O © ® N O O~ W N =

22
23
24
25
26
27
28
29
30
31

32
33
34
35

Recovery-Bench:
Evaluating Agentic Recovery from Mistakes

Anonymous Author(s)
Affiliation
Address
email

Abstract

We introduce Recovery-Bench, a novel evaluation benchmark designed to measure
the ability of language model agents to recover from prior mistakes and corrupted
context. The capability to recover is critical for long-horizon tasks. By initializing
agents with environments and action histories derived from failed trajectories,
we demonstrate that models’ recovery performance differs markedly from their
performance in fresh contexts. Notably, GPT-5, which underperforms in our clean
settings for solving terminal tasks, significantly improves in recovery scenarios.
Our results suggest that resilience to context pollution is a distinct metric of model
and agent performance, underscoring the importance of designing benchmarks that
reflect realistic, messy deployment environments.

1 Introduction

Language model agents have demonstrated exceptional capabilities in completing short-horizon tasks
at a human level, like searching and synthesizing information or fixing a small bug [[Anyspherel 2025|
Anthropic, [2025| |[OpenAlL [2025b]]. However, moving from short, well-scoped objectives to complex
long-horizon tasks exposes a distinct brittleness in the current agent designs. When tasks span many
steps, involve interdependent subtasks, and require extensive tool use, even frontier models inevitably
make errors somewhere along the trajectory. These errors are not isolated: they can aggregate across
steps and alter both the external environment (e.g., files, configurations, databases) and the agent’s
internal working context (e.g., memory and message history). As a result, success on long-horizon
tasks hinges not only on raw problem-solving skill but also on an agent’s ability to recognize, contain,
and recover from prior mistakes.

These capabilities of recovery are especially consequential because, in practice, agents are often
launched into dirty environments. Agent practitioners re-run agents after a partial failure, resume
from mid-trajectory snapshots, or hand over a messy workspace to a different model or version. The
residue of prior attempts becomes part of the running agent’s context. This phenomenon, which we
call context pollution, describes the persistence of erroneous actions or corrupted states that carry
forward into subsequent attempts. Context pollution can misdirect competent agents, causing them to
compound errors (by trusting misleading traces) or to expend capacity on untangling stale state rather
than making forward progress. Notably, as more agents and frameworks become model agnostic
[Anysphere, [2025] [Packer et al., [2023] |OpenAll [2025al], the user can plug in and even change the
underlying LLMs. This results in context pollution from responses generated by other models.

More context pollution occurs in agentic tasks, and the capability to recover is becoming increasingly
crucial; however, standard benchmarks still evaluate agents from fresh states. Such setups are valuable
for measuring competence of problem-solving from scratch, but they systematically under-measure
recovery: the capacity to diagnose inherited problems and repair corrupted state. In particular,

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

36
37

38
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53
54

55
56
57
58
59
60

61
62
63
64
65

66

Recovery-Bench Performance

Recovery from gpt-4o0-mini trace Recovery from claude-3-5-haiku trace

Claude | 38.2% Claude | 34.2%
s | 20.2% Gemini | 28.9%
Gemini | 31.5% GPT-5 | 17.1%
Claude | 34.8% Claude | 31.6%
16.9% 19.7%
04 Mini 1 GPT-4.1 1
28.1% . 14.5%
GPT-4.1 :] S 6% 04 Mini '-6_6% Terminal Bench
[Recovery Bench
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Success Rate (%) Success Rate (%)

Figure 1: Detailed performance comparison between Recovery-Bench and fresh Terminal-Bench
experiments. Models are ranked by their performance on Recovery-Bench. Obviously, the
rankings of Recovery-Bench are different from those of Terminal-Bench, highlighting recovery as a
distinct capability. Overall, Claude Opus 4.1 performs the best, and GPT-5 also demonstrates great
recovery capability despite having a much lower TB performance.

standard evaluations that omit prior failed trajectories cannot reveal how sensitive different agents are
to context pollution or whether they can leverage partial progress without being misled by it.

To bridge this gap, we introduce Recovery-Bench, a benchmark that evaluates agents in realistic,
“lived-in” environments seeded with artifacts from prior failed attempts from arbitrary agents. Instead
of always beginning from a clean repository or a freshly started environment, agents are initialized
in states that include (i) concrete environment residues such as modified files, broken tests, and
misapplied patches, and (ii) textual residues such as debugging trails and prior reasoning traces.
The benchmark asks agents to complete the original task from these inherited states. In doing so,
Recovery-Bench targets a capability that clean-slate evaluations largely miss: robust recovery under
context pollution.

Implementation on Terminal-Bench (TB). Concretely, we build our Recovery-Bench idea on a
benchmark called Terminal-Bench [Terminal-Bench Team) [2025]], which consists of various tasks
performed within a terminal. Recovery-Bench is a drop-in evaluation mode that preserves TB’s tasks
and harness while altering only the initialization state. For each TB task, we select a previously
recorded failed agent attempt and reconstruct a polluted starting point by first restoring the post-failure
workspace snapshot with previous commands, thereby carrying forward partially applied patches,
failing or disabled tests, and other inconsistent edits. Then, we attach traces from that attempt to
the agents as message history. The agent is then asked to complete the original TB task from this
inherited state under the same budget and judgment TB uses in the clean-slate setting.

To control what the recovery agent inherits, the harness parameterizes context pollution along two
axes. The environment residue axis governs the workspace state the agent sees at time O (e.g.,
modified source files, test artifacts, build outputs), while the trace residue axis governs how much
of the prior trajectory is surfaced in-context (e.g., commands-only, compact summaries, or fuller
message/command traces). We describe in detail how we generate the trajectories and how we
parameterize context pollution in Section 3]

Experimental results on TB. We evaluate Recovery-Bench with a range of frontier models on
TB recovery tasks constructed from the failed trajectories above. Relative to the standard TB “fresh
start” setting, aggregate performance drops significantly when agents inherit a polluted state, and
model rankings shift. This shift clearly indicates that capabilities to recovery is independent from
capabilities to solve the tasks.

Contributions. We summarize our contributions as follows:

67
68

69
70

71
72

74
75
76
7
78
79
80
81

82
83
84
85
86
87
88
89
90

91

92
93
94

95
96
97
98
99
100
101
102
103

104
105
106
107
108
109
110

111

112
113
114

* We introduce Recovery-Bench, a benchmark that evaluates agents in realistic environments
seeded with failed trajectories from previous attempts.

* We provide empirical evidence that recovery capabilities are distinct from raw problem-
solving capabilities.

* We discuss implications for agent design that mitigate context pollution and improve relia-
bility in long-horizon settings.

2 Related Work

Agentic Evaluation Multiple benchmarks test agentic skills across software engineering, tool use,
and real-web interaction. SWE-bench [Jimenez et al., [2024] is a suite of real GitHub issues with
executable test harnesses that stress multi-file reasoning. 7-bench [Yao et al., [2024] is a benchmark
that simulates user—agent dialogues with domain APIs with innovative (simulated) human users.
WebArena [Zhou et al.,[2024] is a collection of self-hosted realistic websites with execution-based
success criteria. However, all such evaluations initialize agents from clean states and focus on raw
problem-solving capabilities. Recovery-Bench contrasts this by holding tasks fixed while initializing
from post-failure states to isolate recovery ability.

Long Context and Context Pollution Reasoning with long contexts is essential to all real-world
agentic tasks, as the average agent interactions are getting longer. Lost in the middle [Liu et al.,
2023 studies positional bias of long context generation, suggesting model’s inability to reason
from the middle of context. Other prior works [Kamradt, [2025| |OpenAll 2025/ Bai et al., 2024
evaluate how LLMs perform under long and sometimes irrelevant, and possibly polluted contexts.
As long context performance evolves for frontier models, many of the aforementioned long text
benchmarks and studies become saturated and obsolete. In addition, prior work rarely studies long
context performance in the agentic space. Recovery-Bench introduces a new dimension for context
pollution, where the interactions in the context are coherent but contain errors.

3 Recovery-Bench Design

To curate data for Recovery-Bench, we build on Terminal-Bench (TB), a multi-step terminal-use
benchmark with a diverse set of tasks. For example, TB remains challenging, especially for weaker
models, so collecting rich, realistic failure trajectories is straightforward.

Because Terminal-Bench (TB) is a growing benchmark, we fix the evaluation to commit 55abc@d,
which contains 104 diverse terminal-use tasks. For each task, we generate and record trajectories by
running weaker baseline models such as gpt-40-mini or claude-3-5-haiku from a clean TB state,
capturing the complete interaction between the agent and the terminal: commands sent to the terminal
and all messages. We then filter for failed trials with more than ten interactions to ensure non-trivial
attempts. These trials, comprising the terminal command sequence and the resulting post-failure
workspace, serve as the dataset for recovery initializations. To replay to the end terminal state of the
failed trajectories, we simply re-ran all the commands from a fresh container. In parallel, we retain
the corresponding interaction trace and surface it to the recovery agent being evaluated.

In addition to the default setting in Recovery-Bench, where we replay the post-failure state and surface
the full interaction history to the recovery agent, we also study controlled variants that toggle which
residues are inherited. In the first variant, we restore only the post-failure workspace snapshot and
provide no trace from the prior attempt. In the second, we pair the same workspace with a compact
summary of earlier actions. These setups vary only in the form and amount of context pollution,
allowing us to isolate whether models can recover from corrupted states or even with misleading
trajectories.

4 Experiments

We run Recovery-Bench on the Terminus-1 agent [Merrill and Shaw, 2025[] from gpt-40-mini (89
trajectories) and claude-3-5-haiku (74 trajectories), respectively, with six frontier models: Claude
Opus 4.1, Claude Sonnet 4, GPT-5, GPT-4.1, O4 Mini, and Gemini 2.5 Pro.

115
116
117
118
119
120
121

122

123
124
125
126
127
128

129
130
131
132
133
134

135

136
137

139
140
141
142
143
144

145
146
147
148
149
150
151

152

153
154
155
156
157

A potential concern when evaluating frontier models on trajectories generated by weaker models
is that such trajectories may fall out of the distribution of the stronger model. Nevertheless, we
argue that our recovery setting is highly valuable for both agents and compound Al systems [Zaharia
et al., 2024]]. First, many agents are inherently model-agnostic, allowing users to switch models
seamlessly within a session, and the newer model will inevitably work with the residual context.
Second, compound Al and multi-agent systems [Anthropic, |2025] often involve multiple LLMs,
making it likely that one model will need to interpret and correct errors introduced by another model.

4.1 How does recovery compare to clean state performance?

Agent recovery tasks are challenging even for the strongest models. We compare the performance
of different frontier models on Terminal-Bench and Recovery-Bench in Figure[I] In the original
Terminal-Bench setting with gpt-40-mini traces, models scored an average of 28.3%, with the best
model, Claude Opus 4.1, reaching 38.2%. On Recovery-Bench, models score an average of only
13.1%. Compared to their performance on the original Terminal-Bench, they show a 51.8% relative
decrease in accuracy. Similar trends have been observed for claude-3.5-haiku traces.

Additionally, we show that the rankings on Recovery-Bench differ from standard Terminal-Bench
settings, indicating that recovery represents an orthogonal capability. For example, Claude 4 Sonnet
achieves the second-highest Terminal-Bench score at 34.8% but ranks fourth on Recovery-Bench. O4
Mini has the lowest Terminal-Bench score but performs the same or better than GPT-4.1 on agent
recovery. And interestingly, GPT-5, which performs worse compared to GPT-4.1 on the original
Terminal-Bench, has much better performance on Recovery-Bench.

4.2 How does context residual impact recovery?

Terminal-Bench ~ Env Replay Only Env + Summary Env + Full Message
Success (%) 34.8 27.0 23.6 124
Avg Steps 23.5 24.1 21.3 16.9

Figure 2: Performance comparison between different context residuals. We fix the agent model to be
Claude Sonnet 4, and the error traces are generated by gpt-4o0-mini.

Recovery-Bench also studies how different context residual setups, i.e., how much of the erroneous
trajectories remaining inside the agent’s context window, impact the recovery performance. We
vary the context residual by toggling what the recovery agent inherits from the failed attempt. We
consider three recovery settings beyond the clean Terminal-Bench baseline: Env Replay Only, where
the post-failure workspace is restored with no trace of prior interactions set in the recovering agent’s
context; Env + Summary, with the same post-failure states plus a concise summary of earlier actions;
and Env + Full Message, where we include additionally the complete command and message history.
These conditions isolate the effects of corrupted state versus misleading traces while holding the
underlying TB task fixed (the agent is still able to see the task description from TB).

The result is surprising: adding more context hurts performance. Under Env + Full Message, the
agent performs the worst despite having the complete interaction history. We show an interesting
trace in Appendix [A] The failure to recover from previous errors mainly due to either the agent
mysteriously trusts previous interactions and not fix previous actions, or the agent gets stuck in the
error loop of previous mistakes. On the contrary, the Env Replay Only setting achieves the highest
score, approaching the original TB score. This indicates that, although the evaluation is initialized
with the failed state, many tasks are still directly recoverable without explicit fix.

5 Conclusion

In this paper, we introduce Recovery-Bench, a benchmark focuses on agent recovery. Implemented
on top of Terminal-Bench, Recovery-Bench evaluates different models’ recovery capabilities under
different settings. Across frontier models, recovery is remarkably harder than clean starts and reorders
rankings, showing that resilience to context pollution is a distinct capability. We view Recovery-Bench
as a compact, practical benchmark for selecting and improving long-horizon agents.

158

159
160
161

162

163
164
165
166

167
168
169

170
171
172

173
174
175

176
177

178
179

180
181

182
183

184
185
186

187
188

189
190

191
192
193
194

196
197

References

Anthropic. Claude code: Agentic coding tool. https://github.com/anthropics/claude-code,
2025. Announced February 24, 2025 (research preview); general availability May 22, 2025;
accessed 2025-09-03.

Inc. Anysphere. Cursor: The ai code editor. https://cursor.com/, 2025. Accessed: 2025-09-03.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding, 2024. URL https://arxiv.org/abs/2308.
14508.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Greg Kamradt. Limtest_needleinahaystack: A iieedle in a haystackénalysis to test in-context retrieval
ability of long-context llms. https://github.com/gkamradt/LLMTest_NeedleInAHaystack,
2025. Accessed: 2025-09-03.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts, 2023. URL
https://arxiv.org/abs/2307.03172.

Mike Merrill and Alex Shaw. Terminus: a research-preview agent for terminal-bench. https:
//www. tbench.ai/terminus, May 2025. Published May 19, 2025; accessed 2025-09-03.

OpenAl. Openai mrer: Long-context multi-needle recall dataset. https://huggingface.co/
datasets/openai/mrcr} 2025. Accessed Sep 3, 2025.

OpenAl. openai/codex: Lightweight coding agent that runs in your terminal. https://github.com/
openai/codex, 2025a. Published on GitHub on April 16, 2025; accessed 2025-09-03.

OpenAl. Deep research system card. https://cdn.openai.com/deep-research-system-card.
pdf}, February 2025b. Accessed: 2025-09-03.

Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G Patil, Ion Stoica, and Joseph E
Gonzalez. MemGPT: Towards LLMs as Operating Systems. arXiv preprint arXiv:2310.08560,
October 2023.

Terminal-Bench Team. Terminal-bench: A benchmark for ai agents in terminal environments, Apr
2025. URL https://github.com/laude-institute/terminal-bench.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. 7-bench: A benchmark for tool-
agent-user interaction in real-world domains, 2024. URL https://arxiv.org/abs/2406.12045.

Matei Zaharia, Omar Khattab, Lingjiao Chen, Jared Quincy Davis, Heather Miller, Chris Potts, James
Zou, Michael Carbin, Jonathan Frankle, Naveen Rao, and Ali Ghodsi. The shift from models to com-
pound ai systems. https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/,
2024.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic web
environment for building autonomous agents, 2024. URL |https://arxiv.org/abs/2307.13854.

https://github.com/anthropics/claude-code
https://cursor.com/
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2310.06770
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://arxiv.org/abs/2307.03172
https://www.tbench.ai/terminus
https://www.tbench.ai/terminus
https://www.tbench.ai/terminus
https://huggingface.co/datasets/openai/mrcr
https://huggingface.co/datasets/openai/mrcr
https://huggingface.co/datasets/openai/mrcr
https://github.com/openai/codex
https://github.com/openai/codex
https://github.com/openai/codex
https://cdn.openai.com/deep-research-system-card.pdf
https://cdn.openai.com/deep-research-system-card.pdf
https://cdn.openai.com/deep-research-system-card.pdf
https://github.com/laude-institute/terminal-bench
https://arxiv.org/abs/2406.12045
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://arxiv.org/abs/2307.13854

198

199
200

201
202
203
204
205

207
208
209
210
211
212
213
214
215
216
217
218
219

230

222
223
224
225
226

A Recovery-Bench Trajectory

Listing 1: Recovery agent response (Env + Full Message), declaring task completeness

"state_analysis”: "The fasttext package has been successfully tested and is working
correctly. The package can be imported without errors and can train supervised
models as demonstrated by the successful training output showing \"Read @M words,
Number of words: 11, Number of labels: 2\" and \"Model trained successfully\”. The
initial issue appears to have been resolved through the numpy reinstallation.”,
"explanation”: "We will perform a final comprehensive test to ensure fasttext is
fully functional by testing both model training and prediction capabilities. This
will confirm that the package is working as expected for typical use cases.”,
"commands": [

{

"keystrokes”: "python3 -c \"import fasttext; model =
fasttext.train_supervised('training_data.txt'); result = model.predict('This is
awesome!'); print('Prediction result:', result); print('FastText is working
correctly!')\"\n",

"is_blocking”: true,

"timeout_sec”: 15

}
]

"is_task_complete”: true

Failure analysis. The underlying task was to fix an incompatible fasttext version, but the previous
agent prematurely declared success. Misled by traces from the weaker model, the recovery agent
concluded that the package was already functional and marked the task as complete, instead of
investigating further. However, because the Env Replay Only settings do not have the misleading
trajectories, the agent is able to look at the erring state and solve the task.

	Introduction
	Related Work
	Recovery-Bench Design
	Experiments
	How does recovery compare to clean state performance?
	How does context residual impact recovery?

	Conclusion
	Recovery-Bench Trajectory

