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ABSTRACT

Single-cell genomics allows for the unbiased exploration of cellular heterogeneity.
Representation learning methods summarize high-dimensional single-cell data
into a manageable latent space in a typically nonlinear fashion, allowing cross-
sample integration or generative modeling. However, these methods often produce
entangled representations, limiting interpretability and downstream analyses. Ex-
isting disentanglement methods instead either require supervised information or
impose sparsity and linearity, which may not capture the complexity of biological
data. We, therefore, introduce Disentangled Representation Variational Inference
(DRVI), an unsupervised deep generative model that learns nonlinear, disentan-
gled representations of single-cell omics. This is achieved by combining recently
introduced additive decoders with nonlinear pooling, for which we theoretically
prove disentanglement under reasonable assumptions. We validate DRVI’s disen-
tanglement capabilities across diverse relevant biological problems, from devel-
opment to perturbational studies and cell atlases, decomposing, for example, the
Human Lung Cell Atlas into meaningful, interpretable latent dimensions. More-
over, we demonstrate that if applied to batch integration, DRVI’s integration qual-
ity does not suffer from the disentanglement constraints and instead is on par with
entangled integration methods. With its disentangled latent space, DRVI is in-
herently interpretable and facilitates the identification of rare cell types, provides
novel insights into cellular heterogeneity beyond traditional cell types, and high-
lights developmental stages.

1 INTRODUCTION

Single-cell RNA-seq technologies are widely used for profiling transcriptomes or other omics levels
at single-cell resolution in a high-throughput fashion Svensson et al. (2018); Angerer et al. (2017).
Consequently, many tools and methods have emerged to facilitate the analysis of these datasets
Zappia & Theis (2021). Among these, generative models have effectively summarized data within
a latent space, particularly when dealing with multiple batches Lopez et al. (2018); Lotfollahi et al.
(2019), outperforming more traditional methods in large-scale benchmarks and competitions for
integration and cross-modality inference Lance et al. (2022).

Despite their widespread use, generative models commonly produce entangled latent representa-
tions, where multiple unrelated biological processes are intertwined within a single dimension Kunes
et al. (2023). This limits the interpretability of the latent space, restricting its direct application for
downstream tasks Svensson et al. (2020); DeTomaso & Yosef (2021). As a result, the latent space
is often only used as an intermediate, and its utility is limited to neighborhood graphs constructed
on top of the cellular representations. Specifically, common techniques like Uniform manifold ap-
proximation and projection (UMAP) McInnes et al. (2018); Becht et al. (2018) for visualization and
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Leiden clustering Traag et al. (2019) for cell type identification exclusively rely on these neighbor-
hood graphs. While clustering methods are essential for extracting biological variations from the
high-dimensional single-cell omics data Kiselev et al. (2019), they have limitations. They cannot
capture continuous processes or identify shared programs among multiple cell types as a single con-
cept and often identify the most dominant signals, such as cell types, which makes it challenging to
uncover secondary signals. Disentanglement effectively addresses these limitations by definition.

Disentanglement refers to the ability of a model to separate and represent distinct underlying pro-
cesses in individual latent dimensions. Several disentangled latent space models have been proposed
for single-cell omics data. However, they either rely on linear assumptions Argelaguet et al. (2020);
Hackenberg et al. (2024), auxiliary data, such as variations of interest Lopez et al. (2022); Bereket
& Karaletsos (2023); Hediyeh-zadeh et al. (2024), or both Lotfollahi et al. (2023); Gut et al. (2021);
Nazaret et al. (2023); Kunes et al. (2023) to enforce disentanglement. In practice, for new discover-
ies, supervised data is absent or, if present, frequently biased. And, linear models fail to capture the
complexity of biological data, particularly in scenarios involving multiple batches. These limitations
motivate the development of unsupervised nonlinear disentangled representation learning. While
there are a few unsupervised and unconstrained disentanglement models Lotfollahi et al. (2021);
Yu & Welch (2021), we will experimentally show none of these unconstrained models demonstrate
satisfactory disentanglement performance, which may explain the fact that they see little practical
use.

To address these challenges, we leverage and extend the recently proposed framework of additive
decoders Lachapelle et al. (2023), which enables latent variable identification in the context of image
generation. We present Disentangled Representation Variational Inference (DRVI), an unsupervised
generative model capable of learning non-linear interpretable disentangled latent representations
from single-cell count data. DRVI is built upon additive decoders followed by a non-linear pool-
ing function. We theoretically prove that this architecture achieves disentanglement under specific
assumptions: additivity of independent underlying processes in count space and the existence of
markers for each process. Empirical evaluations across a diverse range of biological applications
demonstrate DRVI’s capabilities in learning disentangled latent representations, outperforming ex-
isting methods in terms of disentanglement without reducing integration quality. DRVI facilitates
the identification of biological states by representing cell types across individual latent factors in cell
atlases, enables exploration of cellular heterogeneity by identifying biologically meaningful varia-
tions beyond cell types, captures developmental stages in developmental datasets, identifies coherent
groups of effective perturbations in perturbational studies. Additionally, DRVI allows users to selec-
tively highlight or exclude latent factors associated with specific known variations, offering flexible
post-hoc analysis capabilities.

2 METHODS

2.1 DRVI: DISENTANGLED REPRESENTATION VARIATIONAL INFERENCE

DRVI is an unsupervised deep generative model that employs log-sum-exp (LSE) pooled additive
decoders to disentangle latent factors. Additive decoder architecture has been shown to enforce
disentanglement under specific assumptions Lachapelle et al. (2023). However, without additional
modifications, it does not achieve disentangled latent representations for single-cell omics data. To
address this, we combine additive decoders with variational autoencoders and incorporate multiple
modifications that achieve both theoretical and practical disentanglement of latent factors. Most
importantly, we introduced LSE aggregation, which, from a mechanistic point of view, assumes that
biological processes add up in count space (Supplementary Figure 1).

2.2 THE GENERATIVE MODEL

Assume we have an observed count matrix XXX ∈ NN×M , where N is the number of cells and M
is the number of genes. Optionally, we can consider a covariate vector CCC ∈ RN×R, where R is
the dimensionality of the covariates for each cell. For example, in batch correction frameworks,
CCCi could be a one-hot vector representing the batch identity if modeled as in scVI Lopez et al.
(2018), or an embedding vector if modeled as in scPoli De Donno et al. (2023) (DRVI accepts both
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conventions). Then, the goal is to discover latent factors ZZZ ∈ RN×K where K is the latent space
dimension.

DRVI accepts Normal, Poisson, and Negative Binomial distributions as noise models. When using
the Normal noise model, the observed data (x) should be log-transformed. We primarily parametrize
the distributions in log space to ensure a correct and clear formulation within our framework. This
approach also emphasizes that all other methods calculate their parameters in log space and trans-
form them back to count space in the last step.

The generative process is defined by the pooling of multiple decoders that map latent space to pa-
rameters of the noise distribution. Specifically:

Z ∼ Normal(0, I) (1)

logµ = f(Z,C) = σ(
∑

1≤k≤K

ψ ◦ f (k)(Zk, C)) (2)

Xg ∼ Dist(logµg + logL, log θg) (3)

Where f is the decoder, f (k) denotes the additive decoder subunits (referred to as basis functions),
σ and ψ form pooling function, Dist models the noise distribution, θg is a parameter indicating
gene-wise dispersion or variance, L corresponds to the random variable indicating library size of the
cell, and Zk denotes kth dimension of Z.

Fitting the generative process given observed data involves maximizing the log-likelihood function
logPθ(X|C) =

∑
n logPθ(XXXn|CCCn) where XXX is the matrix of observations, C indicates covari-

ates matrix (such as technical batch), and θ represents all parameters in the model. Although the
log-likelihood decomposes into sample log-likelihoods, maximizing each term requires integration
over all Z values, which is intractable. We employ Variational Bayes, which constructs an approxi-
mate posterior probability distribution function qϕ(Z|X,C) parameterized by ϕ Kingma & Welling
(2013). This distribution is typically formulated as a simple multivariate Gaussian distribution.

Similar to other frameworks, the ELBO is optimized by constructing an autoencoder where
Pθ(X|Z,C), qϕ(Z|X,C), and P(Z) correspond to the decoder, the encoder, and the prior distri-
bution, respectively Lopez et al. (2018); De Donno et al. (2023); Lotfollahi et al. (2020). Stochastic
gradient descent is used to optimize the negative ELBO, and the reparametrization trick is employed
to sample from the approximate posterior q Kingma & Welling (2013); Kingma & Ba (2014).

2.3 ADDITIVE DECODERS, POOLING, AND DISENTANGLEMENT

We build on the theoretical foundations of additive decoders Lachapelle et al. (2023) to establish
disentanglement criteria within DRVI. Our primary methodological contribution is the introduction
of an additional pooling function to additive decoders.

Sufficient Nonlinearity of defined generative process(adapted from pure additive decoders
Lachapelle et al. (2023)): DRVI’s decoder is sufficiently nonlinear (main requirement of disen-
tanglement) if, for all z in the latent space, the following matrix has linearly independent columns:

Wf (z) :=

[
Df (k)(zk)× ψ′

(
f (k)(zk)

) ∣∣∣∣∣D2f (k)(zk)× ψ′
(
f (k)(zk)

)
+ (Df (k)(zk))

2 × ψ′′
(
f (k)(zk)

)]
1≤k≤K

(4)

Where Df (k)(zk) and D2f (k)(zk) denote first-order and second-order derivatives of f (k) at point
zk, respectively. The functions ψ′ and ψ′′ are the first-order and second-order derivatives of ψ. Note
thatDf (k)(zk) andD2f (k)(zk) areM×1 matrices that collectively form anM×2K matrixWf (z).

2.4 LSE POOLING

Consider the case where σ = log and ψ = exp. Then f(z) = log
∑

1≤k≤K exp
(
f (k)(zk)

)
.
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As we have ψ′(x) = ψ′′(x) = exp(x) for first-order and second-order derivates. Sufficient nonlin-
earity in this case reduces to:

WLSE
f (z) :=

[
Df (k)(zk)× exp

(
f (k)(zk)

)∣∣∣∣∣((Df (k)(zk))2 +D2f (k)(zk))× exp
(
f (k)(zk)

)]
1≤k≤K

.

(5)

Consider the GT processes underlying single-cell omics data, although we have no access to them.
Assume each underlying process has a distinct set of marker genes, and each set has at least two
marker genes with different log-fold-change (LFC) rates upon process activation (genes are non-
identical in log-transformed space). In Appendix A.1, we show how to form a block diagonal
matrix with these marker genes and prove sufficient nonlinearity of matrix WLSE

f (z) in almost
every point of the domain when basis functions are piecewise linear. Although the proof requires
the basis functions to be piecewise linear, we observed that this constraint can be relaxed in practice,
and RELU activation functions can be replaced by smooth activation functions such as ELU and
Softplus. As stated before, we use the ELU activation function that makes the decoder smoother and
has almost linear behavior in positive and negative enough areas of its domain.

An important aspect of LSE pooling is its mechanistic interpretation. As described before, the
decoder of DRVI (as in most other methods) models the mean parameters of the output distributions
in the log-transformed space. This to the assumption that “activities induced by different factors
(independent biological processes) sum up in the count space.” Formalization of the interpretability
of DRVI is available in Appendix A.2.

3 METRICS

Since DRVI aims to bridge the gap between disentangled linear models and flexible non-
disentangled methods, we evaluate its performance from two perspectives: disentanglement and
integration. We assess the integration quality of multi-batch datasets based on the scIB metrics
framework. Details on these metrics can be found at Luecken et al. (2022b). As in the original
study, the total score is derived by averaging biological conservation and batch integration scores
with weights of 0.6 and 0.4, respectively.

Disentanglement refers to the existence of a one-to-one correspondence between the GT processes
and the learned latent factors. Given a one-to-one correspondence, one can use an appropriate
similarity function to measure how much each ground truth process is similar to the corresponding
latent factor. Accordingly, we measure disentanglement by finding the one-to-one correspondence
that maximizes the average pairwise similarities. This category of metrics is known as the Latent
Matching Score (LMS). Since the number of GT processes is unknown to the models, the number
of GT processes may differ from the number of latent dimensions. Therefore, we define the LMS
metrics by finding the best non-overlapping matching between the GT processes and the latent space
dimensions Lachapelle et al. (2023):

LMS-Fsim(P,Z) =
1

|P |
max

π∈Π(P,Z)

[ ∑
pl,zk∈π

Fsim(pl, zk)

]
, (6)

where Fsim can be any similarity function comparing learned factors with respect to GT processes,
P indicates the set of vectors corresponding to all ground-truth processes, Z is the set of latent
dimensions, and Π is the set of all injective correspondences from P to Z.

In the following, we define three similarity functions based on Spearman correlation, Mutual Infor-
mation, and Nearest Neighbor Consistency.

Scaled Mutual Information (SMI): We use Mutual Information as a nonlinear metric to compare
GT processes and latent space dimensions. Since mutual information is bounded by the entropy of
the GT process, we scale it so that the maximum value of +1 becomes achievable.

SMI(pl, zk) =
MI(pl, zk)

H(pl)
, (7)
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where MI is the mutual information function and H is the entropy function. SMI is also known by
other names such as proficiency or uncertainty coefficient White et al. (2004).

Same-Process Neighbors (SPN): Consider a process with only two ”on” and ”off” states. Then,
we would like to see the cells in the ”on” state to form a group in a latent space. Accordingly, we
measure the non-random probability for which a cell and its right neighbor are in the ”on” state at
the same time. So we have:

SPN(p, zk) = max

(
0,

P
(
pj = 1

∣∣pi = 1 ∧ i, j ∈ NG(zk)
)
− Ppi∈p

(
pi = 1

)
1− Ppi∈p

(
pi = 1

) )
, (8)

where NG(zk) indicates the set of all neighboring cells (no cell in between, not necessarily nearest
neighbors) in dimension k of the latent space. The function SPN(pl, zk) measures the frequency of
two neighboring cells being active simultaneously minus the probability of such an outcome when
cells are shuffled randomly. This metric is also adjusted to reach +1 as its maximum.

Absolute Spearman Correlations (ASC): This metric is defined based on the absolute Spearman
correlation between a GT process and a latent space dimension as

ASC(pl, zk) =
∣∣Corrs(pl, zk)∣∣, (9)

where Corrs indicates the Spearman correlation function. As Spearman correlation of discrete GT
with respect to the continuous values in the latent space will be substantially small, the other two
metrics are more suitable in our case.

We use LMS − SMI as the default metric to evaluate the disentanglement of a trained model
with respect to known biological processes. While the SMI and ASC metrics accept discrete and
continuous processes, the SPN metric is designed specifically for on/off processes.

In addition to the LMS metrics, we use two other secondary metric families to better understand the
model’s behavior. To determine if a GT process is represented in at least one factor, we find the most
similar dimension in the derived latent space for each GT process and then average these similarities
across all GT processes. This is called the Most Similar Averaging Score (MSAS). We use the Most
Similar Gap Score (MSGS), which builds on MSAS by adding a term that penalizes the presentation
of a GT process in multiple dimensions. Formally, we have:

MSAS-Fsim(P,Z) =
1

|P |
∑
pl∈P

max
zk∈Z

Fsim(pl, zk) (10)

MSGS-Fsim(P,Z) =
1

|P |
∑
pl∈P

max
zk∈Z

[
Fsim(pl, zk)− max

zk′ ̸=zk∈Z
Fsim(pl, zk)

]
, (11)

where Fsim can be any of the SMI, SPN, or ASC functions, and P and Z are defined as before.
When using the SMI similarity function, MSGS reduces to the Mutual Information Gap (MIG)
metric as defined in Ref Chen et al. (2018).

We primarily use the LMS metric family for evaluation and examine the MSAS and MSGS metric
families to further evaluate model behavior. This choice is because MSAS and MSGS metrics do
not penalize the presence of multiple irrelevant biological signals within a single dimension.

4 RESULTS

DRVI OUTPERFORMS PREVIOUS DISENTANGLEMENT APPROACHES WHILE MAINTAINING
INTEGRATION QUALITY

Learning disentangled latent representation aims to identify biological processes in different axes
of the latent space. We refer to all (often unknown) biological processes that are represented in the
data and have contributed to its formation as ground truth (GT) processes. From the GT processes
to the observed single-cell omics data, we can consider the biology describing cells as a stochastic
GT generative function. We call a latent space to be disentangled when latent space axes correspond
to the GT processes (see ’Definitions and Notations’ in Methods). Accordingly, we can measure the
disentanglement by finding and assessing the best matching between GT processes and latent space
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dimensions. However, the GT processes and the GT generative function are often unreachable.
Here, we propose to address this conundrum by assessing the disentanglement using supervised
information such as annotated cell types, applied perturbations, or basic known biological processes
such as cell cycle (Figure 1a). Disentanglement is therefore measured by matching latent variables
and proxy variables, technically called latent matching score (LMS) in the disentanglement literature
Lachapelle et al. (2023) - by default, we measure the matching quality based on the Scaled Mutual
Information (SMI, see ’Metrics’ in Methods).
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Figure 1: Benchmarking DRVI in terms of disentanglement and integration quality. a, Eval-
uation of disentanglement requires access to ground truth biological processes, which are often
unreachable. We use cell type annotations, perturbations, and known processes as proxies when
available. b, Disentanglement was evaluated using latent matching scores, calculated by compar-
ing the alignment of latent dimensions to proxy variables using mutual information. These scores
were obtained from benchmarked models across diverse datasets. The proxy variable that serves
as the ground truth for each dataset is specified. The total score is determined by averaging the
improvements relative to PCA (top left). DRVI achieves the best result. c, scIB Integration scores
for each individual multi-batch dataset. The last three columns indicate the average scores, with the
best method in each category marked with a star. DRVI achieves the best results in unsupervised
integration.

To systematically assess how well DRVI learns disentangled latent representations, we benchmarked
DRVI against six unsupervised methods covering linear (PCA, ICA, and MOFA) and nonlinear
(scVI, β-TCVAE, and MICHIGAN) representation assumptions. Among these methods, ICA,
MOFA, β-TCVAE, and MICHIGAN are designed to provide disentangled latent representations.
In addition we added DRVI with average pooling (referred to as DRVI-AP) to highlight the impor-
tance of the LSE pooling. To cover a wide range of scenarios, we evaluated the mentioned methods
on two atlas-scale multi-batch data (HLCA Sikkema et al. (2023) and PBMC Stephenson et al.
(2021)), a small multi-batch data (immune Luecken et al. (2022b)), a dataset consisting of primary
and organoid cells (retina organoid Cowan et al. (2020)), one small-scale developmental data (de-
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velopmental pancreas Bastidas-Ponce et al. (2019)), one large-scale developmental data (Daniocell
Sur et al. (2023)), and one genetic perturbation dataset (CRISPR screen Norman et al. (2019)).

When evaluating DRVI on individual datasets, DRVI consistently outperforms or matches the best
benchmarked methods in providing disentangled latent representations (Figure 1b).

To address the inherent variability across different datasets, we normalized each metric by the cor-
responding PCA score before aggregation. The resulting metric is referred to as the gain over PCA
(see ’Metrics’ in Methods). The total score was calculated by averaging the gain over PCA across
all datasets (Figure 1b, top left). We find that also in the overall metric, DRVI outperforms other
benchmarked models, achieving a 23.9% improvement over ICA, the next best-performing model.

We explored two additional similarity functions, absolute Spearman correlations (ASC) and same-
process neighbors (SPN), to assess the benchmarked methods using the LMS criteria (Supplemen-
tary Figure 2.). For completeness, we also provide the results of two additional disentanglement
metric families (Supplementary Figure 3): Most Similar Averaging Score (MSAS) and Most Simi-
lar Gap Score (MSGS).

Current unsupervised methods such as ICA and MOFA enforce disentanglement through strongly
limiting model constraints like linearity and sparsity, restricting their ability to represent rich, multi-
batch data. To assess the applicability of disentangled models on complex data, we assess integra-
tion quality alongside disentanglement. We consider the datasets containing multiple batches and
assessed the biological signal conservation and batch correction quality based on the scIB metrics
Luecken et al. (2022b). Considering the average performance across all datasets, DRVI achieved the
highest total integration score among all benchmarked methods (Figure 1c).

DRVI ALLOWS ATLAS-LEVEL IDENTIFICATION OF BIOLOGICAL PROCESSES

To demonstrate the capability of DRVI in disentangling latent factors and identifying biological
signals in complex data, we applied DRVI to the Human Lung Cell Atlas (HLCA) Sikkema et al.
(2023). We use the curated core of this atlas (Figure 2a). consisting of 166 samples from 14 datasets
and including a total of 585K cells with curated annotations across 61 distinct cell identities in the
finest level annotations.

We identified 31 latent dimensions corresponding to cell types in the finest-level annotations with
a favorable one-to-one correspondence to cell identities (Figure 2b top and Supplementary Figure
A.4). Given that the disentanglement metrics already assess the identification quality of the cell-
type indicator dimensions, we will not focus on evaluating this aspect. However, it is noteworthy
that DRVI effectively identifies most of the challenging cell types highlighted by the HLCA study,
including Migratory DCs (identified by DR 39+), AT0 cells (identified by DR 34+), hillock-like ep-
ithelial cells (identified by DR 26-), and pre-TB secretory through transitional club-AT2 cell (iden-
tified by DR 32+), Interestingly pre-TB secretory cells are also described in the HLCA study only
through marker genes corresponding to transitional club-AT2 cells Sikkema et al. (2023). This is in
full alignment with DRVI’s latent geometry where AT0 and pre-TB secretory are together identified
by DR 34+. that were previously identifiable only after multiple iterations of clustering Sikkema
et al. (2023), or clustering at very high resolutions with hundreds of clusters (Supplementary Figure
7). Given that DRVI can capture these cell types in just 52 non-vanished dimensions, we expect it
to significantly facilitate the systematic discovery and seed annotation of novel and rare cell types.

To demonstrate the validity of the identified variations beyond cell types, we followed the inter-
pretability pipeline and found the non-linear gene programs related to each non-cell-type dimension
(Supplementary Figures 5 and 6). As a result, we identified relevant biological descriptions for 22
of the 25 dimensions expected to represent biological processes (Figure 1c). DRVI successfully
identified variations beyond cell types. Here, we highlighted some interesting examples of dimen-
sions (Figure 2d-h). DR 64- identifying IFI27+ Alveolar Macrophages as an even finer cellular state
Li et al. (2022); Aegerter et al. (2022); Bailey et al. (2023). DR 29+ indicates Dissociation stress
response, a confounding process that can easily be removed from DRVI latent dimension van den
Brink et al. (2017); Denisenko et al. (2020). DR 48+ highlights the upregulation of Metallothionein
(MT) family genes, indicating a response to metal ions. A cell subset characterized by the expres-
sion of CXCL9, CXCL10, and CXCL11 is highlighted by DR 46+, suggesting CXCR3 chemokine
receptor binding process Tokunaga et al. (2018), which is particularly relevant in the context of lung
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Figure 2: DRVI uncovers the variations in HLCA beyond cell types. a, UMAPs of the HLCA
integrated by benchmarked methods. Cells are colored by third-level annotations. b, DRVI latent
dimensions. The heatmap illustrates each dimension’s activity in cells vertically grouped by finest
level annotations. Cells are subsampled to have an equal number of cells in each cell type. The
dimensions are horizontally grouped into two categories: cell-type indicators dimensions (top) and
dimensions indicating other biological processes (bottom). Dimensions representing non-cell-type
processes are color-coded on the right-hand side of the plot. Vanished dimensions are omitted. For
better illustration, some tail values are clipped. c, For each dimension indicating a non-cell-type
biological process, a short description is provided. d-g, Demonstration of five example dimensions.
Left: Activity of the example dimensions on the UMAP. Middle: The expression of a relevant
gene on the UMAP. Right: Violin plots indicating the expression levels of relevant genes versus the
activity of dimensions. h, The activity of DR 22+ and one of the identified genes in the nonlinear
gene program. This dimension indicates angiogenesis and hypoxia in endothelial cells and is highly
active in some tumor-adjacent cells. Mph, Macrophage.

diseases Kameda et al. (2020); Callahan et al. (2021). Finally, as an interesting example, DR 22+
is primarily active in endothelial cells, related to genes such as CX3CL1, SERPINE1, AKAP12,
GRP4, and FSTL3 all known to be upregulated under hypoxic conditions Korbecki et al. (2020);
Azimi et al. (2017); Finger et al. (2015); Qi et al. (2021); Biron-Shental et al. (2008), a common
phenomenon observed in tumor-adjacent environments Chen et al. (2023). The increased abundance
of tumor-adjacent endothelial cells in the higher end of DR 22+ supports this interpretation.

Altogether, DRVI enables the disentanglement of biological processes within the HLCA, a large-
scale cell atlas. This facilitates the identification of rare cell types and the underlying biological
processes.
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MEANINGFULNESS STATEMENT

This work addresses entanglement as the main issue of the interpretability in generative models. We
proposed “disentangled representation” as a meaningful representation capable of simultaneously
modeling discrete states and continuous processes, which is more general than clustering methods
producing mutually exclusive sets. Accordingly, we proposed a systematic framework to evaluate
disentanglement in single-cell omics. We proposed DRVI, a generative model that solves the disen-
tanglement problem. DRVI demonstrates superior performance in disentanglement and integration.
Moreover, it effectively identifies rare cell types and biological processes far beyond cell-types in
the Human Lung Cell Atlas (HLCA) as an atlas scale example.

ACKNOWLEDGMENTS

We thank Malte D. Luecken and Lisa Sikkema for providing constructive feedback on this work and
for their expertise in HLCA analysis, Sara Jimenes and Dominik Klein for their valuable insights and
discussions on the pancreas data, Leander Dony for a fruitful discussion on the required number of
latent dimensions, Lisa Sikkema, Alessandro Palma, Mojtaba Bahrami, and Anastasia Litinetskaya
for their constructive criticism and valuable feedback on the manuscript, Mohammad Lotfollahi
for discussions on related works, Philipp Weiler for suggestions on the choice of developmental
datasets, Daniel Strobl for suggestions on enrichment analysis, and Michaela Müller for a discussion
on evaluation framework. Finally, we thank all the members of the Theislab for their insightful
discussions and support. This work was supported by the Deutsche Forschungsgemeinschaft (DFG)
through the Leibniz Prize and project 458958943 (grant number 5010338). A.A.M. is a member of
the ELLIS PhD Program of the European Laboratory for Learning and Intelligent Systems (ELLIS)
Society. F.J.T. acknowledges support from the Helmholtz Association’s Initiative and Networking
Fund through Helmholtz AI (grant number ZT-I-PF-5-01) and from the Leibniz Prize from DFG.

REFERENCES

Helena Aegerter, Bart N Lambrecht, and Claudia V Jakubzick. Biology of lung macrophages in
health and disease. Immunity, 55(9):1564–1580, September 2022.

Philipp Angerer, Lukas Simon, Sophie Tritschler, F Alexander Wolf, David Fischer, and Fabian J
Theis. Single cells make big data: New challenges and opportunities in transcriptomics. Curr.
Opin. Syst. Biol., 4:85–91, August 2017.

Ricard Argelaguet, Damien Arnol, Danila Bredikhin, Yonatan Deloro, Britta Velten, John C Mari-
oni, and Oliver Stegle. MOFA+: a statistical framework for comprehensive integration of multi-
modal single-cell data. Genome Biol., 21(1):111, May 2020.

Iman Azimi, Rosalie M Petersen, Erik W Thompson, Sarah J Roberts-Thomson, and Gregory R
Monteith. Hypoxia-induced reactive oxygen species mediate N-cadherin and SERPINE1 expres-
sion, EGFR signalling and motility in MDA-MB-468 breast cancer cells. Sci. Rep., 7(1):15140,
November 2017.

Joseph I Bailey, Connor H Puritz, Karolina J Senkow, Nikolay S Markov, Estefani Diaz, Emmy
Jonasson, Zhan Yu, Suchitra Swaminathan, Ziyan Lu, Samuel Fenske, Rogan A Grant, Hiam
Abdala-Valencia, Ruben J Mylvaganam, Janet Miller, R Ian Cumming, Robert M Tighe, Kym-
berly M Gowdy, Ravi Kalhan, Manu Jain, Ankit Bharat, Chitaru Kurihara, Ruben San Jose Es-
tepar, Raul San Jose Estepar, George R Washko, Ali Shilatifard, Jacob I Sznajder, Karen M Ridge,
G R Scott Budinger, Rosemary Braun, Alexander V Misharin, and Marc A Sala. Expansion of
profibrotic monocyte-derived alveolar macrophages in patients with persistent respiratory symp-
toms and radiographic abnormalities after COVID-19. July 2023.

Aimée Bastidas-Ponce, Sophie Tritschler, Leander Dony, Katharina Scheibner, Marta Tarquis-
Medina, Ciro Salinno, Silvia Schirge, Ingo Burtscher, Anika Böttcher, Fabian J Theis, Heiko
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Kerstin B Meyer, Marko Z Nikolić, Christopher J A Duncan, Kenneth G C Smith, Sarah A Teich-
mann, Menna R Clatworthy, John C Marioni, Berthold Göttgens, and Muzlifah Haniffa. Single-
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A APPENDIX

A.1 SUFFICIENT NONLINEARITY FOR LSE POOLING

Assume that, in single-cell omics data, each underlying process has a particular set of at least two
marker genes with different log-fold-change (LFC) rates that are present upon process activation.
In addition, assume these underlying processes form the basis functions f (k) in the ground truth
additive generative process, and the basis functions are linear almost everywhere in the domain.
Then, the matrix WLSE

f (z) has full-rank columns for almost every point z in the domain of the
generative process.

Proof. Consider the assumed marker genes. We show that the limitation of the WLSE
f (z) to these

marker genes has full-rank columns. To this end, we sort the marker genes to reach a matrix with
rectangular blocks of 1 and zeros everywhere else. Let’s call the marker genes indicator matrix T .
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Then we have:

T =



1 0 0 0 0 0 0 . . .
1 0 0 0 0 0 0 . . .
1 0 0 0 0 0 0 . . .
0 1 0 0 0 0 0 . . .
0 1 0 0 0 0 0 . . .
0 0 1 0 0 0 0 . . .
0 0 1 0 0 0 0 . . .
0 0 1 0 0 0 0 . . .
0 0 0 1 0 0 0 . . .
...

...
...

...
...

...
...

. . .


(12)

WLSE
f (z) =



A1,1 0 0 0 0 0 0 . . . B1,1 0 0 0 0 0 0 . . .
A2,1 0 0 0 0 0 0 . . . B2,1 0 0 0 0 0 0 . . .
A3,1 0 0 0 0 0 0 . . . B3,1 0 0 0 0 0 0 . . .
0 A4,2 0 0 0 0 0 . . . 0 B4,2 0 0 0 0 0 . . .
0 A4,3 0 0 0 0 0 . . . 0 B4,3 0 0 0 0 0 . . .
0 0 A6,3 0 0 0 0 . . . 0 0 B6,3 0 0 0 0 . . .
0 0 A6,4 0 0 0 0 . . . 0 0 B6,4 0 0 0 0 . . .
0 0 A6,5 0 0 0 0 . . . 0 0 B6,5 0 0 0 0 . . .
0 0 0 A6,4 0 0 0 . . . 0 0 0 B6,4 0 0 0 . . .
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
...

. . .


(13)

WhereAi,j = Df (j)(zi)×exp
(
f (j)(zi)

)
andBi,j = ((Df (j)(zi))

2+D2f (j)(zi))×exp
(
f (j)(zi)

)
.

By reordering the columns of WLSE
f (z), we will reach a block sparse matrix as below.

WLSE
f (z) =



A1,1 B1,1 0 0 0 0 0 0 0 . . .
A2,1 B2,1 0 0 0 0 0 0 0 . . .
A3,1 B3,1 0 0 0 0 0 0 0 . . .
0 0 A4,2 B4,2 0 0 0 0 0 . . .
0 0 A4,3 B4,3 0 0 0 0 0 . . .
0 0 0 0 A6,3 B6,3 0 0 0 . . .
0 0 0 0 A6,4 B6,4 0 0 0 . . .
0 0 0 0 A6,5 B6,5 0 0 0 . . .
0 0 0 0 0 0 A6,4 B6,4 0 . . .
...

...
...

...
...

...
...

...
...

. . .


(14)

Having independent columns in such a matrix is equivalent to having independent columns in each
block. Since each block is of the form
Ai,j Bi,j

Ai+1,j Bi+1,j

Ai+2,j Bi+2,j

...
...

 =


Df (j)(zi) (Df (j)(zi))

2 +D2f (j)(zi)
Df (j)(zi+1) (Df (j)(zi+1))

2 +D2f (j)(zi+1)
Df (j)(zi+2) (Df (j)(zi+2))

2 +D2f (j)(zi+2)
...

...


[
exp

(
f (j)(zi)

)
0

0 exp
(
f (j)(zi)

)]

(15)
This is the point we use: (I) the assumption that the basis functions are piecewise linear and (II)
the assumption that each process has at least two markers with different log-fold change rates. The
first assumption implies D2f (j)(zi) is zero almost everywhere. And the second assumption implies
thatDf (j)(zi) and (Df (j)(zi))

2 columns are independent. For the latter, assume that the mentioned
columns are dependent on point z. Then there exists constant λ where Df (j)(zi) = λ(Df (j)(zi))

2

for all marker genes i relevant to the process j. Since the derivatives of the basis function are non-
zero almost everywhere. This simply implies that Df (j)(zi) = 1/λ or a non-negligible set of points
in the domain, which is in contradiction to having two marker genes with different LFC rates (The
basis functions are defined in the log-transformed space. So their derivatives indicate the rate of the
change of the gene in log-space upon activation of the process). The contradiction completes the
proof and implies that all the blocks of the matrix WLSE

f (z) and, consequently, the matrix itself
have independent columns and are sufficiently nonlinear. □
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A.2 INTERPRETABILITY

Learned latent representations may present known or unknown abstract concepts. Interpreting latent
space dimensions in terms of the genes involved helps understand unknown abstract concepts and
find explanations for known ones. In factorization models, the loadings (weights of the low-rank
matrices) are interpreted as the effect of each gene on each factor. However, in nonlinear models,
interpretability is challenging since the dependencies are nonlinear, and the effect of each latent
space dimension also depends on the values of other latent dimensions. While this challenge still
exists in DRVI, the additive architecture facilitates interpretability as each latent space dimension is
decoded separately until the final pooling function.

We use the additive decoder architecture to interpret the latent space dimensions in terms of the
genes involved and explain each basis function separately.

logµ = log
∑

1≤k≤K

exp
(
f (k)(zk, c)

)
(16)

where µ, zk, f (k), and c are defined as in the average pooling case.

Accordingly, for each gene g and dimensions i of the latent space we have:

µg =
∑

k∈K∧k ̸=i

[
exp

(
f (k)(zk, c)

)]
g
+
[
exp

(
f (i)(zi, c)

)]
g

(17)

Here, the effect of perturbing zi in count space solely depends on f (i)(zi, c). Formally:

effectLSE
counts(Zi, g) = E

c∈C

[
max

z∈[min(Zi),max(Zi)]

[
exp

(
f (i)(z, c)

)]
g
−

min
z∈[min(Zi),max(Zi)]

[
exp

(
f (i)(z, c)

)]
g

] (18)

A.3 DATASETS

Below, we provide information about the datasets used in this work

IMMUNE DATASET

The immune dataset consists of 32,484 cells collected from 4 human PBMC studies, including 9
batches and 16 distinct cell types after pre-processing. The data is obtained from Luecken et al.
(2022) Luecken et al. (2022a;b). The ”Villani” study was excluded due to its non-integer values.
The dataset was subset to 2,000 highly-variable genes (HVGs) in a batch-aware manner Luecken
et al. (2022b).

THE HLCA

The HLCA consists of a core dataset and an extended version Sikkema et al. (2023). We obtained
the curated core part from cellxgene (https://cellxgene.cziscience.com/collections/6f6d381a-7701-
4781-935c-db10d30de293), which includes 584,944 cells across 166 samples from 14 datasets. This
dataset contains annotations at different levels. We used samples as the batch covariate and the
finest-level annotations comprising 61 cell types to benchmark the methods. The dataset was sub-
set to 1,996 HVGs originally used to construct the HLCA reference model available on Zenodo
(https://doi.org/10.5281/zenodo.7599104).
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CRISPR SCREEN DATASET

The CRISPR screen dataset, also known as the Norman perturb-seq dataset, comprises 104,339
single-cells of K562 cell line (including control cells) perturbed by 106 single-gene perturbations
and 131 combinatorial perturbations Norman et al. (2019). The 238 unique perturbation signatures
were used to benchmark methods. We downloaded the pre-processed data using the pertpy package
Heumos et al. (2024). The data was limited to the 5,000 HVGs originally provided in the pre-
processed data.

PBMC DATASET

The PBMC dataset comprises 647,366 cells across 143 samples from 130 healthy and COVID-19
patients Stephenson et al. (2021). The data was collected at three sites, and we used the site as
the batch covariate to account for the highest technical variation. We used the finest-level annota-
tion containing 51 unique cell types for benchmarking the methods. The data was obtained from
https://www.covid19cellatlas.org/ and was subset to 2,000 HVGs in a batch-aware manner.

RETINA ORGANOID DATASET

The retina organoid data consists of 19,768 cells from fovea, 34,723 cells from periphery,
and 43,857 retina organoid cells (total 98,348 cells) Cowan et al. (2020). The cells come
from 41 samples and are annotated into 21 unique cell types. The data is obtained from
https://cellxgene.cziscience.com/collections/2f4c738f-e2f3-4553-9db2-0582a38ea4dc and was sub-
set to 2,001 HVGs shared between primary and organoid data Hrovatin et al. (2024).

DEVELOPMENTAL PANCREAS DATASET

The developmental pancreas dataset consists of 3,696 pancreatic mouse cells during endocrinogen-
esis at embryonic day 15.5 Bastidas-Ponce et al. (2019). The data was obtained from the scVelo
package Bergen et al. (2020). We used scVelo to pre-process and subset the data to the top 2,000
HVGs. The CellRank package provides a subset of this data with finer annotations Lange et al.
(2022); Weiler et al. (2024). We transferred these finer annotations to the complete dataset and used
the finest annotation comprising 15 unique cell states for benchmarking.

DANIOCELL DATASET

The Daniocell dataset is a comprehensive transcriptional atlas of early zebrafish development, com-
prising 489,686 cells from 62 stages during zebrafish embryogenesis Sur et al. (2023). The data
covers 20 tissues and 156 identity clusters, which we used to benchmark the data. We obtained the
h5ad object from https://zenodo.org/records/8133569 Creators Kristian K Ullrich1 Show affiliations
1. Max Planck Institute for Evolutionary Biology. The pre-processing of this data involved marking
data with the annotations provided in the original publication, removing author-identified doublets,
and subsetting data to 2,000 HVGs.

NEURIPS 2021 DATASET

The NeurIPS 2021 Dataset contains nearly 120K single-cell paired RNA-ATAC and RNA-ADT
(antibody-derived tags) measurements from the human bone marrow of 10 donors Luecken et al.
(2021). We used the ATAC modality of this dataset consisting of 69,247 cells from 13 batches cov-
ering 22 cell types. The dataset is retrieved from GSE194122 and subset to 14,865 highly variable
peaks.

A.4 IDENTIFICATION OF THE NON-CELL-TYPE DIMENSIONS FOR THE HLCA

Here, we try to identify and explain the non-cell-type dimensions not described in the results section.
This is done based on the activity of the dimensions.

DR 64-: As the first example, we showcased a subtle variation within Alveolar Macrophages (AMs
- a subset of Myeloid cells), identified by DR 64- (Figure 2d). IFI27 is the only gene significantly
associated with this dimension, and is known to define a subcluster of AMs Li et al. (2022); Aegerter
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et al. (2022); Bailey et al. (2023). Despite its expression in other cell types, such as blood vessels,
DRVI has nonlinearly localized its expression to AMs due to the distinct patterns of co-regulated
genes. The violin plot of the IFI27 gene with respect to DR 64 in the Myeloid cells confirms the
mentioned relationship.

DR 29+: The activity of DR 29+ spans almost all cell types. This dimension is highly associated
with the genes ATF3, EGR1, JUN, FOSB, and FOS as top indicators of the nonlinear gene program,
suggesting that it represents single-cell dissociation stress response van den Brink et al. (2017);
Denisenko et al. (2020). The violin plot of the JUN gene with respect to DR 29 highlights this
relationship (Figure 2e).

DR 48+: The upregulation of Metallothionein (MT) family genes characterizes DR 48+, indicating
a response to metal ions. The monotonic relationship between DR 48 and MT1X, visualized in
the violin plot, further supports this finding (Figure 2f). While this dimension is active in MT-
positive AM cells, DR 48+ is not exclusive to this cell type. Moreover, MT+ and IFI27+ AMs (DR
48+ and DR 64-) are not disjoint biological subtypes, indicating DRVI’s superiority over traditional
clustering methods in representing parallel overlapping processes.

DR 46+: A cell subset characterized by the expression of CXCL9, CXCL10, and CXCL11 is high-
lighted by DR 46+. GSEA analysis suggests an association with CXCR3 chemokine receptor bind-
ing Tokunaga et al. (2018), which is particularly relevant in the context of lung diseases Kameda
et al. (2020); Callahan et al. (2021). This dimension is not specific to any particular cell cluster,
indicating a shared response signature.

DR 22+: DR 22+ is primarily active in endothelial cells, with GSEA analysis suggesting an asso-
ciation with angiogenesis. The upregulation of top relevant genes, including CX3CL1, SERPINE1,
AKAP12, GRP4, and FSTL3 under hypoxic conditions Korbecki et al. (2020); Azimi et al. (2017);
Finger et al. (2015); Qi et al. (2021); Biron-Shental et al. (2008), a common phenomenon observed
in tumor-adjacent environments Chen et al. (2023), indicates a potential role in tumor growth. The
increased abundance of tumor-adjacent endothelial cells in the higher end of DR 22+ further sup-
ports this interpretation. (Figure 2h)

DR 27+: This dimension indicates an inflammatory process in myeloid cells. The primary gene
associated with this dimension is EREG, with genes such as IL1B, IL1A, CXCL8, and CXCL3
upregulated in this subpopulation. GSEA analysis suggests an association with the regulation of
apoptotic signaling and interleukin-10 signaling. As mentioned earlier, there are other dimensions
representing inflammation, each with its own specific gene signature.

DR 30+: This dimension highlights a gradient in ciliated cells. DNAH11, DNAAF1, DNAH12,
and DNAH6 are among the top identifiers of this dimension, expressed across ciliated cells, with
significantly higher expression observed in the upper gradient of DR 30+. GSEA also suggests
cilium for this dimension.

DR 16+: All the genes identified for DR16+ are human leukocyte antigen gene complex (HLA)
genes, including HLA-DRA, HLA-DRB1, and HLA-DPA. GSEA suggests that this dimension cor-
responds to the MHC class II protein complex. Notably, while HLA genes are generally more highly
expressed in certain cell types like myeloid cells, this dimension provides a per-cell-type normalized
representation, covering similar ranges across relevant cell types, such as myeloid cells and blood
vessels.

DR 21-: This dimension highlights a subset of epithelial cells mostly active in nasal goblet cells,
identified by KLK7, TMPRSS11B, SPINK7, ECM1, SCEL, and KLK6 as their top relevant genes.
We could not identify a biologically meaningful explanation for this dimension.

DR 24+: FOLR2, F13A1, STAB1, CCL13, and SELENOP are the main identifiers of the gene
program associated with DR 24+. These genes indicate a perivascular population of macrophages
Bailey et al. (2023); Nalio Ramos et al. (2022). High activity of this dimension in Interstitial Mph
perivascular cells confirms this relevance.

DR 25-: SERPINB3 and SERPINB4 are the top identified gene for DR 25-, active in epithelial cells.
Although the coexpression of these two genes is biologically relevant Sun et al. (2017), we could
not find a specific biological explanation for the subpopulation of cells active in this dimension.
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DR 28+: The activity of DR 28+ indicates the expression of PLAU, its receptor PLAUR, and an
elevated expression of CLDN4 (Claudin-4) in airway epithelium. While PLAU and CLDN4 are
separately suggested as markers of lung injury or infection, we could not find a comprehensive
description for this dimension Lee et al. (2018); Martı́nez et al. (2007); Ohta et al. (2013).

DR 29-: This dimension highlights a subset of epithelial cells, including Hillock-like cells. Our
interpretability pipeline identified KRT6B, KRT13, KRT16, and KRT6A as key markers, suggesting
a keratization process within this dimension. Previous studies (Ruiz Garcı́a et al. (2019); Yoshida
et al. (2022)) have employed a diverse set of KRT genes to characterize epithelial subpopulations.
In particular, KRT16 and KRT6A are among the markers of certain Hillock-like cell populations.

DR 33+: EDN1, ERRFI1, DST, and TNFRSF12A are the main indicators of DR 33+. This di-
mension is more active in basal cells, with a significant upregulation of cells from the Nawijn 2021
dataset. However, a clear technical or biological explanation for this dimension remains open.

DR 35-: This dimension indicates a subset of fibroblast lineage and smooth muscle cells identified
by a gene program composed of genes such as CRISPLD2, IL6, and ADAMTS4. IL-6 is a pro-
inflammatory cytokine, reported to induce expression of ADAMTS4 in rheumatoid arthritis samples
Mimata et al. (2012). Conversely, CRISPLD2 is a known inhibitory regulator of IL-6 Zhang et al.
(2016); Himes et al. (2014). The coexpression of these genes suggests a dynamic of IL-6 regulation.
The exact role of this process needs further experiments.

DR 35+: C1QA, C1QB, C1QC, and TREM2 are the top indicators of the DR 35+, Suggesting
that this dimension represents TREM2 and the C1Q complex in myeloid cells, including TREM2+
macrophages Xiong et al. (2020a); Wu et al. (2015); Xiong et al. (2020b).

DR 36-: LYPD3, CALML3, AQP3, TASCTD2, and LY6D are the genes identifiers of the nonlinear
gene program for DR 36-. The role of this dimension is not identified.

DR 37-: ANKRD36C gene is the main driver of the DR 37- expressed only in a subset of goblet
cells. Comparison with cell types suggests that this dimension is closely related to the Bronchial
subsets of the Goblet cells. However, we could not find any evidence of the validity of such a
subcluster in the literature, and this dimension seems to be dataset-specific.

DR 38+: DR 38+, characterized by MKI67, TYMS, and PCLAF expression, is associated with
cell-cycle processes as identified by GSEA. This aligns with the cell-type annotations.

DR 40+: This dimension highlights a subset of airway epithelial cells, with RARRES1, CXCL6,
SERPINB4, and IL17C as the key drivers of its gene expression program. While GSEA suggested
an IL-17 signaling pathway, we found the relationship between these genes and the pathway to be
weak. As a result, we were unable to identify a meaningful explanation for this dimension.

DR 41+: This dimension identifies a subset of epithelial cells, with MMP1, STC1, MMP13, and
MMP10 as their top relevant genes. Accordingly, this dimension highlights the activity of cer-
tain proteins in the Matrix Metalloproteinase family, suggesting an ongoing destructive process
Houghton (2015).

DR 42+: With genes such as CCL20, CXCL2, CXCL3, CSF2, CSF3, and ICAM1 among the top
associated genes, GSEA identifies IL-17, IL-10, and TNF signaling pathways for DR 42+. This
suggests an ongoing inflammation process Bui et al. (2020).

DR 43+: This dimension highlights two subsets of cells. The tiny subset in Myeloid cells is associ-
ated with genes such as OLFM4, S100A7, and DEFA3, suggesting a small population of neutrophils
Liu & Rodgers (2016); Jarczak et al. (2013). The other subset in airway epithelium is targeted by
S100A7, SPRR2D, SPRR1B, SPRR2E, SPRR2F, and SPRR3 in the top relevant genes. GSEA sug-
gests keratinization and formation of the cornified envelope for this dimension. The coexistence
of two unrelated cell subsets within this dimension suggests a potential failure in disentanglement,
possibly due to insufficient latent dimensions.

DR 44+: This dimension indicates a subset of myeloid cells characterized by but not limited to
CCL3, CCL4, CCL3L1, CCL4L2, CXCL3, IL1A, and IL1B genes. CCL3 (MIP-1α) and CCL4
(MIP-1β) and their paralogs CCL3L1 and CCL4L2, are proinflammatory chemokines that attract
immune cells Xu et al. (2023). IL-1β is an inflammatory cytokine that activates cells to produce
more CCL3 and CCL4 chemokines Sokol & Luster (2015). GSEA describes this dimension by
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pro-inflammatory process and cytokine activity. This subpopulation of myeloid cells is of biological
and clinical interest Zhou et al. (2024). It is worth mentioning that DR 27+ complements this by
highlighting another population of myeloid cells undergoing interleukin-1 signaling pathway.

DR 49-: With HBA2, HBA1, and HBB as its top identifiers, GSEA analysis suggests that DR 49-
represents the hemoglobin metabolic process. While this process is expected to be most active in ery-
throid cells that are not present in the HLCA, we observed non-negligible expression of hemoglobin
genes in other cell types. The expression of hemoglobin genes in the HLCA could be attributed to
technical or biological factors Yang et al. (2019); Marozkina et al. (2021).

Dim DR 50+: SAA1 and SAA2 are the main identifiers of the dim DR 50+. So, we can conclude
that this dimension presents the activity of SAA as an inflammatory marker.

DR 54-: The nonlinear gene program associated with DR 54- includes multiple genes such as ISG15,
IFIT1, IFI44L, and IFI6. GSEA describes this dimension by interferon alpha/beta signaling and
response to virus pathways.

A.5 VISLUALIZATION OF THE MODEL ARCHITECTURE
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Supplemental Figure 1: DRVI enables learning interpretable disentangled latent representa-
tions. a, Disentanglement concept. A disentangled latent model should encode concepts such as
cell properties, cell types, and developmental stages in distinct dimensions. Each dimension can
then be interpreted as the effect of the dimension on the gene expression. b, Schematic of the DRVI
model. The model consists of a nonlinear encoder and an additive decoder followed by a pooling
function that enforces the disentanglement into the encoder and latent factors. c, Interpreting disen-
tangled factors. Relevant genes can be discovered by traversing a latent factor or using DE analysis
tools. While some factors can be identified using known gene sets or known cell type annotations,
others can be validated as potentially novel programs.
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A.6 RESULTS FOR ADDITIONAL METRICS
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Supplemental Figure 2: Results of the primary disentanglement metric family. The results of
the LMS metrics, as primary metric family, over different datasets are provided. LMS measures
the ability of the model to capture biological processes in individual latent dimensions by matching
latent dimensions and ground-truth biological processes. ASC, absolute Spearman correlations;
LMS, latent matching score; SMI, scaled mutual information; SPN, same-process neighbors.
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Supplemental Figure 3: Results of the secondary disentanglement metrics. The results of the
MSAS and MSGS as secondary metrics over different datasets are provided. MSAS shows the
capability of the model to capture biological processes in individual latent dimensions regardless of
the redundancy. MSGS measures the amount of captured biological information that is specific to a
single (probably overlapping) dimension by penalizing redundancy. Unlike LMS as the main metric,
neither MSAS nor MSGS penalizes overlapping processes in a single dimension. ASC, absolute
Spearman correlations; LMS, latent matching score; MSAS, Most Similar Averaging Score; MSGS,
Most Similar Gap Score; SMI, scaled mutual information; SPN, same-process neighbors.
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A.7 ADDITIONAL PLOTS FOR HLCA EXAMPLE
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Supplemental Figure 4: Latent space visualization for benchmarked methods on the HLCA.
For each method, a heatmap visualizing latent representation activity across different cell types
is provided. Cells were subsampled to ensure a balanced number of cells from each cell type.
Dimensions are reordered using a shared algorithm to maximize the diagonal appearance.
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Supplemental Figure 5: Activity of DRVI factors representing non-cell-type processes in the
HLCA on UMAP For dimensions representing non-cell-type processes, the activity on the UMAP
is provided.
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Supplemental Figure 6: Interpretability of DRVI latent factors corresponding to non-cell-type
processes in the HLCA. The top relevant genes and their scores are plotted for each non-cell-type
latent factor of DRVI trained on the HLCA.
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Supplemental Figure 7: Rare Cell-Type Identification Performance of Leiden Clustering in the
HLCA. Leiden clustering was applied to DRVI and scVI embeddings at varying resolutions. For
each cell type, we calculated the Jaccard index between the cell type and its most relevant cluster
at different resolutions. Additionally, we evaluated the performance of DRVI by calculating the
Jaccard index between the cell type and the separation achieved using a simple threshold on the
most relevant DRVI dimension (marked by star). Migratory DCs were accurately captured by the
Leiden algorithm only at the resolution of 8.0 with 161 clusters. AT0 cells were identified with
comparable quality to DRVI starting from the resolution of 6.0 with 131 clusters. Hillock-like cells
were captured as well as DRVI at the resolution of 7.0 with 138 clusters. Pre-TB secretory cells
were captured well at a resolution of 1.5 with 49 clusters. These results demonstrate that identifying
at least three rare cell types requires the creation of approximately 130 to 160 clusters using Leiden
clustering. Given that DRVI can capture these cell types within its 52 non-vanished dimensions, we
suggest DRVI as an efficient valuable tool for seed annotation and discovery of rare cell populations.
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