
Under review as submission to TMLR

Differentially Private Non-convex Learning for Multi-layer
Neural Networks

Anonymous authors
Paper under double-blind review

Abstract

This paper focuses on the problem of Differentially Private Stochastic Optimization for
(multi-layer) fully connected neural networks with a single output node. In the first part,
we examine cases with no hidden nodes, specifically focusing on Generalized Linear Models
(GLMs). We investigate the well-specific model where the random noise possesses a zero
mean, and the link function is both bounded and Lipschitz continuous. We propose several
algorithms, and our analysis demonstrates the feasibility of achieving an excess population
risk that remains invariant to the data dimension. We also delve into the scenario involving
the ReLU link function, and our findings mirror those of the bounded link function. We
conclude this section by contrasting well-specified and misspecified models, using ReLU
regression as a representative example. In the second part of the paper, we extend our ideas
to two-layer neural networks with sigmoid or ReLU activation functions in the well-specified
model. In the third part, we study the theoretical guarantees of DP-SGD in Abadi et al.
(2016) for fully connected multi-layer neural networks. By utilizing recent advances in Neural
Tangent Kernel theory, we provide the first excess population risk when both the sample
size and the width of the network are sufficiently large. Additionally, we discuss the role of
some parameters in DP-SGD regarding their utility, both theoretically and empirically.

1 Introduction

In the domain of machine learning, extracting knowledge from data harboring sensitive attributes is an
evolving concern. Such a task mandates algorithms that can proficiently interpret the data while upholding
established privacy benchmarks. Differential privacy (DP) Dwork et al. (2006), in this context, has gained
traction as a seminal framework for statistical data protection. Recognized widely in contemporary research,
DP ensures that individual data remains non-retrievable post-analysis, offering a robust defense mechanism
against privacy infractions. This underscores a burgeoning interest in devising learning architectures where
DP considerations are intrinsically woven into the analytic process.

Stochastic Optimization (SO) and its empirical form, Empirical Risk Minimization (ERM), are the most
fundamental models in machine learning and statistics. They have numerous applications in fields such
as medicine, finance, genomics, and social science. However, these applications often involve sensitive data,
making it essential to design differentially private algorithms for SO and ERM, corresponding to the problems
of DP-SO and DP-ERM, respectively. While DP-SO and DP-ERM have been extensively studied for more
than a decade, most of the existing work considers the case where the loss function is convex. The problem of
DP-SO and DP-ERM with non-convex loss functions remains far from well-understood due to their complex
nature. Although there is some preliminary work, such as Wang & Xu (2019); Wang et al. (2019a;b); Song
et al. (2021), there are still two critical issues. Firstly, most of the existing work adopts the gradient norm
of the population risk function to measure the utility, which is quite different from the convex case where we
use the excess population risk instead. However, using the gradient norm is inadequate for indicating how
close the private model is to the optimal solution Agarwal et al. (2017). Secondly, while recently there has
been some work considering the excess population risk for non-convex loss functions Wang et al. (2019a),
most research has narrowly focused on general non-convex loss functions, overlooking the intricacies of neural
network structures. To address these issues, this paper provides the first comprehensive and theoretical study

1

Under review as submission to TMLR

of DP Fully Connected Neural Networks (with a single output node) and presents several bounds of excess
population risk. Specifically, our contributions can be summarized as follows:

1. In the first part of the paper, we focus on the simplest neural network structure: neural networks without
hidden nodes, aptly referred to as non-convex Generalized Linear Models (GLMs). We first address the
well-specified model that is characterized by zero-mean random noise, combined with bounded and Lipschitz
link functions. For this setup, we introduce an (ϵ, δ)-DP algorithm and demonstrate its efficacy with an
output upper bound Õ(1√

n
+ min{ 1

(nϵ)
2
3
,

√
θ

nϵ }). Here θ is an upper bound on the expected rank of the
data matrix and n is the sample size. We then broaden our study to cases with unbounded link functions,
specifically when employing the ReLU activation function. In this scenario, we establish that an upper
bound of Õ(1√

n
+ min{

√
d

nϵ ,
1

(nϵ)
2
3
}) is feasible. Subsequently, our attention pivots to the misspecified model.

To delineate its nuances vis-à-vis the well-specified model, we spotlight the ReLU activation function as a
representative case. Within this scope, we innovate a distinct version of DP Gradient Descent, showcasing
a sample complexity of Õ(max{

√
d

ϵα ,
d
α2 }). This sample complexity guarantees that the difference between

the population risk of our private estimator and c · opt is no more than α, where opt is the optimal value of
population risk and c > 0 is some constant.

2. Next, we extend our ideas to the problem of privately learning two-layer neural networks. Specifically,
we consider the well-specified model and study the cases where the activation functions are either sigmoid
or ReLU. Our main contribution is to establish the sample complexity required to achieve an error of α for
excess population risk. For the sigmoid case, we show that the sample complexity is O((kC1

α)2C1 1
ϵ2), where

k is the number of hidden nodes and C1 is a positive constant. For the ReLU case with k hidden nodes, we
show that the sample complexity is O(4C2

k
α

1
ϵ2), where C2 is a positive constant.

3. In the last part, we consider general multi-layer fully connected neural networks. Rather than introducing
new methods, we delve into the theoretical guarantees of the standard DP-SGD as detailed in Abadi et al.
(2016). Drawing upon recent advancements in the Neural Tangent Kernel (NTK), we present the inaugural
excess population risk bound for networks where both the width of each layer and the sample size are
sufficiently large. In essence, this bound is composed of three elements: an approximation error attributable
to NTK, an error arising from the Gaussian noise introduced in every iteration, and a combined term
representing the convergence rate and sampling error. Building on our theoretical framework, we then delve
into the intricate interplay and trade-offs between various parameters. We also provide experimental studies
to corroborate our theoretical findings.

2 Related Work

As we mentioned earlier, there is a long list of work on DP-SO and DP-ERM. Thus, here we only mention
the theoretical work that is close to ours.

Private non-convex learning. In DP-SCO/DP-ERM with convex loss functions, the excess population
risk is commonly used to measure the utility. However, in the non-convex case, there are three general ways
to measure the utility. The first approach is based on the first-order stationary condition, such as the gradient
ℓ2-norm of the population risk function Wang & Xu (2019); Song et al. (2021); Zhou et al. (2020); Bassily
et al. (2021); Zhang et al. (2021). However, there are some issues with this measure. Firstly, previous work
has shown that the gradient norm tends to 0 as the sample size n goes to infinity, but there is no guarantee
that such a private estimator will be close to any non-degenerate local minimum Agarwal et al. (2017).
Secondly, the gradient-norm estimator is not always consistent with the excess empirical (population) risk
of the loss function Wang et al. (2019a).

The second approach considers using the second-order stationary condition as the measure, which involves
considering both the norm of the gradient and the Hessian matrix minimal eigenvalue of the population risk
function Wang et al. (2019a); Wang & Xu (2020a). The motivation for this approach is based on the fact
that for many machine learning problems, such as matrix completion and dictionary learning, any second-
order stationary point is a local minimum of the problem, and all the local minima are the global minimum.
Thus, finding a global minimum is equivalent to finding a second-order stationary point. However, the main

2

Under review as submission to TMLR

disadvantage of this measure is that it is only reasonable for some problems, and it is unknown whether
general neural networks satisfy the above property.

The third approach is to directly use the excess population risk, which is similar to the convex case, and our
work goes in this direction. However, most of the previous work only considers some specific class of loss
functions, such as Polyak-Lojasiewicz loss Wang et al. (2017). Wang et al. (2019a) provided the first study
of DP-ERM with general non-convex loss, but their bound is O(d

(logn)ϵ), which is quite large. Compared to
their results, our work considers general neural networks and provides improved bounds.

DP-GLM. DP-SO/DP-ERM with Generalized Linear loss (DP-GLL) and DP-GLM have received consider-
able attention in recent years. For convex loss functions, Jain & Thakurta (2014) provided the first study on
DP-GLL and showed that in the unconstrained case, the error bound can achieve Õ(1√

nϵ
) in general, which

is quite different from the bound O(
√
d

nϵ) for general convex DP-ERM. Later, Kasiviswanathan & Jin (2016)
studied the same problem and showed that in the constrained case, the error bound could only depend on the
Gaussian width of the underlying constraint set. For the unconstrained setting, Song et al. (2021) showed
an improved bound of O(

√
θ

nϵ), where θ is the rank of the expectation of the data matrix. For constrained
DP-GLM, Bassily et al. (2021) considered various settings where the loss could be smooth/non-smooth and
in the ℓp space for general 1 ≤ p ≤ 2. Recently, Arora et al. (2022b) studied the optimal rates of DP-GLM
in the unconstrained setting. Specifically, when the loss is smooth and non-negative but not necessarily Lip-
schitz, it showed the optimal rate of Õ(1√

n
+ min{ 1

(nϵ)2/3 ,
√
d

nϵ }). When the loss is Lipschitz, the optimal rate

is Õ(1√
n

+ min{ 1√
nϵ
,

√
θ

nϵ }). For non-convex losses, Song et al. (2021); Bassily et al. (2021) provided bounds
that are independent of the dimension for the gradient ℓ2-norm of the population risk function. Wang et al.
(2019a); Hu et al. (2022) studied the excess population risk for some specific GLMs and showed that their
bound can be only logarithmic in the dimension. However, they need to assume the constraint set is an
ℓ1-norm ball, while our work does not require such an assumption.

3 Preliminaries

Definition 1 (DP Dwork et al. (2006)). Given a data universe X , we say that two datasets D,D′ ⊆ X are
neighbors if they differ by only one data record, which is denoted as D ∼ D′. A randomized algorithm A is
(ϵ, δ)-differentially private (DP) if for all neighboring datasets D,D′ and for all events S in the output space
of A, we have

Pr(A(D) ∈ S) ≤ eϵPr(A(D′) ∈ S) + δ.

Lemma 1 (Gaussian Mechanism). Given any function q : Xn → Rd, the Gaussian mechanism is defined
as q(D) + ξ where ξ ∼ N (0, 2∆2

2(q) log(1.25/δ)
ϵ2 Id), where ∆2(q) is the ℓ2-sensitivity of the function q, i.e.,

∆2(q) = supD∼D′ ||q(D)− q(D′)||2. Gaussian mechanism preserves (ϵ, δ)-DP for 0 < ϵ, δ < 1.
Definition 2 (DP-SO Bassily et al. (2014)). Given a dataset D = {z1, · · · , zn} from a data universe Z
where each zi = (xi, yi) with a feature vector xi and a label/response yi is i.i.d. sampled from some
unknown distribution P, a convex constraint set W ⊆ Rd, and a (non-convex) loss function ℓ :W ×Z 7→ R.
Differentially Private Stochastic Optimization (DP-SO) is to find a model wpriv to minimize the population
risk, i.e., LP(w) = E(x,y)∼P [ℓ(w;x, y)] with the guarantee of being differentially private.1 The utility of wpriv

is measured by the (expected) excess population risk ELP(wpriv) −minw∈W LP(w), where the expectation
takes over the randomness of the algorithm and the input data. Besides the population risk, we can also
measure the empirical risk of dataset D: L̂(w,D) = 1

n

∑n
i=1 ℓ(w, zi).

It is notable that besides the error bound, to better demonstrate our results, we may also consider the sample
complexity to achieve a fixed error α to measure the utility of DP algorithms.
Definition 3. A function f(·) is G-Lipschitz if for all w,w′ ∈ W, |f(w)− f(w′)| ≤ G∥w − w′∥2.
Definition 4. A function f(·) is β-smooth on W if for all w,w′ ∈ W, f(w′) ≤ f(w) + ⟨∇f(w), w′ − w⟩ +
β
2 ∥w

′ − w∥2
2.

1Note that in this paper, we consider the improper learning case, that is wpriv may not be in W.

3

Under review as submission to TMLR

Definition 5. A function f(·) is α-strongly convex on W if for all w,w′ ∈ W, f(w′) ≥ f(w) + ⟨∇f(w), w′−
w⟩+ α

2 ∥w
′ − w∥2

2.

Definition 6. A random matrix Φ ∈ Rk×d satisfies (α, β)-Johnson-Lindentrauss (JL) property if for any
u, v ∈ Rd and any α > 0 we have P[|⟨Φu,Φv⟩ − ⟨u, v⟩| > α∥u∥2∥v∥2] ≤ β, where the probability takes over
the randomness of the distribution of Φ.

Specifically, when R ∈ Rk×d is a random Gaussian matrix with k = O(log 1/β
α2) each entry is i.i.d. sampled

from N (0, 1). Then the matrix A = 1√
k
R satisfies (α, β)-JL property.

4 Private Non-convex GLMs

4.1 Well-specified Model

4.1.1 Bounded Link Function Case

In this section, we will examine the problem of Generalized Linear Models (GLMs), which are neural networks
without hidden layers and with a single output neuron. Specifically, we will begin by considering a simplified
scenario in which the statistical model is well-specified,2 meaning that the Bayes optimal classifier satisfies
E[y|x] = σ(⟨w∗, x⟩) for some underlying parameter w∗ ∈ Rd and non-convex link function σ:

y = σ(⟨w∗, x⟩) + ζ, (1)

where ζ is random noise with zero mean. In the following, we will introduce several assumptions that will
be used throughout this section.
Assumption 1. Assume there exist constants W,G,B = O(1) such that ∥w∗∥2 ≤ W , y ∈ [−B,B] and the
link function σ : R 7→ [−B,B] is G-Lipschitz and non-monotone decreasing. We also assume ∥x∥2 ≤ 1. 3

The assumption of ∥w∗∥2 ≤ W for a given known W is a recurring theme in the literature on private
learning and statistical estimation. Notably, even in linear models where σ serves as the identity function,
this presumption consistently appears in prior research Cai et al. (2021); Wang & Xu (2020b).

In fact, many activation functions that are commonly used in neural networks satisfy Assumption 1, such as
sigmoid function σ(x) = 1

1+exp(−x) and tanh function σ(x) = exp(x)−exp(−x)
exp(x)+exp(−x) .

Under the well-specified model (1), we consider the expected squared error as the population risk function,
i.e., LP(w) = E(x,y)∼P(σ(⟨w, x⟩)− y)2.

To solve the problem, the most natural idea is to approximate the population function LP(w) by some
convex stochastic function. Motivated by Kalai & Sastry (2009); Kakade et al. (2011), here we consider the
following surrogate (convex) loss function:

ℓ(w;x, y) =
∫ ⟨w,x⟩

0
(σ(z)− y)dz. (2)

The following result shows that the loss ℓ is convex, Lipschitz and smooth:
Lemma 2. Under Assumption 1, for any (x, y) ∼ P, function ℓ(·;x, y) is convex and 2B-Lipschitz. More-
over, if σ has (sub)gradient anywhere, then the rank of the Hessian matrix for ℓ(·;x, y) is 1, and ℓ(·;x, y) is
G-smooth.

In the following, we use the notations Lℓ(w;D) = 1
n

∑n
i=1 ℓ(w;xi, yi) and LℓP(w) = E[ℓ(w;x, y)] to represent

the empirical risk and population risk functions for the loss ℓ in (2), respectively. The following lemma, given
by Kakade et al. (2011), shows that the optimal parameter w∗ is also the minimizer of LℓP(·). Moreover, for
any w, the excess population risk of w is dominated by the excess population risk of loss ℓ(w;x, y).

2In the literature, the well-specified setting is also extensively referred to as the "noisy teacher" setting Frei et al. (2020) or
the well-structured noise model Goel & Klivans (2019)

3For simplicity, here we assume ∥x∥2 ≤ 1, and for the range of σ we use the same B as the range of y, we can easily extend
our results to general cases.

4

Under review as submission to TMLR

Algorithm 1 DP non-convex GLM
Require: Private dataset: D = {(xi, yi)}ni=1, link function σ satisfying Assumption 1 and has (sub)gradient

anywhere; privacy parameters 0 < ϵ, δ ≤ 1, upper bound θ of the expected rank of data matrix.
1: If ϵ > θ

3
2
n , run Algorithm 2. Otherwise, run Algorithm 3.

Lemma 3. For any w ∈ Rd, we have LP(w)− LP(w∗) ≤ 2G(LℓP(w)− LℓP(w∗)).

Thus, motivated by Lemma 3, now we aim to find a private estimator wpriv ∈ Rd to minimize LℓP(w).
Moreover, we can see from the form of the loss ℓ and Lemma 2 that if σ has subgradient anywhere, then
ℓ(·) will be a generalized linear loss, i.e., ℓ(w;x, y) = g(⟨w, x⟩, y) where g(·, y) is convex, 2B-Lipschitz, and
G-smooth. Therefore, we can use unconstrained DP-SO algorithms for convex generalized linear loss to ℓ to
obtain a private estimator. Here, we adopt the Phased SGD method for convex GLM in Bassily et al. (2021)
(see Algorithm 2 for details). Furthermore, motivated by Arora et al. (2022b), we propose a new method
that uses a JL matrix to preprocess the data and then performs Algorithm 2 over the projected data. Note
that using Phased SGD is crucial for our analysis of two-layer neural networks in later sections (see Remark
9 for details). The entire algorithm is provided in Algorithm 1.

Algorithm 2 Phased SGD for non-convex GLM
Require: Private dataset: D = {(xi, yi)}ni=1, link function σ satisfying Assumption 1 and has (sub)gradient

anywhere; privacy parameters 0 < ϵ, δ ≤ 1.
1: Denote the loss function ℓ as ℓ(w;x, y) =

∫ ⟨w,x⟩
0 (σ(z)− y)dz.

2: Set k = ⌈log2(n)⌉, partite the whole dataset S into k subsets {D1, · · · , Dk}. Denote ni as the number of
samples in Di, i.e., |Di| = ni where ni = ⌊2−in⌋. Take a random initial vector w0 ∈ W.

3: for i = 1, · · · , k do
4: Let ηi = η

4i and w1
i = wi−1.

5: for t = 1, · · · , ni do
6: Update wt+1

i = wti−ηi∇ℓ(wti ;xti, yti) = wti−ηi(σ(⟨wti , xti⟩)−yti)xti, where (xti, yti) is the t-th sample
of Di.

7: end for
8: Denote wi = w̄i + ζi, where w̄i = 1

ni

∑ni

t=1 w
t
i and ζi ∼ N (0, τ2

i Id) with τi = 8Bηi

√
log 1

δ

ϵ .
9: end for

In the following, we will show the utility. We denote θ as the upper bound of ED∼Pn [Rank(V)], where V is
a matrix whose columns are an eigenbasis for

∑n
i=1 xix

T
i . Note that we always have ED∼Pn [Rank(V)] ≤ n.

Theorem 1. Under Assumption 1 and if σ has (sub)gradient anywhere, for any 0 < ϵ, δ < 1, Algorithm 2
is (ϵ, δ)-DP. Moreover, when η = O(min{ ϵ√

θ log 1
δ

, 1√
n
}) ≤ 2

G , we have

ELP(wk)− LP(w∗) ≤ O
(1√

n
+

√
θ log 1

δ

nϵ

)
.

Theorem 2. Under Assumption 1 and if σ has (sub)gradient everywhere, let m = O(log(n/δ)(nϵ) 2
3), then

Algorithm 3 is (ϵ, δ)-DP for any 0 < ϵ, δ < 1
2G . Moreover, when η = O(min{ ϵ√

m log 1
δ

, 1√
n
}) ≤ 1, we have

ELP(ŵ)− LP(w∗) ≤ Õ
(√

log 1
δ

(nϵ) 2
3

+ 1√
n

)
,

where the Big-Õ notation omits the term of log(n/δ).
Remark 3. The output of Algorithm 1 achieves an error of Õ(n− 1

2 + min {
√
θ(nϵ)−1, (nϵ)− 2

3 }). This rate
appears to be better than the lower bound for DP convex and Lipschitz Generalized Linear loss (DP-GLL)

5

Under review as submission to TMLR

Arora et al. (2022b), which is near-optimal at O(n− 1
2 +min {

√
θ(nϵ)−1, (nϵ)− 1

2 }). However, these results are
not contradictory, as Arora et al. (2022b) considers a more general class of loss functions. In fact, the above
lower bound for DP-GLL only holds for the case where LP(w) = E[|y − ⟨w, x⟩|], while our problem mainly
focuses on the squared loss LP(w) = E[(y − σ(⟨w, x⟩))2]. Therefore, the lower bound does not apply to our
problem. Additionally, Arora et al. (2022b) considers the smooth and non-negative generalized linear loss,
which is not necessarily Lipschitz, and shows that the near-optimal rate is Õ(n− 1

2 +min{(nϵ)− 2
3 ,
√
d(nϵ)−1}).

Again, these results are not contradictory to ours.

Algorithm 3 DP-Projected Phased SGD for non-convex GLM
Require: Private dataset: D = {(xi, yi)}ni=1, link function σ satisfying Assumption 1 and has (sub)gradient

anywhere; privacy parameters 0 < ϵ, δ ≤ 1.
1: Sample a JL matrix Φ ∈ Rm×d, and denote D̃ = {(Φx1, y1), · · · , (Φxn, yn)}.
2: Run Algorithm 2 on the projected dataset D̃, i.e., in Line 6 of Algorithm 2, update

wt+1
i = wti − ηi(σ(⟨wti , x̃ti⟩)− yti)x̃ti,

where (x̃ti, yti) is the t-th sample of D̃i. And in Line 8, ζi ∼ N (0, τ2
i Im) with τi = 16Bηi

√
log 2

δ

ϵ . Denote
the output as wk.

3:
4: Return ŵ = ΦTwk

4.1.2 More General Link Functions

One issue with the previous approach is that the link function σ should have a subgradient everywhere so that
the surrogate function ℓ(·;x, y) is smooth by Lemma 2. However, unlike the convex case, this assumption may
not always hold since some non-convex functions may have no subgradient at some point. We will address
this case and demonstrate that it is possible to achieve the same bounds as in Theorem 1 and Theorem 2
(but with higher time complexity).

Since the surrogate loss function, in this case, becomes non-smooth, the issue lies in finding a method to
make it smooth. To illustrate our approach, we first recall the Moreau envelope smoothing technique that
can be used to make a non-smooth function smooth Moreau (1965). Let M be a (potentially unbounded)
closed interval, y ∈ R and β > 0. Consider a function ℓ :M 7→ R. The β-Moreau envelop of ℓ is defined as

ℓβ(x) = min
u∈M

[ℓ(u) + β

2 |u− x|
2].

Denote the proximal operator with respect to ℓ as

proxβℓ (x) = arg min
u∈M

[ℓ(u) + β

2 |u−m|
2].

If ℓ is a convex function, then its Moreau envelop has the following properties:
Lemma 4. Let ℓ :M 7→ R be a convex function and G-Lipschitz. Then the following hold: a) ℓβ is convex,
2G-Lipschitz and β-smooth. b)ℓ′

β(x) = β[x− proxβℓ (x)]. c) For all x ∈M, ℓβ(x) ≤ ℓ(x) ≤ ℓβ(x) + G2

2β .

Note that the previous Moreau envelope is for one-dimensional functions while our surrogate loss ℓ is d
dimensional. Thus, for fixed (x, y), we denote gy(⟨x,w⟩) = ℓ(w;x, y) in (2) and we calculate the Moreau
envelop of gy(·) instead, which is denoted as gyβ(·). By Lemma 4 and since ℓ is Lipschitz and convex, we
have gyβ is 2B-Lipschitz and β-smooth. Thus, we have the following facts.

Lemma 5. For any fixed (x, y), denote ℓ(w;x, y) = gy(⟨x,w⟩) and gyβ(·) as the Moreau envelop of gy(·)
with parameter β and M = R. Let fβ(w;x, y) = gyβ(⟨w, x⟩), then we have fβ is 2B-Lipschitz, β-smooth and
|fβ(w;x, y)− ℓ(w;x, y)| ≤ 2B2

β for all w ∈ Rd.

6

Under review as submission to TMLR

Algorithm 4 Oβ,γ : Gradient Oracle for fβ(w;x, y)

Require: Parameter vector w ∈ Rd, data sample (x, y) associate with gyβ(·).
1: Let m = ⟨w, x⟩ and Q = [m− 4B

β ,m+ 4B
β].

2: Let T = 144B2

γ2 .
3: for t = 1, 2, · · · , T do
4: yt+1 = wt − ηt(σ(wt)− y + β(wt −m)) where ηt = 2

β(t+1) .
5: wt+1 = yt+1 if yt+1 ∈ Q, wt+1 = m− 4B

β if yt+1 < m− 4B
β and wt+1 = m+ 4B

β otherwise.
6: end for
7: Denote w̄ =

∑T
t=1

2t
T (T+1)xt.

8: Return xβ[m− w̄].

One possible approach based on Lemma 5 is to obtain a smooth loss function fβ(w;x, y), and then use
Algorithm 2 and Algorithm 3 to obtain private estimators that achieve a small excess population risk for
fβ(w;x, y), i.e., E[fβ(w;x, y)] −minw∈Rd E[fβ(w;x, y)]. However, there is a challenge: To use Algorithm 2,
we need to calculate the gradient of fβ(w;x, y), which is inefficient as it is hard to compute the proximal
operator explicitly by Lemma 4. In the convex GLM case, Bassily et al. (2021) used the bisection method
to calculate ∇fβ(w;x, y). However, this approach cannot be used here as it requires access to the function
gy(·), which involves integration for our problem and is difficult to compute accurately. In the following, we
propose an algorithm that can efficiently approximate ∇fβ(w;x, y).

The idea is that by our definition we have ∇fβ(w;x, y) = xg′y
β (⟨w, x⟩), where g′y

β (m) = β[m − proxβg (m)].
Thus, it is sufficient to approximate proxβℓ (x) for given x. Recall that by the definition proxβg (m) =
arg minu∈R[gy(u) + β

2 |u − m|2]. We can show that proxβg (m) ∈ Q = [m − 4B
β ,m + 4B

β] which indicates
that

proxβg (m) = arg min
u∈Q

[gy(u) + β

2 |u−m|
2]

Thus, we can use the projected gradient descent (PGD) to solve the above strongly convex objective function.
See Algorithm 4 for details. Based on the convergence rate of PGD, we have the following lemma:
Lemma 6. Given any β, γ > 0. Then the gradient oracle Oβ,γ for fβ(w;x, y) in Algorithm 4 satisfies that
∥∇fβ(w;x, y)−Oβ,γ(w;x, y)∥2 ≤ γ for any fixed w, x, y. Moreover, Oβ,γ has running time O(dB

2

γ2).

Algorithm 5 Phased SGD for general non-convex GLM
Require: Private dataset: D = {(xi, yi)}ni=1, link function σ satisfies Assumption 1 and is differentiable;

privacy parameters 0 < ϵ, δ ≤ 1.
1: Set k = ⌈log2(n)⌉, partite the whole dataset S into k subsets {D1, · · · , Dk}. Denote ni as the number of

samples in Di, i.e., |Di| = ni where ni = ⌊2−in⌋. Take a random initial vector w0 ∈ W.
2: for i = 1, · · · , k do
3: Let ηi = η

4i and w1
i = wi−1.

4: for t = 1, · · · , ni do
5: Recall the oracle in Algorithm 4 for fβ(wti ;xti, yti) in Lemma 5 with error γ and denote it as
∇̃fβ(wti ;xti, yti). Update wt+1

i = wti − ηi∇̃fβ(wti ;xti, yti), where (xti, yti) is the t-th sample of Di.
6: end for
7: Denote wi = w̄i + ζi, where w̄i = 1

ni

∑ni

t=1 w
t
i and ζi ∼ N (0, τ2

i Id) with τi = 10BRηi

√
log 1

δ

ϵ .
8: end for

Using the previous Lemma 6, one possible approach is to use the approximate oracle in Algorithm 2, which
is the main idea behind Algorithm 5. However, there is another issue: if we use the same proof as in the
previous case where the link function has a subgradient everywhere, we can only obtain an upper bound
that depends on ∥w∗

β∥2, where w∗
β = arg minw∈Rd E[fβ(w;x, y)]. This phenomenon has also been observed

in GLMs with convex and non-smooth loss functions Bassily et al. (2021). Fortunately, we can conduct a

7

Under review as submission to TMLR

Algorithm 6 DP-Projected Phased SGD for general non-convex GLM
Require: Private dataset: D = {(xi, yi)}ni=1, link function σ satisfies Assumption 1 and is differentiable;

privacy parameters 0 < ϵ, δ ≤ 1.
1: Sample a fast JL matrix Φ ∈ Rm×d, and denote D̃ = {(Φx1, y1), · · · , (Φxn, yn)}.
2: Run Algorithm 5 on the projected dataset D̃, where in Line 8, ζi ∼ N (0, τ2

i Im) with τi = 20Bηi

√
log 2

δ

ϵ
and replace B by 2B in Algorithm 4. Denote the output as wk.

3:
4: Return ŵ = ΦTwk

finer analysis of the theoretical guarantee of Algorithm 2 and show that we can obtain an upper bound that
depends on W instead of ∥w∗

β∥2. Similar to the above results, we have the following two results.
Theorem 4. Under Assumption 1, for any 0 < ϵ, δ ≤ 1, Algorithm 5 is (ϵ, δ)-DP. Moreover, when η =
O(min{ ϵ√

θ log 1
δ

, 1√
n
}) ≤ 2

β , γ = O(1
n logn) and β = O(

√
n). Then we have

ELP(wk)− LP(w∗) ≤ O
(√

θ log 1
δ

nϵ
+ 1√

n

)
. (3)

Theorem 5. Under Assumption 1 and let m = O(log(nδ)(nϵ) 2
3), Algorithm 6 is (ϵ, δ)-DP for any 0 < ϵ, δ ≤ 1.

Moreover, when η = O(min{ ϵ√
m log 1

δ

, 1√
n
}) ≤ 1

β , γ = O(n logn) and β = O(
√
n) then we have

ELP(wk)− LP(w∗) ≤ Õ
(1√

n
+

√
log 1

δ

(nϵ) 2
3

)
.

4.1.3 ReLU Link Function

In the previous sections, we focused on the case where the link function in model (1) satisfies Assumption
1. Although this assumption includes several commonly used activation functions, it excludes the ReLU
function where σ(x) = max{0, x} due to the boundedness assumption of σ. Here, we will consider the ReLU
link function since it is a standard activation function in neural networks.

Similar to Assumption 1, we still assume that ∥w∗∥2 ≤W , ∥x∥2 ≤ 1, and y ∈ [−B,B]. Note that since ReLU
is Lipschitz, we can still use Lemma 3, and it is sufficient to consider the problem of minimizing LℓP(w).
However, the main difficulty now is that the surrogate loss function ℓ(w;x, y) is no longer Lipschitz over the
whole space Rd, as ∇ℓ(w;x, y) = (σ(⟨w, x⟩) − y)x is unbounded. Thus, our above methods cannot be used
for the ReLU case, as all of them need to assume that ℓ(w;x, y) is Lipschitz over the whole space. This is
due to the fact that w̄ and wti in Algorithm 2 may not lie in the constraint set W.

To address the issue, we make the key observation that although the surrogate loss function ℓ(w;x, y) is not
Lipschitz over the whole space, it will be Lipschitz over bounded sets. Specifically, for any w with ∥w∥2 ≤W ,
we have ∥∇ℓ(w;x, y)∥2 ≤ W + B. Based on this observation, we propose to constrain w over a bounded
domain during updates. To achieve this, we adopt the DP version of projected gradient descent (DP-PGD)
introduced in Bassily et al. (2014), which adds noise to the gradient and performs the projection operation
after updating the model, thereby enforcing w to be bounded during each iteration. Building on Algorithm 3,
we preprocess the data with a JL matrix and project all feature vectors onto an m-dimensional space before
applying DP-PGD. Finally, we lift the private estimator to the original space after the DP-PGD algorithm.
See Algorithm 7 for the full details.
Theorem 6. Algorithm 7 is (ϵ, δ)-DP for any 0 < ϵ, δ ≤ 1 under the previous assumptions and m =
O(log(nδ)(nϵ) 2

3). Moreover, take η = O(1√
T

) ≤ 1
2 and T = O(min{n, n2ϵ2

m log 1/δ}), in Algorithm 7 we have

ELP(w̄)− LP(w∗) ≤ Õ
(1√

n
+

1
√

log 1/δ
(nϵ) 2

3

)
.

8

Under review as submission to TMLR

Algorithm 7 DP-Projected GD for ReLU Regression
Require: Private dataset: D = {(xi, yi)}ni=1, ReLU link function σ(w) = max{0, w}; privacy parameters

0 < ϵ, δ ≤ 1.
1: Sample a JL matrix Φ ∈ Rm×d, and denote D̃ = {(Φx1, y1), · · · , (Φxn, yn)}.
2: for t = 1, · · · , T do
3: Update w̃t+1 as w̃t+1 = ΠW̃ [w̃t− η(1

n

∑n
i=1(max{0, ⟨w̃t,Φxi⟩}− yi)Φxi + ζt)], where ζ ∼ N (0, σ2Im)

with σ2 = 32(4W+B)2T log 2
δ

n2ϵ2 , W̃ = {w ∈ Rm|∥w∥2 ≤ 2W} and Π is the projection operator.
4: end for
5:

6: Return w̄ =
∑T

t=1
ΦT w̃T

T .

By combining the error bound of DP-PGD in Bassily et al. (2014) with our analysis, we obtain a bound of
Õ(n− 1

2 + min{
√
d(nϵ)−1, (nϵ)− 2

3 }). This bound is worse than those derived in the previous section because
the ReLU link function is not Lipschitz over Rd. It is worth noting that Arora et al. (2022b) also employs
DP-PGD for convex generalized linear loss and obtains the same bound. However, their analysis assumes
the loss function to be non-negative, whereas our loss function ℓ in (2) does not satisfy this assumption.

4.2 Misspecified Model

In previous sections, we focused on model (1) where E[y|x] = σ(⟨w∗, x⟩). However, such an assumption is
quite strong. Instead of the well-specified model, we always encounter the misspecified one that does not
directly impose any probability condition on the label generating process. 4 Since the zero-mean random
noise assumption does not hold, we cannot apply Lemma 3, which transforms the original population risk to
the population risk of a convex surrogate loss. As a result, none of the above methods can be used in this
case. A natural question is, what are the theoretical behaviors of GLMs in the misspecified model?

In fact, even in the non-private case, the problem of GLMs in the misspecified model is quite challenging and
is still not well understood in general. Thus, rather than considering upper bounds for general loss functions,
we aim to illustrate the differences with the well-specified model by examining specific losses. In particular,
we will study ReLU regression in the misspecified model.

Similar to the previous section, we will still examine the squared population risk function LP(w) =
E(x,y)∼P(σ(⟨w, x⟩) − y)2. It is noteworthy that Manurangsi & Reichman (2018) shows that in the ab-
sence of distributional assumptions on the marginal distribution of x, i.e., Px, finding a parameter w such
that LP(w) ≤ O(LP(w∗)) + α with some small error α is NP-hard even in the non-private case. Therefore,
compared to the well-specified model, we need additional assumptions on Px, and we will concentrate on the
following isotropic log-concave distributions, which include uniform distribution over [0, 1]d and Bernoulli
distribution.

Assumption 2. We assume the marginal distribution of x is isotropic log-concave, i.e., EPx [x] = 0 and
EPx

[xxT] = Id, and its density function f satisfies f(λx+(1−λ)y) ≥ f(x)λf(y)1−λ for every x, y ∈ Supp(Px)
and λ ∈ [0, 1]. Moreover, we assume ∥x∥2 ≤

√
d and y ∈ [−B,B].

To illustrate our idea, we first provide some notations. For any function f : Rd 7→ R and distribution P for
(x, y), we denote χfP = Ex∼PX [f(x)x], χσw

P = Ex∼PX [σ(⟨w, x⟩)x] and χP = EP [yx]. Our method is motivated
by the following observations. Firstly, we can show that if PX is isotropic, then for any vector w the distance
between χσw

P and χP is bounded by
√
LP(w), i.e., ∥χσw

P −χP∥2 ≤
√
LP(w). Secondly, for ReLU regression,

there exists a constant µ > 0 such that σ is µ-strongly convex w.r.t PX if the marginal distribution is isotopic
and log-concave Diakonikolas et al. (2020), i.e., for any w, v we have ⟨χσw

P − χσv

P , w − v⟩ ≥ µ∥w − v∥2
2.

4This setting is also known as the agnostic setting in literature Diakonikolas et al. (2020); Goel et al. (2019).

9

Under review as submission to TMLR

Under Assumption 2 and the above strong convexity we can show that for any vector w,

EP [(σ(⟨w, x⟩)− σ(⟨w∗, x⟩))2] ≤ O(∥χσw

P − χσw∗
P ∥2

2)
≤ O(∥χσw

P − χP∥2
2 + ∥χσw∗

P − χP∥2
2)

= O(∥χσw

P − χP∥2
2 + LP(w∗)).

Thirdly, by the triangle inequality we can easily find that

LP(w) ≤ O(LP(w∗) + EP [(σ(⟨w, x⟩)− σ(⟨w∗, x⟩))2]).

Thus, in total we have for any vector w,

LP(w) ≤ O(LP(w∗) + ∥χσw − χP∥2
2).

Moreover, we can easily get that χσw − χP is the gradient of the population risk function of the surrogate
loss function in (2), i.e., ∇LℓP(w) = χσw − χP . Thus, it is sufficient for us to find a private estimator w to
make ∥∇LℓP(w)∥2 be as small as possible.

Although some previous studies have addressed finding a first-order stationary point privately for population
risk functions, such as Wang & Xu (2019); Kang et al. (2021); Arora et al. (2022a), their methods cannot be
applied to our function LℓP because they assume that the loss is Lipschitz over Rd, which is not the case for
our loss. To overcome this challenge, we present a new algorithm, Adaptive DP Batched Gradient Descent
(Algorithm 8). The main idea is to partition the dataset into several subsets and, in each iteration, use one
subset for private Gradient Descent. Although our loss function ℓ(w;x, y) is not uniformly Lipschitz over Rd,
we can still find that ∥∇ℓ(wt−1;x, y)∥2 ≤

√
d∥wt−1∥2 +B, whose upper bound only depends on the current

model wt−1. Therefore, we can still use the Gaussian mechanism with sensitivity 2(∥wt−1∥2 + B) to the
gradient to ensure (ϵ, δ)-DP. Our algorithm is fundamentally different from previous DP-GD based methods
Bassily et al. (2014); Wang et al. (2017), as the Gaussian noise added also depends on the current model. In
general, our method can provide a tighter bound, as ∥wt−1∥2 becomes smaller as t increases, which implies
that we add smaller noise to the gradient.

Algorithm 8 Adaptive DP Batched Gradient Descent
Require: Private dataset: D = {(xi, yi)}ni=1, ReLU link function σ; privacy parameters 0 < ϵ, δ ≤ 1.

1: Partite the data D into T subsets {D1, · · · , DT } where m = |Di| = n
T .

2: Denote the loss function ℓ as ℓ(w;x, y) =
∫ ⟨w,x⟩

0 (σ(z)− y)dz. Initialize w0 = 0.
3: for i = 1, · · · , T do
4: Let wi = wi−1 − η(∇Lℓ(wi−1;Di) + ζi−1) = wi−1 − η(1

m

∑
x∈Di

(max{0, ⟨wi−1, xi⟩} − yi)xi + ζi−1),
where ζi−1 ∼ N (0, σ2

i−1Id) with σi−1 = 8(
√
d∥wt−1∥2+B)2 log(1.25/δ)

m2ϵ2 .
5: end for
6:
7: Return wT

Combining with all the above ideas, we can show the following result for Algorithm 8.
Theorem 7. Consider ReLU regression and assume Assumption 2 holds. For any 0 < ϵ, δ < 1, Algorithm
8 is (ϵ, δ)-DP. Moreover denote w∗

ℓ = arg minw∈Rd LℓP(w) with ℓ in (2). For any error α ∈ (0, ∥w∗
ℓ ∥2), if n

is sufficiently large such that

n ≥ Ω̃(max{
d∥w∗

ℓ ∥2

√
log 1

δ log 1
ζ

ϵα
,
∥w∗

ℓ ∥2
2d log4 1

ζ

α2 }),

setting T = O(log(∥w∗
ℓ ∥2)) and η ≤ 1

16 in Algorithm 8 we have

LP(wT) ≤ 2(1 + 2µ)LP(w∗) + α

with probability at least 1− ζ with ζ ≥ exp(−O(
√
d)).

10

Under review as submission to TMLR

In Theorem 7, we demonstrate that for ReLU regression under Assumption 2, the sample complexity required
to achieve LP(w) − c · LP(w∗) ≤ α with some c > 0 is Õ(max{ dϵα ,

d
α2 }). There are several differences in

comparison to the results in previous sections. Firstly, here we can only obtain a bound for LP(w) −
O(LP(w∗)) instead of the original excess population risk. In fact, this big-O term is necessary, as Goel et al.
(2019) provides hardness results for LP(w)−LP(w∗) ≤ α with α ∈ (0, 1), even if the underlying distribution
is the standard Gaussian. The second difference is that unlike the previous results, where sample complexities
are independent of d, the sample complexity here depends linearly on d. This dependency results from two
factors: the magnitude of noise added depends on

√
d, and the estimation error of ∥∇Lℓ(w;D)∥2 introduces

an additional d factor. We cannot use the same strategy as in Algorithm 2 since projecting the data will
alter the sample distribution and destroy the strongly convex property. Therefore, even in the non-private
case, there is still a factor of d in the sample complexity.

5 Extension to Two-layer Neural Networks

In this section, we present an extension of our previous methods to one-hidden layer fully connected neural
networks. Our focus is mainly on the cases where the activation functions are either sigmoid or ReLU. We
restrict ourselves to the well-specified model. Before presenting the details, we start by extending our model
(1) to a bounded noise setting in a high-dimensional feature space. We assume K is a kernel function in a
Reproducing Kernel Hilbert Space (RKHS) H ⊆ Rk with some k, and ψ(·) ∈ Rk is the corresponding feature
map satisfying |ψ(x)|2 ≤ 1 for all x ∈ PX . We consider the following model:

y = σ(⟨w∗, ψ(x)⟩+ ϕ(x)) + ζ, (4)

where w∗ ∈ H is the underlying parameter with ∥w∗∥2 ≤ W , ϕ(x) is a noise function which satisfies
|ϕ(x)| ≤M , ζ is a random noise whose mean is 0 and σ is a (non-convex) link function. Note that in the case
of ϕ(x) = 0 and ψ is the identity function, (4) is equivalent to model (1). Similar to the previous section,
here we consider the squared loss where LP(h) = E(x,y)∼P [(h(x)− y)2] for any function h 5 and we want to
minimize the excess population risk:

LP(h)−min
h
LP(h) = E(x,y)∼P [(h(x)− σ(⟨w∗, ψ(x)⟩+ ϕ(x)))2].

We consider the model (4) because, as we will show later, for some one-hidden layer neural networks, we can
always find w∗, ψ(·), and M to approximate the hidden layer, and the link function σ can be viewed as the
activation function of the output layer. We first present the following assumption for this section.
Assumption 3. We assume that there exist constants W,G = O(1) such that ∥w∗∥2 ≤ W , y ∈ [0, 1]6
and the link function σ : R 7→ [0, 1] is G-Lipschitz and non-monotone decreasing, and has sub-gradient
everywhere. Moreover, in model (4) we assume ∥ψ(x)∥2 ≤ 1 and ∥ϕ(x)∥2 ≤M for every x ∼ Px.

To minimize the population risk, similar to the previous section, we consider the surrogate loss

ℓ(w;x, y) =
∫ ⟨w,ψ(x)⟩

0
(σ(z)− y)dz. (5)

By Lemma 2 we can see the ℓ is 1-Lipschitz and G-smooth. Similar to Lemma 3, the following lemma shows
the relation between the original population risk and the population risk for the surrogate loss.
Lemma 7. For any w ∈ H we have

LP(w)−min
h
LP(h) ≤ 4G(LℓP(w)− LℓP(w∗)) + 2G2M2 + 4GM.

By Lemma 7, we can see that it is sufficient to find a private model that minimizes the difference between
LℓP(w) and LℓP(w∗). To achieve this goal, we can use a similar algorithm as presented in Algorithm 1, with
the main difference being the use of D̃ = (ψ(xi), yi)ni=1 instead of the raw data. For more details, please
refer to Algorithm 9. Similar to Theorem 1 and 2 we have the following result.

5Note that since we need to estimate both w∗ and ϕ, here we use a function instead of vector in the previous section.
6Note that here we assume y and σ is in [0, 1] is that there are commonly used in practice. We can extend to any bounded

interval.

11

Under review as submission to TMLR

Algorithm 9 DP Two-layer Neural Networks
Require: Private dataset: D = {(xi, yi)}ni=1, link function σ satisfies Assumption 3; privacy parameters

0 < ϵ, δ ≤ 1, θ is an upper bound of the expected rank
∑n
i=1 ψ(xi)ψ(xi)T .

1: Denote the data D̃ = {(ψ(xi), yi)}ni=1. If ϵ > θ
n , run Algorithm 2 with D̃. Otherwise run Algorithm 3

with D̃.

Theorem 8. Under Assumption 3, for any 0 < ϵ, δ ≤ 1, Algorithm 9 is (ϵ, δ)-DP. Moreover we have its
output w satisfies

ELP(w)−min
h
LP(h) ≤ Õ(min{

√
θ log 1

δ

nϵ
,

√
log 1

δ√
nϵ
}

+ 1√
n

+M2 +M),

where θ is an upper bound on the expected rank of
∑n
i=1 ψ(xi)ψ(xi)T if η = O(min{ ϵ√

θ log 1
δ

, 1√
n
}) ≤ 1

G in

Algorithm 2 and η = O(min{ ϵ√
m log 1

δ

, 1√
n
}) ≤ 1

G in Algorithm 3 with m = O(log(n/δ)nϵ).

Remark 9. It is worth noting that the rate of sample size n in Theorem 8 is lower than that in Theorem 1
(n− 1

2 v.s. n− 2
3). This is due to that in the noiseless case (M = 0), w∗ is also a global minimizer of LℓP(w),

which is not the case in model (4). Therefore, we cannot rely on this property and the smooth Lipschitz
condition to demonstrate that the error caused by projecting onto a lower space is Õ(1

m). Instead, we can
only use the Lipschitz condition to obtain an error of Õ(1√

m
).

One question is as we know LℓP(w)−LℓP(w∗) ≤ LℓP(w)−minw∈Rk LℓP(w), why we do not consider to bound
the latter term? Actually, considering the latter term will make us get an error that depends on ∥w∗

ℓ ∥2
with w∗

ℓ = arg minw∈Rk LℓP(w), whose upper bound is unknown. Thus, we need to analyze LℓP(w)−LℓP(w∗)
directly. Fortunately, by giving a finer analysis for the Phased SGD we can get such an upper bound.

Assuming that the term ϕ(x) is a noise function that is bounded by a sufficiently small constant M , Theorem
8 implies that if a function f can be approximated by an element of an appropriate RKHS, then Algorithm
8 can be used to obtain a private estimator. This is formalized in the following corollary.
Definition 7 ((M,W)-Uniform Approximation). Let f be a function mapping from domain X to R and PX
be a distribution over X . Let K be a kernel function with corresponding RKHS H ⊆ Rk and feature vector
ψ. We say f is (M,B)-uniformly approximated by K over PX if there exists some w∗ ∈ H with ∥w∗∥2 ≤W
such that for all x ∼ PX we have |f(x)− ⟨w∗, ψ(x)⟩| ≤M.

Corollary 1. Consider a distribution P such that E[y|x] = σ(f(x)) where σ is a known G-Lipshcitz and
increasing function, and f is (M,W)-approxiamted by some kernel function K and feature map ψ such that
K(x, x′) ≤ 1. The function h(x) = σ(⟨w,ψ(x)⟩) for the output w in Algorithm 9 achieves the same error
bound as in Theorem 8.

Next, we will apply Corollary 1 to some neural network models by using some recent results on approximation
theory for neural networks Goel & Klivans (2019). We consider the following one-hidden layer neural networks
with k-hidden units and one output node:

y = N2(x) + ζ, where N2 : x 7→ σ2(
k∑
t=1

btσ1(⟨at, x⟩)). (6)

Here we assume ∥x∥2 = 1, ∥at∥2 = 1 for each t and ∥b∥2 = 1 where b = (b1, · · · , bk), and σ1, σ2 are two
activation functions. Here σ2 satisfies the properties in Assumption 3 and σ1 could be either Sigmod and
ReLU activation functions. In the following, we provide sample complexities to achieve an error of α for
these two cases.
Theorem 10. Consider samples {(xi, yi)}ni=1 are i.i.d. drawn from distribution P such that E[y|x] = N2(x)
with σ2 : R 7→ [0, 1] is a known G-Lipshcitz and increasing function and σ1 is the sigmoid function. Then

12

Under review as submission to TMLR

when n = O((kGα)2C log 1/δ
ϵ + (Gkα)C

√
θ log 1/δ
ϵ) with some constant C > 0 we have

ELP(h)−min
h
LP(h) = ELP(h)− LP(N2) ≤ α.

Here h(x) = σ(⟨w,ψ(x)⟩) for some feature map ψ(x) ∈ RDm with Dm = Õ(dO(log k
α)) and w is the output of

Algorithm 9 with the feature map ψ(·).
Theorem 11. Consider samples {(xi, yi)}ni=1 are i.i.d. drawn from distribution P such that E[y|x] = N2(x)
with σ2 : R 7→ [0, 1] is a known G-Lipshcitz and increasing function and σ1 is the ReLU function. Then
when n = O(4C(Gk

α) log 1/δ
ϵ + 2C(Gk

α)
√
θ log 1/δ
ϵ) with some constant C > 0 we have

ELP(h)−min
h
LP(h) = ELP(h)− LP(N2) ≤ α.

Here h(x) = σ(⟨w,ψ(x)⟩) for some feature map ψ(x) ∈ RDm with Dm = O(
√
k
α d

O(k
α)) and w is the output w

of Algorithm 9 with the feature map ψ(·).
Remark 12. The results for one-hidden layer neural networks are quite intricate. Firstly, the sample com-
plexity now depends on poly(k) in the sigmoid case and depends on the exponential of k and 1

α in the ReLU
case, which is due to the approximation errors using feature maps. However, it is noteworthy that, similar
to the GLM case, the sample complexities are still independent of the data dimension. The second difference
is that Algorithm 9 is inefficient in the ReLU case, as the dimension of the feature map will be exponential.
Hence, developing efficient algorithms for privately learning one-hidden layer networks will remain an open
problem.

6 DP-SGD for Multi-layer Neural Networks

In previous sections, we examined GLMs and one-hidden layer neural networks, but there are three critical
issues with those results: (1) While we proposed several new algorithms, DP-SGD based methods Abadi
et al. (2016) are preferred in practice for private neural network training. Can we obtain utility guarantees for
vanilla DP-SGD in Abadi et al. (2016)? Alternatively, how do different factors such as the number of nodes,
clipping threshold, and iteration number impact the utility theoretically? (2) Most of the aforementioned
results rely on the well-specified model assumption and the squared loss in population risk, which can be
too stringent in practice. Can we provide utility analysis without these assumptions? (3) Previous methods
for one-hidden layer networks heavily depend on their specific forms and cannot be extended to general
multi-layer structures. To address these issues, we study the utility of the projected version of DP-SGD for
general multi-layer neural networks in this section.

We consider fully connected neural networks with depth (number of layers) L, width m in each layer, and
input data dimension d. Such a network could be represented by its weight matrices at each layer: For
L ≥ 2, let W1 ∈ Rm×d be the weight matrix between the input layer and the first hidden layer, Wl ∈ Rm×m

with l = 2, · · · , L − 1 as the weight matrices between hidden layers and WL ∈ R1×m be the weight matrix
between the last hidden layer to the output layer.7 For simplicity we denote W = (W1, ...,WL). Then the
neural network on sample x can be written as

f(W, x) = (
√
m) ·WLσ(WL−1σ(WL−2...σ(W1x)...)),

where σ(·) is the entry-wise activation function. In this paper, for convenience, we only consider the ReLU
activation function σ(s) = max{0, s}, which is arguably one of the most difficult activation functions to
analyze due to its non-smoothness. The general analysis framework is able to extend to other activation
functions like tanh, and sigmoid, as long as the function is smooth almost everywhere.

Besides the neural network, we also have a non-negative, differentiable, and S-Lipschitz convex loss func-
tion ℓ(f(W, x), y) (denoted as ℓ(W;x, y)) which measures the difference between the prediction of net-
work and the ground truth. In total, now our excess population risk is defined as E(x,y)∼Dℓ(W;x, y) −

7For simplicity, we assume the widths of each hidden layer are the same. Our result can be extended to the setting where
the widths of each layer are not equal in the same order.

13

Under review as submission to TMLR

minW∈W E(x,y)∼Dℓ(W;x, y). We consider the following assumption throughout the whole part, which is
commonly used in the previous work on analyzing theoretical behaviors of multi-layer neural networks such
as Chen et al. (2020); Cao & Gu (2019a).
Assumption 4. Assume ||x||2 ≤ 1 for all x ∈ Px and the parameter space of the network is W = B(0, R),
i.e., for all W ∈ W : ||Wl||F ≤ R, for all l ∈ [L].

Algorithm 10 DP-SGD for Multi-layer Neural Networks
Require: : Private dataset: D, convex set W = B(0, R). Parameters: learning rate η, mini-batch size M ,

iteration T , privacy parameter ϵ ≤ 1, δ ≤ 1/n2, clipping constant C.
1: Generate each entry of W(0)

l independently from N(0, 2/m), l ∈ [L − 1]. Generate each entry of W(0)
L

independently from N(0, 1/m).
2: for t = 0 to T − 1 do
3: For each data (xi, yi) ∈ D sample it probability p. Denote the batch as Bt.
4: For each (x(t)

j , y
(t)
j) ∈ Bt, denote gt(x(t)

j) = ∇ℓ(W(t); x(t)
j , y

(t)
j).

5: Let g̃t(x(t)
j) = gt(x(t)

j)/max(1, ||gt(x(t)
j

)||2

C).
6: Update weight matrices as W(t+1) = ΠW(W(t) − η · (1

|Bt|
∑

(x(t)
j
,y

(t)
j

)∈Bt
g̃t(x(t)

j) + Gt)), where Gt ∼
N (0, σ2I) drawn independently each iteration.

7: end for
8:
9: Return W̃priv = 1

T

∑T
t=1 W(t)

We aim to provide an upper bound on the excess population risk for DP-SGD in Algorithm 10 instead of
developing new algorithms. Note that there are slight differences between Algorithm 10 and the one in
Abadi et al. (2016). First, in the first step of Algorithm 10, the initial weight matrices are i.i.d. sampled
from a specific Gaussian distribution, which is crucial for our utility analysis. Secondly, in step 6, we need
to perform the projection after using the noisy and clipped sub-sampled gradients to update our weight
matrices. In fact, the projection step is also necessary for our analysis. Finally, instead of using the weight
matrices in the last iteration, our output is the average of all the intermediate weight matrices. We use
the average for convenience of analysis, but we can still obtain a similar utility for the last iteration weight
matrices by using the same strategy as in Shamir & Zhang (2013).

The main idea of our utility analysis is based on recent developments in the Neural Tangent Kernel (NTK)
technique Jacot et al. (2020), which explains the generalization behaviors and provides theoretical guarantees
for SGD in overparameterized neural networks. To introduce the idea of NTK, we first recall the definition
of a Neural Tangent Random Feature function.
Definition 8 (Neural Tangent Random Feature). Let W(0) be generated via the initialization process in
Algorithm 10. Then the Neural Tangent Random Feature (NTRF) function is defined as

fntk(W,x) = f(W(0),x) +
〈
∂Wf(W(0),x),W

〉
.

Consider the parameter space B(W(0), ω), the corresponding NTRF function class is denoted as

F(W(0), ω) = {fntk(W, x) : W ∈ B(W(0), ω), ||x||2 ≤ 1}.

Note that an NTRF function is linear. The idea of using NTK to analyze the generalization performance
of overparameterized neural networks is based on the observation that the dynamic of wide neural networks
under SGD is similar to that of the corresponding local linearization. In detail, let W (t) denotes the up-
dated parameter vector after the t-th iteration, and Lf =

∑
(x,y)∈D ℓ(f(W (t);x), y) denotes the sum of loss

with respect to f . Via continuous time gradient descent we have W (t+∆t) − W (t) = −η∆t∂L(t)
∂W . Since

∂f(W (t),DX)
∂t = ∇W f(W (t), DX)∂W

(t)

∂t , and by chain role ∂W (t)

∂t = −η∇W f(W (t), DX)T∇f(W (t),DX)L, where

f(W (t), DX) = vec([f(W (t), xi)]x∈[n])

14

Under review as submission to TMLR

is the vector of f(W (t), xi). The evolution of the neural network f and fntk can be written by

∂f(W (t), DX)
∂t

= −ηΘt(DX , DX)∇fLf(W (t),DX)︸ ︷︷ ︸
Gradient of Neural Network

,

∂fntk(W (t), DX)
∂t

= −ηΘ0(DX , DX)∇fLfntk(W (t),DX)︸ ︷︷ ︸
Gradient of Local Linearization

,

where
Θ0(X ,X) = EW (0)∇W f(W (0), DX)∇W f(W (0), DX)T

is the NTK matrix and Θt(DX , DX) = ∇W f(W (t), DX)∇W f(W (t), DX)T is the empirical NTK. Recently,
Arora et al. (2019) gives the first non-asymptotic convergence rate for the NTK matrix Θt and shows
||Θt−Θ0||F → 0 when m is sufficiently large, i.e., the empirical NTK is proved to converge to a deterministic
kernel under the infinite width setting Jacot et al. (2020) with high probability. Based on this, when m is
sufficiently large, from the above two equations we can see a basic idea to approximate the gradients of
neural networks is using their linearizations, which are convex. Moreover, we can also control the difference
between f(W (t), x) and fntk(W (t), x) by the term ||Θt−Θ0||F . Thus, via NTK, analyzing the utility of SGD
for neural networks will become similar to analyzing the utility of SGD for convex loss. Motivated by the
above intuition, we finally get the following theorem for the utility of Algorithm 10.
Theorem 13. There exist constants c1, c2 so that given the number of steps T and q = M/n, for any
ϵ < c1q

2T , Algorithm 10 is (ϵ, δ)-DP for any 0 < δ < 1 if we have σt ≥ c2
qC
√
T log(1/δ)
|Bt|ϵ . Moreover, for any

ξ ∈ (0, e−1], 0 < γ1, γ < 1, and R > 0, there exists

m∗(ξ,R, L, S, T, C) = Ω̃(Poly(S,L,R)T 7C−8[log(1/ξ)]3)

such that if C ≤ O(min{SL
√
m,R}), m ≥ m∗ , M ≥ Ω(log T

γ1
) and n ≥ Ω̃(C(

√
Lm+

√
md)
√
T log(1/γ) log(1/δ)
Rϵ),

then with probability at least 1− ξ − γ − γ1 over the randomness of the algorithm, the excess population risk
LD(Ŵ)−minW∈W LD(W) of the output in Algorithm 10 with step size η = Θ(

√
LR

C
√
mT

) is upper bounded by√
log(1

ξ)
T︸ ︷︷ ︸

Convergence rate

+ inf
f∈F(W(0), R√

m
)
{ 1
T

T∑
i=1

ℓ(f(xi), yi)}︸ ︷︷ ︸
Approximation error

+ SL
3
2R · Õ(

max(L, dm) log(1
γ) log(1

δ)m2
√
T

n2ϵ2︸ ︷︷ ︸
Privacy error

). (7)

Remark 14. Compared to the results in previous sections, Theorem 13 provides a more complex upper
bound. This upper bound is composed of three terms: The first term represents the sum of convergence
rate and sampling error. The second term is the minimum value of 1

T

∑T
i=1 ℓ(f(xi), yi) among all reference

functions in the NTRF function class. This term arises due to the approximation error caused by using
NTRF functions to approximate neural networks. The last term corresponds to the error resulting from the
addition of extra noise to gradients to ensure differential privacy. It is notable that when ϵ =∞, i.e., when
in the non-private case, our result will be O(inff∈F(W(0), R√

m
){ 1
T

∑T
i=1 ℓ(f(xi), yi)} + 1√

T
). Moreover, when

m,T →∞, the error will tend to zero.
Remark 15. Compared to the convex case, the impact of parameters T and m on the bound in Theorem
13 is more complicated. For network width m, if it is large enough, then fntk(W(0), x) will converge to a
well-trained neural network, as pointed out by Lee et al. (2020); Jacot et al. (2020); Lee et al. (2018). In
the interpolation regime, the training error can be zero, which means the approximation error tends to zero
as m becomes sufficiently large. However, m cannot be arbitrarily large because the privacy error depends
on poly(m). As for parameter T , it should not be too large or too small. When T is large, the privacy

15

Under review as submission to TMLR

error increases, and when T is small, the convergence error becomes large. Furthermore, the upper bound is
independent of the clipping threshold C because we assume that C ≤ R and the step size η depends on 1

C
(which implies that C cannot be too small). Thus, when C is in some range, it will not have a significant
impact on performance. However, the effect of C, whether large or small, remains an open problem.
Remark 16. The main weakness of Theorem 13 is the assumption of n ≥ O(m), which contradicts the
overparameterized setting in NTK theory, where the number of nodes could be far greater than the sample
size n. To address this weakness, recent studies have proposed additional assumptions on the gradient or
loss of neural networks, such as low-rank gradients Zhou et al. (2020) and restricted Lipschitz continuity Li
et al. (2022). However, all of these works only analyze the excess population risk for convex loss functions.
Since we can show, via NTK theory, that the loss function is locally convex and has a bounded gradient
with large enough m with high probability, we believe that it is possible to remove the dependency on the
number of weights in the utility by combining our theoretical analysis with those assumptions. This will be
left as future work.

6.1 Experimental Investigation

In order to validate the usefulness of the aforementioned theorem and investigate the effect of hyperparam-
eters on the error, as mentioned in Remark 15, we conducted experiments using a three-layer MLP model
on the MNIST dataset. The training set comprised 60,000 samples, with each sample represented by a
784-dimensional vector.

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
R * m 1

2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

in
f f

(W
(0

) ,R
/

m
){

x
S

(f(
x)

)

|S
|

}

NTKF
m=200
m=500
m=2000

Figure 1: Results of the first term in Theorem 8.

1. First, we aim to study the NTRF approximation error in the bound of Theorem 13 with differ-
ent values of R and m, which can be approximated by solving the convex optimization problem
inff∈F(W (0),R/

√
m)

1
|S|

∑
(x,y)∈S ℓ(f(x), y) with projected stochastic gradient descent. In this partic-

ular experiment, we set the width of MLPs for each layer as {200, 500, 2000}, respectively. Each
model is trained for 200 epochs with a learning rate of 10−2. R/

√
m varies from 0.1 to 1.9 with a

step of 0.2. Figure 1 reports the average results of 10 runs.

2. Next, we investigate the impact of the clipping constant C on the testing loss. To do so, we apply
the DP-SGD optimizer to a three-layer MLP model with a width of 256, and train the model for
200 epochs with a learning rate of η = 0.01, using a training set of 60,000 samples. We set ϵ = 1
and δ = 1/n2. The results are shown in Figure 2.

3. In Figure 3, we plot the mean testing error and 95% confidence interval based on 10 runs of the
DP-SGD optimizer with different values of m. The optimizer is applied to a three-layer MLP model
trained with a learning rate of 0.01 and 200 epochs, using n = 5, 000, ϵ = 1, δ = 1/n2, and C = 20.

16

Under review as submission to TMLR

0.25 0.5 1 2 4 8 16 32 64 128 256
C

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Lo
ss

DPSGD
DPSGD

Figure 2: Impact of Clipping Constant.

4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0
log2(m)

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

 w
ith

 9
5%

 c
on

fid
en

ce
 in

te
rv

al

DPSGD VS SGD
DPSGD
SGD
Confidence Interval of DPSGD
Confidence Interval of SGD

Figure 3: Impact of network width m.

16 32 64 128 256 512 1024 2048 4096 8192
T

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

 w
ith

 9
5%

 c
on

fid
en

ce
 in

te
rv

al

DPSGD VS SGD
DPSGD
SGD
Confidence Interval of DPSGD
Confidence Interval of SGD

Figure 4: Impact of training iteration T .

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

 w
ith

 9
5%

 c
on

fid
en

ce
 in

te
rv

al

DPSGD VS SGD
DPSGD
SGD
Confidence Interval of DPSGD
Confidence Interval of SGD

Figure 5: Impact of sample size n.

4. In Figure 4, we plot the testing error mean value and 95% confidence interval of 10 runs with
different value of T , which illustrates how the testing loss will change as T increases with the setting
of n = 60, 000 and m = 256. Other parameters are the same as above.

5. In Figure 5, we plot the impact of n on the testing error of DP-SGD. In this setting, we choose the
parameters satisfying the condition in Theorem 13, with m = (n 14

15)/2, T = 50n 2
15 , ϵ = 1, δ = 1/n2

and C = 20. It is notable that our parameter setting is to make each term in the upper bound (7)
decrease when n becomes larger.

Analysis. The results presented in the above figures provide insightful findings on the impact of different
hyperparameters on the excess population risk in DP-SGD-trained neural networks. Figure 1 shows that
the approximation error in the upper bound of Theorem 13 yields a small and meaningful value, and that
increasing the size of the hyperparameter space R results in a smaller approximation error. Moreover, when
the network width m is increased, the approximation error tends to zero, indicating that the NTRF space can
better fit wider neural networks on the training data. Figure 2 illustrates that when the clipping constant
C is chosen from [1, 64], the excess population risk remains unaffected, which aligns with our theoretical
analysis. The curves in Figure 3 and Figure 4 show that the excess population risk has a trade-off in
choosing the network width m and training iteration T , with neither of them being too large or too small.
This is consistent with our theoretical findings and our discussions in Remark 15. Furthermore, Figure
5 demonstrates that the performance of DP-SGD is similar to that of non-private SGD when the sample
size is sufficiently large. These findings highlight the importance of carefully tuning hyperparameters in
DP-SGD-trained neural networks and provide valuable guidance for practical applications.

17

Under review as submission to TMLR

7 Conclusion

We presented a comprehensive study on the theoretical guarantees of DP Multi-layer Neural Networks. We
started by considering the case where there are no hidden nodes, i.e., non-convex Generalized Linear Models.
In the well-specified model, we studied the cases where the link function is Lipschitz and bounded (such as
sigmoid) or unbounded (such as ReLU). We also analyzed ReLU regression in the misspecified model to
highlight its difference from the well-specified model. Next, we extended our techniques to two-layer neural
networks with sigmoid or ReLU activation functions in the well-specified model. Finally, we analyzed the
standard DP-SGD method for general multi-layer neural networks and provided an upper bound for the
excess population risk.

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.

Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security, pp. 308–318, 2016.

Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Finding approximate local
minima faster than gradient descent. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, pp. 1195–1199, 2017.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A Convergence Theory for Deep Learning via Over-
Parameterization. arXiv:1811.03962 [cs, math, stat], June 2019. URL http://arxiv.org/abs/1811.
03962. arXiv: 1811.03962.

Raman Arora, Raef Bassily, Tomás González, Cristóbal Guzmán, Michael Menart, and Enayat Ullah.
Faster rates of convergence to stationary points in differentially private optimization. arXiv preprint
arXiv:2206.00846, 2022a.

Raman Arora, Raef Bassily, Cristóbal Guzmán, Michael Menart, and Enayat Ullah. Differentially private
generalized linear models revisited. arXiv preprint arXiv:2205.03014, 2022b.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On exact
computation with an infinitely wide neural net. Advances in Neural Information Processing Systems, 32,
2019.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient algo-
rithms and tight error bounds. In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual
Symposium on, pp. 464–473. IEEE, 2014.

Raef Bassily, Cristóbal Guzmán, and Michael Menart. Differentially private stochastic optimization: New
results in convex and non-convex settings. Advances in Neural Information Processing Systems, 34, 2021.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends® in
Machine Learning, 8(3-4):231–357, 2015.

T Tony Cai, Yichen Wang, and Linjun Zhang. The cost of privacy: Optimal rates of convergence for
parameter estimation with differential privacy. The Annals of Statistics, 49(5):2825–2850, 2021.

Yuan Cao and Quanquan Gu. Generalization error bounds of gradient descent for learning over-parameterized
deep relu networks, 2019a.

Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and deep neural
networks. Advances in Neural Information Processing Systems, 32:10836–10846, 2019b.

You-Lin Chen, Zhaoran Wang, and Mladen Kolar. Provably Training Neural Network Classifiers under
Fairness Constraints. arXiv:2012.15274 [cs, math, stat], December 2020. URL http://arxiv.org/abs/
2012.15274. arXiv: 2012.15274.

18

http://arxiv.org/abs/1811.03962
http://arxiv.org/abs/1811.03962
http://arxiv.org/abs/2012.15274
http://arxiv.org/abs/2012.15274

Under review as submission to TMLR

Ilias Diakonikolas, Surbhi Goel, Sushrut Karmalkar, Adam R Klivans, and Mahdi Soltanolkotabi. Approxi-
mation schemes for relu regression. In Conference on Learning Theory, pp. 1452–1485. PMLR, 2020.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private
data analysis. In Theory of cryptography conference, pp. 265–284. Springer, 2006.

Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private stochastic convex optimization: optimal rates in
linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp.
439–449, 2020.

Spencer Frei, Yuan Cao, and Quanquan Gu. Agnostic learning of a single neuron with gradient descent.
Advances in Neural Information Processing Systems, 33:5417–5428, 2020.

Surbhi Goel and Adam R Klivans. Learning neural networks with two nonlinear layers in polynomial time.
In Conference on Learning Theory, pp. 1470–1499. PMLR, 2019.

Surbhi Goel, Sushrut Karmalkar, and Adam Klivans. Time/accuracy tradeoffs for learning a relu with
respect to gaussian marginals. Advances in Neural Information Processing Systems, 32, 2019.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic gradient
descent. In International conference on machine learning, pp. 1225–1234. PMLR, 2016.

Lijie Hu, Shuo Ni, Hanshen Xiao, and Di Wang. High dimensional differentially private stochastic optimiza-
tion with heavy-tailed data. In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, pp. 227–236, 2022.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural Tangent Kernel: Convergence and Generaliza-
tion in Neural Networks. arXiv:1806.07572 [cs, math, stat], February 2020. URL http://arxiv.org/
abs/1806.07572. arXiv: 1806.07572.

Prateek Jain and Abhradeep Guha Thakurta. (near) dimension independent risk bounds for differentially
private learning. In International Conference on Machine Learning, pp. 476–484. PMLR, 2014.

Sham M Kakade, Adam Tauman Kalai, Varun Kanade, and Ohad Shamir. Efficient learning of generalized
linear and single index models with isotonic regression. In Proceedings of the 24th International Conference
on Neural Information Processing Systems, pp. 927–935, 2011.

Adam Tauman Kalai and Ravi Sastry. The isotron algorithm: High-dimensional isotonic regression. In
COLT. Citeseer, 2009.

Yilin Kang, Yong Liu, Ben Niu, and Weiping Wang. Weighted distributed differential privacy erm: Convex
and non-convex. Computers & Security, 106:102275, 2021.

Shiva Prasad Kasiviswanathan and Hongxia Jin. Efficient private empirical risk minimization for high-
dimensional learning. In International Conference on Machine Learning, pp. 488–497. PMLR, 2016.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Sam Schoenholz, Jeffrey Pennington, and Jascha Sohl-dickstein.
Deep neural networks as gaussian processes. In International Conference on Learning Representations,
2018.

Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein,
and Jeffrey Pennington. Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient
Descent. Journal of Statistical Mechanics: Theory and Experiment, 2020(12):124002, December 2020.
ISSN 1742-5468. doi: 10.1088/1742-5468/abc62b. URL http://arxiv.org/abs/1902.06720. arXiv:
1902.06720.

Xuechen Li, Daogao Liu, Tatsunori Hashimoto, Huseyin A Inan, Janardhan Kulkarni, Yin Tat Lee, and
Abhradeep Guha Thakurta. When does differentially private learning not suffer in high dimensions?
arXiv preprint arXiv:2207.00160, 2022.

19

http://arxiv.org/abs/1806.07572
http://arxiv.org/abs/1806.07572
http://arxiv.org/abs/1902.06720

Under review as submission to TMLR

Pasin Manurangsi and Daniel Reichman. The computational complexity of training relu (s). arXiv preprint
arXiv:1810.04207, 2018.

Jean-Jacques Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Société mathématique
de France, 93:273–299, 1965.

WanSoo Rhee and Michel Talagrand. Uniform bound in the central limit theorem for banach space valued
dependent random variables. Journal of Multivariate Analysis, 20(2):303–320, 1986. ISSN 0047-259X.
doi: https://doi.org/10.1016/0047-259X(86)90085-0. URL https://www.sciencedirect.com/science/
article/pii/0047259X86900850.

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Convergence results
and optimal averaging schemes. In International conference on machine learning, pp. 71–79. PMLR, 2013.

Shuang Song, Thomas Steinke, Om Thakkar, and Abhradeep Thakurta. Evading the curse of dimensionality
in unconstrained private glms. In International Conference on Artificial Intelligence and Statistics, pp.
2638–2646. PMLR, 2021.

Di Wang and Jinhui Xu. Differentially private empirical risk minimization with smooth non-convex loss
functions: A non-stationary view. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 1182–1189, 2019.

Di Wang and Jinhui Xu. Escaping saddle points of empirical risk privately and scalably via dp-trust region
method. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp.
90–106. Springer, 2020a.

Di Wang and Jinhui Xu. On sparse linear regression in the local differential privacy model. IEEE Transactions
on Information Theory, 67(2):1182–1200, 2020b.

Di Wang, Minwei Ye, and Jinhui Xu. Differentially private empirical risk minimization revisited: faster
and more general. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 2719–2728, 2017.

Di Wang, Changyou Chen, and Jinhui Xu. Differentially private empirical risk minimization with non-convex
loss functions. In International Conference on Machine Learning, pp. 6526–6535. PMLR, 2019a.

Lingxiao Wang, Bargav Jayaraman, David Evans, and Quanquan Gu. Efficient privacy-preserving stochastic
nonconvex optimization. arXiv preprint arXiv:1910.13659, 2019b.

Qiuchen Zhang, Jing Ma, Jian Lou, and Li Xiong. Private stochastic non-convex optimization with improved
utility rates. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, 2021.

Yingxue Zhou, Zhiwei Steven Wu, and Arindam Banerjee. Bypassing the ambient dimension: Private sgd
with gradient subspace identification. arXiv preprint arXiv:2007.03813, 2020.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic Gradient Descent Optimizes Over-
parameterized Deep ReLU Networks. arXiv:1811.08888 [cs, math, stat], December 2018. URL http:
//arxiv.org/abs/1811.08888. arXiv: 1811.08888.

A Omitted Proofs in Section 4

Proof of Lemma 2. Note that by the definition of ℓ we have for any w,

∇ℓ(w;x, y) = (σ(⟨w, x⟩ − y) · x,
∇2ℓ(w;x, y) = σ′(⟨w, x⟩ · xxT ,

where σ′(·) is a subgradient of σ. Since σ is increasing, we have σ′(·) ≥ 0. Therefore we have ∇2ℓ(w;x, y) ≻
0 and ℓ(·;x, y) is convex and its Hessian matrix has rank at most 1. Since ∥∇ℓ(w;x, y)∥2 ≤ 2BR and
∇2ℓ(w;x, y) ≺ GR2Id, ℓ(·;x, y) is 2B-Lipschitz and G-smooth.

20

https://www.sciencedirect.com/science/article/pii/0047259X86900850
https://www.sciencedirect.com/science/article/pii/0047259X86900850
http://arxiv.org/abs/1811.08888
http://arxiv.org/abs/1811.08888

Under review as submission to TMLR

Proof of Lemma 3 . For any fixed x we have

Ey[ℓ(w;x, y)]− Ey[ℓ(w∗;x, y)] = Ey
∫ ⟨w,x⟩

⟨w∗,x⟩
(σ(z)− y)dz

=
∫ ⟨w,x⟩

⟨w∗,x⟩
(σ(z)− Eyy)dz =

∫ ⟨w,x⟩

⟨w∗,x⟩
(σ(z)− σ(⟨w∗, x⟩))dz

=
∫ ⟨w,x⟩

⟨w∗,x⟩

σ′(z)(σ(z)− σ(⟨w∗, x⟩))
σ′(z) dz

≥ 1
2G (σ(⟨w, x⟩)− σ(⟨w∗, x⟩))2,

where the last inequality is due to the fact that σ is monotonically increasing and G-Lipschitz. Thus, taking
the expectation of x we have

LℓP(w)− LℓP(w∗) ≥ 1
2GEx(σ(⟨w, x⟩)− σ(⟨w∗, x⟩))2

= 1
2G (LP(w)− LP(w∗)).

Proof of Theorem 1. Before the proof, we first provide some notations. For any u, u′ ∈ Rd, let ∥u∥V =√
uTV V Tu as the semi-norm of u induced by V , and let ⟨u, u′⟩V = uTV V Tu′.

Since ℓ(·;x, y) is 2B-Lipschitz and G-smooth, by Theorem 4.4 in Feldman et al. (2020) we can see it is
(ϵ, δ)-DP when η ≤ 2

G . For utility, it is sufficient to show that

ELP(wk)− LP(w∗) ≤ O(GBW (

√
θ log 1

δ

nϵ
+ 1√

n
)). (8)

Our proof follows the proof of convex GLM in Bassily et al. (2021). We first show the following lemma.

Lemma 8. For each epoch i we have E[LℓP(w̄i)− LℓP(w̄i−1)] ≤ E∥w̄i−1−wi−1∥2
V

2ηini
+ 2B2ηi.

Proof. For simplicity we omit the subscript i in wti and ηi. Denote Φt = ∥wt − w̄i−1∥2
V , we have

Φt+1 = Φt − 2η⟨∇ℓ(wt;xt, yt), wt − w̄i−1⟩+ η2∥∇ℓ(wt;xt, yt)∥2
2

≤ Φt − 2η⟨∇ℓ(wt;xt, yt), wt − w̄i−1⟩+ 4η2B2,

where the first inequality is due to the fact that ∇ℓ(wt;xt, yt) in the span of V and ℓ is 2B-Lipschitz. Thus,

⟨∇ℓ(wt;xt, yt), wt − w̄i−1⟩ ≤
Φt − Φt+1

2η + 2B2η.

By the convexity of LℓP and take the expectation w.r.t all the data we have

E[LℓP(wt)− LℓP(w̄i−1)] ≤ E[⟨∇LℓP(wt), wt − w̄i−1⟩]

≤ E[Φ
t − Φt+1

2η] + 2B2η.

Thus, we have

E[LℓP(w̄i)− LℓP(w̄i−1)] ≤ E[Φ1]
2ηni

+ 2B2η = E∥w̄i−1 − wi−1∥2
V

2ηni
+ 2B2η.

21

Under review as submission to TMLR

Now we back to our proof. Denote w̄0 = w∗
ℓ and ζ0 = w0 − w∗

ℓ , where w∗
ℓ = arg minw∈Rd LℓP(w), we have

E[LℓP(wk)− LℓP(w∗
ℓ)]

= E[LℓP(wk)− LℓP(w̄k)] +
k∑
i=1

E[LℓP(w̄i)− LℓP(w̄i−1)]

≤
k∑
i=1

(E∥ζi−1∥2
V

2ηini
+ 2B2ηi) + E[LℓP(wk)− LℓP(w̄k)].

Note that for all 2 ≤ i ≤ k, we have

E∥ζi−1∥2
V = EV [Eζi−1 [ζTi−1V V

T ζi−1|V]] ≤ θτ2
i−1.

And when i = 1, E∥ζi−1∥2
V ≤ ∥w0 − w∗

ℓ ∥2
2. For E[LℓP(wk)− LℓP(w̄k)] we have

E[LℓP(wk)− LℓP(w̄k)] ≤ 2BE[⟨ζk, x⟩] ≤ 2Bτk ≤ O(
WB

√
log 1

δ

ϵn
5
2

).

In total we have

k∑
i=1

(E∥ζi−1∥2
V

2ηini
+ 2B2ηi) + E[LℓP(wk)− LℓP(w̄k)]

≤
k∑
i=2

(
θτ2
i−1

2ηini
+ 2B2ηi) + ∥w0 − w∗

ℓ ∥2
2

2η1n1
+ 2B2R2η1 +O(

WB
√

log 1
δ

ϵn
5
2

)

≤ O(BW (

√
θ log 1

δ

nϵ
+ 1√

n
)).

Note that by Lemma 3 we can see that w∗
ℓ = w∗. Thus we have ELP(w)−LP(w∗) ≤ 2G(ELℓP(w)−LℓP(w∗)) ≤

O(GBW (
√
θ log 1

δ

nϵ + 1√
n

)).

Proof of Theorem 2. We first prove the privacy guarantee. Let α ≤ 1 be a parameter to be set later.
From the JL property we know that with m = O(logn/δ

α2), then with probability at least 1− δ
2 for all feature

vectors we have ∥Φxi∥2 ≤ (1 + α)∥xi∥2 ≤ 2∥xi∥2, and ∥Φw∗∥2 ≤ 2∥w∗∥2 ≤ 2W . In the following we will
show if the previous events hold (which is denoted as E) then the Algorithm is (ϵ, δ2)-DP.

To see this note that ℓ(wti ; x̃ti, yti) = ℓ(wti ; Φxti, yti), we have ∥∇ℓ(wti ; x̃ti, yti)∥2 = ∥(σ(⟨wti ,Φxti⟩)− yti)Φxti∥2 ≤
4B and ℓ(wti ; x̃ti, yti) is 4G-smooth. Thus, by Theorem 1 it is (ϵ, δ2)-DP if η ≤ 2

4G .

We then show the whole algorithm A is (ϵ, δ)-DP. Consider any event of the output S and any neighboring
datasets D ∼ D′, we have

P(A(D) ∈ S) = P(A(D) ∈ S
⋂
E) + P(A(D) ∈ S

⋂
Ē)

≤ eϵP(A(D′) ∈ S
⋂
E) + δ

2 + P(A(D) ∈ Ē)

≤ eϵP(A(D′) ∈ S) + δ.

Next we will show the utility. For simplicity we denote the projected distribution P ′ = ΦP we first decompose
the excess population risk as the following:

E[LℓP(ŵ)]− LℓP(w∗) = E[LℓP′(wk)]− EΦ,D̃L
ℓ(Φw∗, D̃) + EΦ,D̃L

ℓ(Φw∗, D̃)− LℓP(w∗).

22

Under review as submission to TMLR

For the second term by Lemma 3 we know w∗ is also the global minimizer of LℓP(w∗) and by Lemma 2 we
know it is G-smooth, thus we have

EΦ,D̃L
ℓ(Φw∗, D̃)− LℓP(w∗) = EΦ,(xi,yi)∼P [gyi(⟨Φw∗,Φxi⟩)− gyi(⟨w∗, xi⟩)]

≤ ∇LℓP(w∗) + G

2 E∥⟨Φw∗,Φxi⟩ − ⟨w∗, xi⟩∥2
2

= G

2 E∥⟨Φw∗,Φxi⟩ − ⟨w∗, xi⟩∥2
2 (9)

where the last inequality is due to that

Exi,Φ|⟨Φw∗,Φxi⟩ − ⟨w∗, xi⟩| = ExiEΦ|⟨Φw∗,Φxi⟩ − ⟨w∗, xi⟩|2 ≤ Õ(W 1
m

).

To bound the first term, we first Φ and use a similar analysis as in the proof of Theorem 1. The main
difference here we use the following lemma instead of ∥w̄i−1 − wi−1∥2

V . Note that it is always true as
∥w̄i−1 − wi−1∥2

V ≤ ∥w̄i−1 − wi−1∥2
2

Lemma 9. For each epoch i we have E[LℓP′(w̄i)− LℓP′(w̄i−1)] ≤ E∥w̄i−1−wi−1∥2
2

2ηini
+ 2B2ηi.

Denote w̄0 = Φw∗ and ζ0 = w0 − Φw∗, we have

E[LℓP′(wk)]− ELℓP′(Φw∗)

= E[LℓP′(wk)− LℓP′(w̄k)] +
k∑
i=1

E[LℓP′(w̄i)− LℓP′(w̄i−1)]

≤
k∑
i=1

(E∥ζi−1∥2
2

2ηini
+ 2B2ηi) + E[LℓP′(wk)− LℓP′(w̄k)].

Note that for all 2 ≤ i ≤ k, we have E∥ζi−1∥2
2 = mτ2

i−1. For E[LℓP′(wk)− LℓP′(w̄k)] we have

E[LℓP′(wk)− LℓP′(w̄k)] ≤ 2BE[⟨ζk, x⟩] ≤ 2Bτk ≤ O(
WB

√
log 1

δ

ϵn
5
2

).

In total we have
k∑
i=1

(E∥ζi−1∥2
2

2ηini
+ 2B2ηi) + E[LℓP′(wk)− LℓP′(w̄k)]

≤
k∑
i=2

(
mτ2

i−1
2ηini

+ 2B2ηi) + ∥w0 − Φw∗∥2
2

2η1n1
+ 2B2R2η1 +O(

WB
√

log 1
δ

ϵn
5
2

)

≤ O(BW (

√
m log 1

δ

nϵ
+ 1√

n
)).

Note that the previous bound only holds when ∥Φxi∥ ≤ (1 + log
√
n/δ

m) which holds with probability at least
1− δ. Thus we can use the same argument as in the Proof of Lemma 8 in Arora et al. (2022b) to transform
the above result to a result of the expectation w.r.t Φ with an additional logarithmic factor. Thus, in total
we have

E[LℓP(ŵ)]− LℓP(w∗) ≤ Õ(GW 1
m

+BW (

√
m log 1

δ

nϵ
+ 1√

n
))

Take m = O(log(n/δ)(nϵ) 2
3) we can get ELP(ŵ)− LP(w∗) ≤ 2G(ELℓP(ŵ)− LℓP(w∗)) ≤ Õ(G2WB(

√
log 1

δ

(nϵ)
2
3

+
1√
n

)).

23

Under review as submission to TMLR

Proof of Lemma 6. Note that by our definition we have ∇fβ(w;x, y) = xg′y
β (⟨w, x⟩), where

g′y
β (m) = β[m− proxβg (m)]. (10)

Next we will provide an algorithm to approximate proxβℓ (x) for given x. Recall that by the definition

proxβg (m) = arg min
u∈R

[gy(u) + β

2 |u−m|
2]

First we will show that proxβg (m) ∈ [m − 4B
β ,m + 4B

β]. For simplicity we denote u∗ = arg minu∈R h(u) =
arg minu∈R[gy(u) + β

2 |u−m|
2]. Then since u∗ is the minimizer of h(·) we have

0 ≤ h(m)− h(u∗) = gy(m)− gy(u∗)− β

2 |u
∗ −m|2

⇐⇒ β

2 |u
∗ −m|2 ≤ gy(m)− gy(u∗).

Since we have gy(·) is 2B-Lipschitz (Lemma 2). Thus,
β

2 |u
∗ −m|2 ≤ g(y)(m)− g(y)(u∗) ≤ 2B|m− u∗| ⇐⇒ |m− u∗| ≤ 4B

β
.

That is
proxβg (m) = arg min

u∈R
[gy(u) + β

2 |u−m|
2] = arg min

u∈Q
[gy(u) + β

2 |u−m|
2],

where Q = [m − 4B
β ,m + 4B

β]. Moreover, on the constraint set Q, function h(·) is β-strongly convex and
2B + 4B = 6B-Lipschitz. Thus, from a standard result on convergence of Gradient Decent for strongly and
Lipschitz functions (which corresponds to Step 3 to 7 in Algorithm 4, note that Step 5 is just the projection
onto the set Q) in Bubeck et al. (2015) we can see that after T -steps we have

β

2 |ŵ − u
∗|2 ≤ h(ŵ)− h(u∗) ≤ 72B2

β(T + 1) .

Thus we have |ŵ − u∗| ≤ 12B
β

√
T

. Thus we have ∥xβ[⟨w, x⟩ − ŵ]−∇fβ(w;x, y)∥2 ≤ 12B√
T

.

Proof of Theorem 4. We first proof the guarantee of (ϵ, δ)-DP. Note that unlike Algorithm 2, here we use
an approximation of ∇fβ(w;x, y). Consider a neighboring dataset D′ of D assume the different samples
are in Di which are denoted as xti and x

′t
i respectively. Moreover, we denote w′t

i as the parameters when
implementing the algorithm on D′. Then by our assumption we have wti = w

′t
i but wt0i ̸= w

′t0
i when t0 ≥ t+1.

Moreover, for any t0 ≥ t+ 1 we have

∥wt0i − w
′t0
i ∥2 ≤ ∥wt0−1

i − ηi∇fβ(wt0−1
i ;xt0−1

i , yt0−1
i)− w

′t0−1
i + ηi∇fβ(wt0−1

i ;x
′t0−1
i , y

′t0−1
i)∥2 + 2ηiγ

where xt0i ̸= x
′t0
i if t0 = t + 1 and xti = x

′t
i otherwise. Note that since fβ is β-smooth. Thus, by using a

similar proof as in Hardt et al. (2016) we have when η ≤ 2
β and t0 ≥ t+ 2 we always have

∥wt0−1
i − ηi∇fβ(wt0−1

i ;xt0−1
i , yt0−1

i)− w
′t0−1
i + ηi∇fβ(wt0−1

i ;x
′t0−1
i , y

′t0−1
i)∥2 ≤ ∥wt0−1

i − w
′t0−1
i ∥2.

Thus, we always have ∥wt0i − w
′t0
i ∥2 ≤ ∥wt0−1

i − w
′t0−1
i ∥2 + 2ηiγ.

When t0 = t + 1 by using a similar proof as in Hardt et al. (2016) ans since fβ is 2B-Lipschitz we have
∥wt0−1

i −ηi∇fβ(wt0−1
i ;xt0−1

i , yt0−1
i)−w

′t0−1
i +ηi∇fβ(wt0−1

i ;x
′t0−1
i , y

′t0−1
i)∥2 ≤ 4Bηi. Thus we have ∥wt+1

i −
w

′t+1
i ∥2 ≤ 4Bηi + 2γηi.

In total we have ∥wt0i − w
′t0
i ∥2 ≤ 4Bηi + 2ηiγt0. And thus ∥w̄i − w̄′

i∥ ≤ 4Bηi + γηi(n + 1) ≤ 5Bηi. Thus,
the ℓ2-norm sensitivity is 5Bηi. By the Gaussian mechanism we have the algorithm is (ϵ, δ)-DP.

Next we will focus on the utility. We first show the following lemma which follows Bassily et al. (2021) for
self-completeness:

24

Under review as submission to TMLR

Lemma 10. Let α, η be as in Theorem 4. Then for each phase i, we have

E[Fβ(w̄i)− Fβ(w̄i−1)] ≤ E[∥wi−1 − w̄i−1∥2
V]

2ηini
+ 5ηiB2

2 + (BE[∥wi−1 − w̄i−1∥V] + 1)√
n logn

.

Proof. For simplicity we denote Fβ(w) = E[fβ(w;x, y)] omit the subscript i. Denote Φt = ∥wt− w̄i−1∥2
V , we

have

Φt+1 = Φt − 2η⟨∇̃fβ(wt;xt, yt), wt − w̄i−1⟩V + η2∥∇̃fβ(wt;xt, yt)∥2
V

≤ Φt − 2η⟨∇fβ(wt;xt, yt), wt − w̄i−1⟩+ 2ηγ∥wt − w̄i−1∥V + η2(γ2 + 4B2),

where the first inequality is due to the fact that ∇fβ(wt;xt, yt) in the span of V . Thus,

⟨∇fβ(wt;xt, yt), wt − w̄i−1⟩ ≤
Φt − Φt+1

2η + γ∥wt − w̄i−1∥V + η

2 (γ2 + 4B2).

Taking the expectation w.r.t all randomness we have

⟨∇Fβ(wt), wt − w̄i−1⟩ ≤
E[Φt − Φt+1]

2η + γE∥wt − w̄i−1∥V + η

2 (γ2 + 4B2).

By the convexity of Fβ we have ⟨∇Fβ(wt), wt − w̄i−1⟩ ≥ E[Fβ(wt)− Fβ(w̄i−1)]. Thus, we have

E[Fβ(w̄i)− Fβ(w̄i−1)] ≤ E[Φ1]
2ηni

+ γ

ni
E[

ni∑
t=1
∥wt − w̄i−1∥V] + η

2 (γ2 + 4B2).

Next we bound the term
∑ni

t=1 ∥wt − w̄i−1∥V :

∥wt − w̄i−1∥V ≤ ∥wt−1 − w̄i−1∥V + ∥wt − wt−1∥V

≤ · · · ≤ ∥wi−1 − w̄i−1∥V +
t∑

j=2
∥wj − wj−1∥V

≤
√

Φ1 + η(t− 1)(2B + γ).

In total we have

E[Fβ(w̄i)− Fβ(w̄i−1)]

≤ E[Φ1]
2ηni

+ αE[
√

Φ1 + ηni(2B + γ)] + η

2 (γ2 + 4B2)

≤ E[Φ1]
2ηni

+ 5ηB2

2 + γ(E[
√

Φ1] + 3niηB),

where the last step follows from the fact that γ = B
n logn ≤ B. Since we have η ≤ W

6B
√
n

, we have 3niηB ≤
√
n.

In total we have

E[Fβ(w̄i)− Fβ(w̄i−1)] ≤ E[Φ1]
2ηni

+ 5ηB2

2 + (BE[
√

Φ1] + 1)√
n logn

.

25

Under review as submission to TMLR

Now we back to the proof of Theorem 4. Denote w̄0 = w∗
β and ζ0 = w0 − w∗ and by Lemma 10 we have

E[Fβ(wk)− Fβ(w∗)]

=
k∑
i=1

E[Fβ(w̄k)− Fβ(w̄k−1)] + E[Fβ(wk)− Fβ(w̄k)]

≤
k∑
i=1

E[∥wi−1 − w̄i−1∥2
V]

2ηini
+ 5ηiB2

2 + (BE[∥wi−1 − w̄i−1∥V] + 1)√
n logn

+ E[Fβ(wk)− Fβ(w̄k)]

=
k∑
i=1

E[∥ζi−1∥2
V]

2ηini
+ 5ηiB2

2 + BE[∥ζi−1∥V] + 1√
n logn

+ E[Fβ(wk)− Fβ(w̄k)].

Note that for all 2 ≤ i ≤ k, we have

E∥ζi−1∥2
V = EV [Eζi−1 [ζTi−1V V

T ζi−1|V]] ≤ θτ2
i−1.

And when i = 1, E∥ζi−1∥2
V ≤ ∥w0 − w∗

ℓ ∥2
2. For E[Fβ(wk)− Fβ(w̄k)] we have

E[Fβ(wk)− Fβ(w̄k)] ≤ 2BRE[⟨ζk, x⟩] ≤ 2Bτk ≤ O(
WBR

√
log 1

δ

ϵn
5
2

).

In total we have

E[Fβ(wk)− Fβ(w∗)] ≤
k∑
i=1

E[∥ζi−1∥2
V]

2ηini
+ 5ηiB2

2 + BE[∥ζi−1∥V] + 1√
n logn

+ E[Fβ(wk)− Fβ(w̄k)]

≤ O(B(∥w0 − w∗∥2
2 + 1)(

√
θ log 1

δ

nϵ
+ 1√

n
))

+
k∑
i=2

[
θτ2
i−1

2ηini
+ 5ηiB2

2 + B(
√
θτi−1 + 1)√
n logn

] +O(
WB

√
log 1

δ

ϵn
5
2

)

≤ O(W 2B(

√
θ log 1

δ

nϵ
+ 1√

n
)).

Thus, by Lemma 4 we have

E[LP](wk)− LP(w∗) ≤ 2G(ELℓP(w)− LℓP(w∗))

≤ O(GW 2B(

√
θ log 1

δ

nϵ
+ 1√

n
) + GB2

β
).

Take β = O(
√
nB
W 2) we can get the result.

Proof of Theorem 5. The proof has the same idea of the proof in Theorem 2. And here we use the proof
of Theorem 4 instead of Theorem 1. For simplicity we omit it here.

Proof of Theorem 6. First we will show the (ϵ, δ)-DP guarantee. Similar to the proof of Theorem 2
we know that when k = O(logn/δ

α2) with some α ≤ 1 we have with probability at least 1 − δ
2 , ∥Φxi∥2 ≤

(1 + α)∥xi∥2 ≤ 2 and ∥Φw∗∥2 ≤ 2W . Under this event we can easily calculate the ℓ2-norm sensitivity of
1
n

∑n
i=1(max{0, ⟨w̃t,Φxi⟩}−yi)Φxi, which is 4(4W+B)

n . Thus the line 2-4 is (ϵ, δ2)-DP and the whole algorithm
is (ϵ, δ)-DP.

26

Under review as submission to TMLR

Next we will show the utility, note that line 2-4 is equivalent to using the projected gradient descent to

Lℓ(w; D̃) with ℓ(w;x, y) =
∫ ⟨w,x⟩

0 (σ(z)− y)dz. Then denote P ′ = ΦP and w̃ =
∑T

t=1
w̃t

T we have

ELℓP(w̄)− LℓP(w∗) = [ELℓP′(w̃))− ELℓ(Φw∗, D̃)] + [ELℓ(Φw∗, D̃)]− LℓP(w∗)]
≤ [LℓP′(w̃))− min

w∈W̃
LℓP′(w)] + [LℓP′(w̃T+1))− LℓP(w∗)].

For the second term due to Lemma 3 we known w∗ is the global minimizer of LℓP(w) and thus ∇LℓP(w∗) = 0,
moreover we can see ℓ is 1-smooth, thus we have

ELℓ(Φw∗, D̃)− LℓP(w∗) ≤ 1
2E[|⟨Φw∗,Φx⟩ − ⟨w∗, x⟩|2]

≤ O(Wα2) = O(W logn/δ
m

).

For the first term, we have

ELℓP′(w̃))− ELℓ(Φw∗, D̃) = ELℓP′(w̃)− ELℓP′(Φw∗) ≤ ELℓP′(w̃))− min
w∈W̃

LℓP′(w)

= ELℓP′(w̃))− ELℓ((w̃, D̃) + ELℓ((w̃, D̃)− ELℓ((w̃∗, D̃)

Since ℓ(w; Φxi, yi) is a 2(4W + B)-Lipschitz and 4-smooth function and the algorithm is just the PGD for
the empirical risk function. The first term, which is the generalization error is bounded by Lipschitz times
the stability i.e., O((W +B)2 ηT

n). The second term is bounded by the excess empirical risk, we have

E[∥w̃t+1 − w̃∗∥2
2] ≤ E∥w̃t − w̃∗ − η(∇Lℓ(w̃t, D̃) + ηt)∥2

2

≤ E∥w̃t − w̃∗∥2
2 + η2∥∇Lℓ(w̃t, D̃)∥2

2 + η2σ2m− 2η(Lℓ(w̃t, D̃)− Lℓ(w̃∗, D̃))
≤ E∥w̃t − w̃∗∥2

2 + 4η2(4W +B)2 + η2σ2m− 2η(Lℓ(w̃t, D̃)− Lℓ(w̃∗, D̃))

Thus, taking the sum for t = 1, · · · , T we have

Lℓ(w̃, D̃)− Lℓ(w̃∗, D̃) ≤ E∥w̃1 − w̃∗∥2
2

2ηT + 4η(4W +B)2 +O(η(W +B)2mT log(1/δ)
n2ϵ2

).

In total we have

ELℓP′(w̃))− ELℓ(Φw∗, D̃) ≤ O(W
2

ηT
+
η(W +B)2Tm log 1

δ

n2ϵ2
+ (W +B)2 ηGT

n
+ η(W +B)2).

Note that the previous bound only holds when ∥Φxi∥ ≤ (1 + log
√
n/δ

m) which holds with probability at least
1− δ. Thus we can use the same argument as in the Proof of Lemma 8 in Arora et al. (2022b) to transform
the above result to a result of the expectation w.r.t Φ with an additional logarithmic factor. Thus we have

ELℓP(wT+1)− LℓP(w∗) ≤ Õ(W
2

ηT
+
η(W +B)2Tm log 1

δ

n2ϵ2
+ (W +B)2 ηT

n
+ W logn/δ

m
+ η(W +B)2).

Thus, when take η = W
√
T max{(W+B), (W +B)

√
mT log(1/δ)
nϵ }

≤ W
(W+B)

√
T
≤ 1

2 and T = O(min{n, n2ϵ2

m log 1/δ}) we

have

ELℓP(wT+1)− LℓP(w∗) ≤ O(W (W +B)√
n

+
W (W +B)

√
m log 1/δ

nϵ
+ W logn/δ

m
).

Take m = O((nϵ) 2
3 logn/δ) we can get the result.

27

Under review as submission to TMLR

Proof of Theorem 7. We first show the proof of privacy. Note that since each iteration we use one data
Di. Thus, it is sufficient to show the algorithm is (ϵ, δ)-DP in the i-th iteration with fixed wi−1. This is true
since the ℓ2-norm sensitivity of ∇Lℓ(wi−1;Di) is

√
d∥wi−1∥2+B

m based on our assumption.

Next we will focus on the utility. By the concentration property of Gaussian distribution we know that with
probability at least 1 − ζ, we have ∥ζi−1∥2

2 ≤ O(d (
√
d∥wi−1∥2+B)2 log 1

ζ log 1
δ

m2ϵ2). Thus, with probability at least

1 − ζ, ∥ζi−1∥2
2 ≤ O(d (

√
d∥wi−1∥2+B)2 log T

ζ log 1
δ

m2ϵ2) for all i = 1, · · · , T . Below we will always assume this event
holds.

Before our proof we first recall the following lemmas:

Lemma 11 (Corollary 2.4 of Diakonikolas et al. (2020)). If PX is isotropic, then for any vector w, the
distance between χσw

P and χP is bounded by
√
LP(w), i.e., ∥χσw

P − χP∥2 ≤
√
LP(w).

Lemma 12 (Lemma 4.2 in Diakonikolas et al. (2020)). Under Assumption 2 , we have EP [(σ(⟨w, x⟩) −
σ(⟨w∗, x⟩))2] ≤ µ(∥χσw

P − χσw∗
P ∥2

2) with some constant µ.

Thus in total we have

EP [(σ(⟨w, x⟩)− σ(⟨w∗, x⟩))2] ≤ µ(∥χσw

P − χσw∗
P ∥2

2)
≤ 2µ(∥χσw

P − χP∥2
2 + ∥χσw∗

P − χP∥2
2)

≤ 2µLP(w∗) + 2µ∥∇LℓP(w)∥2. (11)

On the other side by the triangle inequality we have

LP(w) ≤ 2LP(w∗) + 2EP [(σ(⟨w, x⟩)− σ(⟨w∗, x⟩))2].

In total we have
LP(w) ≤ 2(1 + 2µ)LP(w∗) + 4µ∥∇LℓP(w)∥2.

In the following we will bound the term of ∥∇LℓP(wT)∥2 in Algorithm 8. We recall the following lemmas in
Diakonikolas et al. (2020).

Lemma 13. Consider a ball B(0, r) with radius r, under Assumption 2, if σ is the sigmod link function.
Then as long as

n ≥ Ω̃(d
α2 log4 d

ζ
(r + 1)2),

we have for fixed w ∈ B(0, r)

∥ 1
n

n∑
i=1

(σ(⟨w, xi⟩)− yi)xi∥2 ≤ α.

Lemma 14. As long as α ≤ ∥w∗
ℓ ∥2, ζ ≥ exp(−O(

√
d)) and

n ≥ Ω̃(d
µ2 log ∥w

∗
ℓ ∥2 + 1
µζ

),

with probability at least 1− ζ we have for all w such that α
3 ≤ ∥w − w

∗
ℓ ∥2 ≤ 2∥w∗

ℓ ∥2,

⟨∇Lℓ(w;D)−∇Lℓ(w∗
ℓ ;D), w − w∗

ℓ ⟩ ≥ τ∥w − w∗
ℓ ∥2

2 + β∥∇Lℓ(w;D)−∇Lℓ(w∗
ℓ ;D)∥2

2

with τ = µ
3 and β = 1

8 .

Now lets back to our proof, we will first show that ∥wi −w∗
ℓ ∥2 ≤ 2∥w∗

ℓ ∥2 for all i = 0, · · · , T when n is large
enough:

Lemma 15. Suppose the event of ∥ζi−1∥2
2 ≤ O((

√
d∥wi−1∥2+B)2 log T

ζ log 1
δ

m2ϵ2) for all i = 1, · · · , T holds, then we

have ∥wi − w∗
ℓ ∥2 ≤ 2∥w∗

ℓ ∥2 for all i = 0, · · · , T when m ≥ Ω̃(
√

1
τ (4η + 1

τ) (
√
d∥w∗

ℓ ∥2+B)
√

log 1/δ log 1/ζ
ϵα)

28

Under review as submission to TMLR

Proof. We will show it by using induction. This is true for i = 0 since w0 = 0. Suppose this is true for some
i− 1, then our goal is to show ∥wi − w∗∥2 ≤ 2∥w∗

ℓ ∥2. We consider two cases.

The first case is 2∥w∗
ℓ ∥2 ≥ ∥wi−1 − w∗

ℓ ∥ ≥ α
3 . Then we have

∥wi − w∗
ℓ ∥2

2 = ∥wi−1 − w∗
ℓ ∥2

2 − η⟨∇Lℓ(wi−1;Di) + ζi−1, wi−1 − w∗
ℓ ⟩+ η2∥∇Lℓ(wi−1;Di) + ζi−1∥2

2

= ∥wi−1 − w∗
ℓ ∥2

2 − η⟨∇Lℓ(wi−1;Di)−∇Lℓ(w∗
ℓ ;Di), wi−1 − w∗

ℓ ⟩
+ η2∥∇Lℓ(wi−1;Di) + ζi−1∥2

2 − η⟨∇Lℓ(w∗
ℓ ;Di) + ζi−1, wi−1 − w∗

ℓ ⟩
≤ (1− τη)∥wi−1 − w∗

ℓ ∥2
2 − ηβ∥∇Lℓ(wi−1;Di)−∇Lℓ(w∗

ℓ ;Di)∥2
2 + 2η2∥∇Lℓ(wi−1;Di)−∇Lℓ(w∗

ℓ ;Di)∥2
2

+ 2η2∥∇Lℓ(w∗
ℓ ;Di) + ζi−1∥2

2 − η⟨∇Lℓ(w∗
ℓ ;Di) + ζi−1, wi−1 − w∗

ℓ ⟩
≤ (1− τη)∥wi−1 − w∗

ℓ ∥2
2 − η(β − 2η)∥∇Lℓ(wi−1;Di)−∇Lℓ(w∗

ℓ ;Di)∥2
2 + 4η2∥∇Lℓ(w∗

ℓ ;Di)∥2
2 + 4η2∥ζi−1∥2

2

+ τη

2 ∥wi−1 − w∗
ℓ ∥2

2 + η

τ
∥∇Lℓ(w∗

ℓ ;Di)∥2
2 + η

τ
∥ζi−1∥2

2

≤ (1− τη

2)∥wi−1 − w∗
ℓ ∥2

2 + η(4η + 1
τ

)∥∇Lℓ(w∗
ℓ ;Di)∥2

2 + η(4η + 1
τ

)∥ζi−1∥2
2 (12)

= (1− τη

2)∥wi−1 − w∗
ℓ ∥2

2 + η(4η + 1
τ

)∥∇Lℓ(w∗
ℓ ;Di)∥2

2 + Õ(dη(4η + 1
τ

) (
√
d∥wi−1∥2 +B)2 log(1/δ) log 1/ζ

m2ϵ2
)

≤ (1− τη

2 + Õ(η(4η + 1
τ

)d
2 log(1/δ) log 1/ζ

m2ϵ2
))∥wi−1 − w∗

ℓ ∥2
2 + η(4η + 1

τ
)∥∇Lℓ(w∗

ℓ ;Di)∥2
2

+ Õ(dη(4η + 1
τ

) (
√
d∥w∗

ℓ ∥2 +B)2 log(1/δ) log 1/ζ
m2ϵ2

), (13)

where the first inequality is due to Lemma 14. Thus, we can see that when

m ≥ Ω̃(
√
η

τ
+ 1
τ2
d
√

log 1/δ log 1/ζ
ϵ

),

take α =
√

τ
9(4τβ+1)α

2 in Lemma 13 and when m ≥ Ω̃(
√
d 1
τ (4η + 1

τ) (
√
d∥w∗

ℓ ∥2+B)
√

log 1/δ log 1/ζ
ϵα). Then we

have

∥wi − w∗
ℓ ∥2

2 ≤ (1− τη

4)∥wi−1 − w∗
ℓ ∥2

2 + 2α2

9 ≤ 4∥w∗
ℓ ∥2

2.

We then consider case 2 where ∥wi−1 − w∗
ℓ ∥2 ≤ α

3 . Then we have

∥wi − w∗
ℓ ∥2 = ∥wi−1 − w∗

ℓ − η(∇Lℓ(wi−1;Di) + ζi−1∥2

≤ ∥wi−1 − w∗
ℓ − η(∇Lℓ(wi−1;Di)−∇Lℓ(w∗

ℓ ;Di)∥2 + η∥ζi−1∥2 + η∥∇Lℓ(w∗
ℓ ;Di)∥2

≤ ∥wi−1 − w∗
ℓ ∥2 + η∥ζi−1∥2 + η∥∇Lℓ(w∗

ℓ ;Di)∥2 ≤ α ≤ ∥w∗
ℓ ∥2,

where the second inequality is due to the convexity of the surrogate loss ℓ such that ⟨∇Lℓ(wi−1;Di) −
∇Lℓ(w∗

ℓ ;Di), wi−1 − w∗
ℓ ⟩ ≥ 0. Thus we can see in both cases we have ∥wi − w∗

ℓ ∥2 ≤ 2∥w∗
ℓ ∥2. Thus we

complete the proof.

Next we will proof the main theorem.

29

Under review as submission to TMLR

Suppose there exists a t̃ such that for i ≤ t̃, we have ∥wi−1 − w∗
ℓ ∥2 ≥ α

3 . Now consider in the i-th iteration
where i ≤ t̃, if ∥wi−1 − w∗

ℓ ∥2 ≤ ∥w∗
ℓ ∥2. Then

∥wi − w∗
ℓ ∥2

2 = ∥wi−1 − w∗
ℓ ∥2

2 − η⟨∇Lℓ(wi−1;Di) + ζi−1, wi−1 − w∗
ℓ ⟩+ η2∥∇Lℓ(wi−1;Di) + ζi−1∥2

2

= ∥wi−1 − w∗
ℓ ∥2

2 − η⟨∇Lℓ(wi−1;Di)−∇Lℓ(w∗
ℓ ;D), wi−1 − w∗

ℓ ⟩
+ η2∥∇Lℓ(wi−1;Di) + ζi−1∥2

2 − η⟨∇Lℓ(w∗
ℓ ;Di) + ζi−1, wi−1 − w∗

ℓ ⟩
≤ (1− τη)∥wi−1 − w∗

ℓ ∥2
2 − ηβ∥∇Lℓ(wi−1;Di)−∇Lℓ(w∗

ℓ ;Di)∥2
2 + 2η2∥∇Lℓ(wi−1;Di)−∇Lℓ(w∗

ℓ ;Di)∥2
2

+ 2η2∥∇Lℓ(w∗
ℓ ;Di) + ζi−1∥2

2 − η⟨∇Lℓ(w∗
ℓ ;Di) + ζi−1, wi−1 − w∗

ℓ ⟩
≤ (1− τη)∥wi−1 − w∗

ℓ ∥2
2 − η(β − 2η)∥∇Lℓ(wi−1;Di)−∇Lℓ(w∗

ℓ ;Di)∥2
2 + 4η2∥∇Lℓ(w∗

ℓ ;Di)∥2
2 + 4η2∥ζi−1∥2

2

+ τη

2 ∥wi−1 − w∗
ℓ ∥2

2 + η

τ
∥∇Lℓ(w∗

ℓ ;Di)∥2
2 + η

τ
∥ζi−1∥2

2

≤ (1− τη

2)∥wi−1 − w∗
ℓ ∥2

2 + η(4η + 1
τ

)∥∇Lℓ(w∗
ℓ ;Di)∥2

2 + η(4η + 1
τ

)∥ζi−1∥2
2,

where the first inequality is due to Lemma 14. Since we have ∥wi−1−w∗∥2 ≥ α
3 , and take α =

√
τ2

9(4τβ+1)α
2

in Lemma 13 and since m ≥ Ω̃(
√
d 1
τ (4η + 1

τ) (B+
√
d∥w∗

ℓ ∥2)
√

log 1/ζ log 1/δ
ϵα) and ∥wi−1∥2 ≤ 3∥w∗

ℓ ∥2, we have for
i ≤ t̃

∥wi − w∗
ℓ ∥2

2 ≤ (1− τη

2)i∥w0 − w∗
ℓ ∥2

2 + 1
τ

(4η + 1
τ

) τ2

9(4τβ + 1)α
2 + α2

9

≤ ∥w∗
ℓ ∥2

2 + 2α2

9 ≤ 4∥w∗
ℓ ∥2

2.

Thus, we can see that as long as for i ≤ t̃, ∥wi−w∗∥2 ≥ α
3 and ∥w0−w∗

ℓ ∥ ≤ ∥w∗
ℓ ∥2 (this is true since w0 = 0)

we always have ∥wi − w∗
ℓ ∥2 ≤ 2∥w∗

ℓ ∥2. Thus, we can always use Lemma 14.

Now we consider several cases:

Case 1: If for all i ≤ T , ∥wi − w∗
ℓ ∥2 ≥ α

3 . Then by the above inequality we have

∥wT − w∗
ℓ ∥2

2 ≤ (1− τη

2)T ∥w0 − w∗
ℓ ∥2

2 + 1
τ

(4η + 1
τ

) τ2

9(4τβ + 1)α
2 + α2

9 ≤ (1− τη

2)T ∥w∗
ℓ ∥2

2 + 2α2

9

Thus, take T = O(log(α/∥w∗
ℓ ∥2)

log(1− τη)
2

) = O(1
τη log(∥w∗

ℓ ∥2) we have

∥wT − w∗∥2
2 ≤

2α2

9 + 2α2

9 ≤ 4α2

9 . (14)

That is ∥wT − w∗∥2 ≤ 2α
3 .

Case 2: If Case 1 does not hold, then if there exist a t̃ < T (we assume t̃ is the largest one) such that
when i = t̃ we have ∥wi − w∗

ℓ ∥2 ≤ α
3 and ∥wi − w∗

ℓ ∥2 ≥ α
3 for T ≥ i ≥ t̃+ 1. Then

∥wt̃+1 − w∗
ℓ ∥2 = ∥wt̃ − w∗

ℓ − η(∇Lℓ(wt̃;Di) + ζt̃)∥2

≤ ∥wt̃ − w∗
ℓ − η(∇Lℓ(wt̃;Di)−∇Lℓ(w∗

ℓ ;Di))∥2 + η∥ζt̃∥2 + η∥∇Lℓ(w∗
ℓ ;Di)∥2

≤ ∥wt̃ − w∗
ℓ ∥2 + η∥ζt̃∥2 + η∥∇Lℓ(w∗

ℓ ;Di)∥2 ≤
α

3 + α

3 ≤ 2∥w∗
ℓ ∥2,

where the second inequality is due to the convexity of the surrogate loss ℓ such that ⟨∇Lℓ(wt̃;Di) −
∇Lℓ(w∗

ℓ ;Di), wt̃ − w∗
ℓ ⟩ ≥ 0. Thus, we can use the same argument as Case 1 and show that

∥wT − w∗
ℓ ∥2

2 ≤ (1− ητ

2)T−t̃−1∥wt̃+1 − w∗
ℓ ∥2

2 + 2α2

9 ≤ 2
3α

2. (15)

30

Under review as submission to TMLR

Case 3 If Case 1 and Case 2 do not hold, then that is ∥wT − w∗∥2 ≤ α
3 .

Thus, in total we must have ∥wT − w∗
ℓ ∥2 ≤ α with probability at least 1− 3ζ. Note that

∥∇LℓP(wT)∥2 = ∥∇LℓP(wT)−∇LℓP(w∗
ℓ)∥2 ≤ ∥wT − w∗

ℓ ∥2 ≤ α. Thus

LP(w) ≤ 2(1 + 2µ)LP(w∗) + 4µα.

Take α = α
4µ we can get the result.

B Omitted Proofs in Section 5

Proof of Lemma 7. We denote

ℓ̃(w;x, y) =
∫ ⟨w,ψ(x)⟩+ϕ(x)

0
(σ(z)− y)dz.

For any fixed x we have

Ey[ℓ̃(w;x, y)]− Ey[ℓ̃(w∗;x, y)] = Ey
∫ ⟨w,ψ(x)⟩ϕ(x)

⟨w∗,ψ(x)⟩+ϕ(x)
(σ(z)− y)dz

=
∫ ⟨w,ψ(x)⟩ϕ(x)

⟨w∗,ψ(x)⟩+ϕ(x)
(σ(z)− Eyy)dz

=
∫ ⟨w,ψ(x)⟩ϕ(x)

⟨w∗,ψ(x)⟩+ϕ(x)
(σ(z)− σ(⟨w∗, ψ(x)⟩+ ϕ(x))))dz

=
∫ ⟨w,ψ(x)⟩+ϕ(x)

⟨w∗,ψ(x)⟩+ϕ(x)

σ′(z)(σ(z)− σ(⟨w∗, ψ(x)⟩+ ϕ(x)))
σ′(z) dz

≥ 1
2G (σ(⟨w,ψ(x)⟩+ ϕ(x))− σ(⟨w∗, ψ(x)⟩) + ϕ(x))2

≥ 1
2G [(σ(⟨w,ψ(x)⟩)− σ(⟨w∗, ψ(x)⟩+ ψ(x)))2

2 − (σ(⟨w, x⟩+ ψ(x))− σ(⟨w, x⟩))2]

≥ 1
2G [(σ(⟨w,ψ(x)⟩)− σ(⟨w∗, ψ(x)⟩+ ψ(x)))2

2 −G2M2].

On the other side we have |ℓ̃(w;x, y)− ℓ(w;x, y)| = |
∫ ⟨w,ψ(x)⟩+ϕ(x)

⟨w,ψ(x)⟩ (σ(z)− y)dz| ≤ |ϕ(x)| ≤M . In total take
the expectation w.r.t x we have

LP(w)− LP(w∗) ≤ 4G(LℓP(w)− LℓP(w∗)) + 2G2M2 + 4GM.

Proof of Theorem 8. It is sufficient for us to only consider the term of LℓP(w)−LℓP(w∗). We can just use

Theorem 1 to get the bound of O(
√
θ log 1

δ

nϵ + 1√
n

). For the other term, we can following the proof of Theorem
2. The only difference is that here we do not have (9) as w∗ is not the global minimizer of LℓP(w). Thus, by
the Lispchitz condition we have

EΦ,D̃L
ℓ(Φw∗, D̃)− LℓP(w∗) = EΦ,(xi,yi)∼P [gyi(⟨Φw∗,Φxi⟩)− gyi(⟨w∗, xi⟩)]

≤ 2EΦ,x|⟨Φw∗,Φx⟩ − ⟨w∗, x⟩| = O(W logn/δ√
m

).

Thus, similar to the proof of Theorem 2 in total we have

LℓP(w)− LℓP(w∗) ≤ Õ(W 1√
m

+W (

√
m log 1

δ

nϵ
+ 1√

n
)).

Take m = O(log(n/δ)nϵ) we can get the result.

31

Under review as submission to TMLR

Proof of Theorem 10 and 11 . We first recall the following two lemmas that the neural networks we
considered can be uniformly approximated.

Lemma 16 (Goel & Klivans (2019)). For N2 with the sigmoid function σ1 and G-Lipschitz function σ2,
there exists a kernel K with K(x, x′) ≤ 1 and feature map ψ(x) ∈ RDm (Dm = 1 + d + · · · + dm and
m = O(log(1

α0
))) such that N2 is (

√
kα0, (

√
k

α0
)C)-uniformly approximated by kernel K with some constant

C > 0 for any α0.

Lemma 17 (Goel & Klivans (2019)). For N2 with the ReLU function σ1 and G-Lipschitz function σ2, there
exists a kernel K with K(x, x′) ≤ 1 and feature map ψ(x) ∈ RDm (Dm = 1 + d + · · · + dm and m = O(1

α0
)

such that N2 is (
√
kα0, 2C

√
k

α0)-uniformly approximated by kernel K with some constant C > 0 for any α0.

Thus combining with the previous two lemmas with α0 = α
G

√
k

and Corollary 1 we have the proof.

C Omitted Proofs in Section 6

In this section we provide the proof of the theorem by applying the following technical lemmas. To begin
with, we introduce some extra notations. Following Allen-Zhu et al. (2019), for a parameter collection W
and i ∈ [n], we denote the l-th hidden layer output of the network as

hi,l =
{
σ(Wlhi,l−1) if l ∈ [L− 1]
xi if l = 0

We also define the binary diagonal matrices

Di,l = diag(I{(Wlhi,l)1 > 0}, ..., I{(Wlhi,l)m > 0}), l ∈ [L− 1]

For i ∈ [n] and l ∈ [L − 1], for the collection of initialization parameters W(0), we use h(0)
i,l ,D

(0)
i,l to denote

the initial hidden layer outputs and binary diagonal matrices. We introduce the following matrix product
notation used in the previous related work Zou et al. (2018); Cao & Gu (2019a;b):

l2∏
r=l1

Mr :=
{

Ml2Ml2−1...Ml1 if l1 ≤ l2
I otherwise

With this notation, we rewrite the neural network in the matrix representation from:

f(W,xi) =
{√

m ·WL(
∏L−1
r=l+1 Di,rWr)hi,l l ∈ [L− 1]

√
m ·WLhTi,l−1 l = L

Under this notation, one can calculate the gradient of f(W,xi) as follows:

∇Wl
f(W,xi) =

{√
m · [WL(

∏L−1
r=l+1 Di,rWr)Di,l]⊤hi,l−1 l ∈ [L− 1]

√
m · hTi,l l = L

(16)

The following lemma shows the error between neural network function and its linearization under NTKF for
all W ∈ B(W(0), ω) with some small ω.
Lemma 18 (locally linearization of neural network, Lemma 4.1 in Cao & Gu (2019a)). There exists an
absolute constant κ such that, with probability at least 1−O(nL2) exp[−Ω(mω2/3L] over the randomness of
W(0), for all i ∈ [n] and W ∈ B(W(0), ω) with ω ≤ κL−6[log(m)]−3/2

|f(W; xi)− fntk(W; xi)| ≤ O
(
ω4/3L3

√
m log(m)

)
Given the lemma 18, since the loss function is convex we can show the objective function is almost convex
near the initialization. This implies the dynamics of the DP-SGD algorithm given in Algorithm 10 is similar
to the dynamics of convex optimization.

32

Under review as submission to TMLR

Lemma 19 (locally almost convexity). There exists an absolute constant κ such that, with probability at
least 1 − O(nL2) exp[−Ω(mω2/3L] over the randomness of W(0), for all i ∈ [n] and W′,W ∈ B(W(0), ω),
any ∆ > 0, with ω ≤ κL−6m−3/8[log(m)]−3/2∆3/4 it holds uniformly

Li(W′) ≥ Li(W) + ⟨∇Li(W),W′ −W⟩ −∆

Proof of Lemma 19. By the convexity of loss function ℓ we have

Li(W′)− Li(W) = ℓ(f(W′; xi), yi)− ℓ(f(W; xi), yi)
≥ ℓ′(f(W; xi), yi) · (f(W′; xi)− f(W; xi)).

By the triangular inequality

|ℓ′(f(W; xi), yi) · (f(W′; xi)− f(W; xi))| ≥ |ℓ′(f(W; xi), yi) · ⟨∇f(W; xi),W′ −W⟩|
− |ℓ′(f(W; xi), yi) · (f(W′; xi)− f(W; xi)− ⟨∇f(W; xi),W′ −W⟩)|

where we could decompose the last term in the right side of inequality into |ℓ′(f(W; xi), yi)| · ([f(W′; xi)−
fntk(W′; xi)]− [f(W; xi)−fntk(W; xi)]). Now we can apply the linearization approximation Lemma 18 and
ℓ(·) is S-lipschitz with respect to W to obtain the following inequality

Li(W′)− Li(W) ≥ ⟨∇Li(W),W′ −W⟩ −O(Sω4/3L3
√
m log(m))

≥ ⟨∇Li(W),W′ −W⟩ −∆

The last inequality holds if ω ≤ κL−6m−3/8[log(m)]−3/2∆3/4 for some constant κ.

With the lemma 19, it is clear the loss of neural network is almost convex. This inspired us to analyze the
dynamics of the DP-SGD algorithm 10. By carefully selecting the learning rate and a number of iterations,
the DP-SGD algorithm is similar to the noised SGD convex optimization. Algorithm 5 is similar
to the dynamics of convex optimization. In the following, we will show the loss function is locally Lipschitz.
Lemma 20 (Lemma 7.1 in Allen-Zhu Allen-Zhu et al. (2019)). If ϵ ∈ (0, 1], with probability at least 1 −
O(nl) · eΩ(mϵ2/L) over the randomness of W(0), we have

∀i ∈ [n], l ∈ [L] : ||hi,l|| ∈ [1− ϵ, 1 + ϵ] (17)

Lemma 21 (Lemma 8.2 in Allen-Zhu Allen-Zhu et al. (2019)). Suppose ω ≤ 1
CL9/2 log3 m

for some sufficiently
large constant C > 1. With probability at least 1− e−Ω(mω2/3L), for every W ∈ B(W(0), ω),

||hi,j − h(0)
i,j || ≤ O(ωL5/2

√
logm) (18)

Lemma 22 (Locally Bounded Gradient). There exists an absolute constant κ such that, with probability at
least 1−O(nL) exp[−Ω(mω2/3L] over the randomness of W(0), for all i ∈ [n], l ∈ [L] and W ∈ B(W(0), ω),
with ω = R√

m
≤ κL−6[logm]−3

1. ||∇Wl
f(W; xi)||F = O(

√
m)

2. ||∇Wl
Li(W)||F = O(S

√
m)

Proof of Lemma 22. Observing that the loss function ℓ(·, yi) is assumed to be S-lipschitz for any yi, it is
sufficient to show that the gradient of fntk(W, x) is bound with high probability.
By Lemma 20, with probability at least 1 − O(nL) · exp[−Ω(m/L)], ||h0

i,l||2 ∈ [3/4, 5/4] for all i ∈ [n] and
l ∈ [L − 1]. Moreover, by Lemma 21 and the fact that σ(·) is of 1-lipschitz continuity, with probability
1−O(nL) · exp[−Ω(mω2/3L], ||hi,l − h(0)

i,l ||2 ≤ O(ωL5/2√logm). Therefore, by the setting of neighborhood

33

Under review as submission to TMLR

ω = R ·m−1/2 and the assumption of m, we have ||hi,l||2 ∈ [1/2, 3/2] for all i ∈ [n] and l ∈ [L− 1]. Note by
Lemma 19 that this implicitly indicates that

R√
m
≤ κL−6m−3/8[log(m)]−3/2∆3/4 =⇒ m

1
8 ≥ Ω̃(RS 3

4L
9
4 ∆ 3

4). (19)

The above statement tells that the output of arbitrary hidden-layer hi,l lies in a small region, therefore
plugging in (16) for ∇Wl

f(W; xi) we can get the desired result.

s
Lemma 23. When M ≥ Ω(log T

γ) we have with probability at least 1 − γ for all t ∈ [T], |Bt| ≥ C1M for
some constant C1 > 0

Proof. By the subsampling procedure we can easily see E[|Bt|] = qn = M . Thus, by the Multiplicative
Chernoff bound we can see for all t ∈ [T]

P(||Bt| −M | ≥ γM) ≤ 2 exp(−γ
2M

3)

Thus, we have with probability at least 1 − γ we have |Bt| ≥ (1 −
√

3 log T
γ√

M
)M . Thus when M ≥ Ω(log T

γ)
we have the result.

Lemma 24. Gaussian vector norm tail bound Let X ∼ N(µ, σ2I) where µ ∈ Rn and σ ∈ R. For any t > 0,
with probability at most 1− 2 exp(− t

2nσ2)
||X− µ||F ≤ t

Proof of the Lemma 24. Let Y ∼ N(0, I), then ||X− µ||F =d ||σY||F . For all t > 0 and s > 0, based on
the inequality from Lemma 4 in Rhee & Talagrand (1986), we have

P (||σY||F > t) ≤ P (||σY||1 > t)

≤ e−st
n∏
i=1

E[exp(tσ|Yi|)]

≤ 2 exp(s2nσ/2− st)
≤ min

s
2 exp(s2nσ/2− st)

≤ 2 exp(t2

2nσ)

Lemma 25 (Dynamically Cumulative Loss). If Lemma 23 holds, C ≤ O(min{SL
√
m,R}) and n ≥

Ω̃(C(
√
Lm+

√
md)
√
T log(1/γ) log(1/δ)
Rϵ), then with probability at least 1 − O(nL2) exp[−Ω(mω2/3L] − γ over the

randomness of W(0) and the noise, for all t ∈ [T] and W∗ ∈ B(W(0), R/
√
m), any ∆ > 0, with set size

ηT = Θ(SL2R2

κC
√
m∆),∆ = O(SL

3
2 R√
T

) with m ≥ O(L56R24∆−14S−8C−8[log(m)]12) it holds uniformly

T∑
t=1

Lt(W(t))− Li(W∗) ≤ SLη
√
m

2κC

T∑
t=1
||Gt||2F + 3T∆

Proof of Lemma 25. First we show that following the DP-SGD update rule, the parameters would be
restricted within a small region near to initialization by choosing some artificial parameters. By Lemma 18,

34

Under review as submission to TMLR

19, 22 there exists some small enough positive constant C1, suppose ω = C1 · L−6m−3/8[log(m)]−3/2∆3/4 ≥
R√
m

such that the conditions in the above mentioned three lemma hold. Recall the update rule is

W(t+1) ← ProjW(W(t) − η · (1
|Bt|

∑
(x(t)

j
,y

(t)
j

)∈Bt

g̃t(x(t)
j) + Gt)).

Assume the sample size n ≥ Ω̃(C(
√
Lm+

√
md)
√
T log(1/γ) log(1/δ)
Rϵ) , we can have the following inequality with

probability at least 1− γ

||W(T)
l −W(0)

l ||F ≤
T∑
t=1
||W(t)

l −W(t−1)
l ||F

≤ η
T∑
t=1
|| 1
|Bt|

∑
(x(t)

j
,y

(t)
j

)∈Bt

g̃t(x(t)
j) + Gt||F

≤ 2TηR

≤ O(SL
2R3

∆C
√
m

)

≤ ω

The first inequality follows by the triangle inequality. The second inequality could be seen from the update
rule. The third inequality holds since by Lemma 23 and Gaussian tail bound we have with probability at
least 1− γ, for all t ∈ [T] both |Bt| ≥ Ω(M) and ∥Gt∥F ≤ Õ(M(

√
Lm+

√
md)C

√
T log 1/δ log 2T/γ

n|Bt|ϵ) holds, which

indicate
∑T
t=1 ||Gt||F ≤ TR if n ≥ Ω̃(C(

√
Lm+

√
md)
√
T log(2/γ) log(1/δ)
Rϵ), and the assumption that C ≤ R. The

fourth inequality holds due to that

Tη ≤ O(SL
2R2

∆C
√
m

). (20)

The last inequality holds, if m ≥ Ω
(
S−8C−8L56R24∆−14[log(m)]12)

. Thus we have Wt ∈ B(W(0), w) with
high probability for all t ∈ [T]. Suppose W∗ ∈ B(W(0), ω∗ = R/

√
m). Following above setting, Lemma 18,

19, 22 hold. Then for any positive constant ∆ > 0 the following inequality holds.

Lt(W(t))− Lt(W∗) ≤ ⟨∇WLt(W(t)),W(t) −W∗⟩+ ∆

= 1
η

max(1, ||gt(xt)||F
C

)⟨ηg̃t(xt),W(t) −W∗⟩+ ∆

= 1
2η max(1, ||gt(xt)||F

C
)(η2C2 + ||W(t) −W∗||2F

− ||W(t) −W∗ − ηg̃t(xt)||2F) + ∆

≤ max(1, ||gt(xt)||F
C

){ηC
2

2 + 1
2η [||W(i) −W∗||2F

− ||W(i+1) −W∗||2F] + η

2 ||Gi||2F

+ η

2M

M∑
j=1
||g̃t(xj)− g̃t(xt)||2F }+ ∆

≤ max(1, ||gt(xt)||F
C

){3ηC2

2 + 1
η

[||W(t) −W∗||2F

− ||W(t+1) −W∗||2F] + η

2 ||Gt||2F }+ ∆

The first inequality follows by lemma 19. The second equality is a direct application from the definition of
inner product in metric space. The third equality holds because the connection between inner product and

35

Under review as submission to TMLR

norm in metric space.
Thus by telescope summation and simply removing the negative term, the cumulative loss could be bounded
by any loss near the initialization parameters

T∑
t=1

Lt(W(t)) ≤
T∑
t=1

Lt(W∗) + max
t∈[T]

(1, ||gt(xt)||F
C

){3TηC2

2 + 1
η

T∑
t=1

[||W(t) −W∗||2F

− ||W(t+1) −W∗||2F] + η

2

T∑
t=1
||Gt||2F }+ T∆

=
T∑
t=1

Lt(W∗) + max
t∈[T]

(1, ||gt(xt)||F
C

){3TηC2

2 + 1
η

[||W(0) −W∗||2F

− ||W(T) −W∗||2F] + η

2

T∑
t=1
||Gt||2F }+ T∆

≤
T∑
t=1

Li(W∗) +O(SL
√
m

C
{3TηC2

2 + LR2

2ηm + η

2

T∑
t=1
||Gt||2F }+ T∆)

≤
T∑
t=1

Lt(W∗) +O(SLη
√
m

C

T∑
t=1
||Gt||2F + T∆)

The third inequality holds because C ≤ maxt∈[T] ||gt(xt)||F = O(SL
√
m). The last inequality hold if

SL
√
mTηC ≤ O(T∆) =⇒ η ≤ O(∆κ

SL
√
mC

) (21)

SL2R2

Cη
√
m
≤ O(T∆) =⇒ ηT ≥ Ω(SL2R2

κC
√
m∆

) (22)

Thus, combining (20), (21) and (22) we must have

(23)

∆ ≥ Ω(SL
3
2R√
T

). (24)

Next we can verify the loss function Li(W(i)) in the DP-SGD algorithm 10 is bounded from above. This
could be seen from the Gaussian tail bound for the initial state network, and the locally stability of the loss
function.
Lemma 26 (Lemma 4.4 in Cao & Gu (2019a)). With probability at least 1 − ξ, for all i ∈ [n] with ω ≤
L log(nL/ξ), we have

||fW(0)(xi)||F ≤ O(
√

log(n/ξ))
Lemma 27 (Stability of the Loss function). There exists an absolute constant κ such that, with probability
at least 1− ξ, for all W ∈ B(W(0), R/

√
m), with m ≥ O(R−1L−3/2[log(nL/ξ)]3)

Li(W)− Li(W(0)) ≤ O(SLR)

Proof of the Lemma 27. Since ℓ(·) is an Lipschitz function and suppose Lemma22 condition holds, then
with probability at least 1−O(nL2) exp[−Ω(mω2/3L], the inequality below holds

Li(W)− Li(W(0)) ≤ S · ⟨f ′(W),W−W(0)⟩

≤ S ·
L∑
l=1
⟨∇Wl

f(W),W−W(0)⟩

≤ O(SLR)

36

Under review as submission to TMLR

The probability could be reduced to 1−ξ if m ≥ O(R−1L−3/2[log(nL/ξ)]3), we obtain the desired result.

Remark 17. Combine Lemma 26 and the Lemma 27, with probability at least 1−2ξ, we immediately obtain
the upper bound for the empirical loss function, suppose ω = R/

√
m

Li(W) ≤ O(
√

log(2n/ξ) + SLR)

The probability could be reduced to 1− ξ by normalize the coefficients with some constants.

Proof of the Theorem 13 . By Lemma 25, 27, converting the condition of Lemma 25 with respect to
m, with probability at least 1 − ξ − γ and there exists m ≥ Ω̃(L56R16∆−14S−2C−8[log(nL + 1/ξ)]3), n ≥
Ω̃(C(

√
Lm+

√
md)
√
T log(1/γ) log(1/δ)
Rϵ) such that all lemmas hold, therefore we can apply the Azuma-Hoeffding

inequality or so called online-to-batch technique to get the expectation loss

1
T

T∑
t=1

LD(W(t)) ≤ 1
T

T∑
t=1

Lt(W(t)) + I ·
√

2 log(1/ξ)
T

≤ 1
T

T∑
t=1

Lt(W∗) +O(SLη
√
m

2CT

T∑
t=1
||Gt||2F + ∆ + I ·

√
log(1/ξ)

T
)

The second inequality holds because of Lemma 25, and the upper bound of Loss function in remark 17
I = O(

√
log(2n/ξ)+ SLR√

m
) with probability 1−3ξ. Thus under the previous lemma we have with probability

1− γ − 4ξ

1
T

T∑
t=1

LD(W(t)) ≤ 1
T

T∑
t=1

Lt(W∗) +O(SL
√
mησ2(m2L+md)

C
+ ∆ + I ·

√
log(1/ξ)

T
)

≤ 1
T

T∑
t=1

Lt(W∗) + Õ(SL
3/2R

√
T log(1/δ) log(1/γ)m2

n2ϵ2
(L+ d/m) + SL

3
2R√
T

+ I

√
log(1/ξ)

T
)

where η = Θ(SL2R2

CT
√
m∆),∆ = O(SL

3
2 R√
T

), σ2 = Õ(TC
2 log(1/δ)
n2ϵ2) for some small enough constant κ ≥ 0. Since

W∗ ∈ B(W(0), ω = R/
√
m), by Lemma 18, with probability at least 1− ξ

Li(W∗) = ℓ(f(W∗; xi)

≤ ℓ(fntk(W∗; xi) +O(Sω4/3L3
√
m log(m))

= ℓ(fntk(W∗; xi) +O(SR4/3L3
√

log(m)m−1/6)

≤ ℓ(fntk(W∗; xi) +O(SLR√
T

)

The first inequality results from the S-Lipschitz continuity of ℓ(·) and Lemma18. And we can simplify the
left term assuming m ≥ Ω(log(m)3L12R2T 3). Since this holds for any W∗ ∈ B(W(0), R/

√
m) we can take

the infimum over it, plugging into the above bound

EASGD
[1
T

T∑
i=1

LD(W(i))] ≤ inf
f∈F(W(0),R/

√
m)
{ 1
T

T∑
i=1

ℓ(f(xi))}+ Õ(SL
3/2R

√
T log(1/δ)m2

n2ϵ2
(L+ d/m)

+ SL
3
2R√
T

+ I

√
log(1/ξ)

T
)

≤ inf
f∈F(W(0),R/

√
m)
{ 1
T

T∑
i=1

ℓ(f(xi))}+ SL
3
2R · Õ(

max(L, dm) log(1/δ)m2
√
T

n2ϵ2

+ 1√
T

+
√

log(1/ξ)
T

)

37

Under review as submission to TMLR

The inequalities hold by plug in the I and ignore the logarithmic term with respect to n for conciseness
purpose.
The Lemma 19,22 reveal both the local landscape and training dynamic of DP-NN. Following the similar
procedure, we can rewrite the almost convexity in the summation form: LD(Ŵ) = LD(1

T

∑T
i=1 W(i)) ≤

1
T

∑T
i=1 LD(W(i)) + ∆, plugging in yields the desired result. Finally, note that in the previous lemma we

need
m ≥ O(L56R24∆−14S−8C−8[log(m)]12), (25)

plugging ∆ and by the non-negativity of the loss function we can get the result.

38

	Introduction
	Related Work
	Preliminaries
	Private Non-convex GLMs
	Well-specified Model
	Bounded Link Function Case
	More General Link Functions
	ReLU Link Function

	Misspecified Model

	Extension to Two-layer Neural Networks
	 DP-SGD for Multi-layer Neural Networks
	Experimental Investigation

	Conclusion
	Omitted Proofs in Section 4
	Omitted Proofs in Section 5
	Omitted Proofs in Section 6

