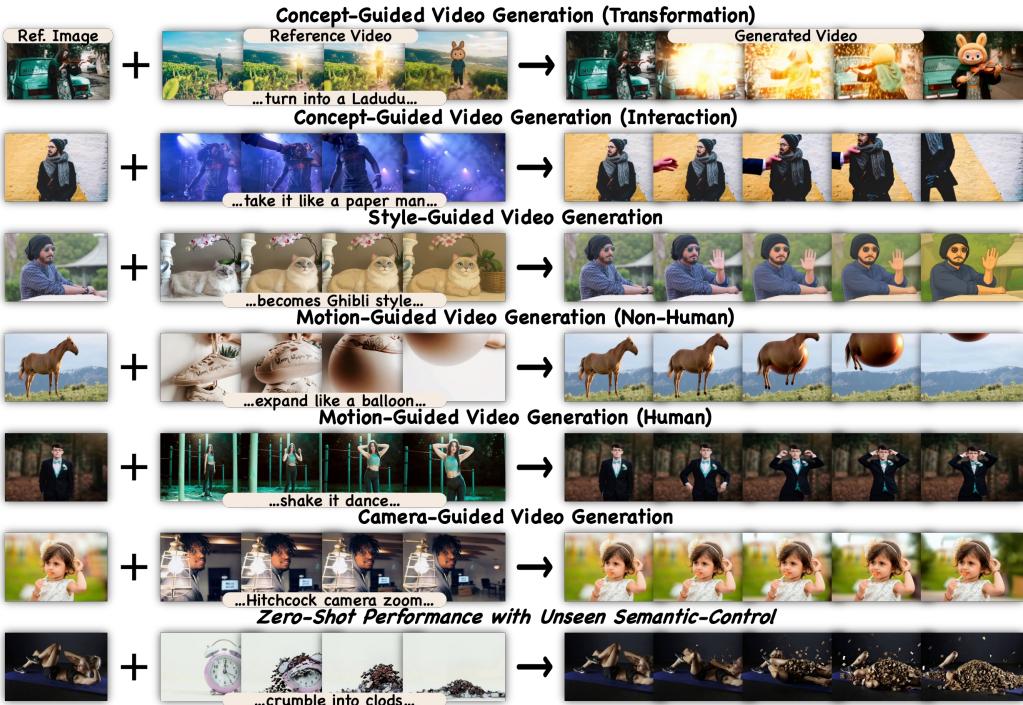


VIDEO-AS-PROMPT: UNIFIED SEMANTIC CONTROL FOR VIDEO GENERATION

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review



030 Figure 1: **Video-As-Prompt (VAP)** is a unified semantic-controlled video generation frame-
031 work: it treats *reference videos with wanted semantics as video prompts* and controls generation
032 via a *plug-and-play, in-context Mixture-of-Transformers expert*. Row 1–6: reference videos used
033 as prompts for diverse semantic-controlled tasks (concept, style, motion, camera). Row 7: zero-shot
034 results from VAP when given an unseen semantic, demonstrating strong generalization. **We strongly
035 encourage readers to view our anonymous project page¹ for better visualization.**

ABSTRACT

038 Unified, generalizable semantic control in video generation remains a critical open
039 challenge. Existing methods either introduce artifacts by enforcing inappropriate
040 pixel-wise priors from structure-based controls, or rely on non-generalizable,
041 condition-specific finetuning or task-specific architectures. We introduce **Video-
042 As-Prompt (VAP)**, a new paradigm that reframes this problem as in-context gen-
043 eration. VAP leverages a reference video as a direct semantic prompt, guid-
044 ing a frozen Video Diffusion Transformer (DiT) via a plug-and-play Mixture-
045 of-Transformers (MoT) expert. This architecture prevents catastrophic forgetting
046 and is guided by a temporally biased position embedding that eliminates spurious
047 mapping priors for robust context retrieval. To power this approach and catalyze
048 future research, we built **VAP-Data**, the largest dataset for this task with over
049 100K paired videos across 100 semantic conditions. As a single unified model,
050 VAP sets a new state-of-the-art for open-source methods, achieving a **38.7% user
051 preference rate** that rivals leading condition-specific commercial models. VAP’s
052 strong zero-shot generalization and support for various applications mark a signif-
053 icant advance toward general-purpose, controllable video generation.

¹Our anonymous project page is at <https://video-as-prompt.github.io/>.

054 **1 INTRODUCTION**

055

056 While unified structure-controlled video generation (Jiang et al., 2025) under pixel-aligned conditions (e.g., depth (Gao et al., 2025a), pose (Hu, 2024), mask (Bian et al., 2025b), optical flow (Jin et al., 2025)) is well studied, semantic-controlled generation—lacking a pixel-aligned condition (e.g., concept (Liu et al., 2025), style (Ye et al., 2025), motion (Zhang et al., 2025b), camera (Bai et al., 2025a)) to the target video—remains fragmented without a unified and generalizable framework, limiting applications in visual effects (Macklin et al., 2014), video stylization (Jamriška et al., 2019), motion imitation (Wang et al., 2025), and camera control (Bai et al., 2025b).

063 Migrating current unified structure-controlled methods (Jiang et al., 2025; Zhang et al., 2023) often causes artifacts because they enforce inappropriate pixel-wise mapping priors from structure-based control abilities (see Fig. 2 (a)). Other semantic-controlled methods fall into two groups: 064 (1) **Condition-Specific Overfit** (see Fig. 2 (b)): methods (Liu et al., 2025; Civitai, 2025) finetune 065 backbones (Yang et al., 2024; Wan et al., 2025) or LoRAs (Hu et al., 2022) for each semantic 066 condition (e.g., Ghibli style, Hitchcock camera zoom), which is costly; (2) **Task-Specific Design** (see 067 Fig. 2 (c)): methods (Ye et al., 2025; Bai et al., 2025a; Zhang et al., 2025b) craft task-specific 068 modules or inference strategies for a condition type (e.g., style, camera), often encoding videos with 069 the same semantics to a specially designed space and guiding generation. While effective, these 070 condition/task-specific approaches hinder a unified model and limit zero-shot generalizability. 071

073 However, recent image generation (Tan et al., 2025) and structure-controlled video generation (Ju et al., 2025) show that Diffusion Transformers (DiTs) support strong in-context control, motivating 074 a unified framework for in-context semantic-controlled video generation. As shown in Fig. 2 (d), 075 rather than assuming pixel-wise correspondence (Jiang et al., 2025), training per-condition 076 models (Liu et al., 2025) or using task-specific designs (Ye et al., 2025), we treat the video of the wanted 077 semantics as a reference video prompt and guide generation via in-context control. This 078 formulation removes the inappropriate pixel-wise mapping prior from structure-based controls, avoids 079 per-condition training or per-task model designs, and enables a single unified model to handle diverse 080 semantic controls and generalize in a zero-shot manner to unseen semantics (see Fig. 1).

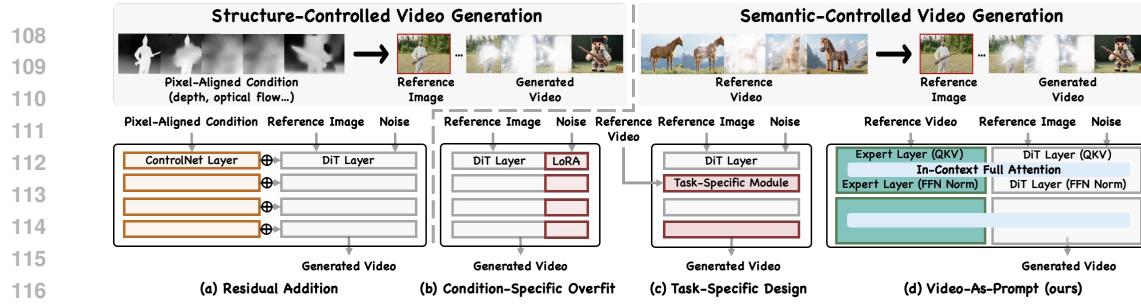
081 We present **Video-As-Prompt (VAP)**, the first unified framework for semantic-controlled video 082 generation under non-pixel-aligned conditions, by treating a reference video with the wanted semantics 083 as a video prompt and using plug-and-play in-context control. As shown in Fig. 2 (d), VAP adopts 084 a plug-and-play Mixture-of-Transformers (MoTs) design (Liang et al., 2024) to augment any frozen 085 Video Diffusion Transformer (Peebles & Xie, 2023) with a trainable parallel expert for interpreting 086 the video prompt and guiding the generation, preventing catastrophic forgetting and enabling 087 in-context control. The expert (for the reference prompt) and the frozen backbone (for target 088 generation) run independent feed-forward and layer-norm paths and communicate via full attention for 089 synchronous layer-wise reference guidance. For robust context retrieval, we adopt a temporally 090 biased Rotary Position Embedding (RoPE) that places the reference before the current video along the 091 temporal axis while keeping spatial fixed; this removes the nonexistent pixel-mapping prior from a 092 shared RoPE, matches the temporal order expected by in-context generation, and preserves spatial 093 consistency so the model can exploit spatial semantic changes of the reference video prompt.

094 Existing datasets (Jiang et al., 2025; Ju et al., 2025) lack focus on semantic-controlled video 095 generation. We introduce **VAP-Data**, the largest dataset to date, with over 100K curated samples across 096 100 semantic conditions, providing a robust data foundation for unified semantic-controlled video 097 generation. Extensive experiments show that VAP, a unified model for diverse semantic conditions 098 (Appendix A) and downstream generation tasks (Appendix B), produces coherent, semantically 099 aligned videos, achieves a 38.7% user preference rate competitive with leading closed-source commercial 100 models, surpasses condition-specific methods, and exhibits zero-shot generalization (Fig. 7).

101 Our contributions are highlighted as follows:

102

- 103 ▶ We present **VAP**, a unified semantic-controlled video generation paradigm, treating a reference 104 video with the wanted semantics as a video prompt for generalizable in-context control.
- 105 ▶ We propose a plug-and-play in-context video generation framework built on the mixture-of- 106 transformers architecture that prevents catastrophic forgetting, supports various downstream tasks, 107 and delivers strong zero-shot generalization to unseen semantic condition categories.
- 108 ▶ We construct and release **VAP-Data**, the largest dataset for semantic-controlled video generation, 109 with over 100K curated paired samples across 100 condition categories.



117 **Figure 2: Controllable Video Generation Paradigms. Structure-Controlled Video Generation**
118 (a). The condition is pixel-aligned with the target video. Most works inject conditions (e.g., depth,
119 optical flow) into a DiT via an extra branch using (a) *residual addition*, leveraging pixel-wise align-
120 ment. **Semantic-Controlled Video Generation** (b, c, d). The condition and target video share the
121 same semantics. Most works use (b) *Condition-Specific Overfit* or (c) *Task-Specific Design*: finetun-
122 ing per semantic or adding task-specific modules. (d) *Video-as-Prompt*: We use a reference video
123 with the same semantics as prompts and adopt a plug-and-play in-context control framework built
124 on mixture-of-transformers to achieve unified semantic-controlled video generation.

2 RELATED WORKS

2.1 VIDEO GENERATION

125 Video generation has progressed from early GAN-based models (Vondrick et al., 2016; Skorokhodov
126 et al., 2022) to modern diffusion models (Brooks et al., 2024; Gao et al., 2025b). Leveraging the
127 scalability of diffusion transformers (DiTs) (Peebles & Xie, 2023), research has moved from con-
128 volutional architectures (Singer et al., 2022; Blattmann et al., 2023; Girdhar et al., 2023; Chen et al.,
129 2024b; Zhang et al., 2024) to transformer-based ones (Gupta et al., 2023; Menapace et al., 2024;
130 Brooks et al., 2024; Polyak et al., 2024; Kong et al., 2024; Wan et al., 2025; Gao et al., 2025b).
131 The standard pipeline encodes Gaussian noise into a latent space with a VAE (Kingma & Welling,
132 2013), splits the latents into patches, processes the patches with a DiT, and decodes to pixel space to
133 produce high-quality, smooth videos. However, pre-trained DiTs typically support only text prompts
134 or first/last-frame control (Wan et al., 2025; Gao et al., 2025b). To enable finer, user-defined control,
135 many methods add task-specific modules to pre-trained DiTs (Jiang et al., 2025; Bian et al., 2025b)
136 or design special inference (Zhang et al., 2025b; Wang et al., 2025) for new controllable video tasks.
137

2.2 CONTROLLABLE VIDEO GENERATION

138 In general, controllable video generation can be categorized into **Structure-Controlled Video Gen-
139 eration** and **Semantic-Controlled Video Generation** (see top of Fig. 2). The former (Jiang et al.,
140 2025; Bian et al., 2025b) is driven by pixel-aligned conditions (e.g., depth, pose, mask, optical
141 flow), while the latter (Zhang et al., 2025b; Ye et al., 2025) focuses on generation based on semantic
142 conditions without pixel mapping prior (e.g., concept, style, motion, camera).

143 **Structure-Controlled Video Generation** In structure-controlled video generation, condition
144 videos (e.g., depth, pose) are typically pixel-aligned with the target videos, so control signals are
145 mostly modeled with an additional adapter/branch and injected via residual addition to exploit this
146 mapping prior (Zhang et al., 2023; Mou et al., 2024; Bian et al., 2025a; Lin et al., 2024), as shown
147 in Fig. 2 (a). Common conditions include **Trajectory** (Wang et al., 2024; Zhou et al., 2024; Guo
148 et al., 2025a; Gu et al., 2025), **Pose** (Ju et al., 2023; Lei et al., 2024; Hu, 2024), **Depth** (Esser et al.,
149 2023; Gao et al., 2025a), **Optical flow** (Jin et al., 2025; Koroglu et al., 2025), and **Mask** (Bian et al.,
150 2025b; Yang et al., 2025). Recent works (Ju et al., 2025; Jiang et al., 2025) further enable all-in-one
151 structure-controlled generation by treating these inputs as a unified, pixel-aligned spatial condition.

152 **Semantic-Controlled Video Generation** Semantic-controlled video generation handles con-
153 ditions which lack pixel-wise correspondence with target videos (see Fig. 1), including **Concept** (Liu
154 et al., 2025; Hsu et al., 2024; Pika, 2025; PixVerse, 2025; Vidu, 2025; Kling, 2025) (e.g., turning an
155 object into Ladudu or taking it like a paper man), **Stylization** (Huang et al., 2025; Ye et al., 2025),
156 **Camera Movement** (He et al., 2024; Bai et al., 2025a;b), and **Motion** (Zhao et al., 2024; Yatim et al.,
157 2024; Pondaven et al., 2025; Zhang et al., 2025b; Wang et al., 2025), where the reference and target
158 share motion but differ in layout or skeleton. As shown in Fig. 2 (b) and (c), prior methods fall
159

Figure 3: **Overview of Our Proposed VAP-Data.** (a) 100 semantic conditions across 4 categories: concept, style, camera, and motion; (b) diverse reference images, including animals, humans, objects, and scenes, with multiple variants; and (c) a word cloud of the semantic conditions.

into **Condition-Specific Overfit** (Liu et al., 2025; Civitai, 2025), which fine-tune DiT backbones or LoRAs for each semantic condition; and **Task-Specific Design** (Ye et al., 2025; Bai et al., 2025a; Zhang et al., 2025b; Wang et al., 2025), which add task-specific modules or inference strategies for a class of semantic conditions (e.g., style, motion, camera). Above approaches fit narrow distributions but are not unified and generalizable; they require per-condition retraining or per-task designs and lack zero-shot generalization. A concurrent work (Mao et al., 2025) adopts a LoRA mixture-of-experts for unified generation across multiple semantic conditions, but it still learns each condition by overfitting subsets of parameters and fails to generalize to unseen ones. This raises a key question: **How can we build a unified semantic-controlled video generation framework?**

Inspired by in-context learning (Huang et al., 2024; Bian et al., 2024; Tan et al., 2025; Guo et al., 2025b; Ju et al., 2025), we propose Video-As-Prompt (VAP), which treats videos with the wanted semantics as unified in-context prompts to guide generation. By casting the task as an in-context generation with reference video prompts, VAP, to our knowledge, is the first to unify multiple semantic-controlled tasks without task-specific designs, while achieving strong zero-shot abilities.

3 METHODS

VAP supports unified semantic-controlled video generation under various semantic conditions (e.g., concept, style, motion, and camera). Our insight is to use videos with the wanted semantics as unified prompts to guide generation across tasks, avoiding per-condition finetuning or per-task designs. Although we study a limited set of conditions, the method extends to others without major structural changes and shows promising generalizability for different semantic conditions (see Appendix A), various downstream tasks (see Appendix B), and unseen semantics in training (see Fig. 7).

3.1 PRELIMINARY

Video diffusion models (Brooks et al., 2024; Gao et al., 2025b) learn the conditional distribution $p(\mathbf{x} | C)$ of video \mathbf{x} given conditions C . Using Flow Matching (Lipman et al., 2022) for illustration, a noise sample $\mathbf{x}_0 \sim \mathcal{N}(0, 1)$ is denoised to \mathbf{x}_1 along the path $\mathbf{x}_t = t\mathbf{x}_1 + (1 - (1 - \sigma_{min})t)\mathbf{x}_0$, where $\sigma_{min} = 10^{-5}$ and $t \in [0, 1]$. The model u is trained to predict the velocity $V_t = \frac{d\mathbf{x}_t}{dt}$, which simplifies to: $V_t = \frac{d\mathbf{x}_t}{dt} = \mathbf{x}_1 - (1 - \sigma_{min})\mathbf{x}_0$. We optimize u with parameters Θ by minimizing the mean squared error loss \mathcal{L} between the ground-truth velocity and the model prediction:

$$\mathcal{L} = \mathbb{E}_{t, \mathbf{x}_0, \mathbf{x}_1, C} \|u_\Theta(\mathbf{x}_t, t, C) - (\mathbf{x}_1 - (1 - \sigma_{min})\mathbf{x}_0)\|$$

During inference, the model first samples Gaussian noise $\mathbf{x}_0 \sim \mathcal{N}(0, 1)$ and then uses an ODE solver with a discrete set of N denoising timesteps to produce \mathbf{x}_1 .

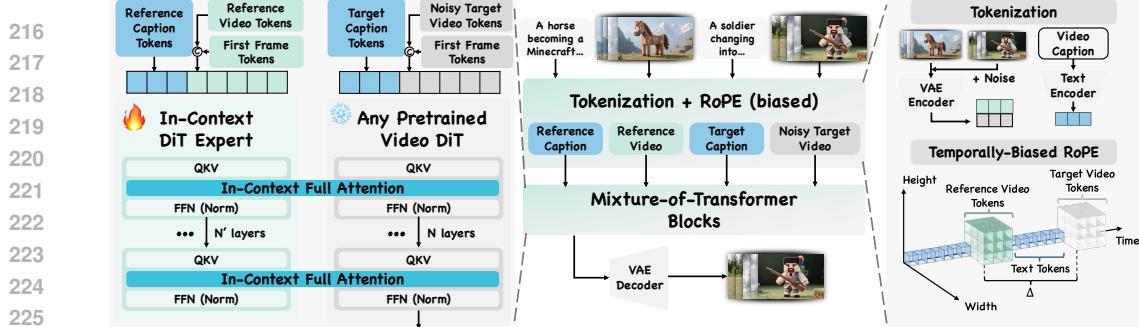


Figure 4: **Overview of Video-As-Prompt.** The reference video (with the wanted semantics), target video, and their first frames (reference images) are encoded into latents by the VAE and, together with captions (see top right), form an in-context token sequence $[Ref_{text}, Ref_{video}, Tar_{text}, Tar_{video}]$ (see middle). First frame tokens are concatenated with video tokens. We add a temporal bias Δ to RoPE to avoid nonexistent pixel-aligned priors from the original shared RoPE (see bottom right). The reference video and captions act as the prompts and are fed into a trainable DiT Expert Transformer (see left), which exchanges information bidirectionally with the pre-trained DiT via full attention at each layer, enabling plug-and-play in-context generation.

3.2 REFERENCE VIDEOS AS TASK-AGNOSTIC PROMPTS

Semantic-controlled video generation spans diverse condition types (*e.g.*, concept, style, motion, camera). Structure-controlled methods assume pixel-wise alignment between condition and target (Zhang et al., 2023; Jiang et al., 2025); injecting a semantic-same but pixel-misaligned video condition via residual addition yields copy-and-paste artifacts (see Fig. 5 (a)). Prior semantic-controlled video generation works partially tackle this by using per-condition fine-tuning or per-task designs, treating tasks in isolation. In contrast, *VAP* employs *reference videos as video prompts*, which share the same semantics as the targets, independent of task category, unifying heterogeneous conditions in one model. Formally, let $\mathcal{C} = \bigcup_{i=1}^n C_i$ denote n condition types with conditions $c \in C_i$ (total m); prior methods often fine-tune n (per-task) or up to m (per-condition) models, whereas we train a single unified model u_{Θ} that jointly learns $p(\mathbf{x} \mid c)$ for any $c \in \mathcal{C}$. We evaluate four representative types—concept (C_{co}), style (C_s), motion (C_m), and camera (C_{ca})—chosen for distinct task definitions and data. Our *VAP-Data* follows this taxonomy; overviews appear in Fig. 3.

- **Concept-Guided Generation:** Videos sharing a concept, such as entity transformation (*e.g.*, a person becomes a Ladudu doll) or interaction (*e.g.*, an AI lover approaches the target).
- **Style-Guided Generation:** Videos in a reference style (*e.g.*, Ghibli, Minecraft).
- **Motion-Guided Generation:** Videos following a reference motion, including non-human motion (*e.g.*, objects expand like balloons) and human motion (*e.g.*, shake it dance).
- **Camera-Guided Generation:** Videos following reference camera motion, from basic translations (up, down, left, right, zoom in/out) to the Hitchcock dolly zoom.

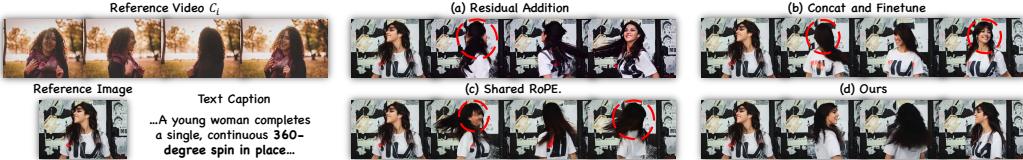
Discussion. We also input captions (P_{ref}, P_{tar}) of the reference video and target video to aid in finding and transferring the shared mentioned semantic control signals (*e.g.*, “cover liquid metal” in Fig. 6). Thus u_{Θ} learns conditional distribution $p(\mathbf{x} \mid C_{co}, C_s, C_m, C_{ca}, P_{ref}, P_{tar})$.

3.3 PLUG-AND-PLAY IN-CONTEXT CONTROL

Our model takes four primary inputs: a reference video (providing the semantics), a reference image² (providing the initial appearance and subject), captions (helping find the target semantic), and noise (inference) or noisy target video (training). We first encode the reference video $c \in \mathbb{R}^{n \times h \times w \times c}$ and the target video $X \in \mathbb{R}^{n \times h \times w \times c}$ into latents $\hat{c} \in \mathbb{R}^{n' \times h' \times w' \times d}$ and $\mathbf{x} \in \mathbb{R}^{n' \times h' \times w' \times d}$ by VAE. Here n and $h \times w$ are original temporal/spatial sizes; n', h', w' are latent sizes. With n_t text tokens $t_{\hat{c}}, t_x \in \mathbb{R}^{n_t \times d}$, a naive baseline is to finetune the DiT on the concatenated sequence $[t_{\hat{c}}, \hat{c}, t_x, \mathbf{x}]$ ³, following in-context structure-controlled generation (Ju et al., 2025). This often leads to catastrophic forgetting with limited data (Fig. 5 (b), Tab. 2), because (1) DiTs are pre-trained only for generation, not in-context conditioning, and (2) our reference/target pairs lack pixel-aligned priors, making semantic in-context generation much harder. To stabilize training, we adopt Mixture-of-Transformers

²The first frame of the reference video is also injected for inheriting the Image-to-Video backbone ability.

³Without loss of generality, we assume text and video are jointly modeled with full attention.

Figure 5: **Motivation.** Ablation visualizations (Semantic: Spin 360°) on structure designs of VAP.

(MoT) (Liang et al., 2024): a frozen Video Diffusion Transformer (DiT) plus a trainable parallel expert transformer initialized from the backbone. The expert consumes $[t_{\hat{c}}, \hat{c}]$, while the frozen DiT processes $[t_x, \mathbf{x}]$ (see Fig. 4). Each keeps its own query, key, value projections, feed-forward layers, and norms; at each layer, we concatenate Q/K/V and run full attention for two-way information fusion. This shapes references into prompts conditioned on the current generation and routes guidance into the frozen DiT. With MoT, we preserve the backbone’s generation ability, boost the training stability, and achieve plug-and-play in-context control independent of DiT architecture (see Tab. 2).

3.4 TEMPORALLY BIASED ROTARY POSITION EMBEDDING

Similar to observations on Rotary Position Embedding (RoPE) (Su et al., 2024) in in-context image generation (Tan et al., 2025), we find that sharing position embedding between the reference condition and the target video is suboptimal: it imposes a false pixel-level spatiotemporal mapping prior, making the model assume a nonexistent mapping between the reference and the target videos, and perform unsatisfactorily (see artifacts in Fig. 5 (c)). Accordingly, we shift the reference prompt’s temporal indices by a fixed offset Δ , placing them before all noisy video tokens while keeping spatial indices unchanged (see right bottom of Fig. 4). This removes the spurious prior, matches the temporal order expected by in-context generation, and leads to improved performance (see Tab. 2).

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We train VAP on CogVideoX-I2V-5B (Yang et al., 2024) and Wan2.1-I2V-14B (Wan et al., 2025) to evaluate effectiveness across DiT architectures.⁴ For fairness, we match parameter counts: on CogVideoX-I2V-5B, the in-context DiT expert is a full copy of the original; on Wan2.1-I2V-14B, it is a distributed copy spanning $\frac{1}{4}$ of layers; both are about 5B parameters. Following pre-trained DiTs, we resize videos to $480 \times 720(832)$ and sample 49 frames at 16 fps. We use AdamW with learning rate 1×10^{-5} and train for ~ 20 k steps on 48 NVIDIA A100s (Details are in Appendix C.1).

4.2 METRICS

We evaluate 5 metrics across three aspects: text alignment, video quality, and semantic alignment. Following prior work (Liu et al., 2025; Jiang et al., 2025), we measure text alignment with CLIP similarity (Radford et al., 2021) and assess video quality using motion smoothness (Radford et al., 2021), dynamic degree (Teed & Deng, 2020), and aesthetic quality (Schuhmann et al., 2022). We also introduce a semantic-alignment score that measures consistency between the reference and generated videos; we submit each video pair and detailed evaluation rules to Gemini-2.5-pro (Comanici et al., 2025) for automatic scoring (Details are in Appendix C.2).

4.3 DATASET

Semantic-controlled video generation requires paired reference and target videos sharing the same non-pixel-aligned semantic controls (e.g., concept, style, motion, camera). Prior work mostly relies on a few manually collected videos tailored to specific semantic conditions (Liu et al., 2025), limiting the emergence of unified models. To address this, we collect $2K$ high-quality reference images from Pexels (Pexels, 2025) spanning men, women, children, animals, objects, landscapes, and multi-subject cases. We then use Image-to-Video visual-effects templates from commercial models (VIDU (Vidu, 2025) and Kling (Kling, 2025)) and community LoRAs (Civitai, 2025) to create paired videos by matching each image to all compatible templates (some restrict subject categories). Overall, we obtain *VAP-Data*, a semantic-controlled paired dataset with over $100K$ samples across 100 semantic conditions—the largest resource (see Sec. 3.2 and Fig. 3). For evaluation, we evenly sampled 24 semantic conditions from 4 categories (concept, style, motion, camera) in the test subset, with 2 samples each. Detailed information and limitations are in Appendix D.

⁴As Wan2.1 is more resource-intensive, results are reported on CogVideoX unless otherwise noted.

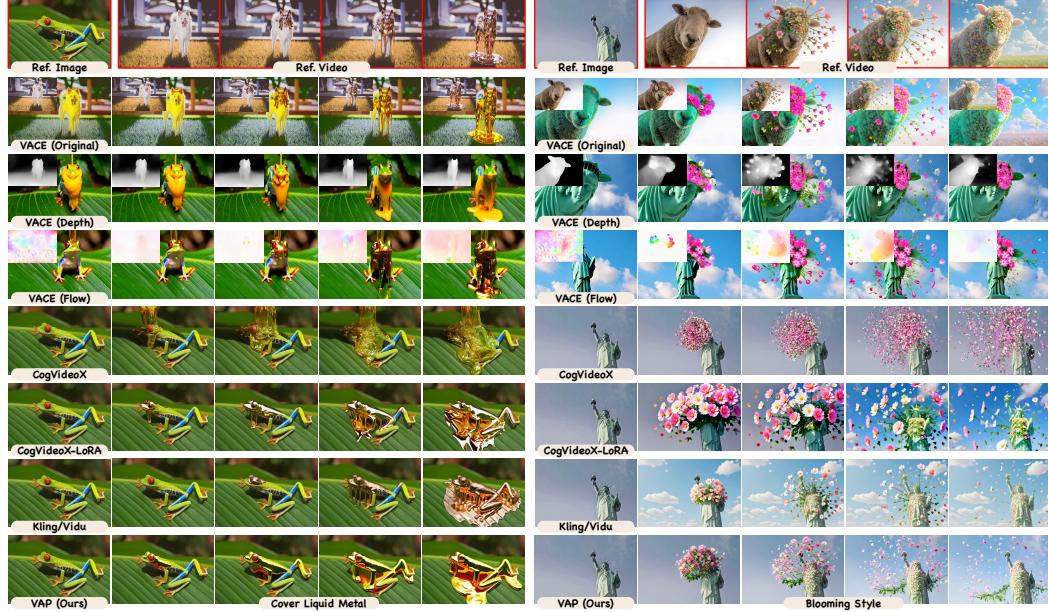


Figure 6: **Qualitative comparison** with VACE (Jiang et al., 2025), CogVideoX (I2V) (Yang et al., 2024), CogVideoX-LoRA (I2V) and commercial models (Kling, 2025; Vidu, 2025); VACE(*) uses a *-form condition (top left). **More visualizations are in Appendix A and the supplementary.**

Table 1: **Qualitative Comparison.** We compare against the SOTA structure-controlled generation method VACE (Jiang et al., 2025), the base video DiT model CogVideoX-I2V (Yang et al., 2024), the condition-specific variant CogVideoX-I2V (LoRA) (Hu et al., 2022), and the closed-source commercial models Kling/Vidu (Kling, 2025; Vidu, 2025). Overall, VAP delivers performance comparable to the closed-source models and, on average, surpasses the other open-source baselines, as a unified and generalizable model. **Red** stands for the best, **Blue** stands for the second best.

Metrics	Text		Overall Quality			Semantic	User Study
	Model	Clip Score↑	Motion Smoothness↑	Dynamic Degree↑	Aesthetic Quality↑	Alignment Score↑	Preference Rate (%)↑*
Structure-Controlled Methods							
VACE (Original)	5.88	97.60	68.75	53.90	35.38	0.6%	
VACE (Depth)	22.64	97.65	75.00	56.03	43.35	0.7%	
VACE (Optical Flow)	22.65	97.56	79.17	57.34	46.71	1.8%	
DiT Backbone and Condition-Specific Methods							
CogVideoX-I2V	22.82	98.48	72.92	56.75	26.04	6.9%	
CogVideoX-I2V (LoRA) [†]	23.59	98.34	70.83	54.23	68.60	13.1%	
Kling / Vidu [‡]	24.05	98.12	79.17	59.16	74.02	38.2%	
Ours							
Video-As-Prompt (VAP)	24.13	98.59	77.08	57.71	70.44	38.7%	

[†] We fine-tune LoRA on CogVideoX-I2V for each semantic condition in the benchmark and report the average metric as performance.

[‡] Kling and Vidu provide dedicated interfaces for each semantic condition; thus, we treat them as condition-specific.

* We report the *preference rate* by aggregating wins over all comparisons. Each cell is the average rate of human preferences received by the corresponding method.

4.4 COMPARISON WITH PREVIOUS METHODS

We evaluate VAP against: (1) the state-of-the-art (SOTA) structure-controlled video generation method VACE (Jiang et al., 2025) under multiple structure conditions (*e.g.*, original reference video, depth, optical flow); (2) condition-specific methods, where we train a LoRA (Hu et al., 2022) for each semantic condition—a common community practice often reported to match or surpass task-specific models (Bai et al., 2025a; Ye et al., 2025)—and report averaged performance; (3) state-of-the-art closed-source commercial models, including Kling (Kling, 2025) and Vidu (Vidu, 2025).

Quantitative Comparison. For the SOTA structure-controlled method VACE (Jiang et al., 2025), the model conditions on a video and a same-size mask indicating edit (1) vs. fixed (0) regions. Following VACE, we use the reference video, its depth, and its optical flow as video conditions, setting the mask to 1 so the model follows rather than copies them. Overall, VACE performs worst, as expected when structure-controlled methods are applied directly to semantic-controlled generation. This is because VACE assumes a pixel-wise mapping between the condition and the output (*e.g.*, a video and its depth), which breaks under semantic control and copies unwanted appearance or layout from the reference. As control moves from raw video, depth to optical flow, appearance detail decreases, and metrics improve, confirming that the pixel-wise prior is ill-suited for semantic-controlled generation. Driving a pre-trained DiT (CogVideoX-I2V) with captions carrying semantic

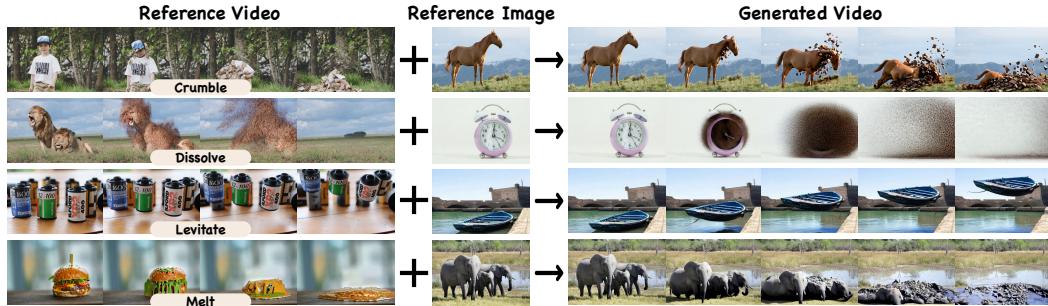


Figure 7: **Zero-Shot Performance.** Given semantic conditions unseen in *VAP-Data* (left column), *VAP* still transfers the abstract semantic pattern to the reference image in a zero-shot manner.

389 cues yields decent video quality but weak semantic alignment, since many semantics are hard to
390 express with coarse text. Common LoRA fine-tuning often obtains strong semantic alignment by
391 overfitting a specific condition: it harms base quality (vs. the CogVideoX-I2V row), needs a sepa-
392 rate model per condition, and fails to generalize to unseen references. By contrast, *VAP* outperforms
393 open-source baselines on most metrics, achieves performance comparable to commercial models,
394 and, for the first time, provides a unified model for semantic-controlled video generation.

395 **User Study** We conducted a user study with 20 randomly selected video-generation researchers
396 to evaluate video quality and semantic alignment. In each trial, raters compared different method
397 outputs shown with a semantic-control reference video and chose the better result for (i) semantic
398 alignment and (ii) overall quality. We report the *preference rate*—the normalized share of selections
399 across all comparisons, totaling 100%—in Tab. 1. *VAP* and *Kling*/*Vidu* (commercial, closed-source,
400 task-specific) achieve the overall highest preference rate, while *VAP* works as a unified model.

401 **Qualitative Comparison** In Fig. 6, *VAP* yields better temporal coherence, visual quality, and se-
402 mantic consistency than structure-controlled baselines (Jiang et al., 2025), DiT backbones, and
403 condition-specific finetuning (Hu et al., 2022), and matches condition-specific commercial models
404 *Kling* (*Kling*, 2025) and *Vidu* (*Vidu*, 2025). VACE’s pixel-mapping bias treats the semantic refer-
405 ence video as pixel-aligned, causing appearance/layout copying (*e.g.*, the frog stands like the dog;
406 the Statue of Liberty imitates a sheep); this artifact weakens when the reference is replaced by depth
407 and then optical flow, which progressively remove appearance details. LoRA finetuning improves
408 semantic alignment without copy artifacts but requires a separate model per condition and lacks
409 zero-shot generalization. In contrast, *VAP* uses a single model that treats all semantic conditions as
410 a unified reference-video prompt, enabling unified semantic-controlled generation.

411 **Zero-Shot Generation** By treating all semantic conditions as unified video prompts, *VAP* sup-
412 ports diverse semantic-controlled generation tasks; moreover, when given an unseen semantic refer-
413 ence (Liu et al., 2025) that doesn’t belong to *VAP-Data* (see Fig. 7), the in-context ability learned
414 from video-as-prompt data enables *VAP* to perform zero-shot generation guided by new references.

4.5 ABLATION STUDY

416 **In-Context Generation Structure.** We train 4 *VAP* variants to test the effectiveness of our mixture-
417 of-transformers (MoTs) adoption: **A1. Single-Branch Finetuning** u_{Θ}^s : expand pre-trained DiT
418 input sequence to $[Ref_{text}, Ref_{video}, Tar_{text}, Tar_{video}]$ and finetune the full model; **A2. Single-
419 Branch LoRA Finetuning** u_{Θ}^{sl} : same as A1 but freeze the backbone and train only the LoRA layers;
420 **A3. Unidirectional Cross-Attn** u_{Θ}^{uc} : freeze the pre-trained DiT, add a new branch with the same
421 weights, and inject its features via layer-wise cross-attention; and **A4. Unidirectional Addition**
422 u_{Θ}^{ua} : same as A3 but inject features via residual addition. We evaluate on the same benchmark of
423 *VAP-Data*. Results in Tab. 2 show: **A1.** MoT boosts performance by preserving the base DiT’s gen-
424 erative ability, solving the catastrophic forgetting while enabling plug-and-play in-context control.
425 **A2.** LoRA helps retain the backbone’s ability, but its limited capacity struggles with complex in-
426 context generation, yielding suboptimal results. **A3.** Layer-wise bidirectional information exchange
427 in MoT lets the reference video-prompt representation adapt synchronously to the target tokens,
428 improving semantic alignment. **A4.** Even with retraining, residual-addition methods rely on rigid
429 pixel-to-pixel mapping, mismatching semantic-controlled generation and degrading performance.

430 **Position Embedding Designs.** To validate the effectiveness of our temporally-biased RoPE, we
431 evaluate two variants. (1) u_{Θ}^i : applying identical RoPE to both the reference and target videos,
432 which enforces an unrealistic pixel-wise alignment prior and leads to degraded performance; (2) u_{Θ}^n :

Table 2: **Ablation Study.** We ablate on the in-context generation structure designs, temporal-biased RoPE, the scalability, and the transferability across different DiT structures. The last row is our default model (VAP), which uses MoT structure, temporal-biased RoPE, 100K training pairs, and CogVideoX-I2V-5B. **Red** stands for the best, **Blue** stands for the second best.

Metrics Variant	Text CLIP Score \uparrow	Motion Smoothness \uparrow	Overall Quality	Aesthetic Quality \uparrow	Semantic Alignment Score \uparrow
In-Context Generation Structure					
u_{Θ}^s (Unidir-Cross-Attn)	23.03	97.97	70.83	56.93	68.74
u_{Θ}^{sl} (Single-Branch-LoRA)	23.12	98.25	72.92	57.19	69.08
u_{Θ}^{uc} (Unidir-Cross-Attn)	22.96	97.94	66.67	56.88	67.16
u_{Θ}^{ua} (Unidir-Addition)	22.37	97.63	62.50	56.91	55.99
Position Embedding Design					
u_{Θ}^i (Identical PE)	23.17	98.49	70.83	57.09	68.98
u_{Θ}^n (Neg. shift in T, W)	23.45	98.53	72.92	57.31	69.05
Scalability[‡]					
u_{Θ} (1K)	22.84	92.12	60.42	56.77	63.91
u_{Θ} (10K)	22.87	94.89	64.58	56.79	66.28
u_{Θ} (50K)	23.29	96.72	70.83	56.82	68.23
DiT Structure					
u_{Θ}^{wan} (Wan2.1-I2V-14B)	23.93	97.87	79.17	58.09	70.23
Ours					
u_{Θ} (VAP)	24.13	98.59	77.08	57.71	70.44

[†] **Notation.** u_{Θ} (our VAP parameterized by Θ). s (in-context single-branch finetuning), sl (in-context single-branch LoRA finetuning), uc (unidirectional cross-attention injection), ua (unidirectional residual addition), i (identical position embedding in reference and target), n (temporal shift + negative temporal/width shifts of position embedding), Wan (Wan2.1 as DiT backbone).

[‡] **Scale.** $u_{\Theta}(M)$ indicates the number of training pairs ($M \in \{1K, 10K, 50K, 100K\}$). Our final version uses 100K training pairs.

in addition to introducing a temporal bias Δ , following in-context image generation (Tan et al., 2025), we add a width bias by placing the reference video to the left of the target video. Experiments show that this increases the difficulty of spatial referencing and results in performance degradation.

Scalability. As shown in the scalability section, VAP improves across all metrics as training data grows, demonstrating strong scalability. This follows from our unified design that treats reference videos as prompts without task-specific modifications, together with the MoT framework, which preserves the backbone’s generative capacity while enabling plug-and-play in-context generation.

DiT Structure. To test transferability, we equip Wan2.1-I2V-14B with VAP equal in parameter counts to CogVideoX-I2V-5B version (evenly inserted across $\frac{1}{4}$ layers; $\approx 5B$), which—benefiting from Wan2.1’s stronger base—improves dynamic degree and aesthetic score but, because the only $\frac{1}{4}$ in-context interaction, yields slightly worse reference alignment than VAP on CogVideoX.

We also ablate the in-context expert transformer layer distribution of VAP, and the video-prompt representation. Further experiment details are in Appendix F due to page limits.

5 CONCLUSION

Video-As-Prompt (VAP) is a unified, semantic-controlled video generation framework that treats reference videos as prompts and enables plug-and-play in-context control via a mixture-of-transformers expert. VAP overcomes limits of structure-controlled methods (e.g., inappropriate pixel-wise priors) and task/condition-specific designs (e.g., non-generalizable models), providing scalable semantic control and zero-shot generalizability. We build *VAP-Data*, the largest semantic-controlled video generation dataset, and show in extensive experiments that VAP achieves state-of-the-art among open-source models, comparable performance to commercial models, and strong generalization.

Limitations and Future Works. Despite strong performance, some limitations need further study: (1) We experimented on our large-scale *VAP-Data*, yet the semantic conditions in *VAP-Data* are relatively limited, synthetic, and derived from other generative models, which may inherit the specific stylistic biases, artifacts, and conceptual limitations of the source templates (see Appendix D). We leave the construction of larger-scale, real, semantic-controlled video data to future work. (2) VAP uses a reference video, a reference caption, and a target caption to guide semantic control. To stay close to the original DiT distribution, we employ standard video descriptions as captions; however, inaccurate semantics descriptions or large subject mismatch can degrade generation quality (see Appendix E). Instruction-style captions (e.g., “please follow the Ghibli style in the reference video”) may more effectively capture the intended semantics and improve control.

486 **6 ETHICS STATEMENT**
487488 **Scope and intended use (research-only).** VAP targets *semantic-controlled* video generation for
489 research, education, and creative prototyping, where a *reference video* and an optional caption steer
490 concept/style/motion/camera. It is *not* intended for surveillance, impersonation, political persuasion,
491 or other high-risk deployments. We will accompany any artifact release with a research-only license
492 and an acceptable-use policy (AUP) that explicitly prohibits abusive or unlawful scenarios.
493494 **Misuse risks and technical/operational mitigations.** Potential misuses include identity impersonation,
495 “deepfake” content, targeted harassment, deceptive political messaging, and generation of
496 sexualized or violent media. Our mitigations include: (i) a research-only release; (ii) default content
497 filters blocking clearly harmful categories (e.g., sexual content, explicit violence, hate symbols).
498499 **7 REPRODUCIBILITY STATEMENT**
500501 We release complete, anonymous resources to ensure reproducibility of our results: (i) code and
502 scripts at <https://anonymous.4open.science/r/Video-As-Prompt-Review-CA61> , and (ii) an anonymous
503 project page with qualitative examples at <https://video-as-prompt.github.io> . Method details
504 are specified in §3, implementation in §4.1, metrics in §4.2, and datasets in §4.3.
505506 **REFERENCES**
507508 Jianhong Bai, Menghan Xia, Xiao Fu, Xintao Wang, Lianrui Mu, Jinwen Cao, Zuozhu Liu, Haoji
509 Hu, Xiang Bai, Pengfei Wan, et al. Recammaster: Camera-controlled generative rendering from
510 a single video. In *ICCV*, 2025a.511 Jianhong Bai, Menghan Xia, Xintao Wang, Ziyang Yuan, Zuozhu Liu, Haoji Hu, Pengfei Wan,
512 and Di ZHANG. Syncammaster: Synchronizing multi-camera video generation from diverse
513 viewpoints. In *ICLR*, 2025b.514 Yuxuan Bian, Xuan Ju, Jiangtong Li, Zhijian Xu, Dawei Cheng, and Qiang Xu. Multi-patch prediction:
515 adapting language models for time series representation learning. In *ICML*, 2024.
516517 Yuxuan Bian, Ailing Zeng, Xuan Ju, Xian Liu, Zhaoyang Zhang, Wei Liu, and Qiang Xu. Motion-
518 craft: Crafting whole-body motion with plug-and-play multimodal controls. In *AAAI*, 2025a.519 Yuxuan Bian, Zhaoyang Zhang, Xuan Ju, Mingdeng Cao, Liangbin Xie, Ying Shan, and Qiang Xu.
520 Videopainter: Any-length video inpainting and editing with plug-and-play context control. In
521 *SIGGRAPH*, 2025b.
522523 Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
524 and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion
525 models. In *CVPR*, 2023.526 Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
527 Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
528 generation models as world simulators, 2024. URL [https://openai.com/research/
529 video-generation-models-as-world-simulators](https://openai.com/research/video-generation-models-as-world-simulators).530 Boyuan Chen, Diego Martí Monsó, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitz-
531 mann. Diffusion forcing: Next-token prediction meets full-sequence diffusion. *NeurIPS*, 2024a.
532533 Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying
534 Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models, 2024b.
535536 Civitai. Civitai. <https://civitai.com/>, 2025.537 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
538 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
539 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. *arXiv preprint arXiv:2507.06261*, 2025.

540 Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In *ICLR*,
 541 2024.

542

543 Patrick Esser, Johnathan Chiu, Parmida Atighehchian, Jonathan Granskog, and Anastasis Germanidis. Structure and content-guided video synthesis with diffusion models. In *ICCV*, 2023.

544

545 Gongfan Fang, Kunjun Li, Xinyin Ma, and Xinchao Wang. Tinyfusion: Diffusion transformers
 546 learned shallow. In *CVPR*, 2025.

547

548 Jianxiong Gao, Zhaoxi Chen, Xian Liu, Jianfeng Feng, Chenyang Si, Yanwei Fu, Yu Qiao, and
 549 Ziwei Liu. Longvie: Multimodal-guided controllable ultra-long video generation. *arXiv preprint*
 550 *arXiv:2508.03694*, 2025a.

551

552 Yu Gao, Haoyuan Guo, Tuyen Hoang, Weilin Huang, Lu Jiang, Fangyuan Kong, Huixia Li, Jiashi Li,
 553 Liang Li, Xiaojie Li, et al. Seedance 1.0: Exploring the boundaries of video generation models.
 554 *arXiv preprint arXiv:2506.09113*, 2025b.

555

556 Rohit Girdhar, Mannat Singh, Andrew Brown, Quentin Duval, Samaneh Azadi, Sai Saketh Rambhatla,
 557 Akbar Shah, Xi Yin, Devi Parikh, and Ishan Misra. Emu video: Factorizing text-to-video
 558 generation by explicit image conditioning. *arXiv preprint arXiv:2311.10709*, 2023.

559

560 Zekai Gu, Rui Yan, Jiahao Lu, Peng Li, Zhiyang Dou, Chenyang Si, Zhen Dong, Qifeng Liu, Cheng
 561 Lin, Ziwei Liu, et al. Diffusion as shader: 3d-aware video diffusion for versatile video generation
 562 control. In *SIGGRAPH*, 2025.

563

564 Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai. Sparsectrl:
 565 Adding sparse controls to text-to-video diffusion models. In *ECCV*, 2025a.

566

567 Yuwei Guo, Ceyuan Yang, Ziyan Yang, Zhibei Ma, Zhijie Lin, Zhenheng Yang, Dahua Lin, and
 568 Lu Jiang. Long context tuning for video generation. *arXiv preprint arXiv:2503.10589*, 2025b.

569

570 Agrim Gupta, Lijun Yu, Kihyuk Sohn, Xiuye Gu, Meera Hahn, Li Fei-Fei, Irfan Essa, Lu Jiang,
 571 and José Lezama. Photorealistic video generation with diffusion models. *arXiv preprint*
 572 *arXiv:2312.06662*, 2023.

573

574 Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, and Ceyuan
 575 Yang. Cameractrl: Enabling camera control for text-to-video generation. *arXiv preprint*
 576 *arXiv:2404.02101*, 2024.

577

578 Hao-Yu Hsu, Zhi-Hao Lin, Albert Zhai, Hongchi Xia, and Shenlong Wang. Autovfx: Physically
 579 realistic video editing from natural language instructions. *arXiv preprint arXiv:2411.02394*, 2024.

580

581 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 582 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 2022.

583

584 Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character animation.
 585 In *CVPR*, 2024.

586

587 Lianghua Huang, Wei Wang, Zhi-Fan Wu, Yupeng Shi, Huanzhang Dou, Chen Liang, Yutong
 588 Feng, Yu Liu, and Jingren Zhou. In-context lora for diffusion transformers. *arXiv preprint*
 589 *arXiv:2410.23775*, 2024.

590

591 Yuzhou Huang, Ziyang Yuan, Quande Liu, Qiulin Wang, Xintao Wang, Ruimao Zhang, Pengfei
 592 Wan, Di Zhang, and Kun Gai. Conceptmaster: Multi-concept video customization on diffusion
 593 transformer models without test-time tuning. *arXiv preprint arXiv:2501.04698*, 2025.

594

595 Ondřej Jamriška, Šárka Sochorová, Ondřej Texler, Michal Lukáč, Jakub Fišer, Jingwan Lu, Eli
 596 Shechtman, and Daniel Sýkora. Stylizing video by example. *ACM Transactions on Graphics*,
 597 2019.

598

599 Zeyinzi Jiang, Zhen Han, Chaojie Mao, Jingfeng Zhang, Yulin Pan, and Yu Liu. Vace: All-in-one
 600 video creation and editing. *arXiv preprint arXiv:2503.07598*, 2025.

594 Wonjoon Jin, Qi Dai, Chong Luo, Seung-Hwan Baek, and Sunghyun Cho. Flovd: Optical flow
 595 meets video diffusion model for enhanced camera-controlled video synthesis. In *CVPR*, 2025.
 596

597 Xuan Ju, Ailing Zeng, Chenchen Zhao, Jianan Wang, Lei Zhang, and Qiang Xu. Humansd: A native
 598 skeleton-guided diffusion model for human image generation. In *ICCV*, 2023.

599 Xuan Ju, Weicai Ye, Quande Liu, Qiulin Wang, Xintao Wang, Pengfei Wan, Di Zhang, Kun Gai, and
 600 Qiang Xu. Fulldit: Multi-task video generative foundation model with full attention. In *ICCV*,
 601 2025.

602 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint
 603 arXiv:1312.6114*, 2013.

604 Kling. Kling: Image-to-video special effects. [https://klingai.kuaishou.com/
 605 image-to-video/special-effects/new](https://klingai.kuaishou.com/image-to-video/special-effects/new), 2025.

606 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 607 Bo Wu, Jianwei Zhang, et al. Hunyanvideo: A systematic framework for large video generative
 608 models. *arXiv preprint arXiv:2412.03603*, 2024.

609 Mathis Koroglu, Hugo Caselles-Dupré, Guillaume Jeanneret, and Matthieu Cord. Onlyflow: Optical
 610 flow based motion conditioning for video diffusion models. In *CVPR*, 2025.

611 Guojun Lei, Chi Wang, Hong Li, Rong Zhang, Yikai Wang, and Weiwei Xu. Animateanything:
 612 Consistent and controllable animation for video generation. *arXiv preprint arXiv:2411.10836*,
 613 2024.

614 Weixin Liang, Lili Yu, Liang Luo, Srinivasan Iyer, Ning Dong, Chunting Zhou, Gargi Ghosh, Mike
 615 Lewis, Wen-tau Yih, Luke Zettlemoyer, et al. Mixture-of-transformers: A sparse and scalable
 616 architecture for multi-modal foundation models. *arXiv preprint arXiv:2411.04996*, 2024.

617 Han Lin, Jaemin Cho, Abhay Zala, and Mohit Bansal. Ctrl-adapter: An efficient and versatile
 618 framework for adapting diverse controls to any diffusion model. *arXiv preprint arXiv:2404.09967*,
 619 2024.

620 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 621 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

622 Xinyu Liu, Ailing Zeng, Wei Xue, Harry Yang, Wenhan Luo, Qifeng Liu, and Yike Guo. Vfx
 623 creator: Animated visual effect generation with controllable diffusion transformer. *arXiv preprint
 624 arXiv:2502.05979*, 2025.

625 Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. Unified particle physics
 626 for real-time applications. *ACM Transactions on Graphics*, 2014.

627 Fangyuan Mao, Aiming Hao, Jintao Chen, Dongxia Liu, Xiaokun Feng, Jiashu Zhu, Meiqi Wu,
 628 Chubin Chen, Jiahong Wu, and Xiangxiang Chu. Omni-effects: Unified and spatially-controllable
 629 visual effects generation. *arXiv preprint arXiv:2508.07981*, 2025.

630 Willi Menapace, Aliaksandr Siarohin, Ivan Skorokhodov, Ekaterina Deyneka, Tsai-Shien Chen,
 631 Anil Kag, Yuwei Fang, Aleksei Stoliar, Elisa Ricci, Jian Ren, et al. Snap video: Scaled spa-
 632 tiotemporal transformers for text-to-video synthesis. *arXiv preprint arXiv:2402.14797*, 2024.

633 Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan.
 634 T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
 635 models. In *AAAI*, 2024.

636 OpenAI. Introducing GPT-5, 2025. URL [https://openai.com/index/
 637 introducing-gpt-5/](https://openai.com/index/introducing-gpt-5/).

638 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *ICCV*, 2023.

639 Pexels. Pexels. <https://www.pexels.com/>, 2025.

640 Pika. Pika: Ai video generation effects. <https://pika.art/pikffects>, 2025.

648 PixVerse. Pixverse: Ai video creation platform. <https://app.pixverse.ai/home>, 2025.
 649

650 Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv
 651 Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, et al. Movie gen: A cast of media founda-
 652 tion models. *arXiv preprint arXiv:2410.13720*, 2024.

653 Alexander Pondaven, Aliaksandr Siarohin, Sergey Tulyakov, Philip Torr, and Fabio Pizzati. Video
 654 motion transfer with diffusion transformers. In *CVPR*, 2025.

655

656 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 657 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 658 models from natural language supervision. In *ICML*, 2021.

659 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 660 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 661 open large-scale dataset for training next generation image-text models. *NeurIPS*, 2022.

662 Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
 663 Yang, Oron Ashual, Oran Gafni, et al. Make-a-video: Text-to-video generation without text-video
 664 data. *arXiv preprint arXiv:2209.14792*, 2022.

665 Ivan Skorokhodov, Sergey Tulyakov, and Mohamed Elhoseiny. Stylegan-v: A continuous video
 666 generator with the price, image quality and perks of stylegan2. In *CVPR*, 2022.

667

668 Kiwhan Song, Boyuan Chen, Max Simchowitz, Yilun Du, Russ Tedrake, and Vincent Sitzmann.
 669 History-guided video diffusion. In *ICML*, 2024.

670

671 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 672 hanced transformer with rotary position embedding. *Neurocomputing*, 2024.

673 Zhenxiong Tan, Songhua Liu, Xingyi Yang, Qiaochu Xue, and Xinchao Wang. Ominicontrol: Min-
 674 imal and universal control for diffusion transformer. In *ICCV*, 2025.

675

676 Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In *ECCV*,
 677 2020.

678

679 Vidu. Vidu: Ai video templates. <https://www.vidu.com/templates>, 2025.

680 Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene dynamics.
 681 *NeurIPS*, 2016.

682

683 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 684 Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative
 685 models. *arXiv preprint arXiv:2503.20314*, 2025.

686

687 Luozhou Wang, Ziyang Mai, Guibao Shen, Yixun Liang, Xin Tao, Pengfei Wan, Di Zhang, Yijun
 688 Li, and Ying-Cong Chen. Motion inversion for video customization. In *SIGGRAPH*, 2025.

689

690 Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo,
 691 and Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. In
 692 *SIGGRAPH*, 2024.

693

694 Enze Xie, Junsong Chen, Yuyang Zhao, Jincheng Yu, Ligeng Zhu, Chengyue Wu, Yujun Lin, Zhekai
 695 Zhang, Muyang Li, Junyu Chen, et al. Sana 1.5: Efficient scaling of training-time and inference-
 696 time compute in linear diffusion transformer. *arXiv preprint arXiv:2501.18427*, 2025.

697

698 Shiyuan Yang, Zheng Gu, Liang Hou, Xin Tao, Pengfei Wan, Xiaodong Chen, and Jing Liao. Mtv-
 699 inpaint: Multi-task long video inpainting. *arXiv preprint arXiv:2503.11412*, 2025.

700

701 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 702 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 703 with an expert transformer. In *ICLR*, 2024.

704

Danah Yatim, Raffail Fridman, Omer Bar-Tal, Yoni Kasten, and Tali Dekel. Space-time diffusion
 705 features for zero-shot text-driven motion transfer. In *CVPR*, 2024.

702 Zixuan Ye, Huijuan Huang, Xintao Wang, Pengfei Wan, Di Zhang, and Wenhan Luo. Stylemaster:
703 Stylize your video with artistic generation and translation. In *CVPR*, 2025.
704

705 David Junhao Zhang, Dongxu Li, Hung Le, Mike Zheng Shou, Caiming Xiong, and Doyen Sahoo.
706 Moonshot: Towards controllable video generation and editing with multimodal conditions. *arXiv*
707 *preprint arXiv:2401.01827*, 2024.

708 Jintao Zhang, Jia Wei, Pengle Zhang, Jun Zhu, and Jianfei Chen. Sageattention: Accurate 8-bit
709 attention for plug-and-play inference acceleration. In *ICLR*, 2025a.
710

711 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
712 diffusion models. In *ICCV*, 2023.

713 Shiyi Zhang, Junhao Zhuang, Zhaoyang Zhang, Ying Shan, and Yansong Tang. Flexiact: Towards
714 flexible action control in heterogeneous scenarios. In *SIGGRAPH*, 2025b.
715

716 Rui Zhao, Yuchao Gu, Jay Zhangjie Wu, David Junhao Zhang, Jia-Wei Liu, Weijia Wu, Jussi Keppo,
717 and Mike Zheng Shou. Motiondirector: Motion customization of text-to-video diffusion models.
718 In *ECCV*, 2024.

719 Haitao Zhou, Chuang Wang, Rui Nie, Jinxiao Lin, Dongdong Yu, Qian Yu, and Changhu Wang.
720 Trackgo: A flexible and efficient method for controllable video generation. *arXiv preprint*
721 *arXiv:2408.11475*, 2024.

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

In the appendix, we provide more qualitative results (Appendix A), downstream application demonstration (Appendix B), more implementation details (Appendix C), including the hyperparameters and the semantic alignment score metric. Then, we illustrate more dataset details and limitations of our *VAP-Data* (Appendix D). Furthermore, we discuss more about the influence of reference video quality, caption quality, and multiple reference videos (Appendix E). And we conduct more ablation about *VAP* (Appendix F). Finally, we illustrate the use of large language models (Appendix G).

A GALLERY

To further demonstrate our VAP's performance, we provide more semantic-controlled generation cases in Fig. 8, Fig. 9. **We strongly encourage readers to view our webpage in the supplementary for better visualization.**

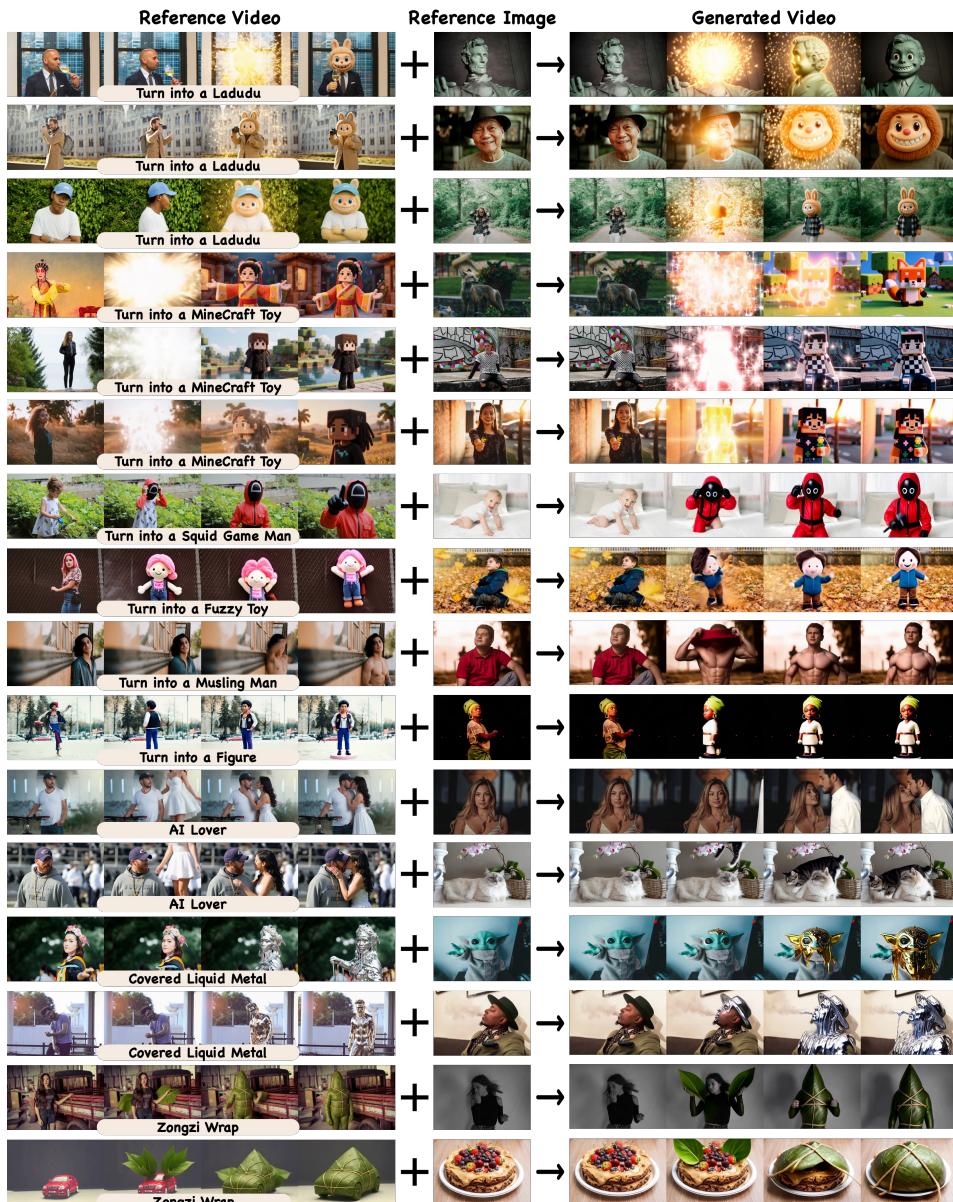


Figure 8: **Additional visualizations** of VAP, including entity transformation and entity interaction in concept semantic categories.

Figure 9: **Additional visualizations** of VAP, including style semantic categories, motion semantic categories (Non-Human Motion and Human Motion), and camera semantic categories.

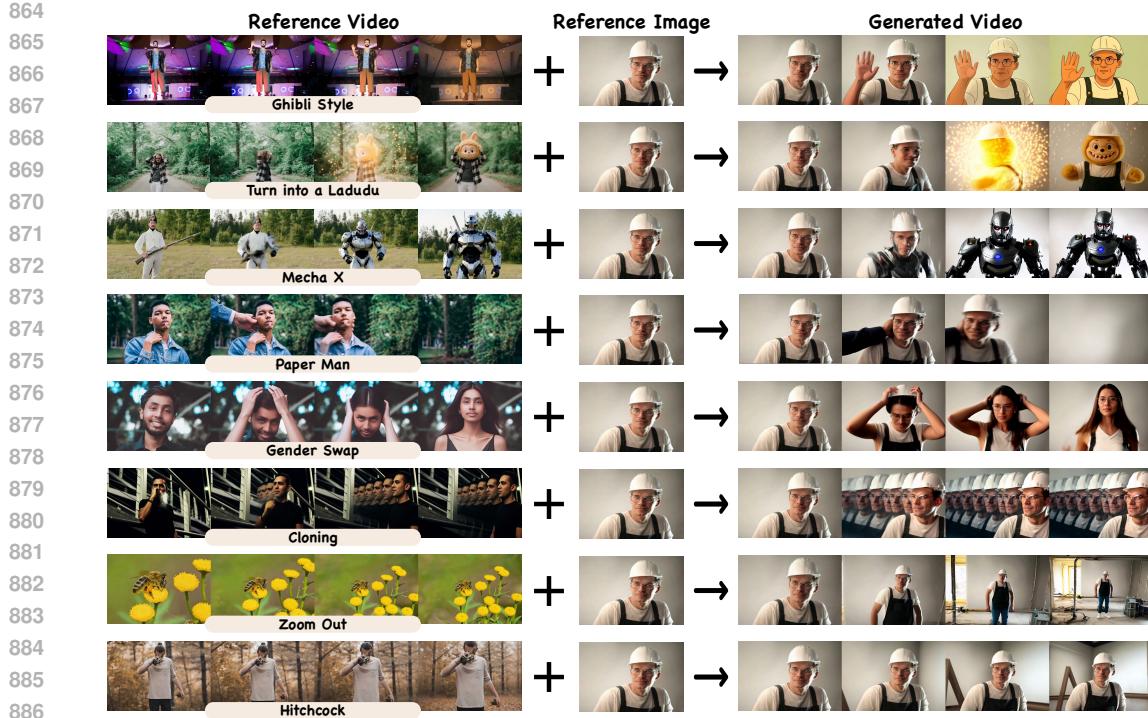


Figure 10: Given different reference videos (with different semantics) and the same reference image, our *VAP* consistently generates a new video for each semantic.

B APPLICATION

Our Video-as-Prompt (*VAP*) model supports the following downstream applications by disentangling a semantic concept from a source video and applying it to a new subject:

- Given different reference videos (with different semantics) and the same reference image, our *VAP* consistently generates a new video for each semantic (Fig. 10);
- Given different reference videos (with the same semantics) and the same reference image, our *VAP* consistently generates the target video aligned with the provided semantics (Fig. 11);
- Given one reference video and different reference images, our *VAP* transfers the same semantics from the reference video to each image and generates the corresponding videos (Fig. 12);
- Beyond video prompts, *VAP* allows for fine-grained adjustments using modified text prompts, by fixing the reference inputs and only changing a single word in the prompt (*e.g.*, black to white). *VAP* can precisely edit attributes of the generated output while preserving identity and motion (Fig. 13).

C IMPLEMENTATION DETAILS

C.1 HYPERPARAMETERS

In Tab. 3, we summarize hyperparameters for two *VAP* variants based on CogVideoX-5B (Yang et al., 2024) and Wan2.1-14B (Wan et al., 2025), respectively, showing transferability across different DiT architectures.

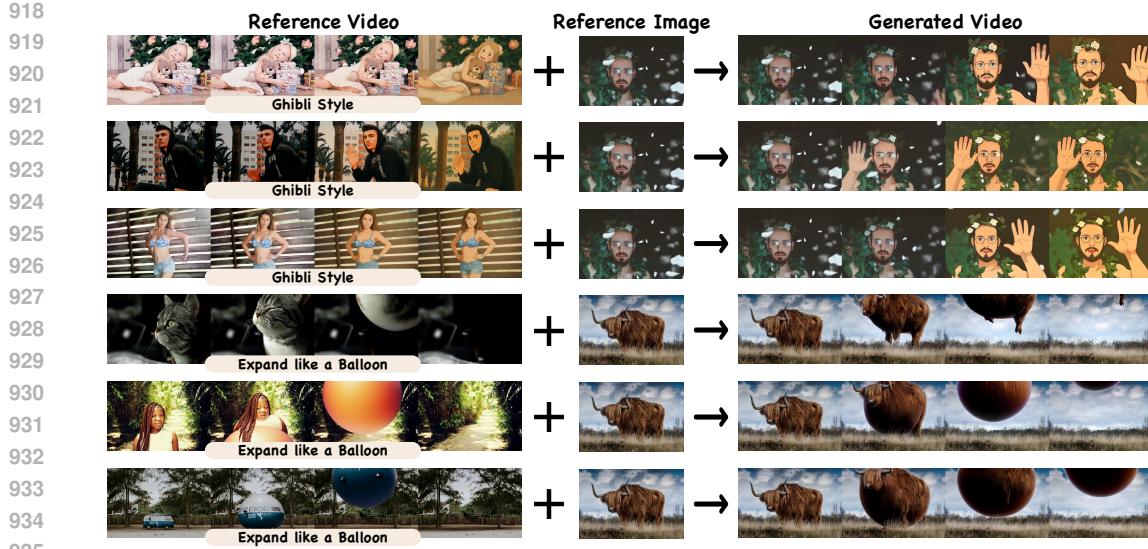


Figure 11: Given different reference videos (with the same semantics) and the same reference image, our *VAP* consistently generates the target video aligned with the provided semantics

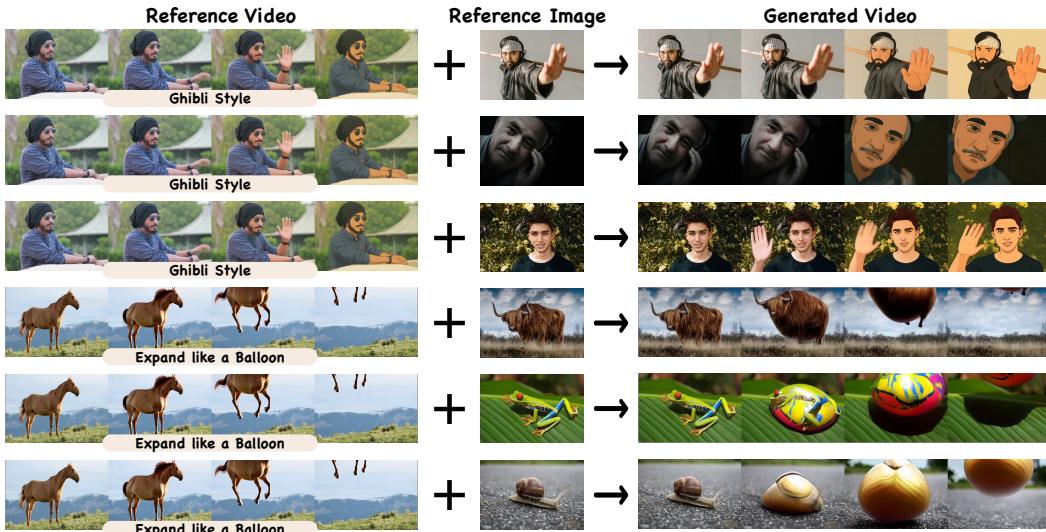
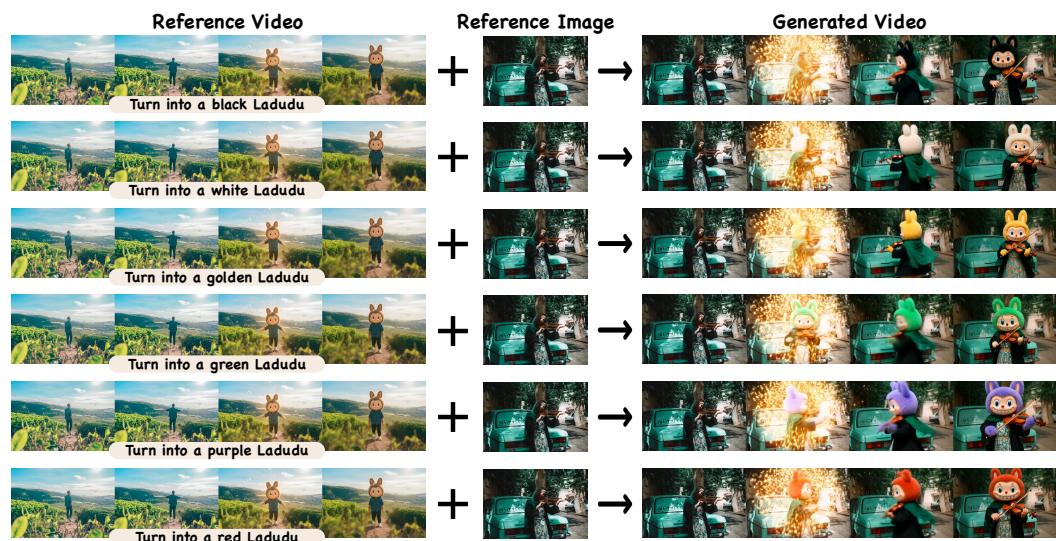


Figure 12: Given one reference video and different reference images, our *VAP* transfers the same semantics from the reference video to each image and generates the corresponding videos.

C.2 METRICS

As stated in Sec. 4.2, standard video-quality metrics (e.g., CLIP score (Radford et al., 2021), aesthetic score (Schuhmann et al., 2022)) do not reliably capture adherence to a specific semantic condition, so we introduce a semantic-alignment score that measures consistency between the reference semantic condition and the generated video; we submit each (reference, generation) pair and the evaluation rules to Gemini-2.5-pro (Comanici et al., 2025) for automatic scoring.

The evaluation rules pair a general template with key criteria for each semantic; for each case, we provide the template, the criteria for the current semantic (see Tab. 4), the reference video condition, and the generated video to the VLM, which scores them under these rules.



972
973 **Reference Video**
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990 **Reference Image**
991
992
993
994
995
996 **Generated Video**
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure 13: Given a fixed reference video and a reference image, our *VAP* preserves semantics and identity while using a user-modified prompt to adjust fine-grained attributes.

Table 3: Hyperparameter selection for CogVideoX-I2V-5B-based and Wan2.1-I2V-14B-based VAP.

Hyperparameter	Model	
	CogVideoX-I2V-based	Wan2.1-I2V-based
Batch Size / GPU	1/1	1/2
Accumulate Step	1	1
Optimizer	AdamW	AdamW
Weight Decay	0.0001	0.0001
Learning Rate	0.00001	0.00001
Learning Rate Schedule	constant with warmup	constant with warmup
WarmUp Steps	1000	1000
Training Steps	20,000	20,000
Resolution	480p	480p
Prediction Type	Velocity	Flow Matching
Num Layers	42	40
MoT Layers	[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]	[0, 4, 8, 12, 16, 20, 24, 28, 32, 36]
Pre-trained Model	CogVideoX-I2V-5B	Wan2.1-I2V-14B
Sampler	CogVideoX DDIM	Flow Euler
Sample Steps	50	30
Guide Scale	6.0	5.0
Generation Speed (1 A100)	~540s	~420s
Device	A100×48	A100×48
Training Strategy	FSDP / DDP / BFloat16	FSDP / DDP Parallel / BFloat16

1022
1023
1024
1025
To validate the stability of the semantic alignment score, we conduct the same evaluation experiment with another state-of-the-art vision language model GPT-5 (OpenAI, 2025); its scores match closely Gemini-2.5-Pro (Comanici et al., 2025) and follow the trends of human preference rate in our user study (see Tab. 5), confirming the validity of the metric. This further verifies the effectiveness and validity of our proposed semantic alignment score.

1026 **Table 4: Prompt components for the semantic-alignment metics.** We provide the general template
 1027 and the specific criteria of “Ghibli Style” as an example.
 1028

1029 Category	1030 Content
1031 General Template	<p>You are an expert judge for reference-based semantic video generation.</p> <p>INPUTS</p> <p>REFERENCE video: the target semantic to imitate. TEST video: a new output conditioned on a NEW reference image. Human criteria (treat as ground truth success checklist; overrides defaults if conflict): {criteria}</p> <p>REGIME DECISION</p> <p>Classify the semantics into one of: A) ID-TRANSFORM (identity-changing): the main subject/object changes semantic class or material/state. Layout and identity may legitimately change as a consequence of the transformation. B) NON-ID-TRANSFORM (identity-preserving): stylization, camera motion (pan/zoom), mild geometry exaggeration, lighting changes, human motion, etc. The main subject class/identity should remain the same.</p> <p>If the REFERENCE clearly shows a class/state change, choose A. Otherwise, choose B. When uncertain, choose B.</p> <p>EVALUATION</p> <p>1) SEMANTIC MATCH (0–60) Regime A (ID-TRANSFORM): How strongly and accurately does TEST reproduce the REFERENCE’s target state/look/behavior on the correct regions? Is the source→target mapping consistent (same parts transform to corresponding target parts)? Does the transformed state resemble the REFERENCE target, not a generic filter? Regime B (NON-ID-TRANSFORM): Does TEST replicate the specific semantic (style, camera motion, geometric exaggeration) while keeping the subject recognizable and aligned to the intended scope?</p> <p>2) IDENTITY / LAYOUT CORRESPONDENCE (0–20) Regime A: Reward semantic correspondence rather than identical identity; coarse scene continuity is preserved unless the REFERENCE implies re-layout. Regime B: Main subject identity stays intact (face/body/clothes/features), and coarse spatial layout remains consistent (no unintended subject swaps/teleports).</p> <p>3) TEMPORAL QUALITY and TRANSFORMATION CONTINUITY (0–20) Check onset→sustain→offset completeness of the transformation as implied by the REFERENCE. Avoid pop-in/out. Motion is smooth, minimal flicker, and the background is reasonably stable. No frozen loops unless REFERENCE loops.</p> <p>HARD FAIL CAP (force FINAL $j=20$ if any true) - REFERENCE shows an ID-TRANSFORM, but TEST lacks the transformation, targets the wrong class/material, or completes $>70\%$ of the transformation timeline. - Severe identity loss in Regime B (unrecognizable face/body, unintended person/object swap). - Gross broken anatomy (detached/missing limbs, implausible face mask) is not required by the semantics. - Extreme temporal instability or unreadable corruption (heavy strobe, tearing, tiling). - Hallucinated intrusive objects that block the subject or derail the semantics.</p> <p>OUTPUT (exactly ONE line of JSON; integer only) {“score”: 1–100}</p> <p>Regime: NON-ID-TRANSFORM (identity-preserving stylization).</p> <p>Semantic: Ghibli-style stylization — the overall look gradually transitions to a hand-drawn, soft, film-like Ghibli aesthetic across the whole frame.</p> <p>Identity preservation: The main subject remains recognizable; appearance/proportions/base colors are largely maintained (stylistic simplification and brush-like textures allowed).</p> <p>Motion allowance: Light natural motion is allowed (e.g., slight subject or scene movement) without disrupting effect consistency.</p> <p>Exclusions: No identity swaps, major re-layout, or gross anatomy distortions unless explicitly implied by the reference.</p> <p>...</p>
1066 Semantic Criteria	

1075
 1076
 1077
 1078
 1079

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
Table 5: **Semantic alignment score metric and user preference.** Columns are models; rows are semantic alignment score evaluated by Gemini-2.5-Pro (Comanici et al., 2025), semantic alignment score evaluated by GPT-5 (OpenAI, 2025), and human preference rate results of our user study.

Metric	VACE (Original)	VACE (Depth)	VACE (Optical Flow)	CogVideoX-I2V	CogVideoX-I2V (LoRA)	Kling / Vidu	Video-As-Prompt (VAP)
Alignment Score (Gemini-2.5-Pro)↑	35.38	43.35	46.71	26.04	68.60	74.02	70.44
Alignment Score (GPT-5)↑	32.52	39.41	45.09	28.36	66.93	73.91	70.26
Preference Rate (%)↑	0.6%	0.7%	1.8%	6.9%	13.1%	38.2%	38.7%

D DATASET

D.1 DATASET DETAILS

In-context learning requires vast amounts of example pairs, which simply do not exist for semantic video tasks. Filming 100 k real-world pairs is nearly impossible for a research exploration. Our solution was to bootstrap it. We curated thousands of high-quality real images and then used the existing “zoo of specialist models” (commercial APIs (Kling, 2025; Vidu, 2025; PixVerse, 2025) and LoRAs (Hu et al., 2022; Civitai, 2025)) as a powerful, automated engine to create our paired dataset, *VAP-Data*. As shown in Sec. 3.2 and Fig. 3, *VAP-Data* is the largest semantic-controlled paired dataset to date, with over 100 K samples across 100 semantic conditions, covering 4 primary categories: concept (entity transformation and interaction), style, motion (human and non-human), and camera movement. The detailed distribution of semantic conditions is provided in Tab. 6.

Crucially, *VAP-Data* is more than just a dataset; it’s proof of a concept. We show that we can train a single generalist model (*VAP*) to learn the unified underlying principle of semantic control by showing it various examples from disparate specialist models.

For evaluation, we evenly sampled 24 semantic conditions from 4 categories (concept, style, motion, camera) in *VAP-Data* test subset, with 2 samples each, totaling 48 test samples.

D.2 DATASET LIMITATIONS

Even though our *VAP-Data* is the largest semantic-controlled video generation dataset, it still has limitations. As noted in Sec. 4.3, *VAP-Data* was created using visual effects templates from commercial models (vidu (Vidu, 2025), Kling (Kling, 2025)) and community LoRAs (Hu et al., 2022; Wan et al., 2025; Yang et al., 2024; Civitai, 2025). Thus, the dataset is synthetic and derived from other generative models, leading to *VAP* may inherit the specific stylistic biases, artifacts, and conceptual limitations of the source templates (e.g., if the source models are poor at generating hands, *VAP* will likely not learn to generate hands well from this data). Building a large, real-world, semantic-controlled video dataset would help address this issue, but it is beyond this paper’s main focus; we leave it for future work.

Nevertheless, zero-shot experiments in Sec. 4.4 and downstream tasks in Appendix B show that *VAP* generalizes to unseen semantic conditions (Liu et al., 2025) (e.g., crumble, dissolve, levitate, melt) and across tasks, including using different reference videos to prompt a single reference image under different semantic conditions or using the same reference videos to prompt different reference images under a fixed semantic condition. These results demonstrate the generality of *VAP* and we hope they inspire advances in controllable video generation; broader data collection is left to future work. Additional visualizations are available on the supplementary webpage.

E LIMITATION ANALYSIS

E.1 INFLUENCE OF REFERENCE VIDEO AND CAPTION

VAP learns in-context generation from large paired video-caption data: given captions for a reference and a target video, the shared semantic attributes in both captions aid in transferring the semantic properties of the reference video to the target video. Specifically, when both captions mention the same concept (e.g., “molten metal pours over the target . . . ”) in a similar way, *VAP* retrieves the relevant semantics from the reference prompt and applies it to the target. The reason why we use standard video-description captions (e.g., “. . . A static Grogu is centered. . . A viscous, reflective

Table 6: **Dataset statistics by 4 primary semantic categories.** We reorganize the dataset into 4 primary categories: *Concept* (merging entity transformation and interaction), *Style*, *Motion* (covering human and non-human motion transfer), and *Camera Movement*. For each primary category, we report its subcategory (if any), the alphabetical semantic condition subset list (names come from commercial models API definition (Kling, 2025; Vidu, 2025), and community visual effects LoRA definition (Civitai, 2025), see Sec. 4.3), and the total number of videos.

Primary Category	Subcategory	Subset (alphabetical)	Total Videos
Concept (n=56)	Entity Transformation (n=24)	captain america, cartoon doll, eat mushrooms, fairy me, fishermen, fuzzyfuzzy, gender swap, get thinner, hair color change, hair swap, ladudu me, mecha x, minecraft, monalisa, muscling, pet to human, sexy me, squid game, style me, super saiyan, toy me, venom, vip, zen	17k
	Entity Interaction (n=21)	aliens coming, child memory, christmas, cloning, couple arrival, couple drop, couple walk, covered liquid metal, drive yacht, emoji figure, gun shooting, jump to pool, love drop, nap me, punch hit, selfie with younger self, slice therapy, soul depart, watermelon hit, zongzi drop, zongzi wrap	20k
Style (n=11)	Stylization (n=11)	american comic, bjd, bloom magic, bloom bloom, clayshot, ghibli, irasutoya, jojo, painting, sakura season, simpsons comic	15k
Motion (n=41)	Human Motion Transfer (n=16)	break glass, crying, cute bangs, emotionlab, flying, hip twist, laughing, live memory, live photo, pet belly dance, pet finger, shake it dance, shake it down, split stance human, split stance pet, walk forward	10k
	Non-human Motion Transfer (n=16)	auto spin, balloon flyaway, crush, decapitate, dizzy-dizzy, expansion, explode, grow wings, head to balloon, paperman, paper fall, petal scattered, pinch, rotate, spin360, squish	19k
Camera (n=12)	Camera Movement Control (n=12)	dolly effect, earth zoom out, hitchcock zoom, move down, move left, move right, move up, orbit, orbit dolly, orbit dolly fast, zoom in, zoom out	19k

[‡] Subset counts (n) are reported per subcategory and are alphabetically sorted within each subcategory.

Overall subsets across all primary categories: 100. Overall videos across all categories: > 100k.

gold liquid appears on the forehead . . .”, “A young woman stands still . . . A thick, reflective liquid metal begins to pour over her face from above . . .”), is to match the pre-training data distribution. Consequently, performance depends on caption quality and on structural similarity between the main subjects: it is stable when caption styles align and subjects are similar, but degrades when descriptions diverge (*e.g.*, “. . . A viscous, reflective **gold liquid** appears on the forehead . . .” vs. “. . . A viscous, reflective rose-gold **water** pours over the snail . . .”) or when subjects differ markedly (*e.g.*, **Grogu vs. snail**). As shown in Fig. 14, the bad caption mislabels “water” instead of the intended “liquid metal”; the good reference subject (the young woman) is structurally closer to Grogu, while the snail differs greatly and its semantic signal is weak (the liquid metal and shell have similar colors), yielding poorer alignment and less appealing visuals for the bad reference case.

E.2 INFLUENCE OF MULTIPLE REFERENCE VIDEOS

We examine how the number of video prompts affects performance by supplying 1–3 semantically matched reference videos during training and testing. Empirically, results are similar to using a

Figure 14: **Limitation visualization.** VAP transfers semantics reliably when the semantic description of reference caption aligns with that of the target caption and subject structure aligns with the target: aligned descriptions (“gold liquid” and “liquid metal”) and similar subject structures (Grogu and a young woman) yield good results (top). Mislabeled semantic descriptions (“water” vs. “liquid metal”), or large subject mismatch (Grogu vs. snail), reduce alignment and visual quality (bottom).



Figure 15: **Failure case of multi-reference prompting.** Left: three reference videos with divergent structure and similar semantics (human, spider, flatfish). Right: Ground truth is on top. Using three (bottom) spuriously transfers unwanted appearance cues (e.g., fish shape and spider-like legs) onto the dog. We attribute this leakage to generic captions that lack an explicit referent; stronger multi-reference control or instruction-style captions could mitigate it.

single reference. However, with multiple references, the model may blend unwanted visual details across videos, as shown in Fig. 15. We hypothesize this stems from our general-purpose captions, which lack explicit semantic referents. When the three references differ in structure (human, spider, flatfish) and in semantic realization (e.g., reference 1 clearly shows “AI Lover Drop”; reference 2 introduces a falling spider without a hug; reference 3 is weakest, with a flatfish swimming up instead of falling), the model mixes semantics from reference 1 with appearance from reference 2 (spider legs) and contours from reference 3 (fish shape). A more effective multi-reference control mechanism (e.g., a tailored RoPE for multi-reference conditions)—or an instruction-style caption that specifies the intended referent—may mitigate this issue. A full study of model and caption design for multi-reference training is beyond this work and left for future research.

E.3 EFFICIENCY

Like prior plug-and-play methods (Zhang et al., 2023; Jiang et al., 2025), our approach avoids re-training pre-trained video diffusion transformers at pre-training scale, but the added parameters introduce extra inference cost—higher memory use and longer runtime. Specifically, the impact varies with the distribution of MoT layers in VAP; as shown in Tab. 3, inference time roughly doubles on average, mainly due to additional MoT-expert computation and in-context full attention. Given the strong plug-and-play unified semantic control in in-context generation and the fact that we avoid retraining the backbone, this overhead is acceptable. Performance optimizations (e.g., sparse attention (Dao, 2024; Zhang et al., 2025a) and pruning (Fang et al., 2025; Xie et al., 2025)) are orthogonal and beyond the scope of this work; we leave them to future work.

F ABLATION STUDY

In-context Generation Structure. We train 4 VAP variants to test the effectiveness of our mixture-of-transformers (MoTs) adoption: **A1. Single-Branch Finetuning u_Θ^s :** expand pre-trained DiT input sequence to $[Ref_{text}, Ref_{video}, Tar_{text}, Tar_{video}]$ and finetune the full model; **A2. Single-Branch LoRa Finetuning u_Θ^{sl} :** same as A1 but freeze the backbone and train only the LoRA layers; **A3. Unidirectional Cross-Attn u_Θ^{uc} :** freeze the pre-trained DiT, add a new branch with the same weights, and inject its features via layer-wise cross-attention; and **A4. Unidirectional**

1242 **Table 7: Ablation Study.** We verify the effectiveness of our MoT structure, temporal-biased RoPE,
 1243 the scalability, and the transferability in different DiTs. The bottom row reports our full model.
 1244

Metrics Variant	Text CLIP Score \uparrow	Overall Quality			Reference Alignment Score \uparrow
		Motion Smoothness \uparrow	Dynamic Degree \uparrow	Aesthetic Quality \uparrow	
u_{Θ}^s (Single-Branch)	23.03	97.97	70.83	56.93	68.74
u_{Θ}^{sl} (Single-Branch-LoRA)	23.12	98.25	72.92	57.19	69.28
u_{Θ}^{uc} (Unidir-Cross-Attn)	22.96	97.94	66.67	56.88	67.16
u_{Θ}^{ua} (Unidir-Addition)	22.37	97.63	62.50	56.91	55.99
Position Embedding Design					
u_{Θ}^i (Identical PE)	23.17	98.49	70.83	57.09	68.98
u_{Θ}^n (Neg. shift in T, W)	23.45	98.53	72.92	57.31	69.05
Scalability‡					
$u_{\Theta}(1K)$	22.84	92.12	60.42	56.77	63.91
$u_{\Theta}(10K)$	22.87	94.89	64.58	56.79	66.28
$u_{\Theta}(50K)$	23.29	96.72	70.83	56.82	68.23
$u_{\Theta}(100K)$	24.13	98.59	77.08	57.71	70.44
DiT Structure					
u_{Θ}^{Wan} (Wan2.1-I2V-14B)	23.93	97.87	79.17	58.09	70.23
In-Context Expert Transformer Layer Distribution‡					
$u_{\Theta}(\mathcal{L}_{\text{odd}})$	24.05	98.52	75.00	57.58	70.22
$u_{\Theta}(\mathcal{L}_{\text{odd}, \leq \lfloor 0.5N_l \rfloor})$	23.72	98.19	70.83	56.71	69.61
$u_{\Theta}(\mathcal{L}_{\text{first-half}})$	23.90	98.41	75.00	57.18	69.94
$u_{\Theta}(\mathcal{L}_{\text{first-last}})$	23.96	98.33	72.92	57.06	70.02
Video Prompt Representation					
$u_{\Theta}^{n,\text{ref}}$ (noisy reference)	23.98	98.41	75.00	57.42	70.18
Ours					
u_{Θ} (VAP)	24.13	98.59	77.08	57.71	70.44

1245 [†] **Notation.** u_{Θ} (our VAP parameterized by Θ), s (in-context single-branch finetuning), sl (in-context single-branch LoRA finetuning), uc (unidirectional cross-attention injection), ua (unidirectional residual addition), i (identical position embedding in reference and target), n (temporal shift + negative temporal/width shifts of position embedding), Wan (Wan2.1 as DiT backbone), n_{ref} (noisy reference prompts).

1246 [‡] **MoT layers.** $u_{\Theta}(\mathcal{L})$ activates MoT blocks on layer index set $\mathcal{L} \subseteq [N_l] = \{1, \dots, N_l\}$ of the backbone with N_l Transformer layers. We instantiate $\mathcal{L}_{\text{first-half}} = \{1, 2, \dots, \lfloor 0.5N_l \rfloor\}$, $\mathcal{L}_{\text{first-last}} = \{1, N_l\}$, $\mathcal{L}_{\text{odd}, \leq \lfloor 0.5N_l \rfloor} = \{1, 3, \dots, \lfloor 0.5N_l \rfloor\}$, and $\mathcal{L}_{\text{odd}} = \{1, 3, \dots, N_l\}$.

1247 [§] **Scale.** $u_{\Theta}(M)$ indicates the number of video training pairs used ($M \in \{1K, 10K, 50K, 100K\}$).

1248 **Addition u_{Θ}^{ua} :** same as A3 but inject features via residual addition. We evaluate on the same
 1249 benchmark of *VAP-Data*. Results in Tab. 2 show: **A1.** MoT boosts performance by preserving the
 1250 base DiT’s generative ability while enabling plug-and-play in-context control. **A2.** LoRA helps
 1251 retain the backbone’s ability, but its limited capacity struggles with complex in-context generation,
 1252 yielding suboptimal results. **A3.** Layer-wise bidirectional information exchange in MoT lets the
 1253 reference video-prompt representation adapt synchronously to the target tokens, improving semantic
 1254 alignment. **A4.** Even with new data, residual-addition methods rely on rigid pixel-to-pixel mapping,
 1255 mismatching semantic-controlled generation and degrading performance.

1256 **Position Embedding Designs.** To validate the effectiveness of our temporally-biased RoPE, we
 1257 evaluate two variants. (1) u_{Θ}^i : applying identical RoPE to both the reference and target videos,
 1258 which enforces an unrealistic pixel-wise alignment prior and leads to degraded performance; (2) u_{Θ}^n :
 1259 in addition to introducing a temporal bias Δ , following in-context image generation (Tan et al.,
 1260 2025), we add a width bias by placing the reference video to the left of the target video. Experiments
 1261 show that this increases the difficulty of spatial referencing and results in performance degradation.

1262 **Scalability.** As shown in Tab. 2, VAP improves across all metrics as training data grows, demonstrating
 1263 strong scalability. This follows from our unified design that treats reference videos as prompts
 1264 without task-specific modifications, together with the MoT framework, which preserves the back-
 1265 bone’s generative capacity while enabling plug-and-play in-context generation.

1266 **DiT Structure.** To test transferability, we equip Wan2.1-I2V-14B with VAP equal in parameter
 1267 counts to CogVideoX-I2V-5B version (evenly inserted across $\frac{1}{4}$ layers; $\approx 5B$), which—benefiting
 1268 from Wan2.1’s stronger base—improves dynamic degree and aesthetic score but, because the only
 1269 $\frac{1}{4}$ in-context interaction, yields slightly worse reference alignment than VAP on CogVideoX.

1270 **Mixture-of-Transformers Layer Distribution** We analyze how different layer distributions affect
 1271 our in-context DiT Expert. (1) $u_{\Theta}(\mathcal{L}_{\text{first-half}})$: initializing and copying from the first half of the pre-
 1272 trained DiT; (2) $u_{\Theta}(\mathcal{L}_{\text{first-last}})$: from the first and last layers; (3) $u_{\Theta}(\mathcal{L}_{\text{odd}, \leq \lfloor 0.5N_l \rfloor})$: from the odd
 1273 layers of the first half; and (4) $u_{\Theta}(\mathcal{L}_{\text{odd}})$: from all odd layers. The results show that balanced feature

1296 interaction improves generation quality ($u_\Theta(\mathcal{L}_{\text{first-last}})$ outperforms $u_\Theta(\mathcal{L}_{\text{first-half}})$, and $u_\Theta(\mathcal{L}_{\text{odd}})$ out-
 1297 performs $u_\Theta(\mathcal{L}_{\text{odd}, \leq \lfloor 0.5N_L \rfloor})$). However, while reducing layers can improve training and inference
 1298 efficiency, it inevitably harms certain aspects of performance ($u_\Theta(\text{VAP})$ outperforms $u_\Theta(\mathcal{L}_{\text{odd}})$).
 1299

1300 **Video Prompt Representation** Inspired by Diffusion Forcing (Chen et al., 2024a; Song et al., 2024;
 1301 Guo et al., 2025b), we study video prompt representation by injecting noise into it. However, this
 1302 often leads to severe artifacts. The core reason is that, unlike long-video generation in Diffusion
 1303 Forcing, where copy-paste or overly static results are common, our reference videos already differ
 1304 significantly in appearance and layout from the target videos. Thus, adding noise to the video prompt
 1305 corrupts the contextual information and degrades generation quality.
 1306

1307 G USE OF LARGE LANGUAGE MODELS (LLMs)

1308 **Scope of use.** We used a large language model (LLM) *only for writing polish*, including gram-
 1309 mar correction, phrasing refinement, and improvements to clarity and readability. The LLM did
 1310 *not* contribute to research ideation, problem formulation, method design, experimental setup, re-
 1311 sult selection, interpretation, or drafting of technical content (theorems, algorithms, proofs, metrics,
 1312 or analyses). All technical claims, experiments, figures, tables, and conclusions were conceived,
 1313 implemented, and verified by the authors.
 1314

1315 **Process and safeguards.** LLM assistance was applied post hoc to author-written passages to im-
 1316 prove presentation quality, without introducing new technical material or references. We reviewed
 1317 each edited passage for accuracy and faithfulness to the original meaning and ran standard pla-
 1318 giarism checks. No proprietary or sensitive data were disclosed to the LLM beyond non-sensitive
 1319 manuscript text; when necessary, potentially identifying details were redacted.
 1320

1321 **No material impact on research outcomes.** The use of LLMs had no bearing on the research
 1322 ideas, empirical results, evaluation protocols, or conclusions reported in this paper.
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349