
Recovery-Bench:
Evaluating Agentic Recovery from Mistakes

Anonymous Author(s)
Affiliation
Address
email

Abstract

We introduce Recovery-Bench, a novel evaluation benchmark designed to measure1

the ability of language model agents to recover from prior mistakes and corrupted2

context. The capability to recover is critical for long-horizon tasks. By initializing3

agents with environments and action histories derived from failed trajectories,4

we demonstrate that models’ recovery performance differs markedly from their5

performance in fresh contexts. Notably, GPT-5, which underperforms in our clean6

settings for solving terminal tasks, significantly improves in recovery scenarios.7

Our results suggest that resilience to context pollution is a distinct metric of model8

and agent performance, underscoring the importance of designing benchmarks that9

reflect realistic, messy deployment environments.10

1 Introduction11

Language model agents have demonstrated exceptional capabilities in completing short-horizon tasks12

at a human level, like searching and synthesizing information or fixing a small bug [Anysphere, 2025,13

Anthropic, 2025, OpenAI, 2025b]. However, moving from short, well-scoped objectives to complex14

long-horizon tasks exposes a distinct brittleness in the current agent designs. When tasks span many15

steps, involve interdependent subtasks, and require extensive tool use, even frontier models inevitably16

make errors somewhere along the trajectory. These errors are not isolated: they can aggregate across17

steps and alter both the external environment (e.g., files, configurations, databases) and the agent’s18

internal working context (e.g., memory and message history). As a result, success on long-horizon19

tasks hinges not only on raw problem-solving skill but also on an agent’s ability to recognize, contain,20

and recover from prior mistakes.21

These capabilities of recovery are especially consequential because, in practice, agents are often22

launched into dirty environments. Agent practitioners re-run agents after a partial failure, resume23

from mid-trajectory snapshots, or hand over a messy workspace to a different model or version. The24

residue of prior attempts becomes part of the running agent’s context. This phenomenon, which we25

call context pollution, describes the persistence of erroneous actions or corrupted states that carry26

forward into subsequent attempts. Context pollution can misdirect competent agents, causing them to27

compound errors (by trusting misleading traces) or to expend capacity on untangling stale state rather28

than making forward progress. Notably, as more agents and frameworks become model agnostic29

[Anysphere, 2025, Packer et al., 2023, OpenAI, 2025a], the user can plug in and even change the30

underlying LLMs. This results in context pollution from responses generated by other models.31

More context pollution occurs in agentic tasks, and the capability to recover is becoming increasingly32

crucial; however, standard benchmarks still evaluate agents from fresh states. Such setups are valuable33

for measuring competence of problem-solving from scratch, but they systematically under-measure34

recovery: the capacity to diagnose inherited problems and repair corrupted state. In particular,35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



0 5 10 15 20 25 30 35 40
Success Rate (%)

Claude
Opus 4.1

GPT-5

Gemini
2.5 Pro

Claude
Sonnet 4

O4 Mini

GPT-4.1

38.2%

20.2%

31.5%

34.8%

16.9%

28.1%

22.5%

14.6%

13.5%

12.4%

10.1%

5.6%

Recovery from gpt-4o-mini trace

0 5 10 15 20 25 30 35 40
Success Rate (%)

Claude
Opus 4.1

Gemini
2.5 Pro

GPT-5

Claude
Sonnet 4

GPT-4.1

O4 Mini

34.2%

28.9%

17.1%

31.6%

19.7%

14.5%

13.2%

13.2%

13.2%

10.5%

6.6%

6.6%

Recovery from claude-3-5-haiku trace

Terminal Bench
Recovery Bench

Recovery-Bench Performance

Figure 1: Detailed performance comparison between Recovery-Bench and fresh Terminal-Bench
experiments. Models are ranked by their performance on Recovery-Bench. Obviously, the
rankings of Recovery-Bench are different from those of Terminal-Bench, highlighting recovery as a
distinct capability. Overall, Claude Opus 4.1 performs the best, and GPT-5 also demonstrates great
recovery capability despite having a much lower TB performance.

standard evaluations that omit prior failed trajectories cannot reveal how sensitive different agents are36

to context pollution or whether they can leverage partial progress without being misled by it.37

To bridge this gap, we introduce Recovery-Bench, a benchmark that evaluates agents in realistic,38

“lived-in” environments seeded with artifacts from prior failed attempts from arbitrary agents. Instead39

of always beginning from a clean repository or a freshly started environment, agents are initialized40

in states that include (i) concrete environment residues such as modified files, broken tests, and41

misapplied patches, and (ii) textual residues such as debugging trails and prior reasoning traces.42

The benchmark asks agents to complete the original task from these inherited states. In doing so,43

Recovery-Bench targets a capability that clean-slate evaluations largely miss: robust recovery under44

context pollution.45

Implementation on Terminal-Bench (TB). Concretely, we build our Recovery-Bench idea on a46

benchmark called Terminal-Bench [Terminal-Bench Team, 2025], which consists of various tasks47

performed within a terminal. Recovery-Bench is a drop-in evaluation mode that preserves TB’s tasks48

and harness while altering only the initialization state. For each TB task, we select a previously49

recorded failed agent attempt and reconstruct a polluted starting point by first restoring the post-failure50

workspace snapshot with previous commands, thereby carrying forward partially applied patches,51

failing or disabled tests, and other inconsistent edits. Then, we attach traces from that attempt to52

the agents as message history. The agent is then asked to complete the original TB task from this53

inherited state under the same budget and judgment TB uses in the clean-slate setting.54

To control what the recovery agent inherits, the harness parameterizes context pollution along two55

axes. The environment residue axis governs the workspace state the agent sees at time 0 (e.g.,56

modified source files, test artifacts, build outputs), while the trace residue axis governs how much57

of the prior trajectory is surfaced in-context (e.g., commands-only, compact summaries, or fuller58

message/command traces). We describe in detail how we generate the trajectories and how we59

parameterize context pollution in Section 3.60

Experimental results on TB. We evaluate Recovery-Bench with a range of frontier models on61

TB recovery tasks constructed from the failed trajectories above. Relative to the standard TB “fresh62

start” setting, aggregate performance drops significantly when agents inherit a polluted state, and63

model rankings shift. This shift clearly indicates that capabilities to recovery is independent from64

capabilities to solve the tasks.65

Contributions. We summarize our contributions as follows:66

2



• We introduce Recovery-Bench, a benchmark that evaluates agents in realistic environments67

seeded with failed trajectories from previous attempts.68

• We provide empirical evidence that recovery capabilities are distinct from raw problem-69

solving capabilities.70

• We discuss implications for agent design that mitigate context pollution and improve relia-71

bility in long-horizon settings.72

2 Related Work73

Agentic Evaluation Multiple benchmarks test agentic skills across software engineering, tool use,74

and real-web interaction. SWE-bench [Jimenez et al., 2024] is a suite of real GitHub issues with75

executable test harnesses that stress multi-file reasoning. τ -bench [Yao et al., 2024] is a benchmark76

that simulates user–agent dialogues with domain APIs with innovative (simulated) human users.77

WebArena [Zhou et al., 2024] is a collection of self-hosted realistic websites with execution-based78

success criteria. However, all such evaluations initialize agents from clean states and focus on raw79

problem-solving capabilities. Recovery-Bench contrasts this by holding tasks fixed while initializing80

from post-failure states to isolate recovery ability.81

Long Context and Context Pollution Reasoning with long contexts is essential to all real-world82

agentic tasks, as the average agent interactions are getting longer. Lost in the middle [Liu et al.,83

2023] studies positional bias of long context generation, suggesting model’s inability to reason84

from the middle of context. Other prior works [Kamradt, 2025, OpenAI, 2025, Bai et al., 2024]85

evaluate how LLMs perform under long and sometimes irrelevant, and possibly polluted contexts.86

As long context performance evolves for frontier models, many of the aforementioned long text87

benchmarks and studies become saturated and obsolete. In addition, prior work rarely studies long88

context performance in the agentic space. Recovery-Bench introduces a new dimension for context89

pollution, where the interactions in the context are coherent but contain errors.90

3 Recovery-Bench Design91

To curate data for Recovery-Bench, we build on Terminal-Bench (TB), a multi-step terminal-use92

benchmark with a diverse set of tasks. For example, TB remains challenging, especially for weaker93

models, so collecting rich, realistic failure trajectories is straightforward.94

Because Terminal-Bench (TB) is a growing benchmark, we fix the evaluation to commit 55abc0d,95

which contains 104 diverse terminal-use tasks. For each task, we generate and record trajectories by96

running weaker baseline models such as gpt-4o-mini or claude-3-5-haiku from a clean TB state,97

capturing the complete interaction between the agent and the terminal: commands sent to the terminal98

and all messages. We then filter for failed trials with more than ten interactions to ensure non-trivial99

attempts. These trials, comprising the terminal command sequence and the resulting post-failure100

workspace, serve as the dataset for recovery initializations. To replay to the end terminal state of the101

failed trajectories, we simply re-ran all the commands from a fresh container. In parallel, we retain102

the corresponding interaction trace and surface it to the recovery agent being evaluated.103

In addition to the default setting in Recovery-Bench, where we replay the post-failure state and surface104

the full interaction history to the recovery agent, we also study controlled variants that toggle which105

residues are inherited. In the first variant, we restore only the post-failure workspace snapshot and106

provide no trace from the prior attempt. In the second, we pair the same workspace with a compact107

summary of earlier actions. These setups vary only in the form and amount of context pollution,108

allowing us to isolate whether models can recover from corrupted states or even with misleading109

trajectories.110

4 Experiments111

We run Recovery-Bench on the Terminus-1 agent [Merrill and Shaw, 2025] from gpt-4o-mini (89112

trajectories) and claude-3-5-haiku (74 trajectories), respectively, with six frontier models: Claude113

Opus 4.1, Claude Sonnet 4, GPT-5, GPT-4.1, O4 Mini, and Gemini 2.5 Pro.114

3



A potential concern when evaluating frontier models on trajectories generated by weaker models115

is that such trajectories may fall out of the distribution of the stronger model. Nevertheless, we116

argue that our recovery setting is highly valuable for both agents and compound AI systems [Zaharia117

et al., 2024]. First, many agents are inherently model-agnostic, allowing users to switch models118

seamlessly within a session, and the newer model will inevitably work with the residual context.119

Second, compound AI and multi-agent systems [Anthropic, 2025] often involve multiple LLMs,120

making it likely that one model will need to interpret and correct errors introduced by another model.121

4.1 How does recovery compare to clean state performance?122

Agent recovery tasks are challenging even for the strongest models. We compare the performance123

of different frontier models on Terminal-Bench and Recovery-Bench in Figure 1. In the original124

Terminal-Bench setting with gpt-4o-mini traces, models scored an average of 28.3%, with the best125

model, Claude Opus 4.1, reaching 38.2%. On Recovery-Bench, models score an average of only126

13.1%. Compared to their performance on the original Terminal-Bench, they show a 51.8% relative127

decrease in accuracy. Similar trends have been observed for claude-3.5-haiku traces.128

Additionally, we show that the rankings on Recovery-Bench differ from standard Terminal-Bench129

settings, indicating that recovery represents an orthogonal capability. For example, Claude 4 Sonnet130

achieves the second-highest Terminal-Bench score at 34.8% but ranks fourth on Recovery-Bench. O4131

Mini has the lowest Terminal-Bench score but performs the same or better than GPT-4.1 on agent132

recovery. And interestingly, GPT-5, which performs worse compared to GPT-4.1 on the original133

Terminal-Bench, has much better performance on Recovery-Bench.134

4.2 How does context residual impact recovery?135

Terminal-Bench Env Replay Only Env + Summary Env + Full Message
Success (%) 34.8 27.0 23.6 12.4
Avg Steps 23.5 24.1 21.3 16.9

Figure 2: Performance comparison between different context residuals. We fix the agent model to be
Claude Sonnet 4, and the error traces are generated by gpt-4o-mini.

Recovery-Bench also studies how different context residual setups, i.e., how much of the erroneous136

trajectories remaining inside the agent’s context window, impact the recovery performance. We137

vary the context residual by toggling what the recovery agent inherits from the failed attempt. We138

consider three recovery settings beyond the clean Terminal-Bench baseline: Env Replay Only, where139

the post-failure workspace is restored with no trace of prior interactions set in the recovering agent’s140

context; Env + Summary, with the same post-failure states plus a concise summary of earlier actions;141

and Env + Full Message, where we include additionally the complete command and message history.142

These conditions isolate the effects of corrupted state versus misleading traces while holding the143

underlying TB task fixed (the agent is still able to see the task description from TB).144

The result is surprising: adding more context hurts performance. Under Env + Full Message, the145

agent performs the worst despite having the complete interaction history. We show an interesting146

trace in Appendix A. The failure to recover from previous errors mainly due to either the agent147

mysteriously trusts previous interactions and not fix previous actions, or the agent gets stuck in the148

error loop of previous mistakes. On the contrary, the Env Replay Only setting achieves the highest149

score, approaching the original TB score. This indicates that, although the evaluation is initialized150

with the failed state, many tasks are still directly recoverable without explicit fix.151

5 Conclusion152

In this paper, we introduce Recovery-Bench, a benchmark focuses on agent recovery. Implemented153

on top of Terminal-Bench, Recovery-Bench evaluates different models’ recovery capabilities under154

different settings. Across frontier models, recovery is remarkably harder than clean starts and reorders155

rankings, showing that resilience to context pollution is a distinct capability. We view Recovery-Bench156

as a compact, practical benchmark for selecting and improving long-horizon agents.157

4



References158

Anthropic. Claude code: Agentic coding tool. https://github.com/anthropics/claude-code,159

2025. Announced February 24, 2025 (research preview); general availability May 22, 2025;160

accessed 2025-09-03.161

Inc. Anysphere. Cursor: The ai code editor. https://cursor.com/, 2025. Accessed: 2025-09-03.162

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,163

Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,164

multitask benchmark for long context understanding, 2024. URL https://arxiv.org/abs/2308.165

14508.166

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik167

Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL168

https://arxiv.org/abs/2310.06770.169

Greg Kamradt. Llmtest_needleinahaystack: A n̈eedle in a haystackänalysis to test in-context retrieval170

ability of long-context llms. https://github.com/gkamradt/LLMTest_NeedleInAHaystack,171

2025. Accessed: 2025-09-03.172

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,173

and Percy Liang. Lost in the middle: How language models use long contexts, 2023. URL174

https://arxiv.org/abs/2307.03172.175

Mike Merrill and Alex Shaw. Terminus: a research-preview agent for terminal-bench. https:176

//www.tbench.ai/terminus, May 2025. Published May 19, 2025; accessed 2025-09-03.177

OpenAI. Openai mrcr: Long-context multi-needle recall dataset. https://huggingface.co/178

datasets/openai/mrcr, 2025. Accessed Sep 3, 2025.179

OpenAI. openai/codex: Lightweight coding agent that runs in your terminal. https://github.com/180

openai/codex, 2025a. Published on GitHub on April 16, 2025; accessed 2025-09-03.181

OpenAI. Deep research system card. https://cdn.openai.com/deep-research-system-card.182

pdf, February 2025b. Accessed: 2025-09-03.183

Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G Patil, Ion Stoica, and Joseph E184

Gonzalez. MemGPT: Towards LLMs as Operating Systems. arXiv preprint arXiv:2310.08560,185

October 2023.186

Terminal-Bench Team. Terminal-bench: A benchmark for ai agents in terminal environments, Apr187

2025. URL https://github.com/laude-institute/terminal-bench.188

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for tool-189

agent-user interaction in real-world domains, 2024. URL https://arxiv.org/abs/2406.12045.190

Matei Zaharia, Omar Khattab, Lingjiao Chen, Jared Quincy Davis, Heather Miller, Chris Potts, James191

Zou, Michael Carbin, Jonathan Frankle, Naveen Rao, and Ali Ghodsi. The shift from models to com-192

pound ai systems. https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/,193

2024.194

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,195

Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic web196

environment for building autonomous agents, 2024. URL https://arxiv.org/abs/2307.13854.197

5

https://github.com/anthropics/claude-code
https://cursor.com/
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2310.06770
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://arxiv.org/abs/2307.03172
https://www.tbench.ai/terminus
https://www.tbench.ai/terminus
https://www.tbench.ai/terminus
https://huggingface.co/datasets/openai/mrcr
https://huggingface.co/datasets/openai/mrcr
https://huggingface.co/datasets/openai/mrcr
https://github.com/openai/codex
https://github.com/openai/codex
https://github.com/openai/codex
https://cdn.openai.com/deep-research-system-card.pdf
https://cdn.openai.com/deep-research-system-card.pdf
https://cdn.openai.com/deep-research-system-card.pdf
https://github.com/laude-institute/terminal-bench
https://arxiv.org/abs/2406.12045
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://arxiv.org/abs/2307.13854


A Recovery-Bench Trajectory198

Listing 1: Recovery agent response (Env + Full Message), declaring task completeness
199

{200

"state_analysis": "The fasttext package has been successfully tested and is working201

correctly. The package can be imported without errors and can train supervised202

models as demonstrated by the successful training output showing \"Read 0M words,203

Number of words: 11, Number of labels: 2\" and \"Model trained successfully\". The204

initial issue appears to have been resolved through the numpy reinstallation.",205

"explanation": "We will perform a final comprehensive test to ensure fasttext is206

fully functional by testing both model training and prediction capabilities. This207

will confirm that the package is working as expected for typical use cases.",208

"commands": [209

{210

"keystrokes": "python3 -c \"import fasttext; model =211

fasttext.train_supervised('training_data.txt'); result = model.predict('This is212

awesome!'); print('Prediction result:', result); print('FastText is working213

correctly!')\"\n",214

"is_blocking": true,215

"timeout_sec": 15216

}217

],218

"is_task_complete": true219

}220221

Failure analysis. The underlying task was to fix an incompatible fasttext version, but the previous222

agent prematurely declared success. Misled by traces from the weaker model, the recovery agent223

concluded that the package was already functional and marked the task as complete, instead of224

investigating further. However, because the Env Replay Only settings do not have the misleading225

trajectories, the agent is able to look at the erring state and solve the task.226

6


	Introduction
	Related Work
	Recovery-Bench Design
	Experiments
	How does recovery compare to clean state performance?
	How does context residual impact recovery?

	Conclusion
	Recovery-Bench Trajectory

