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ABSTRACT

Multi-task learning (MTL), a learning paradigm to learn multiple related tasks
simultaneously, has achieved great success in various fields. However, task bal-
ancing problem remains a significant challenge in MTL, with the disparity in
loss/gradient scales often leading to performance compromises. In this paper, we
propose a Dual-Balancing Multi-Task Learning (DB-MTL) method to alleviate
the task balancing problem from both loss and gradient perspectives. Specifically,
DB-MTL ensures loss-scale balancing by performing a logarithm transformation
on each task loss, and guarantees gradient-magnitude balancing via normalizing
all task gradients to the same magnitude as the maximum gradient norm. Exten-
sive experiments conducted on several benchmark datasets consistently demon-
strate the state-of-the-art performance of DB-MTL.

1 INTRODUCTION

Multi-task learning (MTL) (Caruana, 1997; Zhang & Yang, 2022) jointly learns multiple related
tasks using a single model, improving parameter-efficiency and inference speed compared with
learning a separate model for each task. By sharing the model, MTL can extract common knowledge
to improve each task’s performance. MTL has demonstrated its superiority in various fields, such as
computer vision (Liu et al., 2019a; Vandenhende et al., 2020; 2021; Xu et al., 2022; Ye & Xu, 2022),
natural language processing (Chen et al., 2021; Liu et al., 2017; 2019b; Sun et al., 2020; Wang et al.,
2021), and recommendation systems (Hazimeh et al., 2021; Ma et al., 2018a;b; Tang et al., 2020;
Wang et al., 2023).

To learn multiple tasks simultaneously, equal weighting (EW) (Zhang & Yang, 2022) is a straight-
forward method that minimizes the sum of task losses with equal task weights but usually causes the
challenging task balancing problem (Lin et al., 2022; Vandenhende et al., 2021), where some tasks
perform well but the others perform unsatisfactorily (Standley et al., 2020). A number of methods
have been recently proposed to alleviate this problem by dynamically tune the task weights. They
can be roughly categorized into loss balancing methods (Kendall et al., 2018; Liu et al., 2021b;
2019a; Ye et al., 2021) such as balancing tasks based on learning speed (Liu et al., 2019a) or val-
idation performance (Ye et al., 2021) at the loss level, and gradient balancing approaches (Chen
et al., 2018b; 2020; Fernando et al., 2023; Liu et al., 2021a;b; Navon et al., 2022; Sener & Koltun,
2018; Wang et al., 2021; Yu et al., 2020) such as balancing gradients by mitigating gradient con-
flicts (Yu et al., 2020) or enforcing gradient norms close (Chen et al., 2018b) at the gradient level.
Recently, Kurin et al. (2022); Lin et al. (2022); Xin et al. (2022) conduct extensive empirical studies
and demonstrate that the performance of existing methods are undesirable, which indicates the task
balancing issue is still an open problem in MTL.

In this paper, we focus on simultaneously balancing loss scales at the loss level and gradient mag-
nitudes at the gradient level to mitigate the task balancing problem. Since the loss scales/gradient
magnitudes among tasks can be different, a large one can dominate the update direction of the model,
causing unsatisfactory performance on some tasks (Liu et al., 2021b; Standley et al., 2020). There-
fore, we propose a simple yet effective Dual-Balancing Multi-Task Learning (DB-MTL) method
that consists of loss-scale and gradient-magnitude balancing approaches. First, we perform a log-
arithm transformation on each task loss to ensure all task losses have the same scale, which is
non-parametric and can recover the loss transformation in IMTL-L (Liu et al., 2021b). We find
that the logarithm transformation also benefits the existing gradient balancing methods, as shown in
Figure 1. Second, we normalize all task gradients to the same magnitude as the maximum gradient
norm, which is training-free and guarantees all gradients’ magnitude are the same compared with
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GradNorm (Chen et al., 2018b). We empirically find that the magnitude of normalized gradients
plays an important role in performance and setting it as the maximum gradient norm among tasks
performs the best, as shown in Figure 4, thus it is adopted. We perform extensive experiments on
several benchmark datasets and the results consistently demonstrate DB-MTL achieves state-of-the-
art performance.

Our contributions are summarized as follows: (i) We propose the DB-MTL method, a dual-balancing
approach to alleviate the task-balancing problem, consisting of loss-scale and gradient-magnitude
balancing methods; (ii) We conduct extensive experiments to demonstrate that DB-MTL achieves
state-of-the-art performance on several benchmark datasets; (iii) Experimental results show that
the loss-scale balancing method is beneficial to existing gradient balancing methods.

2 RELATED WORKS

Given T tasks and each task t has a training dataset Dt, MTL aims to learn a model on {Dt}Tt=1.
The parameters of an MTL model consists of two parts: task-sharing parameter θ and task-specific
parameters {ψt}Tt=1. For example, in computer vision tasks, θ usually represents a feature encoder
(e.g., ResNet (He et al., 2016)) to extract common features among tasks and ψt denotes a task-
specific output module (e.g., a fully-connected layer). For parameter efficiency, θ contains most of
the MTL model parameters, which is crucial to the performance.

Let ℓt(Dt;θ,ψt) denote the average loss on Dt for task t using (θ,ψt). The objective function
of MTL is

∑T
t=1 γtℓt(Dt;θ,ψt), where γt is the task weight for task t. Equal weighting (EW)

(Zhang & Yang, 2022) is a simple approach in MTL by setting γt = 1 for all tasks. However,
EW usually causes the task balancing problem where some tasks perform unsatisfactorily (Standley
et al., 2020). Hence, many MTL methods are proposed to improve the performance of EW by
dynamically tunning task weights {γt}Ti=1 during the training process, which can be categorized
into loss balancing, gradient balancing, and hybrid balancing approaches.

Loss Balancing Methods. This type of method aims at weighting task losses with {γt}Ti=1 com-
puted dynamically according to different measures such as homoscedastic uncertainty (Kendall
et al., 2018), learning speed (Liu et al., 2019a), validation performance (Ye et al., 2021), and improv-
able gap (Dai et al., 2023). Different from these methods, IMTL-L (Liu et al., 2021b) expects the
weighted losses {γtℓt(Dt;θ,ψt)}Tt=1 to be constant for all tasks and performs a transformation on
each loss as estℓt(Dt;θ,ψt)− st, where st is a learnable parameter for t-th task and approximately
solved by gradient descent at every iteration. For loss balancing methods, the task weights γt affects
the update of both task-sharing parameter θ and task-specific parameter ψ.

Gradient Balancing Methods. From the gradient perspective, the update of task-sharing parame-
ters θ depends on all task gradients {∇θℓt(Dt;θ,ψt)}Tt=1. Thus, gradient balancing methods aim to
aggregate all task gradients in different manners. For example, MGDA (Sener & Koltun, 2018) for-
mulates MTL as a multi-objective optimization problem and selects the aggregated gradient with the
minimum norm as in Désidéri (2012). CAGrad (Liu et al., 2021a) improves MGDA by constraining
the aggregated gradient to around the average gradient, while MoCo (Fernando et al., 2023) mit-
igates the bias in MGDA by introducing a momentum-like gradient estimate and a regularization
term. GradNorm (Chen et al., 2018b) learns task weights to scale task gradients such that they have
close magnitudes. PCGrad (Yu et al., 2020) projects the gradient of one task onto the normal plane
of the other if their gradients conflict while GradVac (Wang et al., 2021) aligns the gradients regard-
less of whether the gradient conflicts or not. GradDrop (Chen et al., 2020) randomly masks out the
gradient values with inconsistent signs. IMTL-G (Liu et al., 2021b) learns task weights to enforce
that the aggregated gradient has equal projections onto each task gradient. Nash-MTL (Navon et al.,
2022) formulates gradient aggregation as a Nash bargaining game. For most gradient balancing
methods (Chen et al., 2020; Fernando et al., 2023; Liu et al., 2021a;b; Yu et al., 2020), the task
weight γt only affects the update of task-sharing parameter θ. While in some gradient balancing
methods (Chen et al., 2018b; Navon et al., 2022; Sener & Koltun, 2018), task weight γt acts as the
same in loss balancing methods.

Hybrid Balancing Methods. As the loss balancing and gradient balancing methods are comple-
mentary, these two types of methods can be combined as hybrid balancing methods to achieve better
performance. In hybrid balancing methods, the task weight γt is the product of loss and gradient
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balancing weights. IMTL (Liu et al., 2021b), combining IMTL-L with IMTL-G, is the first hybrid
balancing method. Dai et al. (2023); Lin et al. (2022); Liu et al. (2022) empirically demonstrate their
methods can be combined with some existing loss/gradient balancing methods for further perfor-
mance improvement. Following this, we propose DB-MTL by combining logarithm transformation
(for balancing losses) and the proposed max-norm gradient normalization method (for balancing
gradients).

3 PROPOSED METHOD

In this section, we alleviate the task balancing problem from both the loss and gradient perspectives.
First, we balance all loss scales by performing a logarithm transformation on each task’s loss (Sec-
tion 3.1). Next, we achieve gradient-magnitude balancing via normalizing each task’s gradient to
the same magnitude as the maximum gradient norm (Section 3.2). The procedure, which will be
called DB-MTL (Dual-Balancing Multi-Task Learning), is shown in Algorithm 1.

3.1 SCALE-BALANCING LOSS TRANSFORMATION

Tasks with different types of loss functions usually have different loss scales, leading to the task
balancing problem. For example, in the NYUv2 dataset (Silberman et al., 2012), the cross-entropy
loss, L1 loss, and cosine loss are used as the loss functions of the semantic segmentation, depth
estimation, and surface normal prediction tasks, respectively. As observed in Navon et al. (2022);
Standley et al. (2020); Yu et al. (2020) and Table 1 in our experimental results, MTL methods like
EW perform undesirably on the surface normal prediction task. For example, in the NYUv2 dataset,
surface normal prediction is dominated by the other two tasks (semantic segmentation and depth
estimation), causing undesirable performance.

When prior knowledge of the loss scales is available, we can choose {s⋆t }Tt=1 such that
{s⋆t ℓt(Dt;θ,ψt)}Tt=1 have the same scale, and then minimize

∑T
t=1 s

⋆
t ℓt(Dt;θ,ψt). Previous meth-

ods (Kendall et al., 2018; Liu et al., 2021b; 2019a; Ye et al., 2021) implicitly learn {s⋆t }Tt=1 when
learning the task weights {γt}Tt=1. However, since the optimal {s⋆t }Tt=1 cannot be obtained during
training, this can lead to sub-optimal performance.

Logarithm transformation (Eigen et al., 2014; Girshick, 2015) can be used to achieve the same
scale for all losses without the availability of {s⋆t }Tt=1. Specifically, since ∇θ,ψt

log ℓt(Dt;θ,ψt) =
∇θ,ψtℓt(Dt;θ,ψt)

ℓt(Dt;θ,ψt)
, it is equivalent to taking gradient of the scaled task loss ℓt(Dt;θ,ψt)

stop gradient(ℓt(Dt;θ,ψt))
,

where stop gradient(·) is the stop-gradient operation. Note that ℓt(Dt;θ,ψt)
stop gradient(ℓt(Dt;θ,ψt))

has the
same scale (i.e., 1) for all tasks.

Discussion. Although the logarithm transformation is a simple technique to achieve scale-balancing
(Eigen et al., 2014; Girshick, 2015), in MTL, it has been studied in Navon et al. (2022) as one of the
baselines. Recently, Dai et al. (2023) propose a loss balancing method using the logarithm trans-
formation, but lack an explanation on why the logarithm transformation works. In this paper, we
thoroughly study it and show that logarithm transformation can address the loss scale problem in
MTL. Moreover, different from Dai et al. (2023), which studies combining logarithm transforma-
tion with existing loss balancing methods (e.g., (Lin et al., 2022; Liu et al., 2019a)), we empirically
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Figure 1: Performance of existing gradient balancing methods with the loss-scale balancing method
(i.e., logarithm transformation) on NYUv2. “vanilla” stands for the original method.
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Figure 2: Comparison of IMTL-L (Liu et al.,
2021b) and the loss-scale balancing method on
four datasets.
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Figure 3: Comparison of GradNorm (Chen
et al., 2018b) and the gradient-magnitude bal-
ancing method on four datasets.

demonstrate that integrating logarithm transformation into existing gradient balancing methods (PC-
Grad (Yu et al., 2020), GradVac (Wang et al., 2021), IMTL-G (Liu et al., 2021b), CAGrad (Liu et al.,
2021a), Nash-MTL (Navon et al., 2022), and Aligned-MTL (Senushkin et al., 2023)) can improve
their performance by a large margin, as shown in Figure 1.

IMTL-L (Liu et al., 2021b) tackles the loss scale issue using a transformed loss estℓt(Dt;θ,ψt)−st,
where st is a learnable parameter for t-th task and approximately solved by one-step gradient descent
at every iteration. Hence, it cannot ensure all loss scales are the same in each iteration, while the
logarithm transformation can. Proposition A.1 in Appendix shows the logarithm transformation
is equivalent to IMTL-L when st is the exact minimizer in each iteration. Empirically, Figure 2
shows that logarithm transformation consistently outperforms IMTL-L on four datasets (NYUv2,
Cityscapes, Office-31, and Office-Home) in terms of ∆p (Eq. (2)).

3.2 MAGNITUDE-BALANCING GRADIENT NORMALIZATION

In addition to the scale issue in task losses, task gradients also suffer from the scale issue. The update
direction by uniformly averaging all task gradients may be dominated by the large task gradients,
causing sub-optimal performance (Liu et al., 2021a; Yu et al., 2020).

A simple approach is to normalize task gradients into the same magnitude. For the task gradients,
as computing the batch gradient ∇θ log ℓt(Dt;θ,ψt) is computationally expensive, a mini-batch
stochastic gradient descent method is always used in practice. Specifically, at iteration k, we sample
a mini-batch Bt,k from Dt for the t-th task (t = 1, . . . , T ) (step 5 in Algorithm 1) and compute the
mini-batch gradient gt,k = ∇θk log ℓt(Bt,k;θk,ψt,k) (step 6 in Algorithm 1). Exponential moving
average (EMA), which is popularly used in adaptive gradient methods (e.g., RMSProp (Tieleman
& Hinton, 2012), AdaDelta (Zeiler, 2012), and Adam (Kingma & Ba, 2015)), is used to estimate
EBt,k∼Dt∇θk log ℓt(Bt,k;θk,ψt,k) dynamically (step 7 in Algorithm 1) as

ĝt,k = βĝt,k−1 + (1− β)gt,k,

where β ∈ (0, 1) controls the forgetting rate. After obtaining the task gradients {ĝt,k}Tt=1, we
normalize them to have the same magnitude ℓ2 norm, and compute the aggregated gradient as

g̃k = αk

T∑
t=1

ĝt,k
∥ĝt,k∥2

, (1)

where αk is a scale factor controlling the update magnitude. After normalization, all tasks contribute
equally to the update direction.

The choice of αk is critical for alleviating the task balancing problem. Intuitively, when some tasks
have large gradient norms and others have small gradient norms, it means the model θk is close
to a point where the former tasks have not yet converged while the latter tasks have converged.
Such point is unsatisfactory in MTL and can cause the task balancing problem since we expect all
tasks to achieve convergence. Hence, αk should be large enough to escape the unsatisfactory point.
When all task gradient norms are small, it indicates the model θk is close to a stationary point of all
tasks, αk should be small such that the model will be caught by such point. Thus, we can choose
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Figure 4: Results of different strategies for αk in Eq. (1) on the NYUv2 dataset in terms of ∆p.
“min”, “max”, “mean”, and “median” denotes the minimum, maximum, average, and median of
∥ĝt,k∥2 (t = 1, . . . , T ), respectively.

αk = max1≤t≤T ∥ĝt,k∥2. Note that αk is small if and only if the norms of all the task gradients are
small. Figure 4 shows the performance of using different strategies for adjusting αk on the NYUv2
dataset, where the experimental setup is in Section 4.1. Results on the other datasets are in Appendix
(Figure 6). As can be seen, the maximum-norm strategy consistently performs much better, and thus
it is used (in step 9 of Algorithm 1).
After scaling the losses and gradients, the task-sharing parameter is updated as θk+1 = θk − ηg̃k
(step 10), where η > 0 is the learning rate. For the task-specific parameters {ψt,k}Tt=1, as the
update of each of them only depends on the corresponding task gradient separately, their gradients
do not have the gradient scaling issue. Hence, the update for task-specific parameters is ψt,k+1 =
ψt,k − η∇ψt,k

log ℓt(Bt,k;θk,ψt,k) (steps 11-13).

Discussion. GradNorm (Chen et al., 2018b) aims to learn {γt}Tt=1 so that the scaled gradients have
similar norms. However, it has two problems. First, alternating the updates of model parameters and
task weights cannot guarantee all task gradients to have the same magnitude in each iteration. Sec-
ond, from Figures 4 and 6, choice of the update magnitude αk can significantly affect performance,
but this is not considered in GradNorm. Figure 3 shows the performance comparison between Grad-
Norm and the proposed gradient-magnitude balancing method on four datasets (NYUv2, Cityscapes,
Office-31, and Office-Home). As can be seen, the proposed method achieves better performance than
GradNorm in terms of ∆p on all datasets.

Algorithm 1 Dual-Balancing Multi-Task Learning.
Require: numbers of iterations K, learning rate η, tasks {Dt}Tt=1, β, ϵ = 10−8;

1: randomly initialize θ0, {ψt,0}Tt=1;
2: initialize ĝt,−1 = 0, for all t;
3: for k = 0, . . . ,K − 1 do
4: for t = 1, . . . , T do
5: sample a mini-batch dataset Bt,k from Dt;
6: gt,k = ∇θk log(ℓt(Bt,k;θk,ψt,k) + ϵ);
7: compute ĝt,k = βĝt,k−1 + (1− β)gt,k;
8: end for
9: compute g̃k = αk

∑T
t=1

ĝt,k
∥ĝt,k∥2+ϵ , where αk = max1≤t≤T ∥ĝt,k∥2;

10: update task-sharing parameter by θk+1 = θk − ηg̃k;
11: for t = 1, . . . , T do
12: ψt,k+1 = ψt,k − η∇ψt,k

log(ℓt(Bt,k;θk,ψt,k) + ϵ);
13: end for
14: end for
15: return θK , {ψt,K}Tt=1.

4 EXPERIMENTS

In this section, we empirically evaluate the proposed DB-MTL on a number of tasks, including scene
understanding (Section 4.1), image classification (Section 4.2), and molecular property prediction
(Section 4.3).
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Table 1: Performance on NYUv2 with 3 tasks. ↑ (↓) means the higher (lower) the result, the better
the performance. The best and second best results are marked in bold and underline, respectively.

Segmentation Depth Estimation Surface Normal Prediction

∆p↑mIoU↑ PAcc↑ AErr↓ RErr↓
Angle Distance Within t◦

Mean↓ MED↓ 11.25↑ 22.5↑ 30↑
STL 53.50 75.39 0.3926 0.1605 21.99 15.16 39.04 65.00 75.16 0.00

EW 53.93 75.53 0.3825 0.1577 23.57 17.01 35.04 60.99 72.05 −1.78±0.45

GLS 54.59 76.06 0.3785 0.1555 22.71 16.07 36.89 63.11 73.81 +0.30±0.30
RLW 54.04 75.58 0.3827 0.1588 23.07 16.49 36.12 62.08 72.94 −1.10±0.40

UW 54.29 75.64 0.3815 0.1583 23.48 16.92 35.26 61.17 72.21 −1.52±0.39

DWA 54.06 75.64 0.3820 0.1564 23.70 17.11 34.90 60.74 71.81 −1.71±0.25

IMTL-L 53.89 75.54 0.3834 0.1591 23.54 16.98 35.09 61.06 72.12 −1.92±0.25

IGBv2 54.61 76.00 0.3817 0.1576 22.68 15.98 37.14 63.25 73.87 +0.05±0.29

MGDA 53.52 74.76 0.3852 0.1566 22.74 16.00 37.12 63.22 73.84 −0.64±0.25

GradNorm 53.91 75.38 0.3842 0.1571 23.17 16.62 35.80 61.90 72.84 −1.24±0.15

PCGrad 53.94 75.62 0.3804 0.1578 23.52 16.93 35.19 61.17 72.19 −1.57±0.44

GradDrop 53.73 75.54 0.3837 0.1580 23.54 16.96 35.17 61.06 72.07 −1.85±0.39

GradVac 54.21 75.67 0.3859 0.1583 23.58 16.91 35.34 61.15 72.10 −1.75±0.39

IMTL-G 53.01 75.04 0.3888 0.1603 23.08 16.43 36.24 62.23 73.06 −1.89±0.54

CAGrad 53.97 75.54 0.3885 0.1588 22.47 15.71 37.77 63.82 74.30 −0.27±0.35

MTAdam 52.67 74.86 0.3873 0.1583 23.26 16.55 36.00 61.92 72.74 −1.97±0.23

Nash-MTL 53.41 74.95 0.3867 0.1612 22.57 15.94 37.30 63.40 74.09 −1.01±0.13

MetaBalance 53.92 75.57 0.3901 0.1594 22.85 16.16 36.72 62.91 73.62 −1.06±0.17

MoCo 52.25 74.56 0.3920 0.1622 22.82 16.24 36.58 62.72 73.49 −2.25±0.51

Aligned-MTL 52.94 75.00 0.3884 0.1570 22.65 16.07 36.88 63.18 73.94 −0.98±0.56

IMTL 53.63 75.44 0.3868 0.1592 22.58 15.85 37.44 63.52 74.09 −0.57±0.24

DB-MTL (ours) 53.92 75.60 0.3768 0.1557 21.97 15.37 38.43 64.81 75.24 +1.15±0.16

4.1 SCENE UNDERSTANDING

Datasets. The following datasets are used: (i) NYUv2 (Silberman et al., 2012), which is an indoor
scene understanding dataset. It has 3 tasks (13-class semantic segmentation, depth estimation, and
surface normal prediction) with 795 training and 654 testing images. (ii) Cityscapes (Cordts et al.,
2016), which is an urban scene understanding dataset. It has 2 tasks (7-class semantic segmentation
and depth estimation) with 2, 975 training and 500 testing images.

Baselines. The proposed DB-MTL is compared with various types of MTL baselines, including
(i) equal weighting (EW) (Zhang & Yang, 2022); (ii) GLS (Chennupati et al., 2019), which min-

imizes the geometric mean loss T

√∏T
t=1 ℓt(Dt;θ,ψt); (iii) RLW (Lin et al., 2022), in which the

task weights are sampled from the standard normal distribution; (iv) loss balancing methods in-
cluding UW (Kendall et al., 2018), DWA (Liu et al., 2019a), IMTL-L (Liu et al., 2021b), and IGBv2
(Dai et al., 2023); (v) gradient balancing methods including MGDA (Sener & Koltun, 2018),
GradNorm (Chen et al., 2018b), PCGrad (Yu et al., 2020), GradDrop (Chen et al., 2020), GradVac
(Wang et al., 2021), IMTL-G (Liu et al., 2021b), CAGrad (Liu et al., 2021a), MTAdam (Malkiel
& Wolf, 2021), Nash-MTL (Navon et al., 2022), MetaBalance (He et al., 2022), MoCo (Fernando
et al., 2023), and Aligned-MTL (Senushkin et al., 2023); (vi) hybrid balancing method that com-
bines loss and gradient balancing: IMTL (Liu et al., 2021b). For comparison, we also include the
single-task learning (STL) baseline, which learns each task separately.

All methods are implemented based on the open-source LibMTL library (Lin & Zhang, 2023). For
all MTL methods, the hard-parameter sharing (HPS) pattern (Caruana, 1993) is used, which consists
of a task-sharing feature encoder and T task-specific heads.

Performance Evaluation. Following Lin et al. (2022); Liu et al. (2019a), we use (i) the mean
intersection over union (mIoU) and class-wise pixel accuracy (PAcc) for semantic segmentation;
(ii) relative error (RErr) and absolute error (AErr) for depth estimation; (iii) mean and median an-
gle errors, and percentage of normals within t◦ (t = 11.25, 22.5, 30) for surface normal prediction.
Following Lin et al. (2022); Maninis et al. (2019); Vandenhende et al. (2021), we report the relative
performance improvement of an MTL method A over STL, averaged over all the metrics above, i.e.,

∆p(A) =
1

T

T∑
t=1

∆p,t(A), where ∆p,t(A) = 100%× 1

Nt

Nt∑
i=1

(−1)st,i
MA

t,i −MSTL
t,i

MSTL
t,i

. (2)
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Table 2: Performance on Cityscapes with 2 tasks. ↑ (↓) indicates that the higher (lower) the result,
the better the performance. The best and second best results are highlighted in bold and underline,
respectively.

Segmentation Depth Estimation
∆p↑mIoU↑ PAcc↑ AErr↓ RErr↓

STL 69.06 91.54 0.01282 43.53 0.00

EW 68.93 91.58 0.01315 45.90 −2.05±0.56

GLS 68.69 91.45 0.01280 44.13 −0.39±1.06

RLW 69.03 91.57 0.01343 44.77 −1.91±0.21

UW 69.03 91.61 0.01338 45.89 −2.45±0.68

DWA 68.97 91.58 0.01350 45.10 −2.24±0.28

IMTL-L 68.98 91.59 0.01340 45.32 −2.15±0.88

IGBv2 68.44 91.31 0.01290 45.03 −1.31±0.61

MGDA 69.05 91.53 0.01280 44.07 −0.19±0.30

GradNorm 68.97 91.60 0.01320 44.88 −1.55±0.70

PCGrad 68.95 91.58 0.01342 45.54 −2.36±1.17

GradDrop 68.85 91.54 0.01354 44.49 −2.02±0.74

GradVac 68.98 91.58 0.01322 46.43 −2.45±0.54

IMTL-G 69.04 91.54 0.01280 44.30 −0.46±0.67

CAGrad 68.95 91.60 0.01281 45.04 −0.87±0.88

MTAdam 68.43 91.26 0.01340 45.62 −2.74±0.20

Nash-MTL 68.88 91.52 0.01265 45.92 −1.11±0.21

MetaBalance 69.02 91.56 0.01270 45.91 −1.18±0.58

MoCo 69.62 91.76 0.01360 45.50 −2.40±1.50

Aligned-MTL 69.00 91.59 0.01270 44.54 −0.43±0.44

IMTL 69.07 91.55 0.01280 44.06 −0.32±0.10

DB-MTL (ours) 69.17 91.56 0.01280 43.46 +0.20±0.40

where T is the number of tasks, Nt is the number of metrics for task t, MA
t,i is the ith metric value

of method A on task t, and st,i is 0 if a larger value indicates better performance for the ith metric
on task t, and 1 otherwise. Each experiment is repeated three times. Further implementation details
can be found in Appendix B.

Results. Table 1 shows the results on NYUv2. As can be seen, the proposed DB-MTL performs the
best in terms of ∆p. Note that most of MTL baselines perform better than STL on semantic seg-
mentation and depth estimation tasks but has a large drop on surface normal prediction task, due to
the task balancing problem. Only the proposed DB-MTL has comparable performance with STL on
surface normal prediction task and maintains the superiority on the other tasks, which demonstrates
its effectiveness.

Table 2 shows the results on Cityscapes. As can be seen, DB-MTL again achieves the best in terms
of ∆p. Note that all MTL baselines perform worse than STL in terms of ∆p and only the proposed
DB-MTL outperforms STL on all tasks.

4.2 IMAGE CLASSIFICATION

Datasets. The following datasets are used: (i) Office-31 (Saenko et al., 2010), which contains
4, 110 images from three domains (tasks): Amazon, DSLR, and Webcam. Each task has 31 classes.
(ii) Office-Home (Venkateswara et al., 2017), which contains 15, 500 images from four domains
(tasks): artistic images, clipart, product images, and real-world images. Each task has 65 object
categories collected under office and home settings. We use the commonly-used data split as in Lin
et al. (2022): 60% for training, 20% for validation, and 20% for testing.

Results. Tables 3 and 4 show the results on Office-31 and Office-Home, respectively, using the same
set of baselines as in Section 4.1. The testing accuracy of each task is reported and the average
testing accuracy among tasks and ∆p in Eq. (2) are used as the overall performance metrics. On
Office-31, DB-MTL achieves the top testing accuracy on DSLR and Webcam tasks over all baselines
and comparable performance on Amazon task. On Office-Home, the performance of DB-MTL on
the Artistic, Product, and Real tasks are top two. On both datasets, DB-MTL achieves the best
average testing accuracy and ∆p, showing its effectiveness and demonstrating balancing both loss
scale and gradient magnitude is effective.
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Table 3: Classification accuracy (%) on Office-31 with 3 tasks. ↑ indicates that the higher the result,
the better the performance. The best and second best results are highlighted in bold and underline,
respectively. Results of MoCo are from Fernando et al. (2023).

Amazon DSLR Webcam Avg↑ ∆p↑
STL 86.61 95.63 96.85 93.03 0.00

EW 83.53 97.27 96.85 92.55±0.62 −0.61±0.67

GLS 82.84 95.62 96.29 91.59±0.58 −1.63±0.61

RLW 83.82 96.99 96.85 92.55±0.89 −0.59±0.95

UW 83.82 97.27 96.67 92.58±0.84 −0.56±0.90

DWA 83.87 96.99 96.48 92.45±0.56 −0.70±0.62

IMTL-L 84.04 96.99 96.48 92.50±0.52 −0.63±0.58

IGBv2 84.52 98.36 98.05 93.64±0.26 +0.56±0.25

MGDA 85.47 95.90 97.03 92.80±0.14 −0.27±0.15

GradNorm 83.58 97.26 96.85 92.56±0.87 −0.59±0.94

PCGrad 83.59 96.99 96.85 92.48±0.53 −0.68±0.57

GradDrop 84.33 96.99 96.30 92.54±0.42 −0.59±0.46

GradVac 83.76 97.27 96.67 92.57±0.73 −0.58±0.78

IMTL-G 83.41 96.72 96.48 92.20±0.89 −0.97±0.95

CAGrad 83.65 95.63 96.85 92.04±0.79 −1.14±0.85

MTAdam 85.52 95.62 96.29 92.48±0.87 −0.60±0.93

Nash-MTL 85.01 97.54 97.41 93.32±0.82 +0.24±0.89

MetaBalance 84.21 95.90 97.40 92.50±0.28 −0.63±0.30

MoCo 84.33 97.54 98.33 93.39 -
Aligned-MTL 83.36 96.45 97.04 92.28±0.46 −0.90±0.48

IMTL 83.70 96.44 96.29 92.14±0.85 −1.02±0.92

DB-MTL (ours) 85.12 98.63 98.51 94.09±0.19 +1.05±0.20

Table 4: Classification accuracy (%) on Office-Home with 4 tasks. ↑ indicates that the higher the
result, the better the performance. The best and second best results are highlighted in bold and
underline, respectively. Results of MoCo are from Fernando et al. (2023).

Artistic Clipart Product Real Avg↑ ∆p↑
STL 65.59 79.60 90.47 80.00 78.91 0.00

EW 65.34 78.04 89.80 79.50 78.17±0.37 −0.92±0.59

GLS 64.51 76.85 89.83 79.56 77.69±0.27 −1.58±0.46

RLW 64.96 78.19 89.48 80.11 78.18±0.12 −0.92±0.14

UW 65.97 77.65 89.41 79.28 78.08±0.30 −0.98±0.46

DWA 65.27 77.64 89.05 79.56 77.88±0.28 −1.26±0.49

IMTL-L 65.90 77.28 89.37 79.38 77.98±0.38 −1.10±0.61

IGBv2 65.59 77.57 89.79 78.73 77.92±0.21 −1.21±0.22

MGDA 64.19 77.60 89.58 79.31 77.67±0.20 −1.61±0.34

GradNorm 66.28 77.86 88.66 79.60 78.10±0.63 −0.90±0.93

PCGrad 66.35 77.18 88.95 79.50 77.99±0.19 −1.04±0.32

GradDrop 63.57 77.86 89.23 79.35 77.50±0.23 −1.86±0.24

GradVac 65.21 77.43 89.23 78.95 77.71±0.19 −1.49±0.28

IMTL-G 64.70 77.17 89.61 79.45 77.98±0.38 −1.10±0.61

CAGrad 64.01 77.50 89.65 79.53 77.73±0.16 −1.50±0.29

MTAdam 62.23 77.86 88.73 77.94 76.69±0.65 −2.94±0.85

Nash-MTL 66.29 78.76 90.04 80.11 78.80±0.52 −0.08±0.69
MetaBalance 64.01 77.50 89.72 79.24 77.61±0.42 −1.70±0.54

MoCo 63.38 79.41 90.25 78.70 77.93 -
Aligned-MTL 64.33 76.96 89.87 79.93 77.77±0.70 −1.50±0.89

IMTL 64.07 76.85 89.65 79.81 77.59±0.29 −1.72±0.45

DB-MTL (ours) 67.42 77.89 90.43 80.07 78.95±0.35 +0.17±0.44

4.3 MOLECULAR PROPERTY PREDICTION

Dataset. The following dataset is used: QM9 (Ramakrishnan et al., 2014), which is a molecular
property prediction dataset with 11 tasks. Each task performs regression on one property. We use the
commonly-used split as in Fey & Lenssen (2019); Navon et al. (2022): 110, 000 for training, 10, 000
for validation, and 10, 000 for testing. Following Fey & Lenssen (2019); Navon et al. (2022), we
use the mean absolute error (MAE) for performance evaluation on each task.

Results. Table 5 shows each task’s testing MAE and overall performance ∆p (Eq. (2)) on QM9,
using the same set of baselines as in Section 4.1. Note that QM9 is a challenging dataset in MTL
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Table 5: Performance on QM9 with 11 tasks. ↑ (↓) indicates that the higher (lower) the result,
the better the performance. The best and second best results are highlighted in bold and underline,
respectively.

µ α ϵHOMO ϵLUMO ⟨R2⟩ ZPVE U0 U H G cv ∆p↑
STL 0.062 0.192 58.82 51.95 0.529 4.52 63.69 60.83 68.33 60.31 0.069 0.00
EW 0.096 0.286 67.46 82.80 4.655 12.4 128.3 128.8 129.2 125.6 0.116 −146.3±7.86

GLS 0.332 0.340 143.1 131.5 1.023 4.45 53.35 53.79 53.78 53.34 0.111 −81.16±15.5

RLW 0.112 0.331 74.59 90.48 6.015 15.6 156.0 156.8 157.3 151.6 0.133 −200.9±13.4

UW 0.336 0.382 155.1 144.3 0.965 4.58 61.41 61.79 61.83 61.40 0.116 −92.35±13.9

DWA 0.103 0.311 71.55 87.21 4.954 13.1 134.9 135.8 136.3 132.0 0.121 −160.9±16.7

IMTL-L 0.277 0.355 150.1 135.2 0.946 4.46 58.08 58.43 58.46 58.06 0.110 −77.06±11.1

IGBv2 0.235 0.377 132.3 139.9 2.214 5.90 64.55 65.06 65.12 64.28 0.121 −99.86±10.4

MGDA 0.181 0.325 118.6 92.45 2.411 5.55 103.7 104.2 104.4 103.7 0.110 −103.0±8.62

GradNorm 0.114 0.341 67.17 84.66 7.079 14.6 173.2 173.8 174.4 168.9 0.147 −227.5±1.85

PCGrad 0.104 0.293 75.29 88.99 3.695 8.67 115.6 116.0 116.2 113.8 0.109 −117.8±3.97

GradDrop 0.114 0.349 75.94 94.62 5.315 15.8 155.2 156.1 156.6 151.9 0.136 −191.4±9.62

GradVac 0.100 0.299 68.94 84.14 4.833 12.5 127.3 127.8 128.1 124.7 0.117 −150.7±7.41

IMTL-G 0.670 0.978 220.7 249.7 19.48 55.6 1109 1117 1123 1043 0.392 −1250±90.9

CAGrad 0.107 0.296 75.43 88.59 2.944 6.12 93.09 93.68 93.85 92.32 0.106 −87.25±1.51

MTAdam 0.593 1.352 232.3 419.0 24.31 69.7 1060 1067 1070 1007 0.627 −1403±203

Nash-MTL 0.115 0.263 85.54 86.62 2.549 5.85 83.49 83.88 84.05 82.96 0.097 −73.92±2.12

MetaBalance 0.090 0.277 70.50 78.43 4.192 11.2 113.7 114.2 114.5 111.7 0.110 −125.1±7.98

MoCo 0.489 1.096 189.5 247.3 34.33 64.5 754.6 760.1 761.6 720.3 0.522 −1314±65.2

Aligned-MTL 0.123 0.295 98.07 94.56 2.397 5.90 86.42 87.42 87.19 86.75 0.106 −80.58±4.18

IMTL 0.138 0.344 106.1 102.9 2.595 7.84 102.5 103.0 103.2 100.8 0.110 −104.3±11.7

DB-MTL (ours) 0.112 0.264 89.26 86.59 2.429 5.41 60.33 60.78 60.80 60.59 0.098 −58.10±3.89

and none of the MTL methods performs better than STL, as observed in previous works (Gasteiger
et al., 2020; Navon et al., 2022). DB-MTL performs the best among all MTL methods and greatly
improves over the second-best MTL method, Nash-MTL, in terms of ∆p.

4.4 ABLATION STUDY

DB-MTL has two components: the loss-scale balancing method (i.e., logarithm transformation) in
Section 3.1 and the gradient-magnitude balancing method in Section 3.2. In this experiment, we
study the effectiveness of each component. We consider the four combinations: (i) use neither
loss-scale nor gradient-magnitude balancing methods (i.e., the EW baseline); (ii) use only loss-s-
cale balancing; (iii) use only gradient-magnitude balancing; (iv) use both loss-scale and gradi-
ent-magnitude balancing methods (i.e., the proposed DB-MTL). Table 6 shows the ∆p of different
combinations on five datasets, i.e., NYUv2, Cityscapes, Office-31, Office-Home, and QM9. As can
be seen, on all datasets, both components are beneficial to DB-MTL and combining them achieves
the best performance.

Table 6: Ablation study of DB-MTL on different datasets in terms of ∆p.
loss-scale gradient-magnitude

NYUv2 Cityscapes Office-31 Office-Home QM9balancing balancing

% % −1.78±0.45 −2.05±0.56 −0.61±0.67 −0.92±0.59 −146.3±7.86

! % +0.06±0.09 −0.38±0.39 +0.93±0.42 −0.73±0.95 −74.40±13.2

% ! +0.76±0.25 +0.12±0.70 +0.01±0.39 −0.78±0.49 −65.73±2.86

! ! +1.15±0.16 +0.20±0.40 +1.05±0.20 +0.17±0.44 -58.10±3.89

5 CONCLUSION

In this paper, we alleviate the task-balancing problem in MTL by presenting Dual-Balancing Multi-
Task Learning (DB-MTL), a novel approach that consists of loss-scale and gradient-magnitude bal-
ancing methods. The former ensures all task losses have the same scale via the logarithm transforma-
tion, while the latter guarantees that all task gradients have the same magnitude as the maximum gra-
dient norm by a gradient normalization. Extensive experiments on a number of benchmark datasets
demonstrate that DB-MTL achieves state-of-the-art performance and the logarithm transformation
can benefit existing gradient balancing methods.
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APPENDIX

A ANALYSIS

Proposition A.1. For x > 0, log(x) = mins e
sx− s− 1.

Proof. Define an auxiliary function f(s) = esx − s − 1. It is easy to show that df(s)
ds = esx − 1

and d2f(s)
ds2 = esx > 0. Thus, f(s) is convex. By the first-order optimal condition (Boyd &

Vandenberghe, 2004), let es
⋆

x−1 = 0, the global minimizer is solved as s⋆ = − log(x). Therefore,
f(s⋆) = es

⋆

x− s⋆ − 1 = e− log(x)x+ log(x)− 1 = log(x), where we finish the proof.

B IMPLEMENTATION DETAILS FOR SECTION 4

NYUv2 and Cityscapes. Following Lin et al. (2022), we use the DeepLabV3+ network (Chen
et al., 2018a), containing a ResNet-50 network with dilated convolutions pre-trained on the ImageNet
dataset (Deng et al., 2009) as the shared encoder and the Atrous Spatial Pyramid Pooling (Chen et al.,
2018a) module as the task-specific head. We train the model for 200 epochs by using the Adam
optimizer (Kingma & Ba, 2015) with learning rate 10−4 and weight decay 10−5. The learning rate
is halved to 5 × 10−5 after 100 epochs. The cross-entropy loss, L1 loss, and cosine loss are used
as the loss functions of the semantic segmentation, depth estimation, and surface normal prediction
tasks, respectively. All input images are resized to 288 × 384, and the batch size is set to 8 for
training for NYUv2. We resize the input images to 128× 256, and use the batch size 64 for training
for Cityscapes.

Office-31 and Office-Home. Following Lin et al. (2022), a ResNet-18 (He et al., 2016) pre-trained
on the ImageNet dataset (Deng et al., 2009) is used as a shared encoder, and a linear layer is used as
a task-specific head. We resize the input image to 224× 224. The batch size and the training epoch
are set to 64 and 100, respectively. The Adam optimizer (Kingma & Ba, 2015) with the learning
rate as 10−4 and the weight decay as 10−5 is used. The cross-entropy loss is used for all the tasks
and classification accuracy is used as the evaluation metric.

QM9. Following Fey & Lenssen (2019); Navon et al. (2022), a graph neural network (Gilmer et al.,
2017) is used as the shared encoder, and a linear layer is used as the task-specific head. The targets of
each task are normalized to have zero mean and unit standard deviation. The batch size and training
epoch are set to 128 and 300, respectively. The Adam optimizer (Kingma & Ba, 2015) with the
learning rate 0.001 is used for training and the ReduceLROnPlateau scheduler (Paszke et al., 2019)
is used to reduce the learning rate once ∆p on the validation dataset stops improving. Following Fey
& Lenssen (2019); Navon et al. (2022), we use mean squared error (MSE) as the loss function.

Following Fernando et al. (2023), for each dataset, we perform grid search for β over
{0.1, 0.5, 0.9, 0.1

k0.5 ,
0.5
k0.5 ,

0.9
k0.5 }, where k is the number of iterations.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 EFFECTS OF MTL ARCHITECTURES

The proposed DB-MTL is agnostic to the choice of MTL architectures. In this section, we evalu-
ate DB-MTL on NYUv2 using two more MTL architectures: Cross-stitch (Misra et al., 2016) and
MTAN (Liu et al., 2019a). Two current state-of-the-art GLS and CAGrad are compared with. The
implementation details are the same as those in HPS architecture in Appendix B. Figure 5 shows
each task’s improvement performance ∆p,t. For Cross-stitch (Figure 5(a)), as can be seen, DB-MTL
performs the best on all tasks, showing its effectiveness. As for MTAN (Figure 5(b)), compared with
STL, the MTL methods (GLS, CAGrad, and DB-MTL) perform better on both semantic segmenta-
tion and depth estimation tasks, but only DB-MTL achieves comparable performance on the surface
normal prediction task.

Furthermore, we conduct experiments to evaluate DB-MTL on NYUv2 with SegNet network (Badri-
narayanan et al., 2017). The implementation details are same as those in Appendix B, except that
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Figure 5: Performance on NYUv2 for Cross-stitch and MTAN architectures.

the batch size is set to 2 and the data augmentation is used following Liu et al. (2021a). The results
are shown in Table 7. As can be seen, DB-MTL again achieves the best performance in terms of
∆p, demonstrating the effectiveness of the proposed method.

Table 7: Performance on the NYUv2 dataset with SegNet network. ↑ (↓) indicates that the higher
(lower) the result, the better the performance. The best and second best results are highlighted in
bold and underline, respectively. Superscripts ♯, §, ‡, and ∗ denote the results are from Liu et al.
(2021a), Navon et al. (2022), Fernando et al. (2023), and Senushkin et al. (2023), respectively.

Segmentation Depth Estimation Surface Normal Prediction

∆p↑mIoU↑ PAcc↑ AErr↓ RErr↓
Angle Distance Within t◦

Mean↓ MED↓ 11.25↑ 22.5↑ 30↑
STL§ 38.30 63.76 0.6754 0.2780 25.01 19.21 30.14 57.20 69.15 0.00

EW§ 39.29 65.33 0.5493 0.2263 28.15 23.96 22.09 47.50 61.08 +0.88
GLS 39.78 65.63 0.5318 0.2272 26.13 21.08 26.57 52.83 65.78 +5.15
RLW§ 37.17 63.77 0.5759 0.2410 28.27 24.18 22.26 47.05 60.62 −2.16

UW§ 36.87 63.17 0.5446 0.2260 27.04 22.61 23.54 49.05 63.65 +0.91
DWA§ 39.11 65.31 0.5510 0.2285 27.61 23.18 24.17 50.18 62.39 +1.93
IMTL-L 39.78 65.27 0.5408 0.2347 26.26 20.99 26.42 53.03 65.94 +4.39
IGBv2 38.03 64.29 0.5489 0.2301 26.94 22.04 24.77 50.91 64.12 +2.11

MGDA§ 30.47 59.90 0.6070 0.2555 24.88 19.45 29.18 56.88 69.36 −1.66
GradNorm∗ 20.09 52.06 0.7200 0.2800 24.83 18.86 30.81 57.94 69.73 −11.7
PCGrad§ 38.06 64.64 0.5550 0.2325 27.41 22.80 23.86 49.83 63.14 +1.11
GradDrop§ 39.39 65.12 0.5455 0.2279 27.48 22.96 23.38 49.44 62.87 +2.07
GradVac∗ 37.53 64.35 0.5600 0.2400 27.66 23.38 22.83 48.66 62.21 −0.49
IMTL-G§ 39.35 65.60 0.5426 0.2256 26.02 21.19 26.20 53.13 66.24 +4.77
CAGrad♯ 39.18 64.97 0.5379 0.2229 25.42 20.47 27.37 54.73 67.73 +5.81
MTAdam 39.44 65.73 0.5326 0.2211 27.53 22.70 24.04 49.61 62.69 +3.21
Nash-MTL§ 40.13 65.93 0.5261 0.2171 25.26 20.08 28.40 55.47 68.15 +7.65
MetaBalance 39.85 65.13 0.5445 0.2261 27.35 22.66 23.70 49.69 63.09 +2.67
MoCo‡ 40.30 66.07 0.5575 0.2135 26.67 21.83 25.61 51.78 64.85 +4.85
Aligned-MTL∗ 40.82 66.33 0.5300 0.2200 25.19 19.71 28.88 56.23 68.54 +8.16

IMTL 41.19 66.37 0.5323 0.2237 26.06 20.77 26.76 53.48 66.32 +6.45

DB-MTL (ours) 41.42 66.45 0.5251 0.2160 25.03 19.50 28.72 56.17 68.73 +8.91

C.2 EFFECTS OF αk

Figure 6 shows the results of different strategies of αk on the Cityscapes, Office-31, Office-Home,
and QM9 datasets, respectively. As can be seen, the strategy of normalizing to the maximum gradient
norm is consistently better.
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(a) Cityscapes dataset.
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(b) Office-31 dataset.

0.01 0.05 0.1 0.5 1 5 10 1/T min max mean median
-2.5

-1.0

0.0

1.0

p

(c) Office-Home dataset.

0.01 0.05 0.1 0.5 1 5 10 1/T min max mean median

80

70

60

50

p

(d) QM9 dataset.

Figure 6: Results of different strategies for αk in Eq. (1) on different datasets in terms of ∆p.
“min”, “max”, “mean”, and “median” denotes the minimum, maximum, average, and median of
∥ĝt,k∥2 (t = 1, . . . , T ), respectively.
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C.3 EFFECTS OF β

Table 8 shows the results of DB-MTL with different β on Office-31 dataset in terms of the average
classification accuracy and ∆p. As can be seen, DB-MTL is insensitive over a large range of β (i.e.,
{0.1/k0.5, 0.2/k0.5, ..., 0.9/k0.5}) and performs better than DB-MTL without EMA (β = 0).

Table 8: Effects of β on Office-31 dataset.
β Avg↑ ∆p↑
0 93.89±0.09 +0.84±0.09

0.1/k0.5 94.09±0.19 +1.05±0.20

0.2/k0.5 94.02±0.42 +0.97±0.47

0.3/k0.5 94.15±0.51 +1.12±0.55

0.4/k0.5 94.20±0.22 +1.18±0.23

0.5/k0.5 94.01±0.56 +0.97±0.60

0.6/k0.5 94.05±0.56 +1.01±0.61

0.7/k0.5 94.01±0.26 +0.96±0.30

0.8/k0.5 94.00±0.16 +0.94±0.19

0.9/k0.5 94.09±0.08 +1.07±0.08

0.1 93.79±0.29 +0.73±0.29

0.2 93.15±0.61 +0.06±0.67

0.3 92.91±0.41 −0.23±0.45

0.4 93.08±0.68 −0.01±0.70

0.5 92.47±0.69 −0.68±0.74

0.6 92.41±0.31 −0.76±0.35

0.7 92.52±0.36 −0.69±0.36

0.8 92.29±0.28 −0.94±0.34

0.9 90.67±0.56 −2.74±0.66

C.4 ANALYSIS OF TRAINING EFFICIENCY

Figure 7 shows the per-epoch running time of different MTL methods on NYUv2 dataset. All meth-
ods are tested over 100 epochs on an NVIDIA GeForce RTX 3090 GPU and the average running
time per epoch is reported. As can be seen, DB-MTL has a similar running time to gradient bal-
ancing methods and IMTL, but it is larger than loss balancing methods because each task’s gradient
is computed in every iteration (i.e., step 6 in Algorithm 1). It is a common problem in gradient
balancing methods (Liu et al., 2021a; Navon et al., 2022; Sener & Koltun, 2018; Yu et al., 2020).
Although DB-MTL is slower than loss balancing methods, it achieves better performance, as shown
in Tables 1, 2, 3, 4, and 5.
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Figure 7: The running time per epoch averaged over 100 repetitions of different methods on NYUv2
dataset.
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C.5 ANALYSIS OF TRAINING STABILITY

Figure 8 shows each task’s training loss and gradient norm of EW and DB-MTL on Office-31 dataset.
As can be seen, for the proposed DB-MTL, both training loss and gradient norm for every task
decrease smoothly and finally converge, which means both the logarithm transformation and the
maximum-norm strategy do not affect the training stability. Moreover, DB-MTL converges faster
than EW because of balancing on both loss and gradient levels.
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(a) Training loss for Amazon, DSLR, and Webcam tasks, respectively.
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(b) Gradient norm for Amazon, DSLR, and Webcam tasks, respectively.

Figure 8: Each task’s training loss and gradient norm EBt,k
∥∇θkℓt(Bt,k;θk,ψt,k)∥2 of EW and

DB-MTL on Office-31 dataset.

D DISCUSSION WITH AUXILIARY LEARNING

Similar to multi-task learning, auxiliary learning (Du et al., 2019; Liu et al., 2022; Navon et al.,
2021) improves the learning of tasks with the help of some auxiliary tasks. Hence, the task balancing
problem also exists in auxiliary learning. However, the goals of multi-task learning and auxiliary
learning are different: the former expects all tasks to perform well but the latter only focuses on the
main task(s). Hence, it is challenging to apply the proposed DB-MTL to auxiliary learning directly.
We will study it in the future.
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