrieval similarity and generation success.

CPRetriever-Prob achieves large gains on the problem-centric tasks—Problem-to-Duplicate (P2Dup)
and Simplified-to-Full (S2Full)—with a modest drop on C2C and a more noticeable decline on T2C.

We attribute the T2C degradation to differing retrieval demands: T2C relies on implementation-
specific details in problem descriptions, whereas P2Dup and S2Full emphasize higher-level semantic
similarity. This trade-off is also evident in other models—for instance, Qodo-Embed-1-7B|[23]
achieves the best S2Full score but underperforms on T2C compared to SFR-Embedding-Code-
2B_R|[24]]. These observations motivate our decision to release two task-specialized models, each
optimized for different objectives. Further analysis of this trade-off is provided in Appendix[A.T.2}
and detailed ablation studies on the Group-InfoNCE loss appear in Appendix [A.T.T]

4.3 Impact of Problem Similarity on Model Success in Competitive Programming Tasks

To assess how prior problem similarity influences model performance, we examine 388 Live-
CodeBench problems released after September 1, 2024. For each, we compute the average pass rate
across all evaluated models and measure its maximum cosine similarity to earlier CPRet-PCPCD
problems using CPRetriever-Prob.

As shown in Figure [3] we observe a clear trend: on average, problems with higher maximum
similarity to past data have significantly higher pass rates. This pattern holds across difficulty levels,
but with notable differences: (I) Medium-difficulty problems show the strongest positive correlation,
suggesting that models benefit substantially from prior exposure to semantically similar content. (II)
Hard problems exhibit generally low pass rates, though a slight upward trend remains visible with
increasing similarity. (III) Easy problems maintain consistently high pass rates overall. Due to a few
low-performing outliers at high similarity, the regression line shows a slight downward slope—likely
an artifact of skewed distribution rather than a true negative effect. The binned box plot (right) further
confirms this relationship, reinforcing that semantic similarity to known problems is a key factor in
model success.

To examine how model performance relates to problem similarity, we analyze evaluation results
from OpenAI’s 03-Mini and 04-Mini variants as reported in LiveCodeBench. Each model is
available in three modes—Low, Medium, and High—which correspond to increasing levels of
resource consumption (e.g., longer context length, higher inference cost, and possibly larger internal
activations). As shown in the left panel of Figure[d we observe that the performance gap between
these variants narrows as the maximum similarity to past problems increases, and nearly vanishes
in the highest bin (0.80-0.90). In contrast, on low-similarity problems, higher-capacity models
(especially the High variants) maintain strong pass rates, while lower-capacity models degrade
significantly. This suggests that high-similarity problems may allow weaker models to perform
well by potentially leveraging memorized patterns or surface-level matching, while low-similarity
problems are more likely to expose differences in model capability—such as generalization and
robustness in reasoning. The right panel shows that easy problems have slightly higher similarity to
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Figure 4: Left: Models with higher capacity (High) maintain relatively high performance even on
low-similarity problems, while lower-capacity models benefit more from high-similarity problems.
Right: Easy problems show slightly higher maximum similarity to past problems than hard ones, but
the difference is limited.

past data than hard ones, but the difference is modest. This indicates that similarity is not determined
by difficulty alone, and should be treated as an independent factor when constructing benchmarks.

5 Limitations and Future Work

Ongoing test set leakage. Although we use the most recent problems (from 2023-2024) to construct
temporally-separated test sets for code-centric tasks, these examples are likely to appear in future
model training corpora as web-scale datasets are updated. As a result, benchmark performance may
become inflated over time, even without intentional misuse. To address this, we plan to release regular
updates—every 6 to 12 months—to maintain a clean test split while ensuring the retrieval corpus
remains diverse and representative.

Incomplete and emerging duplicate problems. Despite 700 annotated pairs in our Problem-to-
Duplicate task, many duplicates—past and future—remain undiscovered, especially on decentralized
or low-resource platforms. To address this, we are developing an open-source retrieval platform
that supports community-driven annotations and helps contest organizers detect redundancy pre-
publication.

Limited analysis beyond programming. While our study focuses on competitive programming,
duplication and high similarity may also affect evaluation in other domains, such as mathematical
competitions (e.g., IMO, AIMO). These issues remain underexplored despite their potential to
undermine fair assessment. We encourage future work to examine problem reuse and redundancy in
such benchmarks.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 62402264),
and by the JC STEM Lab of Al for Science and Engineering, funded by The Hong Kong Jockey Club
Charities Trust and the Research Grants Council of Hong Kong (Project No. CUHK14213224).

10



References

(1]

(2]

(3]

(4]

(5]
(6]

(7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination
free evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code, 2021.

OpenAl Introducing openai 03 and o4-mini. https://openai.com/index/
introducing-o03-and-o4-mini/, April 2025. Accessed 2025-05-15.

Google DeepMind. Gemini 2.5 pro. https://deepmind.google/technologies/gemini/
pro/, 2025. Accessed: 2025-05-15.

XAl. Grok 3 mini (think). https://x.ai/blog/grok-3, 2025. Accessed: 2025-05-15.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
IIms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Ethan Caballero, . OpenAl, and Ilya Sutskever. Description2Code Dataset, 8 2016.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding
challenge competence with apps. NeurIPS, 2021.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code
generation with alphacode. Science, 378(6624):1092-1097, 2022.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. Taco: Topics in algorithmic code generation dataset. arXiv preprint arXiv:2312.14852,
2023.

Xiangyang Li, Kuicai Dong, Yi Quan Lee, Wei Xia, Yichun Yin, Hao Zhang, Yong Liu, Yasheng
Wang, and Ruiming Tang. Coir: A comprehensive benchmark for code information retrieval
models, 2024.

Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen, and Wen Wang. Codetransocean: A
comprehensive multilingual benchmark for code translation. arXiv preprint arXiv:2310.04951,
2023.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. Learning
deep structured semantic models for web search using clickthrough data. In Proceedings of the
22nd ACM international conference on Information & Knowledge Management, 2013.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing, 2019.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov,
Dangi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing,
2020.

11


https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://deepmind.google/technologies/gemini/pro/
https://deepmind.google/technologies/gemini/pro/
https://x.ai/blog/grok-3

[16] Yue Wang, Xiao Liu, Yizhe Liu, Hexiang Hu, and Xiaojun Wan. Improving text embeddings
with large language models. arXiv preprint arXiv:2312.04364, 2023.

[17] Kan Chen, Yulong Zhang, Yunbo Li, Qingkai Liu, Jiajun Jiang, Chuanqgi Yang, Wei Zhou, and
et al. Towards general text embeddings with multi-stage contrastive learning. arXiv preprint
arXiv:2402.19458, 2024.

[18] Yulong Yuan, Ming Zhao, Tianyi Chen, Wei Li, and et al. Sfr-embedding-mistral: Enhance text
retrieval with transfer learning. arXiv preprint arXiv:2403.02745, 2024.

[19] Xingyao Wang, Shruti Prabhumoye, Aakanksha Chowdhery, Sharan Narang, and et al. Nv-
embed: Improved techniques for training llms as generalist embedding models. arXiv preprint
arXiv:2403.04142, 2024.

[20] Gabriel de Souza P Moreira, Radek Osmulski, Mengyao Xu, Ronay Ak, Benedikt Schifferer,
and Even Oldridge. Nv-retriever: Improving text embedding models with effective hard-negative
mining. arXiv preprint arXiv:2407.15831, 2024.

[21] Junseong Kim, Seolhwa Lee, Jihoon Kwon, Sangmo Gu, Yejin Kim, Minkyung Cho, Jy yong
Sohn, and Chanyeol Choi. Ling-embed-mistral:elevating text retrieval with improved gpt data
through task-specific control and quality refinement. Linqg AI Research Blog, 2024.

[22] Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. Mteb: Massive text
embedding benchmark. arXiv preprint arXiv:2210.07316, 2022.

[23] Shumin Yang, Liang Pan, Shizhu He, Zhiyuan Lin, Yankai Lin, and Maosong Sun. Code
representation learning at scale. arXiv preprint arXiv:2401.06585, 2024.

[24] Ye Liu, Rui Meng, Shafiq Jot, Silvio Savarese, Caiming Xiong, Yingbo Zhou, and Semih
Yavuz. Codexembed: A generalist embedding model family for multiligual and multi-task code
retrieval. arXiv preprint arXiv:2411.12644, 2024.

[25] Qodo Ltd. Qodo-embed-1-7b: A 7b parameter code embedding model for software retrieval.
https://huggingface.co/Qodo/Qodo-Embed-1-7B| 2025. Accessed: 2025-05-10.

[26] Quan Shi, Michael Tang, Karthik Narasimhan, and Shunyu Yao. Can language models solve
olympiad programming? arXiv preprint arXiv:2404.10952, 2024.

[27] Xingxuan Li, Weiwen Xu, Ruochen Zhao, Fangkai Jiao, Shafiq Joty, and Lidong Bing. Can we
further elicit reasoning in llms? critic-guided planning with retrieval-augmentation for solving
challenging tasks. arXiv preprint arXiv:2410.01428, 2024.

[28] Md Ashraful Islam, Mohammed Eunus Ali, and Md Rizwan Parvez. Mapcoder: Multi-agent
code generation for competitive problem solving. arXiv preprint arXiv:2405.11403,2024.

[29] Marcos Lopez De Prado. Advances in financial machine learning. John Wiley & Sons, 2018.

[30] Rima Hazra, Debanjan Saha, Amruit Sahoo, Somnath Banerjee, and Animesh Mukherjee.
Duplicate question retrieval and confirmation time prediction in software communities. In
Proceedings of the International Conference on Advances in Social Networks Analysis and
Mining, pages 203-212, 2023.

[31] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. In arXiv preprint arXiv:1807.03748, 2018.

[32] Kaiyan Zhao, Qiyu Wu, Xin-Qiang Cai, and Yoshimasa Tsuruoka. Leveraging multi-lingual
positive instances in contrastive learning to improve sentence embedding. arXiv preprint
arXiv:2309.08929, 2023.

[33] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for

face recognition and clustering. Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR), pages 815-823, 2015.

12


https://huggingface.co/Qodo/Qodo-Embed-1-7B

[34] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

[35] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin,
Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé,
et al. Gemma 2: Improving open language models at a practical size. arXiv preprint

arXiv:2408.00118, 2024.

[36] Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun
Xie, An Yang, Dayiheng Liu, Junyang Lin, et al. Qwen3 embedding: Advancing text embedding
and reranking through foundation models. arXiv preprint arXiv:2506.05176, 2025.

[37] Kalervo Jarvelin and Jaana Kekéldinen. Cumulated gain-based evaluation of ir techniques. ACM
Transactions on Information Systems (TOIS), 20(4):422-446, 2002.

[38] Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning,
2021.

[39] Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei.
Multilingual e5 text embeddings: A technical report. arXiv preprint arXiv:2402.05672, 2024.

[40] Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie, Ziqi Dai, Jialong Tang, Huan Lin,
Baosong Yang, Pengjun Xie, Fei Huang, et al. mgte: Generalized long-context text representa-
tion and reranking models for multilingual text retrieval. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing: Industry Track, pages 1393-1412,
2024.

[41] Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources
to advance general chinese embedding, 2023.

[42] NovaSearch. Jasper and stella: distillation of sota embedding models. arXiv preprint
arXiv:2404.01309, 2024.

[43] Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-
embedding: Multi-lingual, multi-functionality, multi-granularity text embeddings through
self-knowledge distillation, 2024.

[44] Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang.
Towards general text embeddings with multi-stage contrastive learning. arXiv preprint
arXiv:2308.03281, 2023.

[45] Junhan Yang, Jiahe Wan, Yichen Yao, Wei Chu, Yinghui Xu, and Yuan Qi. inf-retriever-v1
(revision 5f469d7), 2025.

[46] Niklas Muennighoff, Hongjin Su, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh,
and Douwe Kiela. Generative representational instruction tuning, 2024.

[47] Luyu Gao, Yunyi Zhang, Jiawei Han, and Jamie Callan. Scaling deep contrastive learning batch
size under memory limited setup. arXiv preprint arXiv:2101.06983, 2021.

[48] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations (ICLR), 2019.

13



A Technical Appendices and Supplementary Material

A.1 Additional Experimental Setup Details

For our contrastive pretraining, we use a batch size of 1024, enabled by gradient caching[47] to
optimize GPU memory usage. The model is trained with a learning rate of 3 x 10~8, temperature
7 = 0.07, and weight decay of 0.01, using the AdamW/[48]] optimizer. Each query is paired with
m = 16 positive samples, randomly sampled from the dataset. If fewer than m positive samples are
available, duplicates are used to pad the group. The maximum input length is set to 1024 tokens. The
model is trained for 20 epochs on 8 NVIDIA A800 GPUs, taking approximately 70 hours to complete.
This stage focuses primarily on problem-code representation alignment. The resulting model, which
demonstrates strong performance on code-related retrieval tasks, is denoted as CP-Retriever-Code.

To improve the model’s performance on problem-problem retrieval tasks, we perform a second-stage
fine-tuning using a multi-task setup. We combine training data from the Problem-to-Duplicate and
Simplified-to-Full tasks, downsampling each to approximately 1,000 examples to ensure balanced
representation. The two subsets are then mixed to form the final fine-tuning dataset. This stage uses
a batch size of 1, learning rate of 2 x 1075, and weight decay of 0.01. The model is trained for 1
epoch, which takes approximately 1 hour on a single NVIDIA A800 GPU. While this model, referred
to as CP-Retriever-Prob, slightly underperforms CP-Retriever-Code on code-related tasks, it shows
marked improvements in tasks involving problem-level semantic similarity.

For experiments conducted with the Qwen3-Embedding-4B model, we adjusted several hyperpa-
rameters to better accommodate its larger architecture. Specifically, the maximum input length was
increased to 2048 tokens, the contrastive learning temperature was set to 7 = 0.05 (compared to the
model’s default of 0.01), and the learning rate was set to 1 x 10~°. The total training time scaled
approximately proportionally with the increase in model parameters.

A.1.1 Ablation Study on Group-InfoNCE

Table 4: Performance comparison under different loss functions in contrastive learning.

Loss m (Positives) Data Aug Text-to-Code Code-to-Code
Base / / 39.60 68.05
InfoNCE 1 X 68.64 67.58
InfoNCE 1 v 68.84 68.97
InfoNCE (multi-pos) 16 v 66.44 66.62
Group-InfoNCE 4 X 69.00 69.18
Group-InfoNCE 4 v 70.11 70.42
Group-InfoNCE 16 X 69.47 69.77
Group-InfoNCE 16 v 70.40 70.59

Table (] reports the performance of different loss functions and configurations on the Text-to-Code
and Code-to-Code retrieval tasks. Here, InfoNCE corresponds to Equation [} InfoNCE (multi-pos)
refers to its multi-positive extension (Equation 2)), and Group-InfoNCE denotes our proposed loss
(Equation[3)).

We observe the following:
» Data augmentation consistently improves performance across comparable configurations,
highlighting its robustness.

* Naively increasing positive samples in InfoNCE (multi-pos) does not guarantee gains,
suggesting that grouping structure is essential for effective multi-positive learning.

» Larger m values in Group-InfoNCE generally lead to higher accuracy, indicating that the
model benefits from richer positive context.

We further validated the effectiveness of Group-InfoNCE by repeating multi-task training with the
Qwen3-4B-Embedding model using the same hyperparameter settings as in our main experiments
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Table 5: Multi-task training validation using Qwen3-4B-Embedding.
m  Problem-Level Finetuning T2C C2C P2Dup S2Full Avg

No No 62.68 65.15 57.23 89.31  68.59
1 No 67.94 6631 5621 90.23  70.17
4 No 68.30 66.20 56.29 90.24  70.26
16 No 68.54 6649 56.43 90.07 70.38
16 Yes 65.85 70.18  71.58 95.02  75.66

(Table 5). Results show that fine-tuning on problem-level tasks slightly decreases Text-to-Code
performance (from 68.54 to 65.85) but substantially improves problem-level tasks such as Problem-
to-Duplicate and Simplified-to-Full. This consistent, minor trade-off supports our hypothesis that the
embedding requirements of code-level and problem-level tasks are inherently different. Given this
intrinsic conflict, we consider this small drop reasonable and do not pursue extensive hyperparameter
optimization that might harm generalizability.

Overall, both ablation and multi-task analyses demonstrate that Group-InfoNCE effectively balances
representation learning across heterogeneous tasks while maintaining strong cross-domain retrieval
performance.

A.1.2 Ablation Study on Fine-Tuning Data Composition

Table 6: Ablation results on contrastive pretraining and fine-tuning data composition. PCD indicates
whether the model was pretrained on CPRet-PCPCD using contrastive learning. Dup and Simp
indicate the inclusion of Problem-to-Duplicate and Simplified-to-Full data during fine-tuning, re-
spectively. The fourth column (PCD) denotes whether CPRet-PCPCD data was also included in
the fine-tuning phase. T2C = Text-to-Code, C2C = Code-to-Code, P2Dup = Problem-to-Duplicate,
S2Full = Simplified-to-Full.

T-1 T-2
PCD Dup Simp PCD T2C C2C P2Dup S2Full Avg

39.60 68.05 4526 8643 59.84
27.25 6448 53.04 8578 57.64
70.40 70.59  38.68 8145 65.28
56.50 70.68 60.06 90.74 69.50
60.90 7046 57.84  89.13 69.58
68.05 7277 57.01 92.65 72.62
7115 71.00 41.77 87.75 6792
70.58 70.76  50.81 88.27  70.11

ANENENENENE RO
WX X NN X N %
WX N X X
NN X X X X X X

Ablation Study Overview. Table[6|summarizes a comprehensive ablation study on two key factors
in our training pipeline: (I) contrastive pretraining on CPRet-PCPCD, and (II) the composition of
fine-tuning data for problem-level tasks.

Effectiveness of Contrastive Pretraining. Rows 3-8 show that models trained with contrastive
pretraining significantly outperform those without it (rows 1-2) across all four tasks. Although
pretraining alone underperforms on problem-level tasks like P2Dup and S2Full, models fine-tuned
from this initialization consistently surpass those trained from scratch. This indicates that contrastive
pretraining helps learn transferable representations. The initial gap on problem-level tasks likely stems
from objective mismatch—Group-InfoNCE focuses on problem-code alignment rather than direct
problem-to-problem similarity—but still provides a strong foundation for downstream fine-tuning.

Impact of Fine-Tuning Data Composition. Rows 4-8 explore different combinations of Problem-
to-Duplicate, Simplified-to-Full, and optionally CPRet-PCPCD data during fine-tuning. Using only
Simplified-to-Full (row 6) yields the best overall performance, improving C2C and S2Full, while
maintaining strong results on P2Dup. In contrast, adding P2Dup data (row 4) improves that task but
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slightly reduces generalization elsewhere. Including CPRet-PCPCD during fine-tuning (row 7, 8)
helps recover performance on code-centric tasks but slightly weakens results on problem-level tasks.

Conclusion. These results confirm the value of task-specific optimization. We therefore release two
final models:

* CPRetriever-Code (row 3): trained only with contrastive pretraining, optimized for code-
centric tasks.

* CPRetriever-Prob (row 4): further fine-tuned on problem-level tasks, optimized for problem
retrieval.

A.2 Supplementary Analysis for Figure 2

Figure 2] in the main paper presents two complementary perspectives on model performance trends.
The left sub-plot focuses on illustrating the overall improvement of embedding models over time,
highlighting representative models that achieved state-of-the-art (SOTA) performance at their re-
spective publication dates. In contrast, the right sub-plot was designed to examine potential data
leakage effects by including more recent, high-performing models that are more likely to exhibit such
phenomena. As a result, the model sets in the two sub-figures are not identical.

To provide a more comprehensive view, Table[7]below reports the year-wise retrieval performance
of additional models (e.g., CodeSage-large, Contriever-MSMarco, and E5-Base-v2) that were
not included in the right sub-plot of Figure[2] Despite having lower absolute performance compared
to the models shown in the right plot, these models display a consistent “decline-then-recovery”
trajectory: strong performance in earlier years (e.g., 2015-2016), followed by a sharp degradation
(2017-2019), and a partial recovery or stabilization in later years (2020-2024).

This trend mirrors the temporal performance decay pattern attributed to data leakage, as discussed
in Section[3.2.1] Specifically, the observed recovery phase suggests that recently released problems
are less contaminated by training data, leading to more realistic evaluations. Therefore, these
supplementary results reinforce our main claim that data leakage can substantially inflate retrieval
metrics in temporally overlapping benchmarks, and that rigorous temporal separation is critical for
fair assessment.

Table 7: Supplementary results supporting Figure |2l Retrieval performance (%) of representative
models across problem release years. The “decline-then-recovery” pattern indicates potential data
leakage in earlier problems.

Model 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
SFR-Emb. -Code-2B 5538  57.67 4879 44778 4255 4159 3742 3438 3408 34.78
GTE-ModernBERT-Base  42.10 4592 2844 1545 1034 12.68 9.44 9.82 9.31 9.98
CodeSage-Large 40.65  43.57 2771 14.67 9.10 11.76 9.33 7.67 7.21 8.08
Contriever-MSMarco 16.03 19.85 10.18 3.72 1.62 1.98 0.95 0.88 0.79 0.91
E5-Base-v2 2235 2615 14.02 5.16 2.27 2.59 1.69 1.32 1.18 1.29

A.3 Evaluation of Retrieval for RAG-based Competitive Programming

To investigate the impact of problem retrieval on downstream code generation tasks, we conducted
experiments using Retrieval-Augmented Generation (RAG) in competitive programming problem-
solving. We used problems from LiveCodeBench as the test set. To ensure temporal fairness,
the retrieval pool was restricted to problems in our dataset published before April 2023, while
LiveCodeBench problems appeared starting May 2023.

For each test problem, we retrieved the top-K most similar problems from the historical subset and
provided their descriptions along with one accepted solution as context to the LLM. Three retrieval
settings were compared: no retrieval (baseline), using Qwen3-Embedding-4B as the retriever, and
using our CPRetriever-Prob (based on Qwen3-Embedding-4B).

For the code generation evaluation, we used three models from the Qwen-Coder series:

* gwen-coder-turbo and qwen-coder-plus: non-reasoning models,

* gwen3-coder-plus: a reasoning-capable model.
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The results are summarized in Table[§]

Table 8: Pass@1 performance for RAG-based code generation with different retrievers.

Model Type RAG Model Pass@1
gwen-coder-turbo  Non-reasoning None 0.3575
gwen-coder-turbo  Non-reasoning Qwen3-Embedding-4B  0.3825
gwen-coder-turbo  Non-reasoning CPRetriever-Prob 0.4075
gwen-coder-plus ~ Non-reasoning None 0.5125
gwen-coder-plus ~ Non-reasoning Qwen3-Embedding-4B  0.5275
gwen-coder-plus ~ Non-reasoning CPRetriever-Prob 0.5500
gwen3-coder-plus  Reasoning None 0.7675
gwen3-coder-plus  Reasoning Qwen3-Embedding-4B  0.7750
gwen3-coder-plus  Reasoning CPRetriever-Prob 0.7800

As shown, incorporating RAG improves Pass@1 across all evaluated models. Non-reasoning models
benefit more noticeably, while reasoning models achieve smaller gains due to their strong baseline
performance. Notably, using CPRetriever-Prob consistently outperforms Qwen3-Embedding-4B
across all LLMs.

These results demonstrate that effective problem retrieval can enhance competitive programming
problem-solving in a RAG setting, highlighting a valuable downstream application for our retrieval
model.

A.4 Challenges in Competitive Programming Problem Retrieval

Retrieving competitive programming (CP) problems poses distinct challenges compared to standard
code retrieval tasks in software engineering (SE) benchmarks such as SWE-Bench. The core difficulty
lies in bridging the large semantic gap between a problem’s narrative description and its abstract
algorithmic solution, whereas SE tasks typically involve more concrete, context-specific code retrieval.

CP problem statements are often highly abstract and indirect. They are framed as puzzles embedded
within narratives (e.g., "a farmer needing a route") and require deep semantic understanding to map
natural language to algorithmic concepts like graph traversal or dynamic programming. Critical
information such as data constraints (N < 1,000,000) or time limits is subtly embedded, yet it
fundamentally dictates the algorithmic complexity required (O(N?2) vs. O(N log N)). Similarly,
user queries are abstract (e.g., "longest increasing subsequence sum"), in contrast to SE queries,
which are typically specific and grounded in concrete code modifications or bug fixes.

The mapping from a CP problem to its solutions is also more complex. A single problem may
admit multiple fundamentally different correct algorithmic approaches (e.g., BFS/DFS vs. dynamic
programming for tree diameter). CP retrieval aims to uncover the underlying idea or technique that
can inspire a solution strategy, rather than locating an exact code snippet. In SE retrieval, the goal
is generally to find specific functions, modules, or API calls that can be directly reused in a known
context.

In summary, CP retrieval resembles a mathematician exploring theorems for similar logical structures
while ignoring superficial details, focusing on abstract strategies. SE retrieval, in contrast, is more like
a mechanic finding the right replacement part for a known machine. This higher-level abstraction and
the need to translate between human language and algorithmic logic make competitive programming
problem retrieval uniquely challenging.

A.5 Further Details on the CPRet-PCPCD

A.5.1 Language and Problem Format Statistics

Figure [5a] shows that English is the most prevalent language, largely due to the influence of prior
datasets like TACO, while Chinese and Japanese examples mainly come from LibreOJ/Nowcoder and
AtCoder. Figure [Sb|reveals that most problems adopt the ICPC-style full-score format, but a notable
subset includes OI-style problems that offer partial scores through sub-tasks or test case breakdowns.
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Language Distribution of Problem Statements Problem Type Distribution (ICPC vs Ol)

Chinese ol
11,712 (26.8%) 7,302 (16.7%)

Japanese
6,456 (14.8%)

English o ICPC
25,457 (58.4%) 36,323 (83.3%)

(a) Languages used in problem statements. (b) ICPC-style vs Ol-style grading.
Figure 5: Dataset-level characteristics by language and format in CPRet-PCPCD.

A.5.2 Programming Language Distribution

Distribution of Main Programming Languages (log-scaled)

106 4

105 4

Log-scaled Count

104 4

Figure 6: Distribution of programming languages in our dataset CPRet-PCPCD (log-scaled). Python
is dominant due to its prevalence in prior datasets like APPS, CodeContests, and TACO. In contrast,
our newly collected data is mainly in C/C++, which reflects the practical language choices in
competitive programming.

As shown in Figure 6] our dataset covers a wide range of programming languages. Early datasets
such as APPS, CodeContests, and TACO focused primarily on Python, driven by the popularity of
Python in code generation research and the convenience it offers for model training. However, in our
newly collected dataset, the dominant languages shift toward C and C++, which are widely favored
in actual competitive programming due to their execution efficiency and low-level control.

Other languages such as Java, Perl, Groovy, and Rust also appear in notable quantities, indicating
broader diversity and coverage in our collection.

A.6 Data Source Details

Data Copyright Notice. All data collected in this work are publicly accessible and do not involve
any private or user-specific information. However, the copyright of the original content remains with
the respective platforms from which the data were obtained. We use these data solely for research
purposes, in accordance with the terms of use and fair academic practice.
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A.6.1 Competitive Programming Problems and Codes Data(CPRet-PCPCD)

Existing Sources. We incorporate the following publicly available datasets:

* APPS [8]]: https://github.com/hendrycks/apps
* CodeContests [9]: https://github.com/google-deepmind/code_contests
* TACO [10]]: https://huggingface.co/datasets/BAAI/TACO

* Codeforces Submissions : https://www.kaggle.com/datasets/
yeoyunsianggeremie/codeforces-code-dataset

* Codechef Submissions : https://www.kaggle.com/datasets/arjoonn/
codechef-competitive-programming

* Codeforces Source Code : https://www.kaggle.com/datasets/agrigorev/
codeforces-code

Newly Collected Sources. To enrich the dataset, we additionally collect problems and code from the
following platforms:

* Codeforces(English, ICPC): https://codeforces.com/, with API reference at https:
//codeforces.com/apiHelp

* AtCoder(English and Japanese, ICPC + OI): https://atcoder. jp/, with API reference
athttps://github.com/kenkoooo/AtCoderProblems/blob/master/doc/api.md

* LibreOJ(Chinese, ICPC + OI): https://1loj.ac/, with API reference at https://api.
loj.ac/

* Nowcoder(Chinese, ICPC + OI): https://ac.nowcoder. com/

For these new sources, we typically first obtain problem and submission metadata via the platform’s
API (when available), and then download actual code submissions accordingly. In cases where APIs
are not provided, we resort to web crawling.

Crawler Tools. We utilize the following libraries to implement our crawlers:

e curl_cffi: https://github.com/lexiforest/curl_cffi
* crawldai: https://github.com/unclecode/crawl4ai

To minimize load on the original platforms and avoid abuse, we do not publicly release our custom
crawlers. For academic collaboration or access, please contact us via email.

A.6.2 Duplicate Programming Problem Pairs

To collect semantically similar or duplicate programming problem pairs, we crawled discussion
forum data from the following two competitive programming platforms:
* Codeforces, via blog entries such as https://codeforces.com/blog/entry/142637
* Luogu, via forum posts such as https://www.luogu.com.cn/discuss?forum=P1000
From Codeforces, we gathered approximately 130,000 blog posts, each containing an average of 12
user comments. From Luogu, we collected around 236,000 discussion comments.

To extract high-quality duplicate problem pairs, we use a multi-stage filtering process combining:

» Keyword filtering to identify relevant discussions,
¢ Large Language Model (LLM)-based scoring for candidate selection, and
* Manual annotation to ensure correctness and semantic equivalence.
Note. For each problem pair mentioned in the forums, both problems may originate from the same

platform, or from different platforms. In most cases, at least one problem in the pair comes from the
platform where the discussion was found.
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A.6.3 Simplified and Full Problem Description Pairs

This dataset is collected entirely from the Luogu platform (https://www.luogu.com.cn/), where users
have contributed simplified versions of competitive programming problems originally published on
international online judges such as Codeforces (https://codeforces.com/), AtCoder (https://atcoder.jp/),
SPOJ (https://www.spoj.com/), and UVA (https://onlinejudge.org/). These problems may have been
originally written in English, Japanese, or other languages. The simplified versions are often written in
Chinese and aim not only to translate the content, but also to restructure and clarify problem statements
by removing less essential narrative elements, rephrasing complex sentences, and highlighting key
constraints and requirements. This simplification process helps make the problems more accessible
to beginners.

We crawled these user-generated simplifications and applied filtering steps to remove low-quality
entries, such as those that are incomplete, inconsistent with the original, or overly literal machine
translations. To ensure consistency across the dataset, we use Qwen-2.5-Max[34]] to translate Chinese
simplified statements into English before inclusion. The resulting dataset maintains a high level of
clarity and fidelity, and serves as a valuable resource for studying cross-lingual and cross-abstraction
retrieval.

A.7 Extended Results: Model Performance across Similarity Bins

Figure[7|expands on the similarity-based analysis in Section[d.3] showing average pass rates across
max similarity bins for additional models not included in the main paper.

The observed trends further support the conclusion that higher retrieval similarity strongly correlates
with code generation success, demonstrating consistency across different model scales and types.

Model Performance vs. Similarity Bin

1.0 Model
Kimi-k1.6-101-high
—o= DeepSeek-R1-Preview

0.8 DeepSeek-V3
.8 == Gemini-2.5-Pro
© == Claude-3.7-Sonnet (Thinking)
oc —e— Claude-3.5-Sonnet-20241022
v 0.6 o —e~ Grok-3-Mini (High)
g =0= 01-2024-12-17 (High)
) b 01-2024-12-17 (Med)
(@)} 0.4 e 01-2024-12-17 (Low)
E ) GPT-40-2024-08-06
>
<

0.2

H
0.0
0/0'60 0/0'60 0/0'10 0/02)0 0/090
Q.b‘ 0.6 g.@ 0." g.%

Max Similarity Bin

Figure 7: Extended results on model performance vs. similarity.

A.8 Cases of Retrieval Tasks
A.8.1 Text-to-Code and Code-to-Code

We next present a problem along with two correct solutions. In the Text-to-Code task, the goal is
to retrieve these solutions given the problem description. In the Code-to-Code task, the goal is to
retrieve the other solution given one of them, which may differ in language or implementation.

20



https://atcoder.jp/contests/arc162/tasks/arc162_a

Problem Statement
There are N people, numbered from 1 to /N, who participated in a round-trip race
between two points. The following information is recorded about this race.

* The outward times of any two people were different, and person ¢ (1 < i <
N) had the i-th fastest outward time.

e The round-trip times (the sum of the outward and return times) of any two
people were different, and person ¢ (1 < 4 < N) had the P;-th fastest
round-trip time.

* The person (or persons) with the fastest return time was awarded the
fastest return award.

Here, P, P»,..., Py is a permutation of 1,2 ..., N.
How many people could have received the fastest return award?
There are 7T test cases. Answer each of them.

Constraints

1 <T <500

e 2< N <10°

e P,P,,...,Py is a permutation of 1,2,...,N

* All input values are integers

e The sum of N over all test cases does not exceed 10°
Input Format
The input is given from standard input in the following format:

T
case_1

case_T

Each test case ¢ (1<i¢<T) is given in the following format:
N

P.1 P2 ... PN

Output Format
Print T lines. The i-th line (1 < ¢ < T) should contain the answer for the i-th
test case.

Listing 1: Solution Code 1(C++)

#include <bits/stdc++.h>
#include <cstdlib>
#include <math.h>

using namespace std;

int main ()
{
int t;
cin >> t;
while (t--){
int n;
cin >> n;
vector<int>a(n);
vector<int>b(n);
for(int i=0;i<n;i++){
cin >> alil;
alil--;
blalill=i;
}
int ans=0;
for(int i=0;i<n;i++){
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bool ok=true;
for(int j=0;j<i;j++){
if(b[i]<b[j]) ok=false;

}
if (ok) ans++;
¥
cout << ans << endl;
¥
return O;
}
Listing 2: Solution Code 2(Ruby)
t = read_line.to_i

def solve
n = read_line.to_i
p = read_line.split.map { Ix| x.to_i - 1 }

n.times.count do |il
n.times.all? do |jl
# i < j => pli]l < pl[j]
1(i < §) 11 plil < plj]
end
end
end

t.times do
puts solve
end

A.8.2 Problem-to-Duplicate

The only difference between the two problems is that one includes multiple test cases, while the other
does not. Aside from this, the problems are nearly identical, and are therefore classified as a Near
Match.

https://codeforces.com/contest/1702/problem/G2

Problem: G2. Passable Paths (hard version)

You are given a tree with m vertices numbered from 1 to m. A tree is an
undirected connected graph with n —1 edges and no cycles.

You are also given ¢ queries. In each query, you are given a set of k vertices.
For each query, determine whether there exists a simple path in the tree that
passes through all the given k vertices.

Input

The first line contains an integer n (2 <n <2 X 10°) - the number of vertices in
the tree.

Each of the next m — 1 lines contains two integers u and v (1 < w,v < n) - the
endpoints of an edge in the tree.

The next line contains an integer q¢ (1 < ¢ <2 x 10°) - the number of queries.

Each of the next ¢ lines describes a query:

* The first integer k (2 <k <n) - the number of vertices in the query.
* Followed by k integers wi,vz,...,uvr (1 < wv; < n) - the vertices in the
query.

Output
For each query, print YES if there exists a simple path that passes through all
the given k vertices. Otherwise, print NO.
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https://www.codechef.com/JULY21A/problems/KPATHQRY

Problem: KPATHQRY - Path Queries on Trees

You’re given a tree with N vertices numbered from 1 to N. Your goal is to
handle () queries. For each query, you are given K nodes vi,v2,...,Ux. Find
whether there exists a simple path in the tree that covers all the given
vertices.

Input

* The first line contains a single integer 7 - the number of test cases.
* For each test case:

— The first line contains a single integer N - the number of vertices.

— Each of the following N — 1 lines contains two integers w and v - an
edge in the tree.

— The next line contains a single integer () - the number of queries.

Each of the following () lines describes a query:
% Starts with K; - the number of vertices in the query.
* Followed by K; integers: wvi1,v2,...,VkK, .

Output

For each query, print "YES" if a simple path covering all the given nodes exists,
otherwise print "NO".

You may print each character of the string in uppercase or lowercase (for
example, "yEs", "yes", "Yes", and "YES" will all be treated as identical).
Constraints

+1<T <10

« 1< N<10°

e 1< u,v,v; <N

+1<Q<10°

e 1<K; <N

* The edges form a valid tree.

* All vertices in a single query are distinct.

» The sum of N over all test cases does not exceed 2-10°.

* The sum of K; over all queries in a single test case does not exceed 10°.
Subtasks

* Subtask #1 (100 points): Original constraints.

A.8.3 Simplified-to-Full

The first paragraph below is a simplified version of the second paragraph. The simplification removes
irrelevant background information and input/output format details, preserving only the core problem
statement.

https://codeforces.com/problemset/problem/1183/F Concise problem description

You have n numbers from a; to a,, and you want to select at most 3 numbers such
that no number is a multiple of another. You aim to maximize the sum of the
selected numbers. Output this maximum sum.
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https://codeforces.com/problemset/problem/1183/F Full problem description

Topforces Strikes Back
Problem Description

* One important contest will take place on the most famous programming
platform (Topforces) very soon!

* The authors have a pool of mn problems and should choose at most three
of them into this contest. The prettiness of the ¢ -th problem is a;
The authors have to compose the most pretty contest (in other words, the
cumulative prettinesses of chosen problems should be maximum possible).

* But there is one important thing in the contest preparation: because of
some superstitions of authors, the prettinesses of problems cannot divide
each other. In other words, if the prettinesses of chosen problems are
z,Y,z , then x should be divisible by neither y , nor z , y should be
divisible by neither x , nor z and z should be divisible by neither z ,
nor y . If the prettinesses of chosen problems are x and y then neither
r should be divisible by y nor y should be divisible by x . Any contest
composed from one problem is considered good.

* Your task is to find out the maximum possible total prettiness of the
contest composed of at most three problems from the given pool.

* You have to answer ¢ independent queries.

* If you are Python programmer, consider using PyPy instead of Python when
you submit your code.

Input Format

» The first line of the input contains one integer ¢ ( 1<¢<2-10° ) - the
number of queries.

* The first line of the query contains one integer n ( 1 <n <2-10° ) - the
number of problems.

* The second line of the query contains n integers ai,as,...,a, ( 2<a; <2-
10° ), where a; is the prettiness of the i -th problem.

» It is guaranteed that the sum of n over all queries does not exceed 2-10°

Output Format

* For each query print one integer - the maximum possible cumulative
prettiness of the contest composed of at most three problems from the
given pool of problems in the query.

A.9 Online Demo and Test Cases of CPRetriever

We deployed an open-source competitive programming problem retrieval platform, CPRetriever,
on May 21, 2025 (https://cpret.online/). Within the first week, the platform processed nearly
2,000 search queries, and the announcement post on Codeforces received over 250 upvotes, indicating
strong community interest.

The platform supports two primary retrieval functionalities: (i) similar problem retrieval, which
assists users in expanding problem-solving perspectives and identifying knowledge gaps, and (ii)
duplicate problem detection, which aids problem setters in identifying previously seen ideas or
solutions.

A.9.1 Duplicate Problem Retrieval in a Recent Contest

We evaluated CPRetriever on the 2025 CCPC National Invitational Contest (Northeast), which fea-
tured 12 problems (https://codeforces.com/gym/105924). The system successfully identified
six problems with highly similar or identical historical counterparts. Manual inspection of the top
three retrievals per query suggests a minimum duplicate rate of 50 %, highlighting potential fairness
concerns in contest scoring.
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Table 9: Detected duplicates in the 2025 CCPC Northeast Contest.

Contest Problem Matched Historical Problem Similarity Level Rank
A. GD Ultimate Rhythm Lab  Nowcoder - Xiao Rui Rui’s Sequence = Same approach 1
D. Defend the Carrot SPOJ - UOFTBB Almost identical 1
E. Tree Edge Removal Luogu - [JRKSJ R7] Stem Almost identical 1
F. Youthful Oath II Codeforces - 80B Depression Almost identical 1
J. Kingdom: Memories AtCoder - R Walk Almost identical 3
L. Bathhouse Codeforces - 219E Parking Lot Same approach 2

A.9.2 Similar Problem Retrieval: MEX Variants

We further evaluated the system using the classic “interval MEX” problem to retrieve its variants
across multiple contests, demonstrating CPRetriever’s utility for idea exploration and knowledge
transfer.

Table 10: Top retrieval results for an interval MEX query.

Rank Problem Description

1 Luogu P4137: RMQ Problem / MEX Original problem

2 LOJ 6908: THUPC 2024 Prelim - “Matryoshka” MEX of all subarrays of length k, then take MEX

5 AtCoder ABC194E: Mex Min MEX of all subarrays of length k, then take minimum

6 Luogu P10032: Mex of Sequence Repeated operations: a’[i] = mex(a \ ali])

11 Nowcoder 237670: Classic Problem MEX queries on permutations, optimized to O(n + m)
14 Luogu P8087: JROI-5 Interval MEX of all subarrays of length k, then take maximum

15 AtCoder ABC290C: Max MEX MEX of all subsequences of length k, then take minimum
16 Codeforces 1436E: Complicated Computations MEX of all subarrays, then take MEX again

23 AtCoder ABC330E: Mex and Update Supports element modification or full-array MEX queries
24 Luogu P11837: Making Mexes B Minimum edits to ensure mex(a) = i

These case studies demonstrate that CPRetriever effectively identifies both duplicates and semanti-
cally similar problems, supporting practical contest preparation, knowledge expansion, and fairness
monitoring in competitive programming environments.
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A.10 Figures of data collection and processing pipeline

Problem
Sources
(Codeforces,

AtCoder,
Luogu, etc.)

Crawling and
Data Extraction

Match Prob-
lems with
Accepted Solutions

Collect Metadata:
Language, Contest
Type, Timestamp

v
Multi-
language &
Multi-format

Coverage
(ICPC-style,
Ol-style)

Quality Filtering
& Data Nor-
malization

Annotate with
Temporal In-
formation

CPRet-
PCPCD
Dataset

(Problems
+ Solutions
+ Metadata)

Figure 8: Overall construction pipeline of the CPRet-PCPCD dataset. Problems and accepted
solutions are collected from multiple online judges, paired and enriched with metadata, filtered for
quality, and annotated with timestamps to support temporally-aware retrieval research.
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Figure 10: Data collection and processing pipeline for the Simplified-to-Full retrieval task. Problems
are simplified or translated by Luogu users, then crawled, filtered for quality, and split into training
and test sets.
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