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ABSTRACT
Constructing good representations is critical for learning
complex tasks in a sample efficient manner. In the context of
meta-learning, representations can be constructed from com-
mon patterns of previously seen tasks so that a future task
can be learned quickly. While recent works show the benefit
of subspace-based representations, such results are limited to
linear-regression tasks. This work explores a more general
class of nonlinear tasks with applications ranging from binary
classification, generalized linear models and neural nets. We
prove that subspace-based representations can be learned in
a sample-efficient manner and provably benefit future tasks
in terms of sample complexity. Numerical results verify the
theoretical predictions in classification and neural-network
regression tasks.

Index Terms— representation learning, binary classifica-
tion, generalized linear models, nonlinear problems

1. INTRODUCTION

Meta-learning (and multi-task learning) has proved to be a
efficient when available training data is limited. The central
idea is exploiting the information (e.g. training data) provided
by earlier related tasks to quickly adapt a new task using few
samples. This idea has a rich history [1, 2] and has shown
promise in modern machine learning tasks, e.g., in image
classification [3], machine translation [4] and reinforcement
learning [5], all of which may involve numerous tasks to be
learned with limited data per task.

Modern deep learning algorithms typically exploit the
shared information between tasks by learning useful repre-
sentations [6, 7]. The multi-task system was studied by [1],
and the idea of meta-learning or transfer learning is inves-
tigated empirically in modern machine learning framework,
showing that the shared representation benefits for training
on the new tasks [8, 9, 10]. An instructive and well-studied
problem for meta-learning is mixed linear regression, for
α Equal contribution.
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which efficient algorithms and sample complexity bounds are
discussed in [11, 12, 13]. If the tasks lie on a shared low-
dimensional subspace, learning this subspace would serve
as an efficient representation which helps reduce the search
space for future tasks. Once the search space is low dimen-
sional, in order to get the same accuracy, the amount of data
required for training is reduced compared to training over the
full parameter space. [14, 15, 16] propose sample complexity
bounds for representation learning for linear multi-task sys-
tems. There are study of mixed linear tasks combined with
other structures, such as boolean combination of features
[17], half-spaces [18] and sparse representations [19].

The recent papers [20, 21] propose meta-learning proce-
dures that involve dimension reduction, clustering and few-
shot learning. Here a low-dimensional task subspace is used
as the search space for few-shot learning for the new task.
Another related approach [22, 23] sets up a nonconvex op-
timization problem with matrix factors of appropriate sizes,
which captures the low dimensional structure. One can apply
gradient descent to this nonconvex problem, and studying its
behavior requires a nontrivial landscape analysis of the matrix
factorization problem.

However, existing provable algorithms for representation
learning are restricted to linear-regression tasks, whereas typ-
ical machine learning tasks involve nonlinearity. This can
arise from the use of nonlinear models as well as nonlinear
label link function (e.g. generalized linear models). A good
example is classification problems including computer vision
and natural language processing [3, 4]. In classification tasks,
the model is a map from images/text to labels, and the labels
are discrete and not linear with respect to the input (i.e. lo-
gistic link function). Another example is the use of nonlinear
models such as deep networks The existing results for repre-
sentation learning for the linear-regression setting cannot be
easily extended to the nonlinear case.
Can we learn efficient subspace representations for nonlinear
tasks such as generalized linear models and neural nets?

We consider a realizable setup where the input data is
high-dimensional, the relevant features lie in a low dimen-
sional subspace and the labels depend only on the relevant
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features. These assumptions are the same as in the existing lit-
erature, however we additionally allow for the scenario where
labels are possibly an arbitrary nonlinear function of the rele-
vant features. We make the following contributions.
● Efficient representations for nonlinear tasks: We show
that subspace found via method-of-moments (MOM) leads
to a consistent estimate of the ground-truth subspace despite
arbitrary task nonlinearities, when the data is normally dis-
tributed. We combine this with non-asymptotic learning re-
sults to establish sample complexity bounds for representa-
tion learning.
● Few-shot learning and Applications: We specialize our
results to practical settings with tasks involving binary clas-
sification and neural nets. We theoretically and empirically
show that subspace-based representation can greatly improve
sample efficiency of future tasks.

2. PROBLEM FORMULATION

The meta-learning setup that will be considered in this work
consists of two phases: (i) meta-training: prior tasks are used
to learn a good representation and (ii) few-shot learning: the
new task is learned with few samples. In the meta-training
phase, we learn the low dimensional space spanned by pa-
rameters. In the few-shot learning phase, we use the subspace
to learn the model of a new task ideally with few samples.

In the first phase, there are multiple task vectors to infer
from.We consider a realizable model where the input and la-
bel is associated via a labeling function. One accesses batches
of data, each of whom is collected from a task. Below, we de-
note the ground-truth representation by a matrix W ∈ Rr×d

whose row space corresponds to the subspace of interest.
Definition 2.1. Meta-training data. Fix a matrix W ∈ Rr×d

satisfying WW T = I . The j-th task is associated with func-
tion f j ∶ Rr → R. Given input x ∈ Rd, the label y is dis-
tributed as pj(y∣x) = pj(y∣Wx)1 and the expectation satis-
fiesE(y) = f j(Wx). Suppose there are nj samples from the
j-th task sampled i.i.d. from this distribution and we denote
the dataset Sj = (xi,j , yi,j)nj

i=1. Define the full meta-training
dataset to be S = ⋃kj=1 Sj .

Here, f j is allowed to be any Lipschitz nonlinear func-
tion, i.e., a neural network2.
Definition 2.2. Binary classification. Suppose f j takes val-
ues over [0,1],

yi,j =
⎧⎪⎪⎨⎪⎪⎩

1, with probability f j(Wxi,j),
0, with probability 1 − f j(Wxi,j).

Definition 2.3. Generalized linear models (GLM) (which in-
clude logistic/linear regression) can be modeled by choosing

1In words, the label only depends on the relevant features induced by W .
2In our theoretical results, we treat f as a general linear function, and in
experiments we will use a neural network with a specific structure.

f j to be parameterized by a vector θj ∈ Rr and a link function
φ ∶ R→ R as f j(Wxi,j) ∶= φ(θTj Wxi,j).

When the dimension of the span of parameters is small,
[20] performs a dimension reduction algorithm to find the
low-dimensional subspace that the parameters span. This is
done by selecting the top eigenvectors of the covariance esti-
mate of the cross-correlation between input and labels.
Definition 2.4. Moment estimator of covariance. We define
the covariance estimator as

M̂ =
k

∑
j=1

2

n2j

⎡⎢⎢⎢⎢⎣
(
nj/2

∑
i=1

yi,jxi,j)(
nj

∑
i=nj/2+1

yi,jxi,j)⊺

+(
nj

∑
i=nj/2+1

yi,jxi,j)(
nj/2

∑
i=1

yi,jxi,j)⊺
⎤⎥⎥⎥⎥⎦
.

(2.1)

Define

hj(W ) ∶ Rr×d → Rd = Ex[f j(Wx)x]

M ∶=W ⊺W
⎛
⎝
1

k

k

∑
j=1
hj(W )(hj(W ))⊺

⎞
⎠
W ⊺W .

We will prove that M̂ is a finite sample estimate of M .
Subspace estimation. To estimate the subspace W , we use
rank-r approximation of M̂ to retrieve its principal eigen-
vector subspace. Let ÛΛ̂Û⊺ be the eigen-decomposition of
M̂ . Denote λ̂j as the jth eigenvalue of Λ̂. Let Ûr be the
first r columns of Û , thus the rank-r approximation is M̂r =
Ûrdiag(λ̂1, ..., λ̂r)Û⊺

r . In the next section, we will prove that
the range of Û is close to the row space ofW .

In Algorithm 1, the output Ûr is the estimator of the task
subspace W . Ûr is used as a training step for the few-shot
learning phase. For the new task, we search for the function
f∗ that minimizes the population loss. We shall provide an
instructive analysis for a general class of functional family
and loss.
Assumption 1. F is a set of functions satisfying: For any
function f ∈ F , any orthonormal matrix Q ∈ Rr×r and any
representation matrix P ∈ Rr×d, there exists g ∈ F such that
f(Px) = g(QPx).

In this assumption, we basically mean that the F is in-
variant with orthonormal rotationQ. In other words, we only
need to find the r dimensional row space row(P ) (to project
the features onto it as a low dimensional representation), and
don’t worry the exact matrix P itself.

Let us introduce population risk L and empirical risk Le
based on any single loss function between model prediction
and true label.

L(f ;P ) = EPx,y loss(f(Px), y)

Le(f ;P ) = 1

n

n

∑
i=1

loss(f(Pxi), yi).

We make the following assumption on the population risk.



Assumption 2. Suppose population lossL and empirical loss
Le satisfy the following assumptions:

1. L is L Lipschitz in Px.
2. minP L(f ;P ) = L(f ;W ).

Example: Suppose f is an L-Lipschitz function with range
in (0,1) and the true labels yi are from {0,1}. The cross
entropy function satisfies the assumptions.

L(f ;P ) = −EPx,y(y log f(Px) (2.2)
+ (1 − y) log(1 − f(Px))).

Le(f ;P ) = − 1
n

n

∑
i=1

(yi log(f(Pxi)) (2.3)

+ (1 − yi) log(1 − f(Pxi))).

With an abuse of notation, we can define the loss with respect
to parameterization of the function f . For example, if we use
the model in Def. 2.3, then we can write the empirical loss as

Le(θ;P ) = − 1
n

n

∑
i=1

(yi log(φ(θ⊺Pxi)) (2.4)

+ (1 − yi) log(1 − φ(θ⊺Pxi))).

Definition 2.5. Few-shot classification (Population). In
the few-shot learning phase, suppose x, y ∼ Px,y satisfy
E[y ∣ x] = f∗(Wx). Let F be a family of functions as the
search space for few-shot learning model. Let Assumptions 1
and 2 hold. We search for the solution induced by Ûr by

f̂ = argmin
f∈F

L(f ; Û⊺
r ) (2.5)

Observe that, without representation learning, one has to
search for both f andW . However with representation learn-
ing, we use Û⊺

r as the representation matrix and only search
for f .
Remark 2.1. For the GLM Definition 2.3, we can choose F
to be the `2 norm constrained functions for some a ≤ ∞

F = {x→ φ(θTx) ∣ ∥θ∥2 ≤ a, θ ∈ Rr}, (2.6)

Let the new data be generated with f∗(Wx) = φ(θ∗⊺Wx)
for some ground-truth parameter θ∗. We use L(θ;P ) to de-
note the cross-entropy loss in this setting. f̂ (parameterized
by θ̂) is given by

θ̂ = argmin
θ

L(θ; Û⊺
r ), such that ∥θ∥ ≤ a. (2.7)

Definition 2.6. Few-shot learning (Finite sample GLM).
Suppose there are n samples for new task (xi, yi)ni=1 and
(xi, yi) satisfies E(yi∣xi) = f∗(Wxi). Let Le be empirical
loss, satisfying Assumptions 1 and 2. Given norm constraint
a ≤ ∞, the empirical risk minimizer (ERM) is defined as

θ̂e = argmin
θ

Le(θ; Û⊺
r ) such that ∥θ∥2 ≤ a. (2.8)

Algorithm 1 Meta-training and Few-shot Learning

Require: Dataset S , representation size r, function space F
Compute M̂ via method-of-moments (2.1).
Rank r approximation:
M̂r ← Ûrdiag(Λ̂1,1, ..., Λ̂r,r)Û⊺

r .
Either f̂ ← argminf∈F L(f ;U⊺

r ).
Or f̂e ← argminf∈F Le(f ;U⊺

r ).
return Ûr and f̂ or f̂e.

3. MAIN RESULTS

In this section, we shall establish error bounds for Algorithm
1. This involves three parts. Theorem 3.2 establishes the qual-
ity of the moment estimator M̂ . Theorem 3.4 upper bounds
the population cross-entropy risk of f̂ in the few-shot learning
stage. Theorem 3.5 upper bounds the population risk of the
ERM estimator f̂e, which is learned from finite data.

3.1. Results on Meta-training

Lemma 3.1. M ,M̂ satisfies the following. (a) rank(M) ≤
r. (b) range-space(M) ⊂ row-space(W ). (c) E[M̂] =M .

In words,M returns a consistent estimate of the represen-
tation space in the sense that its range is guaranteed to be the
subspace of the representation. Observe that to fully recover
representation, M should contain a diverse set of tasks that
can cover the representation subspace. For GLM, one needs
at least k ≥ r tasks to ensure range of M is equal to the row-
space ofW . Additionally, M̂ estimator is also consistent.

We next present the error on the estimator M̂ . This theo-
rem applies to standard normal data x ∼ N(0,I). While this
may initially seem restrictive, we remark that identity covari-
ance is mostly used for notational convenience. Additionally,
in similar spirit to Central Limit Theorem, machine learning
and signal processing algorithms often exhibit distributional
universality: For instance, subgaussian distributions often be-
have very similar or even identical to gaussian distributions in
sufficiently high-dimensions [24, 25]. We leave such general-
izations to more general distributions as a future work.

Theorem 3.2 (Moment Estimator). Suppose the data is gen-
erated as in Def. 2.1, nj ≥ N for all j and xi,j

i.i.d.∼ N(0,I).
Suppose for some σ > 0 and for all tasks, the label-input prod-
uct yx is a subGaussian random vector with covariance up-
per bounded by ∥Cov(yx)∥ ≤ σ2. (These conditions hold
when ∣f j(x)∣ < σ.) Let δ ∈ (0,1) and ε ∈ (0,1). Then there
exists a constant c > 0 such that if

k ≥ cd
N

log2(kd
δ

)max{ 1

ε2
,
1

ε
log(kd

δ
)},

∥M̂ −M∥ ≤ εσ2 with probability at least 1 − δ.

Recall that M̂ = ÛΛ̂Û⊺ and Ûr is the first r columns of



Û . Denote the estimate ofW via Ŵ given by adjusting Ûr

Ŵ = (ÛrQ̂)⊺, Q̂ = argmin
Q∈Rr×r,QQ⊺=I

∥ÛrQ −W ⊺∥ (3.1)

With the definition of Ŵ , ∥Ŵ −W ∥ defines a distance be-
tween the row space of W and the column space of Ûr. If
the span of the two subspaces are the same, then there exists
an orthonormal matrixQ such that ÛrQ =W ⊺.

The previous lemma builds upon the assumption that
∥Ŵ −W ∥ is small. In Theorem 3.2, we have got ∥M̂ −M∥ ≤
εσ2, then with the extra assumption thatM is rank r, we have
the following result from [26].
Lemma 3.3. If ∥M̂ −M∥ ≤ εσ2, λr(M) > εσ2, then

∥Ŵ −W ∥ ≤ εσ2(λr(M) − εσ2)−1.

3.2. Results on Few-shot Learning
In the next step, we will use Ûr for few shot learning and find
f̂ that minimize the population loss.
Theorem 3.4. Let Assumptions 1 and 2 hold. Let Ŵ be the
same as in (3.1) and f̂ be the same as in (2.5). Then we have

L(f̂ ; Û⊺
r ) − L(f∗;W ) ≲ L

√
r∥Ŵ −W ∥.

L(f∗;W ) assumes the knowledge of the true function f∗

and the representation W . This shows that the inaccuracy of
the moment estimator M̂ costs us O(L√r∥Ŵ −W ∥).

Theorem 3.4 bounds the population risk of f̂ , when we
use Û⊺

r as the representation subspace. Next we discuss the
population risk of the finite sample solution f̂e, which should
be worse than f̂ due to the limited samples.
Theorem 3.5. Consider the setup in Def. 2.6 with n i.i.d. ex-
amples with ground-truth model θ∗. Solve for θ̂e via (2.8).
There exist constants c > 1, δ ∈ (0,1), with probability at
least 1 − n−c+1 − δ, the solution pair (θ̂e, Ûr) satisfies

L(θ̂e; Û⊺
r ) − L(θ∗;W )

≤
caL(√r + log(n))(1 +

√
log(1/δ))

√
n

+L
√
r∥Ŵ −W ∥.

Note that the first term grows as
√
r/n. This means the

amount of data n we request for few-shot learning is n ≈ r, as
compared to n ≈ d if representation learning is not excecuted.

4. NUMERICAL EXPERIMENTS

We generate synthetic datasets with k different tasks and n
samples for all tasks. As dimension of the data and dimension
of the subspace we choose d = 50 and r = 5, respectively.

We study two different setups. In the first one data is gen-
erated according to Def. 2.3. For the second setup, there is an
underlying 3-layer neural network that fits the data. In both

(a) (b)
Fig. 1: Subspace correlations with fixed number of tasks.
(a) Binary classification (b) Neural network.

Fig. 2: (a) Accuracy for downstream task, binary classi-
fication (b) Accuracy for downstream the task, MNIST

setups our only aim is to retrieve subspace representations of
the data using Algorithm 1.

For neural network experiments, we assume that the data
are generated from a ground truth neural network which has
3 layers, defined as

yi,j = f j(xi,j) + εi,j =Wj3(Wj2(Wj1(Wxi,j))+)+ + εi,j

where εi,j ∼ N(0,1) is gaussian noise, (⋅)+ is the ReLU acti-
vation function, W ∈ R5×50 is representation matrix which is
same for all j’s. The weight matricesWj1,Wj2 andWj3 are
different for each task and they are random gaussian matrices
in R20×5,R20×20,R20 respectively.

In Fig. 1 we use the subspace correlation as the metric
for evaluating the accuracy of subspace recovery, which is

defined by ∥Ûr
⊺

Ur∥2
∥Ur∥2 . In Fig. 1, k = 100 is fixed but n’s vary

from 20 to 200. It can be seen from Fig. 1 that as nk gets
bigger, the subspace correlation becomes closer to 1, which is
compatible with Theorem 3.2

In Fig. 2(a), the downstream task accuracies for binary
classification are depicted. For the new task, a new 1-layer
neural network without any activation function is trained with
and without the retrieved representations of the earlier tasks.
We find the parameters of the neural network by minimizing
the cross entropy loss via SGD. For this setup, during meta-
training, we set n = 50 for all tasks and k = 2000, to have
almost perfect representation. We evaluate the test error with
1000 new samples.

If the number of few-shot training samples is small, ac-
curacy improves much faster when we use representation
learning. This validates that dimension reduction reduces
the degrees-of-freedom for few-shot learning, so the optimal
model can be learned with fewer samples. As the sample size



grows, the relative benefit of representation is smaller but still
noticeable.

In Fig. 2(b), Algorithm 1 is also tested in MNIST dataset.
d = 784 and r is not known. We assume that we have differ-
ent binary classification tasks among pairs of digits such as
0-1;2-3;0-8;8-4 etc. There exist 15 meta-training tasks (i.e.,
k = 15). For each task we have 500 samples in each classes.
We choose a different pair of classes as few-shot learning task.
We choose binary classification among images of 1 and 9,
which is not included in the meta-learning phase. We tune
the predicted subspace dimensions and number of samples to
get Fig. 2(b). It can be concluded that when r = 20, The
downstream task is not learnt well so we need to expand the
subspace. For r = 50 and r = 100 subspace learning helps for
few-shot learning, as when the number of training samples n
is between 8-56 they outperform the case without representa-
tion. When r gets closer to d, the few-shot sample size has to
be large to succeeed due to higher degree of freedom.
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A. PROOF OF MAIN THEOREMS

We sketch the proof at the beginning. First we compute the
expectation of yx in Lemma A.2. That leads to the proof of
Lemma 3.1. Then in Lemma A.4 we bound the difference be-
tween sum of yx and its mean using concentration. The con-
centration of covariance estimator is studied later in Lemma
A.5 and A.6, which leads to Theorem 3.2.

A.0.1. Proof of Lemma 3.1

We first state Lemma 3.1 below.

Lemma A.1. Let

M̂ =
k

∑
j=1

2

n2j

⎡⎢⎢⎢⎢⎣
(
nj/2

∑
i=1

yi,jxi,j)(
nj

∑
i=nj/2+1

yi,jxi,j)⊺ (A.1a)

+(
nj

∑
i=nj/2+1

yi,jxi,j)(
nj/2

∑
i=1

yi,jxi,j)⊺
⎤⎥⎥⎥⎥⎦
.

And

hj(W ) ∶ Rr×d → Rd = Ex[f j(Wx)x]

M ∶=W ⊺W
⎛
⎝
1

k

k

∑
j=1
hj(W )(hj(W ))⊺

⎞
⎠
W ⊺W .

Then M ,M̂ satisfies the following. (a) rank(M) ≤ r. (b)
range-space(M) ⊂ row-space(W ). (c) E[M̂] =M .

Proof. Part (a) and (b) are easy to see. W ∈ Rr×d so that
rank(M) ≤ r, and sinceM is the product ofW ⊺ and another
matrix, then range-space(M) ⊂ row-space(W ). Now we
will prove Part (c). We first give the lemma for the mean of
the random vector yx.

Lemma A.2. We assume that the data is generated as in Def.
2.1, and we study the j-th task whose activation function is
f j . Define

hj(W ) ∶ Rr×d → Rd = Ex∼N(0,I)f
j(Wx)x

Denote the joint distribution of (x, y) as Px,y . Then
E(x,y)∼Px,y

(yx) =W ⊺Whj(W ).

Proof of Lemma A.2. The expectation can be expanded as

E(x,y)∼Px,y
(yx)

= Ex∼N(0,I)f
j(Wx)x

= Ex∼N(0,I) (f j(Wx)W ⊺Wx + f j(Wx)(I −W ⊺W )x) .

Note that, because x ∼ N(0, I) so Wx and (I −W ⊺W )x
are Gaussian. WW ⊺ = I implies

E(Wx)x⊺((I −W ⊺W ))
=W (I −W ⊺W ) = 0.

SoWx and (I −W ⊺W )x are independent, so

Ex∼N(0,I)f
j(Wx)(I −W ⊺W )x

= (Ex∼N(0,I)f
j(Wx))(Ex∼N(0,I)(I −W ⊺W )x) = 0

Then

E(x,y)∼Px,y
(yx) =W ⊺W (Ex∼N(0,I)f

j(Wx)x)
=W ⊺Whj(W ).

Denote

Hj(W ) =W ⊺Whj(W ) (A.2)

Because 2
nj
∑nj/2
i=1 yi,jxi,j and 2

nj
∑nj

i=nj/2+1 yi,jxi,j are inde-

pendent, and their expectation are bothHj(W ), so that

E( 2

nj

nj/2

∑
i=1

yi,jxi,j)(
2

nj

nj

∑
i=nj/2+1

yi,jxi,j)⊺

=Hj(W )(Hj(W ))⊺.

At then end

M̂ = 1

k

k

∑
j=1
E( 2

nj

nj/2

∑
i=1

yi,jxi,j)(
2

nj

nj

∑
i=nj/2+1

yi,jxi,j)⊺,

M = 1

k

k

∑
j=1
Hj(W )(Hj(W ))⊺,

so we can prove Part (c) that E(M̂) =M .



A.0.2. Proof of Theorem 3.2

We restate Theorem A.3 below.
Theorem A.3. Suppose the data is generated as Def. 2.1. Let
δ ∈ (0,1), ε ∈ (0,1). Suppose yx is a subGaussian random
vector with covariance upper bounded by

∥Cov(yx)∥ ≤ σ2. (A.3)

Define

hj(W ) ∶ Rr×d → Rd = Ex∼N(0,I)f
j(Wx)x

And let

M =W ⊺W
⎛
⎝
1

k

k

∑
j=1
hj(W )(hj(W ))⊺

⎞
⎠
W ⊺W

Then there exists a constant c, with probability at least 1 − δ,
let

k = cd
n

log2(kd
δ

)max{ 1

ε2
,
1

ε
log(kd

δ
)}

we have

∥M̂ −M∥ ≤ εσ2.

Proof. The following lemmas are similar to [20] Section A.1.
We extend the concentration inequalities from bounded ran-
dom vectors to Gaussian random vectors. For completeness
we place the lemmas here.

Lemma A.4. ([27] Cor. 7) Let ∥Cov(yx)∥ ≤ σ2, δ ∈ (0,1),
t > 0, Hj(W ) be defined in (A.2). With probability 1 − δ,
there exists a constant c > 0 such that for every j,

∥1
t

t

∑
i=1
yi,jxi,j −Hj(W )∥ ≤ cσ

√
d

t
log(kd

δ
) (A.4)

Denote this event as E .

With the covariance of yx being bounded by σ2, the fol-
lowing inequalities are true [20].

E ((vT ⋅ (1
t

t

∑
i=1
yi,jxi,j − θj))2) ≤ σ2/t, for ∥v∥ = 1.

E (∥1
t

t

∑
i=1
yi,jxi,j − θj∥2) ≤ σ2d/t.

Lemma A.5. Define

Zj = ( 2

nj

nj/2

∑
i=1

yi,jxi,j)(
2

nj

nj

∑
i=nj/2+1

yi,jxi,j)⊺

−Hj(W )(Hj(W ))⊺,

Then there exists a constant c such that on the event E (thus
with probability 1 − δ), for all j = 1, ..., k,

∥Zj∥ ≤
cσ2d

nj
log(kd

δ
). (A.5)

The proof is almost same as [20], the only difference is
that we replace the bound in ([20] Prop A.1) by (A.4). With
the similar replacement, we propose the following lemma.

Lemma A.6. Let δ ∈ (0,1). There exists a constant c, such
that for any ε ∈ (0,1), and

k = cd
nj

log2(kd
δ

)max{ 1

ε2
,
1

ε
log(kd

δ
)}, (A.6)

with probability 1 − δ,

∥1
k

k

∑
j=1
Zj∥ ≤ εσ2.

This means that when (A.6) is true, with probability 1− δ,

XXXXXXXXXXX
M̂ −W ⊺W

⎛
⎝
1

k

k

∑
j=1
hj(W )(hj(W ))⊺

⎞
⎠
W ⊺W

XXXXXXXXXXX
≤ εσ2.

Note thatM is defined as

M =W ⊺W
⎛
⎝
1

k

k

∑
j=1
hj(W )(hj(W ))⊺

⎞
⎠
W ⊺W .

So we have proven that with probability 1 − δ,

∥M̂ −M∥ ≤ εσ2.

A.1. Proof of Theorem 3.4

Now we will prove Theorem 3.4. We first review the notations
and assumptions mentioned in the theorem.

A.1.1. Review of Notations and Assumptions

We define the SVD of M̂ as ÛΛ̂V̂ ⊺. Let the first r columns
of Û be Ur.

Let Ŵ be defined as

Ŵ = ÛrQ̂, (A.7)

Q̂ = argmin
Q∈Rr×r,QQ⊺=I

∥ÛrQ −W ∥. (A.8)

The population cross entropy loss is defined as

L(f ;P ) ∶ F × Rr×d → R =
−Ex,y∼Px,y(y log f(P̂x) + (1 − y) log(1 − f(P̂x))).

We will search for a function f∗ ∈ F .
Assumption 3. F is a set of functions satisfying: For any
function f ∈ F , any orthonormal matrix Q ∈ Rr×r and any
matrix P ∈ Rr×d, there exists g ∈ F such that f(Px) =
g(QPx).

Now we define a general loss function L and Le.



Assumption 4. Suppose L satisfies the following assump-
tions:

1. L has the form L(f ;P ) = EPx,yLsingle(f(Px), y).
Le has the formLe(f ;P ) = 1

n ∑
n
i=1Lsingle(f(Pxi), yi).

2. Lsingle is L Lipschitz in Px.

3. minP L(f ;P ) = L(f ;W ).

We solve for f̂ , defined as

f̂ = argmin
f∈F

L(f ; Û⊺
r ). (A.9)

A.1.2. Proof of Theorem 3.4

Now we are ready to restate Theorem 3.4 and prove it.
Theorem A.7. With Assumptions 3 and 4, we have that

L(f̂ ; Û⊺
r ) − L(f∗;U⊺

r ) ≲ L
√
r∥Ŵ −W ∥.

Proof. We learn the model from the following optimization
algorithm.

f̂ = argmin
f∈F

L(f ; Û⊺
r )

Denote f̃ ∈ F as the function such that f̃(Ŵx) = f̂(Û⊺
r x).

So that L(f̂ ; Û⊺
r ) = L(f̃ ;Ŵ ). Since f̂ minimizes the cross

entropy loss, we have that L(f̃ ;Ŵ ) ≤ L(f∗;Ŵ ).
Now we have

L(f̃ ;Ŵ ) − L(f∗;W )
≤ L(f∗;Ŵ ) − L(f∗;W )
≤ Ex∼N(0,I)L∥(Ŵ −W )x∥
≲ L

√
r∥Ŵ −W ∥.

The last step uses the fact that Ŵ andW are rank r.

A.2. Proof of Theorem 3.5

We first state Theorem 3.5 below.
Theorem A.8. Suppose we generate n sample data for few
shot learning solve for θ̂e from

θ̂e = argmin
θ

Le(θ;U⊺
r ) such that ∥θ∥2 ≤ a. (A.10)

Suppose Assumptions 3 and 4 hold. There exist constants c >
0, δ ∈ (0,1), with probability at least 1−n−c+1−δ, the solution
θ̂e and Ûr satisfy

L(θ̂e; Û⊺
r ) − L(θ∗;W )

≲
caL(√r + log(n))(1 +

√
log(1/δ))

√
n

+L
√
r∥Ŵ −W ∥.

Proof. We sketch the proof of Theorem A.8. After review-
ing the notations, we quote a standard generalization bound
via Rademacher complexity in Lemma A.9. Then we use the
smoothness of the loss function to link to the generalization
error of linear functions (A.15), and then use Lemma A.10 to
compute (A.15) and finish the proof.

In few-shot learning, the true parameter is θ∗, and the em-
pirical loss function with finite data is

Le(θ;P ) ∶ F × Rr×d → R = 1

n

n

∑
i=1
Lsingle(f(Pxi), yi)

(A.11)

Denote each term in the summation as

Lie(θ;P ) ∶ F × Rr×d → R = Lsingle(f(Pxi), yi).

We search for the solution by

θ̂e = argmin
θ

Le(θ;U⊺
r ), such that ∥θ∥ ≤ a. (A.12)

In Theorem A.7, we know that

L(θ̂; Û⊺
r ) − L(θ∗;U⊺

r ) ≲ L
√
r∥Ŵ −W ∥.

Denote

M = max
∥θ∥≤a

∣θ⊺Û⊺
r xi∣ ≤ amax ∥Û⊺

r xi∥. (A.13)

We will bound the difference betweenL andLe by Rademacher
complexity theory.

Lemma A.9. [28]
Let U be the independent random variables uniformly

chosen from {−1,1}. Let R be the Rademacher complexity
of the logistic functionals defined on the data,

R = 1

n
Eεi∈U sup

∥θ∥≤a

n

∑
i=1
εiLie(θ; Û⊺

r )

K =max
i
Lie(θ; Û⊺

r ) ≤M.

with probability 1 − δ, we have that

∣Le(θ;U⊺
r ) − L(θ;U⊺

r )∣ ≤ R +
√
log(1/δ)
√
n

K.

Thus we have that

∣L(θ̂e; Û⊺
r ) − Le(θ̂e; Û⊺

r )∣ ≤ R +
√
log(1/δ)
√
n

K,

∣L(θ̂; Û⊺
r ) − Le(θ̂; Û⊺

r )∣ ≤ R +
√
log(1/δ)
√
n

K.

Because θ̂e minimizes the empirical loss Le,

Le(θ̂e; Û⊺
r ) ≤ Le(θ̂; Û⊺

r ).



Thus

L(θ̂e; Û⊺
r ) − L(θ̂; Û⊺

r ) ≤ 2
⎛
⎝
R+

√
log(1/δ)
√
n

K
⎞
⎠
. (A.14)

So the remaining target is to boundR.
We first denote vi = Û⊺

r xi, so vi ∈ Rr and vi are jointly
independent standard normal random variables. Lie is always
L Lipschitz in θ⊺vi, the Rademacher complexity can be upper
bounded by

R ≤ R̃ ∶= L
n
Eεi∈U sup

∥θ∥≤a

n

∑
i=1
εiθ

⊺vi. (A.15)

We first refer to the following lemma.

Lemma A.10. [29] Let c > 0, X follow χ2
r distribution, then

P (X − r ≥ 2
√
cr logn + 2c logn) ≤ n−c.

For a constant c > 1, via union bound we have that
max ∥vi∥2 ≤ r + 2

√
cr logn + 2c logn for all i = 1, .., n with

probability 1−n−c+1. We use max ∥vi∥ ≲ c(
√
r+ log(n)) for

simplicity.
Conditioned on this event, we apply the Rademacher com-

plexity for linear model that

R̃ ≤ Lmax ∥θ∥ ⋅max ∥vi∥√
n

(A.16)

≤ caL(
√
r + log(n))√
n

. (A.17)

Combining with (A.14) and Theorem A.7 we get the bound
in Theorem A.8. We can also bound M in (A.13).

Finally we will use Lemma A.11 to bound M .

Lemma A.11. Let M be defined as in (A.13). With probabil-
ity at least 1 − n−c+1, we have M < caL(√r + log(n)).

Let vi be replaced by Û⊺
r xi in Lemma A.10, then this

directly results from Lemma A.10. Lemma A.11 bounds M ,
thus bounds K (which is L Lipschitz in M ) in Lemma A.9.
After we insert (A.17) together into Lemma A.9, we can get
the result in Theorem 3.5.
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