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VIDEO-AS-PROMPT: UNIFIED SEMANTIC CONTROL
FOR VIDEO GENERATION

Anonymous authors
Paper under double-blind review

Figure 1: Video-As-Prompt (VAP) is a unified semantic-controlled video generation frame-
work: it treats reference videos with wanted semantics as video prompts and controls generation
via a plug-and-play, in-context Mixture-of-Transformers expert. Row 1−6: reference videos used
as prompts for diverse semantic-controlled tasks (concept, style, motion, camera). Row 7: zero-shot
results from VAP when given an unseen semantic, demonstrating strong generalization. We strongly
encourage readers to view our anonymous project page1for better visualization.

ABSTRACT

Unified, generalizable semantic control in video generation remains a critical open
challenge. Existing methods either introduce artifacts by enforcing inappropri-
ate pixel-wise priors from structure-based controls, or rely on non-generalizable,
condition-specific finetuning or task-specific architectures. We introduce Video-
As-Prompt (VAP), a new paradigm that reframes this problem as in-context gen-
eration. VAP leverages a reference video as a direct semantic prompt, guid-
ing a frozen Video Diffusion Transformer (DiT) via a plug-and-play Mixture-
of-Transformers (MoT) expert. This architecture prevents catastrophic forgetting
and is guided by a temporally biased position embedding that eliminates spurious
mapping priors for robust context retrieval. To power this approach and catalyze
future research, we built VAP-Data, the largest dataset for this task with over
100K paired videos across 100 semantic conditions. As a single unified model,
VAP sets a new state-of-the-art for open-source methods, achieving a 38.7% user
preference rate that rivals leading condition-specific commercial models. VAP’s
strong zero-shot generalization and support for various applications mark a signif-
icant advance toward general-purpose, controllable video generation.

1Our anonymous project page is at https://video-as-prompt.github.io/.
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1 INTRODUCTION

While unified structure-controlled video generation (Jiang et al., 2025) under pixel-aligned condi-
tions (e.g., depth (Gao et al., 2025a), pose (Hu, 2024), mask (Bian et al., 2025b), optical flow (Jin
et al., 2025)) is well studied, semantic-controlled generation—lacking a pixel-aligned condition
(e.g., concept (Liu et al., 2025), style (Ye et al., 2025), motion (Zhang et al., 2025b), camera (Bai
et al., 2025a)) to the target video—remains fragmented without a unified and generalizable frame-
work, limiting applications in visual effects (Macklin et al., 2014), video stylization (Jamriška et al.,
2019), motion imitation (Wang et al., 2025), and camera control (Bai et al., 2025b).

Migrating current unified structure-controlled methods (Jiang et al., 2025; Zhang et al., 2023) of-
ten causes artifacts because they enforce inappropriate pixel-wise mapping priors from structure-
based control abilities (see Fig. 2 (a)). Other semantic-controlled methods fall into two groups:
(1) Condition-Specific Overfit (see Fig. 2 (b)): methods (Liu et al., 2025; Civitai, 2025) finetune
backbones (Yang et al., 2024; Wan et al., 2025) or LoRAs (Hu et al., 2022) for each semantic con-
dition (e.g., Ghibli style, Hitchcock camera zoom), which is costly; (2) Task-Specific Design (see
Fig. 2 (c)): methods (Ye et al., 2025; Bai et al., 2025a; Zhang et al., 2025b) craft task-specific mod-
ules or inference strategies for a condition type (e.g., style, camera), often encoding videos with
the same semantics to a specially designed space and guiding generation. While effective, these
condition/task-specific approaches hinder a unified model and limit zero-shot generalizability.

However, recent image generation (Tan et al., 2025) and structure-controlled video generation (Ju
et al., 2025) show that Diffusion Transformers (DiTs) support strong in-context control, motivating
a unified framework for in-context semantic-controlled video generation. As shown in Fig. 2 (d),
rather than assuming pixel-wise correspondence (Jiang et al., 2025), training per-condition mod-
els (Liu et al., 2025) or using task-specific designs (Ye et al., 2025), we treat the video of the wanted
semantics as a reference video prompt and guide generation via in-context control. This formula-
tion removes the inappropriate pixel-wise mapping prior from structure-based controls, avoids per-
condition training or per-task model designs, and enables a single unified model to handle diverse
semantic controls and generalize in a zero-shot manner to unseen semantics (see Fig. 1).

We present Video-As-Prompt (VAP), the first unified framework for semantic-controlled video gen-
eration under non-pixel-aligned conditions, by treating a reference video with the wanted semantics
as a video prompt and using plug-and-play in-context control. As shown in Fig. 2 (d), VAP adopts
a plug-and-play Mixture-of-Transformers (MoTs) design (Liang et al., 2024) to augment any frozen
Video Diffusion Transformer (Peebles & Xie, 2023) with a trainable parallel expert for interpret-
ing the video prompt and guiding the generation, preventing catastrophic forgetting and enabling
in-context control. The expert (for the reference prompt) and the frozen backbone (for target gen-
eration) run independent feed-forward and layer-norm paths and communicate via full attention for
synchronous layer-wise reference guidance. For robust context retrieval, we adopt a temporally bi-
ased Rotary Position Embedding (RoPE) that places the reference before the current video along the
temporal axis while keeping spatial fixed; this removes the nonexistent pixel-mapping prior from a
shared RoPE, matches the temporal order expected by in-context generation, and preserves spatial
consistency so the model can exploit spatial semantic changes of the reference video prompt.

Existing datasets (Jiang et al., 2025; Ju et al., 2025) lack focus on semantic-controlled video gener-
ation. We introduce VAP-Data, the largest dataset to date, with over 100K curated samples across
100 semantic conditions, providing a robust data foundation for unified semantic-controlled video
generation. Extensive experiments show that VAP, a unified model for diverse semantic conditions
(Appendix A) and downstream generation tasks (Appendix B), produces coherent, semantically
aligned videos, achieves a 38.7% user preference rate competitive with leading closed-source com-
mercial models, surpasses condition-specific methods, and exhibits zero-shot generalization (Fig. 7).

Our contributions are highlighted as follows:

➠ We present VAP, a unified semantic-controlled video generation paradigm, treating a reference
video with the wanted semantics as a video prompt for generalizable in-context control.

➠ We propose a plug-and-play in-context video generation framework built on the mixture-of-
transformers architecture that prevents catastrophic forgetting, supports various downstream tasks,
and delivers strong zero-shot generalization to unseen semantic condition categories.

➠ We construct and release VAP-Data, the largest dataset for semantic-controlled video generation,
with over 100K curated paired samples across 100 condition categories.
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Figure 2: Controllable Video Generation Paradigms. Structure-Controlled Video Generation
(a). The condition is pixel-aligned with the target video. Most works inject conditions (e.g., depth,
optical flow) into a DiT via an extra branch using (a) residual addition, leveraging pixel-wise align-
ment. Semantic-Controlled Video Generation (b, c, d). The condition and target video share the
same semantics. Most works use (b) Condition-Specific Overfit or (c) Task-Specific Design: finetun-
ing per semantic or adding task-specific modules. (d) Video-as-Prompt: We use a reference video
with the same semantics as prompts and adopt a plug-and-play in-context control framework built
on mixture-of-transformers to achieve unified semantic-controlled video generation.

2 RELATED WORKS

2.1 VIDEO GENERATION

Video generation has progressed from early GAN-based models (Vondrick et al., 2016; Skorokhodov
et al., 2022) to modern diffusion models (Brooks et al., 2024; Gao et al., 2025b). Leveraging the
scalability of diffusion transformers (DiTs) (Peebles & Xie, 2023), research has moved from con-
volutional architectures(Singer et al., 2022; Blattmann et al., 2023; Girdhar et al., 2023; Chen et al.,
2024b; Zhang et al., 2024) to transformer-based ones (Gupta et al., 2023; Menapace et al., 2024;
Brooks et al., 2024; Polyak et al., 2024; Kong et al., 2024; Wan et al., 2025; Gao et al., 2025b).
The standard pipeline encodes Gaussian noise into a latent space with a VAE (Kingma & Welling,
2013), splits the latents into patches, processes the patches with a DiT, and decodes to pixel space to
produce high-quality, smooth videos. However, pre-trained DiTs typically support only text prompts
or first/last-frame control (Wan et al., 2025; Gao et al., 2025b). To enable finer, user-defined control,
many methods add task-specific modules to pre-trained DiTs (Jiang et al., 2025; Bian et al., 2025b)
or design special inference (Zhang et al., 2025b; Wang et al., 2025) for new controllable video tasks.

2.2 CONTROLLABLE VIDEO GENERATION

In general, controllable video generation can be categorized into Structure-Controlled Video Gen-
eration and Semantic-Controlled Video Generation (see top of Fig. 2). The former (Jiang et al.,
2025; Bian et al., 2025b) is driven by pixel-aligned conditions (e.g., depth, pose, mask, optical
flow), while the latter (Zhang et al., 2025b; Ye et al., 2025) focuses on generation based on semantic
conditions without pixel mapping prior (e.g., concept, style, motion, camera).

Structure-Controlled Video Generation In structure-controlled video generation, condition
videos (e.g., depth, pose) are typically pixel-aligned with the target videos, so control signals are
mostly modeled with an additional adapter/branch and injected via residual addition to exploit this
mapping prior (Zhang et al., 2023; Mou et al., 2024; Bian et al., 2025a; Lin et al., 2024), as shown
in Fig. 2 (a). Common conditions include Trajectory (Wang et al., 2024; Zhou et al., 2024; Guo
et al., 2025a; Gu et al., 2025), Pose (Ju et al., 2023; Lei et al., 2024; Hu, 2024), Depth (Esser et al.,
2023; Gao et al., 2025a), Optical flow (Jin et al., 2025; Koroglu et al., 2025), and Mask (Bian et al.,
2025b; Yang et al., 2025). Recent works (Ju et al., 2025; Jiang et al., 2025) further enable all-in-one
structure-controlled generation by treating these inputs as a unified, pixel-aligned spatial condition.

Semantic-Controlled Video Generation Semantic-controlled video generation handles condi-
tions which lack pixel-wise correspondence with target videos (see Fig. 1), including Concept(Liu
et al., 2025; Hsu et al., 2024; Pika, 2025; PixVerse, 2025; Vidu, 2025; Kling, 2025) (e.g., turning an
object into Ladudu or taking it like a paper man), Stylization(Huang et al., 2025; Ye et al., 2025),
Camera Movement(He et al., 2024; Bai et al., 2025a;b), and Motion(Zhao et al., 2024; Yatim et al.,
2024; Pondaven et al., 2025; Zhang et al., 2025b; Wang et al., 2025), where the reference and target
share motion but differ in layout or skeleton. As shown in Fig. 2 (b) and (c), prior methods fall

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: Overview of Our Proposed VAP-Data. (a) 100 semantic conditions across 4 categories:
concept, style, camera, and motion; (b) diverse reference images, including animals, humans, ob-
jects, and scenes, with multiple variants; and (c) a word cloud of the semantic conditions.

into Condition-Specific Overfit (Liu et al., 2025; Civitai, 2025), which fine-tune DiT backbones or
LoRAs for each semantic condition; and Task-Specific Design (Ye et al., 2025; Bai et al., 2025a;
Zhang et al., 2025b; Wang et al., 2025), which add task-specific modules or inference strategies
for a class of semantic conditions (e.g., style, motion, camera). Above approaches fit narrow dis-
tributions but are not unified and generalizable; they require per-condition retraining or per-task
designs and lack zero-shot generalization. A concurrent work (Mao et al., 2025) adopts a LoRA
mixture-of-experts for unified generation across multiple semantic conditions, but it still learns each
condition by overfitting subsets of parameters and fails to generalize to unseen ones. This raises a
key question: How can we build a unified semantic-controlled video generation framework?

Inspired by in-context learning (Huang et al., 2024; Bian et al., 2024; Tan et al., 2025; Guo et al.,
2025b; Ju et al., 2025), we propose Video-As-Prompt (VAP), which treats videos with the wanted
semantics as unified in-context prompts to guide generation. By casting the task as an in-context gen-
eration with reference video prompts, VAP, to our knowledge, is the first to unify multiple semantic-
controlled tasks without task-specific designs, while achieving strong zero-shot abilities.

3 METHODS

VAP supports unified semantic-controlled video generation under various semantic conditions (e.g.,
concept, style, motion, and camera). Our insight is to use videos with the wanted semantics as uni-
fied prompts to guide generation across tasks, avoiding per-condition finetuning or per-task designs.
Although we study a limited set of conditions, the method extends to others without major structural
changes and shows promising generalizability for different semantic conditions (see Appendix A),
various downstream tasks (see Appendix B), and unseen semantics in training (see Fig. 7).

3.1 PRELIMINARY

Video diffusion models (Brooks et al., 2024; Gao et al., 2025b) learn the conditional distribution
p(x | C) of video x given conditions C. Using Flow Matching (Lipman et al., 2022) for illustration,
a noise sample x0 ∼ N (0, 1) is denoised to x1 along the path xt = tx1 + (1 − (1 − σmin)t)x0,
where σmin = 10−5 and t ∈ [0, 1]. The model u is trained to predict the velocity Vt =

dxt

dt , which
simplifies to: Vt =

dxt

dt = x1 − (1 − σmin)x0. We optimize u with parameters Θ by minimizing
the mean squared error loss L between the ground-truth velocity and the model prediction:

L = Et,x0,x1,C ∥uΘ(xt, t, C)− (x1 − (1− σmin)x0)∥
During inference, the model first samples Gaussian noise x0 ∼ N (0, 1) and then uses an ODE
solver with a discrete set of N denoising timesteps to produce x1.

4
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Figure 4: Overview of Video-As-Prompt. The reference video (with the wanted seman-
tics), target video, and their first frames (reference images) are encoded into latents by
the VAE and, together with captions (see top right), form an in-context token sequence
[Reftext, Refvideo, Tartext, Tarvideo] (see middle). First frame tokens are concatenated with video
tokens. We add a temporal bias ∆ to RoPE to avoid nonexistent pixel-aligned priors from the origi-
nal shared RoPE (see bottom right). The reference video and captions act as the prompts and are fed
into a trainable DiT Expert Transformer (see left), which exchanges information bidirectionally with
the pre-trained DiT via full attention at each layer, enabling plug-and-play in-context generation.

3.2 REFERENCE VIDEOS AS TASK-AGNOSTIC PROMPTS

Semantic-controlled video generation spans diverse condition types (e.g., concept, style, motion,
camera). Structure-controlled methods assume pixel-wise alignment between condition and tar-
get (Zhang et al., 2023; Jiang et al., 2025); injecting a semantic-same but pixel-misaligned video con-
dition via residual addition yields copy-and-paste artifacts (see Fig. 5 (a)). Prior semantic-controlled
video generation works partially tackle this by using per-condition fine-tuning or per-task designs,
treating tasks in isolation. In contrast, VAP employs reference videos as video prompts, which share
the same semantics as the targets, independent of task category, unifying heterogeneous conditions
in one model. Formally, let C =

⋃n
i=1 Ci denote n condition types with conditions c ∈ Ci (total

m); prior methods often fine-tune n (per-task) or up to m (per-condition) models, whereas we train
a single unified model uΘ that jointly learns p(x | c) for any c ∈ C. We evaluate four represen-
tative types—concept (Cco), style (Cs), motion (Cm), and camera (Cca)—chosen for distinct task
definitions and data. Our VAP-Data follows this taxonomy; overviews appear in Fig. 3.
• Concept-Guided Generation: Videos sharing a concept, such as entity transformation (e.g., a

person becomes a Ladudu doll) or interaction (e.g., an AI lover approaches the target).
• Style-Guided Generation: Videos in a reference style (e.g., Ghibli, Minecraft).
• Motion-Guided Generation: Videos following a reference motion, including non-human motion

(e.g., objects expand like balloons) and human motion (e.g., shake it dance).
• Camera-Guided Generation: Videos following reference camera motion, from basic translations

(up, down, left, right, zoom in/out) to the Hitchcock dolly zoom.

Discussion. We also input captions (Pref , Ptar) of the reference video and target video to aid in
finding and transferring the shared mentioned semantic control signals (e.g., “cover liquid metal” in
Fig. 6). Thus uΘ learns conditional distribution p(x | Cco, Cs, Cm, Cca, Pref , Ptar).

3.3 PLUG-AND-PLAY IN-CONTEXT CONTROL

Our model takes four primary inputs: a reference video (providing the semantics), a reference im-
age2 (providing the initial appearance and subject), captions (helping find the target semantic), and
noise (inference) or noisy target video (training). We first encode the reference video c ∈ Rn×h×w×c

and the target video X ∈ Rn×h×w×c into latents ĉ ∈ Rn′×h′×w′×d and x ∈ Rn′×h′×w′×d by VAE.
Here n and h× w are original temporal/spatial sizes; n′, h′, w′ are latent sizes. With nt text tokens
tĉ, tx ∈ Rnt×d, a naive baseline is to finetune the DiT on the concatenated sequence [tĉ, ĉ, tx,x]

3,
following in-context structure-controlled generation (Ju et al., 2025). This often leads to catastrophic
forgetting with limited data (Fig. 5 (b), Tab. 2), because (1) DiTs are pre-trained only for generation,
not in-context conditioning, and (2) our reference/target pairs lack pixel-aligned priors, making se-
mantic in-context generation much harder. To stabilize training, we adopt Mixture-of-Transformers

2The first frame of the reference video is also injected for inheriting the Image-to-Video backbone ability.
3Without loss of generality, we assume text and video are jointly modeled with full attention.
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Reference Video 𝐶! (a) Residual Addition

Reference Image
Text Caption

…A young woman completes 
a single, continuous 360-
degree spin in place…

(b) Concat and Finetune

(c) Shared RoPE. (d) Ours

Figure 5: Motivation. Ablation visualizations (Semantic: Spin 360◦) on structure designs of VAP.

(MoT) (Liang et al., 2024): a frozen Video Diffusion Transformer (DiT) plus a trainable parallel
expert transformer initialized from the backbone. The expert consumes [tĉ, ĉ], while the frozen DiT
processes [tx,x] (see Fig. 4). Each keeps its own query, key, value projections, feed-forward layers,
and norms; at each layer, we concatenate Q/K/V and run full attention for two-way information fu-
sion. This shapes references into prompts conditioned on the current generation and routes guidance
into the frozen DiT. With MoT, we preserve the backbone’s generation ability, boost the training
stability, and achieve plug-and-play in-context control independent of DiT architecture (see Tab. 2).

3.4 TEMPORALLY BIASED ROTARY POSITION EMBEDDING

Similar to observations on Rotary Position Embedding (RoPE) (Su et al., 2024) in in-context image
generation (Tan et al., 2025), we find that sharing position embedding between the reference condi-
tion and the target video is suboptimal: it imposes a false pixel-level spatiotemporal mapping prior,
making the model assume a nonexistent mapping between the reference and the target videos, and
perform unsatisfactorily (see artifacts in Fig. 5 (c)). Accordingly, we shift the reference prompt’s
temporal indices by a fixed offset ∆, placing them before all noisy video tokens while keeping spa-
tial indices unchanged (see right bottom of Fig. 4). This removes the spurious prior, matches the
temporal order expected by in-context generation, and leads to improved performance (see Tab. 2).

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We train VAP on CogVideoX-I2V-5B (Yang et al., 2024) and Wan2.1-I2V-14B (Wan et al., 2025)
to evaluate effectiveness across DiT architectures.4 For fairness, we match parameter counts: on
CogVideoX-I2V-5B, the in-context DiT expert is a full copy of the original; on Wan2.1-I2V-14B,
it is a distributed copy spanning 1

4 of layers; both are about 5B parameters. Following pre-trained
DiTs, we resize videos to 480×720(832) and sample 49 frames at 16 fps. We use AdamW with
learning rate 1×10−5 and train for ∼20k steps on 48 NVIDIA A100s (Details are in Appendix C.1).

4.2 METRICS

We evaluate 5 metrics across three aspects: text alignment, video quality, and semantic alignment.
Following prior work (Liu et al., 2025; Jiang et al., 2025), we measure text alignment with CLIP
similarity (Radford et al., 2021) and assess video quality using motion smoothness (Radford et al.,
2021), dynamic degree (Teed & Deng, 2020), and aesthetic quality (Schuhmann et al., 2022). We
also introduce a semantic-alignment score that measures consistency between the reference and gen-
erated videos; we submit each video pair and detailed evaluation rules to Gemini-2.5-pro (Comanici
et al., 2025) for automatic scoring (Details are in Appendix C.2).

4.3 DATASET

Semantic-controlled video generation requires paired reference and target videos sharing the same
non-pixel-aligned semantic controls (e.g., concept, style, motion, camera). Prior work mostly re-
lies on a few manually collected videos tailored to specific semantic conditions (Liu et al., 2025),
limiting the emergence of unified models. To address this, we collect 2K high-quality reference im-
ages from Pexels (Pexels, 2025) spanning men, women, children, animals, objects, landscapes, and
multi-subject cases. We then use Image-to-Video visual-effects templates from commercial mod-
els (VIDU (Vidu, 2025) and Kling (Kling, 2025)) and community LoRAs (Civitai, 2025) to create
paired videos by matching each image to all compatible templates (some restrict subject categories).
Overall, we obtain VAP-Data, a semantic-controlled paired dataset with over 100K samples across
100 semantic conditions—the largest resource(see Sec. 3.2 and Fig. 3). For evaluation, we evenly
sampled 24 semantic conditions from 4 categories (concept, style, motion, camera) in the test subset,
with 2 samples each. Detailed information and limitations are in Appendix D.

4As Wan2.1 is more resource-intensive, results are reported on CogVideoX unless otherwise noted.
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Ref. Image Ref. Video

VACE (Original)
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CogVideoX
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VACE (Original)

VACE (Depth)

VACE (Flow)

CogVideoX

Kling/Vidu
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VAP (Ours) VAP (Ours)Cover Liquid Metal Blooming Style

Figure 6: Qualitative comparison with VACE (Jiang et al., 2025), CogVideoX (I2V) (Yang et al.,
2024), CogVideoX-LoRA (I2V) and commercial models (Kling, 2025; Vidu, 2025); VACE(*) uses
a *-form condition (top left). More visualizations are in Appendix A and the supplementary.
Table 1: Qualitative Comparison. We compare against the SOTA structure-controlled generation
method VACE (Jiang et al., 2025), the base video DiT model CogVideoX-I2V (Yang et al., 2024),
the condition-specific variant CogVideoX-I2V (LoRA) (Hu et al., 2022), and the closed-source com-
mercial models Kling/Vidu (Kling, 2025; Vidu, 2025). Overall, VAP delivers performance compa-
rable to the closed-source models and, on average, surpasses the other open-source baselines, as a
unified and generalizable model. Red stands for the best, Blue stands for the second best.

Metrics Text Overall Quality Semantic User Study
Model Clip Score↑ Motion Smoothness↑ Dynamic Degree↑ Aesthetic Quality↑ Alignment Score↑ Preference Rate (%)↑∗

Structure-Controlled Methods
VACE (Original) 5.88 97.60 68.75 53.90 35.38 0.6%
VACE (Depth) 22.64 97.65 75.00 56.03 43.35 0.7%
VACE (Optical Flow) 22.65 97.56 79.17 57.34 46.71 1.8%

DiT Backbone and Condition-Specific Methods
CogVideoX-I2V 22.82 98.48 72.92 56.75 26.04 6.9%
CogVideoX-I2V (LoRA)† 23.59 98.34 70.83 54.23 68.60 13.1%
Kling / Vidu‡ 24.05 98.12 79.17 59.16 74.02 38.2%

Ours
Video-As-Prompt (VAP) 24.13 98.59 77.08 57.71 70.44 38.7%
† We fine-tune LoRA on CogVideoX-I2V for each semantic condition in the benchmark and report the average metric as performance.
‡ Kling and Vidu provide dedicated interfaces for each semantic condition; thus, we treat them as condition-specific.
∗ We report the preference rate by aggregating wins over all comparisons. Each cell is the average rate of human preferences received by the corresponding method.

4.4 COMPARISON WITH PREVIOUS METHODS

We evaluate VAP against: (1) the state-of-the-art (SOTA) structure-controlled video generation
method VACE (Jiang et al., 2025) under multiple structure conditions (e.g., original reference video,
depth, optical flow); (2) condition-specific methods, where we train a LoRA (Hu et al., 2022) for
each semantic condition—a common community practice often reported to match or surpass task-
specific models (Bai et al., 2025a; Ye et al., 2025)—and report averaged performance; (3) state-of-
the-art closed-source commercial models, including Kling (Kling, 2025) and Vidu (Vidu, 2025).

Quantitative Comparison. For the SOTA structure-controlled method VACE (Jiang et al., 2025),
the model conditions on a video and a same-size mask indicating edit (1) vs. fixed (0) regions. Fol-
lowing VACE, we use the reference video, its depth, and its optical flow as video conditions, setting
the mask to 1 so the model follows rather than copies them. Overall, VACE performs worst, as
expected when structure-controlled methods are applied directly to semantic-controlled generation.
This is because VACE assumes a pixel-wise mapping between the condition and the output (e.g.,
a video and its depth), which breaks under semantic control and copies unwanted appearance or
layout from the reference. As control moves from raw video, depth to optical flow, appearance
detail decreases, and metrics improve, confirming that the pixel-wise prior is ill-suited for semantic-
controlled generation. Driving a pre-trained DiT (CogVideoX-I2V) with captions carrying semantic
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Reference Video
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Figure 7: Zero-Shot Performance. Given semantic conditions unseen in VAP-Data (left column),
VAP still transfers the abstract semantic pattern to the reference image in a zero-shot manner.
cues yields decent video quality but weak semantic alignment, since many semantics are hard to
express with coarse text. Common LoRA fine-tuning often obtains strong semantic alignment by
overfitting a specific condition: it harms base quality (vs. the CogVideoX-I2V row), needs a sepa-
rate model per condition, and fails to generalize to unseen references. By contrast, VAP outperforms
open-source baselines on most metrics, achieves performance comparable to commercial models,
and, for the first time, provides a unified model for semantic-controlled video generation.

User Study We conducted a user study with 20 randomly selected video-generation researchers
to evaluate video quality and semantic alignment. In each trial, raters compared different method
outputs shown with a semantic-control reference video and chose the better result for (i) semantic
alignment and (ii) overall quality. We report the preference rate—the normalized share of selections
across all comparisons, totaling 100%—in Tab. 1. VAP and Kling/Vidu (commercial, closed-source,
task-specific) achieve the overall highest preference rate, while VAP works as a unified model.

Qualitative Comparison In Fig. 6, VAP yields better temporal coherence, visual quality, and se-
mantic consistency than structure-controlled baselines (Jiang et al., 2025), DiT backbones, and
condition-specific finetuning (Hu et al., 2022), and matches condition-specific commercial models
Kling (Kling, 2025) and Vidu (Vidu, 2025). VACE’s pixel-mapping bias treats the semantic refer-
ence video as pixel-aligned, causing appearance/layout copying (e.g., the frog stands like the dog;
the Statue of Liberty imitates a sheep); this artifact weakens when the reference is replaced by depth
and then optical flow, which progressively remove appearance details. LoRA finetuning improves
semantic alignment without copy artifacts but requires a separate model per condition and lacks
zero-shot generalization. In contrast, VAP uses a single model that treats all semantic conditions as
a unified reference-video prompt, enabling unified semantic-controlled generation.

Zero-Shot Generation By treating all semantic conditions as unified video prompts, VAP sup-
ports diverse semantic-controlled generation tasks; moreover, when given an unseen semantic refer-
ence (Liu et al., 2025) that doesn’t belong to VAP-Data (see Fig. 7), the in-context ability learned
from video-as-prompt data enables VAP to perform zero-shot generation guided by new references.

4.5 ABLATION STUDY

In-Context Generation Structure. We train 4 VAP variants to test the effectiveness of our mixture-
of-transformers (MoTs) adoption: A1. Single-Branch Finetuning us

Θ: expand pre-trained DiT
input sequence to [Reftext, Refvideo, Tartext, Tarvideo] and finetune the full model; A2. Single-
Branch LoRA Finetuning usl

Θ: same as A1 but freeze the backbone and train only the LoRA layers;
A3. Unidirectional Cross-Attn uuc

Θ : freeze the pre-trained DiT, add a new branch with the same
weights, and inject its features via layer-wise cross-attention; and A4. Unidirectional Addition
uua
Θ : same as A3 but inject features via residual addition. We evaluate on the same benchmark of

VAP-Data. Results in Tab. 2 show: A1. MoT boosts performance by preserving the base DiT’s gen-
erative ability, solving the catastrophic forgetting while enabling plug-and-play in-context control.
A2. LoRA helps retain the backbone’s ability, but its limited capacity struggles with complex in-
context generation, yielding suboptimal results. A3. Layer-wise bidirectional information exchange
in MoT lets the reference video-prompt representation adapt synchronously to the target tokens,
improving semantic alignment. A4. Even with retraining, residual-addition methods rely on rigid
pixel-to-pixel mapping, mismatching semantic-controlled generation and degrading performance.

Position Embedding Designs. To validate the effectiveness of our temporally-biased RoPE, we
evaluate two variants. (1) ui

Θ: applying identical RoPE to both the reference and target videos,
which enforces an unrealistic pixel-wise alignment prior and leads to degraded performance; (2)un

Θ:
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Table 2: Ablation Study. We ablate on the in-context generation structure designs, temporal-biased
RoPE, the scalability, and the transferability across different DiT structures. The last row is our
default model (VAP), which uses MoT structure, temporal-biased RoPE, 100K training pairs, and
CogVideoX-I2V-5B. Red stands for the best, Blue stands for the second best.

Metrics Text Overall Quality Semantic
Variant CLIP Score ↑ Motion Smoothness ↑ Dynamic Degree ↑ Aesthetic Quality ↑ Alignment Score ↑

In-Context Generation Structure

us
Θ (Unidir-Cross-Attn) 23.03 97.97 70.83 56.93 68.74

usl
Θ (Single-Branch-LoRA) 23.12 98.25 72.92 57.19 69.08

uuc
Θ (Unidir-Cross-Attn) 22.96 97.94 66.67 56.88 67.16

uua
Θ (Unidir-Addition) 22.37 97.63 62.50 56.91 55.99

Position Embedding Design

ui
Θ (Identical PE) 23.17 98.49 70.83 57.09 68.98

un
Θ (Neg. shift in T,W ) 23.45 98.53 72.92 57.31 69.05

Scalability‡

uΘ (1K) 22.84 92.12 60.42 56.77 63.91
uΘ (10K) 22.87 94.89 64.58 56.79 66.28
uΘ (50K) 23.29 96.72 70.83 56.82 68.23

DiT Structure

uWan
Θ (Wan2.1-I2V-14B) 23.93 97.87 79.17 58.09 70.23

Ours
uΘ (VAP) 24.13 98.59 77.08 57.71 70.44
† Notation. uΘ (our VAP parameterized by Θ). s (in-context single-branch finetuning), sl (in-context single-branch LoRA finetuning), uc (unidirec-

tional cross-attention injection), ua (unidirectional residual addition), i (identical position embedding in reference and target), n (temporal shift +
negative temporal/width shifts of position embedding), Wan (Wan2.1 as DiT backbone).

‡ Scale. uΘ(M) indicates the number of training pairs (M ∈ {1K, 10K, 50K, 100K}). Our final version uses 100K training pairs.

in addition to introducing a temporal bias ∆, following in-context image generation (Tan et al.,
2025), we add a width bias by placing the reference video to the left of the target video. Experiments
show that this increases the difficulty of spatial referencing and results in performance degradation.

Scalability. As shown in the scalability section, VAP improves across all metrics as training data
grows, demonstrating strong scalability. This follows from our unified design that treats reference
videos as prompts without task-specific modifications, together with the MoT framework, which
preserves the backbone’s generative capacity while enabling plug-and-play in-context generation.

DiT Structure. To test transferability, we equip Wan2.1-I2V-14B with VAP equal in parameter
counts to CogVideoX-I2V-5B version (evenly inserted across 1

4 layers; ≈ 5B), which—benefiting
from Wan2.1’s stronger base—improves dynamic degree and aesthetic score but, because the only
1
4 in-context interaction, yields slightly worse reference alignment than VAP on CogVideoX.

We also ablate the in-context expert transformer layer distribution of VAP, and the video-prompt
representation. Further experiment details are in Appendix F due to page limits.

5 CONCLUSION

Video-As-Prompt (VAP) is a unified, semantic-controlled video generation framework that treats ref-
erence videos as prompts and enables plug-and-play in-context control via a mixture-of-transformers
expert. VAP overcomes limits of structure-controlled methods (e.g., inappropriate pixel-wise priors)
and task/condition-specific designs (e.g., non-generalizable models), providing scalable semantic
control and zero-shot generalizability. We build VAP-Data, the largest semantic-controlled video
generation dataset, and show in extensive experiments that VAP achieves state-of-the-art among
open-source models, comparable performance to commercial models, and strong generalization.

Limitations and Future Works. Despite strong performance, some limitations need further study:
(1) We experimented on our large-scale VAP-Data, yet the semantic conditions in VAP-Data are
relatively limited, synthetic, and derived from other generative models, which may inherit the spe-
cific stylistic biases, artifacts, and conceptual limitations of the source templates (see Appendix D).
We leave the construction of larger-scale, real, semantic-controlled video data to future work. (2)
VAP uses a reference video, a reference caption, and a target caption to guide semantic control. To
stay close to the original DiT distribution, we employ standard video descriptions as captions; how-
ever, inaccurate semantics descriptions or large subject mismatch can degrade generation quality
(see Appendix E). Instruction-style captions (e.g., “please follow the Ghibli style in the reference
video”) may more effectively capture the intended semantics and improve control.

9
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6 ETHICS STATEMENT

Scope and intended use (research-only). VAP targets semantic-controlled video generation for
research, education, and creative prototyping, where a reference video and an optional caption steer
concept/style/motion/camera. It is not intended for surveillance, impersonation, political persuasion,
or other high-risk deployments. We will accompany any artifact release with a research-only license
and an acceptable-use policy (AUP) that explicitly prohibits abusive or unlawful scenarios.

Misuse risks and technical/operational mitigations. Potential misuses include identity imper-
sonation, “deepfake” content, targeted harassment, deceptive political messaging, and generation of
sexualized or violent media. Our mitigations include: (i) a research-only release; (ii) default content
filters blocking clearly harmful categories (e.g., sexual content, explicit violence, hate symbols).

7 REPRODUCIBILITY STATEMENT

We release complete, anonymous resources to ensure reproducibility of our results: (i) code and
scripts at https://anonymous.4open.science/r/Video-As-Prompt-Review-CA61 , and (ii) an anony-
mous project page with qualitative examples at https://video-as-prompt.github.io . Method details
are specified in §3, implementation in §4.1, metrics in §4.2, and datasets in §4.3.
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In the appendix, we provide more qualitative results (Appendix A), downstream application demon-
stration (Appendix B), more implementation details (Appendix C), including the hyperparameters
and the semantic alignment score metric. Then, we illustrate more dataset details and limitations of
our VAP-Data (Appendix D). Furthermore, we discuss more about the influence of reference video
quality, caption quality, and multiple reference videos (Appendix E). And we conduct more ablation
about VAP (Appendix F). Finally, we illustrate the use of large language models (Appendix G).

A GALLERY

To further demonstrate our VAP’s performance, we provide more semantic-controlled generation
cases in Fig. 8, Fig. 9. We strongly encourage readers to view our webpage in the supplementary
for better visualization.

Figure 8: Additional visualizations of VAP, including entity transformation and entity interaction
in concept semantic categories.
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Figure 9: Additional visualizations of VAP, including style semantic categories, motion semantic
categories (Non-Human Motion and Human Motion), and camera semantic categories.
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Reference Video Reference Image Generated Video

Turn into a Ladudu

Ghibli Style

Mecha X

Paper Man

Gender Swap

Cloning

Zoom Out

Hitchcock

Figure 10: Given different reference videos (with different semantics) and the same reference image,
our VAP consistently generates a new video for each semantic.

B APPLICATION

Our Video-as-Prompt (VAP) model supports the following downstream applications by disentan-
gling a semantic concept from a source video and applying it to a new subject:

1. Given different reference videos (with different semantics) and the same reference image,
our VAP consistently generates a new video for each semantic (Fig. 10);

2. Given different reference videos (with the same semantics) and the same reference im-
age, our VAP consistently generates the target video aligned with the provided semantics
(Fig. 11);

3. Given one reference video and different reference images, our VAP transfers the same se-
mantics from the reference video to each image and generates the corresponding videos
(Fig. 12);

4. Beyond video prompts, VAP allows for fine-grained adjustments using modified text
prompts, by fixing the reference inputs and only changing a single word in the prompt (e.g.,
black to white). VAP can precisely edit attributes of the generated output while preserving
identity and motion (Fig. 13).

C IMPLEMENTATION DETAILS

C.1 HYPERPARAMETERS

In Tab. 3, we summarize hyperparameters for two VAP variants based on CogVideoX-5B (Yang
et al., 2024) and Wan2.1-14B (Wan et al., 2025), respectively, showing transferability across differ-
ent DiT architectures.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Reference Video Reference Image Generated Video

Ghibli Style

Expand like a Balloon

Expand like a Balloon

Expand like a Balloon

Ghibli Style

Ghibli Style

Figure 11: Given different reference videos (with the same semantics) and the same reference image,
our VAP consistently generates the target video aligned with the provided semantics

Reference Video Reference Image Generated Video

Ghibli Style

Expand like a Balloon

Expand like a Balloon

Expand like a Balloon

Ghibli Style

Ghibli Style

Figure 12: Given one reference video and different reference images, our VAP transfers the same
semantics from the reference video to each image and generates the corresponding videos.

C.2 METRICS

As stated in Sec. 4.2, standard video-quality metrics (e.g., CLIP score (Radford et al., 2021), aes-
thetic score (Schuhmann et al., 2022)) do not reliably capture adherence to a specific semantic con-
dition, so we introduce a semantic-alignment score that measures consistency between the reference
semantic condition and the generated video; we submit each (reference, generation) pair and the
evaluation rules to Gemini-2.5-pro (Comanici et al., 2025) for automatic scoring.

The evaluation rules pair a general template with key criteria for each semantic; for each case, we
provide the template, the criteria for the current semantic (see Tab. 4), the reference video condition,
and the generated video to the VLM, which scores them under these rules.
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Reference Video Reference Image Generated Video

Turn into a black Ladudu

Turn into a green Ladudu

Turn into a purple Ladudu

Turn into a red Ladudu

Turn into a golden Ladudu

Turn into a white Ladudu

Figure 13: Given a fixed reference video and a reference image, our VAP preserves semantics and
identity while using a user-modified prompt to adjust fine-grained attributes.

Table 3: Hyperparameter selection for CogVideoX-I2V-5B-based and Wan2.1-I2V-14B-based VAP.

Hyperparameter Model
CogVideoX-I2V-based Wan2.1-I2V-based

Batch Size / GPU 1/1 1/2
Accumulate Step 1 1
Optimizer AdamW AdamW
Weight Decay 0.0001 0.0001
Learning Rate 0.00001 0.00001
Learning Rate Schedule constant with warmup constant with warmup
WarmUp Steps 1000 1000
Training Steps 20,000 20,000
Resolution 480p 480p
Prediction Type Velocity Flow Matching
Num Layers 42 40

MoT Layers

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41]

[0, 4, 8, 12, 16, 20, 24,
28, 32, 36]

Pre-trained Model CogVideoX-I2V-5B Wan2.1-I2V-14B

Sampler CogVideoX DDIM Flow Euler
Sample Steps 50 30
Guide Scale 6.0 5.0
Generation Speed (1 A100) ˜540s ˜420s

Device A100×48 A100×48
Training Strategy FSDP / DDP / BFloat16 FSDP / DDP Parallel / BFloat16

To validate the stability of the semantic alignment score, we conduct the same evaluation experiment
with another state-of-the-art vision lanuage model GPT-5 (OpenAI, 2025); its scores match closely
Gemini-2.5-Pro (Comanici et al., 2025) and follow the trends of human preference rate in our user
study (see Tab. 5), confirming the validity of the metric. This further verifies the effectiveness and
validity of our proposed semantic alignment score.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 4: Prompt components for the semantic-alignment metics.We provide the general template
and the specific criteria of “Ghibli Style” as an example.

Category Content

General Template You are an expert judge for reference–based semantic video generation.
INPUTS
REFERENCE video: the target semantic to imitate. TEST video: a new
output conditioned on a NEW reference image. Human criteria (treat as
ground truth success checklist; overrides defaults if conflict): {criteria}
REGIME DECISION
Classify the semantics into one of: A) ID-TRANSFORM
(identity-changing): the main subject/object changes semantic class or
material/state. Layout and identity may legitimately change as a consequence
of the transformation. B) NON-ID-TRANSFORM (identity-preserving):
stylization, camera motion (pan/zoom), mild geometry exaggeration, lighting
changes, human motion, etc. The main subject class/identity should remain
the same.
If the REFERENCE clearly shows a class/state change, choose A. Otherwise,
choose B. When uncertain, choose B.
EVALUATION
1) SEMANTIC MATCH (0–60) Regime A (ID-TRANSFORM): How
strongly and accurately does TEST reproduce the REFERENCE’s target
state/look/behavior on the correct regions? Is the source→target mapping
consistent (same parts transform to corresponding target parts)? Does the
transformed state resemble the REFERENCE target, not a generic filter?
Regime B (NON-ID-TRANSFORM): Does TEST replicate the specific
semantic (style, camera motion, geometric exaggeration) while keeping the
subject recognizable and aligned to the intended scope?
2) IDENTITY / LAYOUT CORRESPONDENCE (0–20) Regime A: Reward
semantic correspondence rather than identical identity; coarse scene
continuity is preserved unless the REFERENCE implies re-layout. Regime
B: Main subject identity stays intact (face/body/clothes/features), and coarse
spatial layout remains consistent (no unintended subject swaps/teleports).
3) TEMPORAL QUALITY and TRANSFORMATION CONTINUITY
(0–20) Check onset→sustain→offset completeness of the transformation as
implied by the REFERENCE. Avoid pop-in/out. Motion is smooth, minimal
flicker, and the background is reasonably stable. No frozen loops unless
REFERENCE loops.
HARD FAIL CAP (force FINAL ¡= 20 if any true) - REFERENCE shows an
ID-TRANSFORM, but TEST lacks the transformation, targets the wrong
class/material, or completes ¡70% of the transformation timeline. - Severe
identity loss in Regime B (unrecognizable face/body, unintended
person/object swap). - Gross broken anatomy (detached/missing limbs,
implausible face mash) is not required by the semantics. - Extreme temporal
instability or unreadable corruption (heavy strobe, tearing, tiling). -
Hallucinated intrusive objects that block the subject or derail the semantics.
OUTPUT (exactly ONE line of JSON; integer only) {”score”: 1–100}

Semantic Criteria Regime: NON-ID-TRANSFORM (identity-preserving stylization).
Semantic: Ghibli-style stylization — the overall look gradually transitions to
a hand-drawn, soft, film-like Ghibli aesthetic across the whole frame.
Identity preservation: The main subject remains recognizable;
appearance/proportions/base colors are largely maintained (stylistic
simplification and brush-like textures allowed).
Motion allowance: Light natural motion is allowed (e.g., slight subject or
scene movement) without disrupting effect consistency.
Exclusions: No identity swaps, major re-layout, or gross anatomy distortions
unless explicitly implied by the reference.
. . .
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Table 5: Semantic alignment score metric and user preference. Columns are models; rows are
semantic alignment score evaluated by Gemini-2.5-Pro (Comanici et al., 2025), semantic alignment
score evaluated by GPT-5 (OpenAI, 2025), and human preference rate results of our user study.

Metric VACE (Original) VACE (Depth) VACE (Optical Flow) CogVideoX-I2V CogVideoX-I2V (LoRA) Kling / Vidu Video-As-Prompt (VAP)
Alignment Score (Gemini-2.5-Pro)↑ 35.38 43.35 46.71 26.04 68.60 74.02 70.44
Alignment Score (GPT-5)↑ 32.52 39.41 45.09 28.36 66.93 73.91 70.26
Preference Rate (%)↑ 0.6% 0.7% 1.8% 6.9% 13.1% 38.2% 38.7%

D DATASET

D.1 DATASET DETAILS

In-context learning requires vast amounts of example pairs, which simply do not exist for semantic
video tasks. Filming 100k real-world pairs is nearly impossible for a research exploration. Our
solution was to bootstrap it. We curated thousands of high-quality real images and then used the
existing “zoo of specialist models” (commercial APIs (Kling, 2025; Vidu, 2025; PixVerse, 2025)
and LoRAs (Hu et al., 2022; Civitai, 2025)) as a powerful, automated engine to create our paired
dataset, VAP-Data. As shown in Sec. 3.2 and Fig. 3, VAP-Data is the largest semantic-controlled
paired dataset to date, with over 100K samples across 100 semantic conditions, covering 4 primary
categories: concept (entity transformation and interaction), style, motion (human and non-human),
and camera movement. The detailed distribution of semantic conditions is provided in Tab. 6.

Crucially, VAP-Data is more than just a dataset; it’s proof of a concept. We show that we can train
a single generalist model (VAP) to learn the unified underlying principle of semantic control by
showing it various examples from disparate specialist models.

For evaluation, we evenly sampled 24 semantic conditions from 4 categories (concept, style, motion,
camera) in VAP-Data test subset, with 2 samples each, totaling 48 test samples.

D.2 DATASET LIMITATIONS

Even though our VAP-Data is the largest semantic-controlled video generation dataset, it still has
limitations. As noted in Sec. 4.3, VAP-Data was created using visual effects templates from commer-
cial models (vidu (Vidu, 2025), Kling (Kling, 2025)) and community LoRAs (Hu et al., 2022; Wan
et al., 2025; Yang et al., 2024; Civitai, 2025). Thus, the dataset is synthetic and derived from other
generative models, leading to VAP may inherit the specific stylistic biases, artifacts, and conceptual
limitations of the source templates (e.g., if the source models are poor at generating hands, VAP will
likely not learn to generate hands well from this data). Building a large, real-world, semantic-
controlled video dataset would help address this issue, but it is beyond this paper’s main focus; we
leave it for future work.

Nevertheless, zero-shot experiments in Sec. 4.4 and downstream tasks in Appendix B show that
VAP generalizes to unseen semantic conditions (Liu et al., 2025) (e.g., crumble, dissolve, levitate,
melt) and across tasks, including using different reference videos to prompt a single reference image
under different semantic conditions or using the same reference videos to prompt different reference
images under a fixed semantic condition. These results demonstrate the generality of VAP and we
hope they inspire advances in controllable video generation; broader data collection is left to future
work. Additional visualizations are available on the supplementary webpage.

E LIMITATION ANALYSIS

E.1 INFLUENCE OF REFERENCE VIDEO AND CAPTION

VAP learns in-context generation from large paired video–caption data: given captions for a ref-
erence and a target video, the shared semantic attributes in both captions aid in transferring the
semantic properties of the reference video to the target video. Specifically, when both captions men-
tion the same concept (e.g., “molten metal pours over the target . . . ”) in a similar way, VAP retrieves
the relevant semantics from the reference prompt and applies it to the target. The reason why we
use standard video-description captions (e.g., “. . . A static Grogu is centered. . . A viscous, reflective
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Table 6: Dataset statistics by 4 primary semantic categories. We reorganize the dataset into 4
primary categories: Concept (merging entity transformation and interaction), Style, Motion (cover-
ing human and non-human motion transfer), and Camera Movement. For each primary category,
we report its subcategory (if any), the alphabetical semantic condition subset list (names come from
commercial models API definition (Kling, 2025; Vidu, 2025), and community visual effects LoRA
definition (Civitai, 2025), see Sec. 4.3), and the total number of videos.

Primary
Category Subcategory Subset (alphabetical) Total

Videos

Concept (n=56)
Entity Transformation
(n=24)

captain america, cartoon doll, eat mushrooms, fairy
me, fishermen, fuzzyfuzzy, gender swap, get thin-
ner, hair color change, hair swap, ladudu me, mecha
x, minecraft, monalisa, muscling, pet to human,
sexy me, squid game, style me, super saiyan, toy
me, venom, vip, zen

17k

Entity Interaction
(n=21)

aliens coming, child memory, christmas, cloning,
couple arrival, couple drop, couple walk, covered
liquid metal, drive yacht, emoji figure, gun shooting,
jump to pool, love drop, nap me, punch hit, selfie
with younger self, slice therapy, soul depart, water-
melon hit, zongzi drop, zongzi wrap

20k

Style (n=11)
Stylization
(n=11)

american comic, bjd, bloom magic, bloombloom,
clayshot, ghibli, irasutoya, jojo, painting, sakura
season, simpsons comic

15k

Motion (n=41)
Human Motion Transfer
(n=16)

break glass, crying, cute bangs, emotionlab, fly-
ing, hip twist, laughing, live memory, live photo,
pet belly dance, pet finger, shake it dance, shake it
down, split stance human, split stance pet, walk for-
ward

10k

Non-human Motion Transfer
(n=16)

auto spin, balloon flyaway, crush, decapitate, dizzy-
dizzy, expansion, explode, grow wings, head to bal-
loon, paperman, paper fall, petal scattered, pinch,
rotate, spin360, squish

19k

Camera (n=12)
Camera Movement Control
(n=12)

dolly effect, earth zoom out, hitchcock zoom, move
down, move left, move right, move up, orbit, orbit
dolly, orbit dolly fast, zoom in, zoom out

19k

‡ Subset counts (n) are reported per subcategory and are alphabetically sorted within each subcategory.
Overall subsets across all primary categories: 100. Overall videos across all categories: > 100k.

gold liquid appears on the forehead . . . ”, “A young woman stands still. . . A thick, reflective liquid
metal begins to pour over her face from above. . . ”), is to match the pre-training data distribution,
Consequently, performance depends on caption quality and on structural similarity between the main
subjects: it is stable when caption styles align and subjects are similar, but degrades when descrip-
tions diverge (e.g., “. . . A viscous, reflective gold liquid appears on the forehead . . . ” vs. “. . . A
viscous, reflective rose-gold water pours over the snail . . . ”) or when subjects differ markedly (e.g.,
Grogu vs. snail). As shown in Fig. 14, the bad caption mislabels “water” instead of the intended
“liquid metal”; the good reference subject (the young woman) is structurally closer to Grogu, while
the snail differs greatly and its semantic signal is weak (the liquid metal and shell have similar
colors), yielding poorer alignment and less appealing visuals for the bad reference case.

E.2 INFLUENCE OF MULTIPLE REFERENCE VIDEOS

We examine how the number of video prompts affects performance by supplying 1–3 semantically
matched reference videos during training and testing. Empirically, results are similar to using a
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Good Reference Video Good Generation Result

A static Grogu is centered… a 
viscous, reflective gold liquid 
appears on the forehead…  

Bad Generation Result

A young woman stands 
still… A thick, reflective 

liquid metal begins to pour 
over her face from above

Reference Image

Bad Reference Video

A small snail rests atop a 
stone… a viscous, reflective 
rose-gold water pours over 

the snail…

Figure 14: Limitation visualization. VAP transfers semantics reliably when the semantic descrip-
tion of reference caption aligns with that of the target caption and subject structure aligns with the
target: aligned descriptions (“gold liquid” and “liquid metal”) and similar subject structures (Grogu
and a young woman) yield good results (top). Mislabeled semantic descriptions (“water” vs. “liquid
metal”), or large subject mismatch (Grogu vs. snail), reduce alignment and visual quality (bottom).

Reference Video 1

Reference Video 2

Reference Video 3

Ground Truth

Failure Result

Figure 15: Failure case of multi-reference prompting. Left: three reference videos with divergent
structure and similar semantics (human, spider, flatfish). Right: Ground truth is on top. Using three
(bottom) spuriously transfers unwanted appearance cues (e.g., fish shape and spider-like legs) onto
the dog. We attribute this leakage to generic captions that lack an explicit referent; stronger multi-
reference control or instruction-style captions could mitigate it.

single reference. However, with multiple references, the model may blend unwanted visual details
across videos, as shown in Fig. 15. We hypothesize this stems from our general-purpose captions,
which lack explicit semantic referents. When the three references differ in structure (human, spider,
flatfish) and in semantic realization (e.g., reference 1 clearly shows “AI Lover Drop”; reference
2 introduces a falling spider without a hug; reference 3 is weakest, with a flatfish swimming up
instead of falling), the model mixes semantics from reference 1 with appearance from reference 2
(spider legs) and contours from reference 3 (fish shape). A more effective multi-reference control
mechanism (e.g., a tailored RoPE for multi-reference conditions)—or an instruction-style caption
that specifies the intended referent—may mitigate this issue. A full study of model and caption
design for multi-reference training is beyond this work and left for future research.

E.3 EFFICIENCY

Like prior plug-and-play methods (Zhang et al., 2023; Jiang et al., 2025), our approach avoids re-
training pre-trained video diffusion transformers at pre-training scale, but the added parameters in-
troduce extra inference cost—higher memory use and longer runtime. Specifically, the impact varies
with the distribution of MoT layers in VAP; as shown in Tab. 3, inference time roughly doubles on
average, mainly due to additional MoT-expert computation and in-context full attention. Given the
strong plug-and-play unified semantic control in in-context generation and the fact that we avoid
retraining the backbone, this overhead is acceptable. Performance optimizations (e.g., sparse atten-
tion (Dao, 2024; Zhang et al., 2025a) and pruning (Fang et al., 2025; Xie et al., 2025)) are orthogonal
and beyond the scope of this work; we leave them to future work.

F ABLATION STUDY

In-context Generation Structure. We train 4 VAP variants to test the effectiveness of our mixture-
of-transformers (MoTs) adoption: A1. Single-Branch Finetuning us

Θ: expand pre-trained DiT
input sequence to [Reftext, Refvideo, Tartext, Tarvideo] and finetune the full model; A2. Single-
Branch LoRa Finetuning usl

Θ: same as A1 but freeze the backbone and train only the LoRA
layers; A3. Unidirectional Cross-Attn uuc

Θ : freeze the pre-trained DiT, add a new branch with
the same weights, and inject its features via layer-wise cross-attention; and A4. Unidirectional
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Table 7: Ablation Study. We verify the effectiveness of our MoT structure, temporal-biased RoPE,
the scalability, and the transferability in different DiTs. The bottom row reports our full model.

Metrics Text Overall Quality Reference
Variant CLIP Score ↑ Motion Smoothness ↑ Dynamic Degree ↑ Aesthetic Quality ↑ Alignment Score ↑
us
Θ (Single-Branch) 23.03 97.97 70.83 56.93 68.74

usl
Θ (Single-Branch-LoRA) 23.12 98.25 72.92 57.19 69.28

uuc
Θ (Unidir-Cross-Attn) 22.96 97.94 66.67 56.88 67.16

uua
Θ (Unidir-Addition) 22.37 97.63 62.50 56.91 55.99

Position Embedding Design

ui
Θ (Identical PE) 23.17 98.49 70.83 57.09 68.98

un
Θ (Neg. shift in T,W ) 23.45 98.53 72.92 57.31 69.05

Scalability‡

uΘ(1K) 22.84 92.12 60.42 56.77 63.91
uΘ(10K) 22.87 94.89 64.58 56.79 66.28
uΘ(50K) 23.29 96.72 70.83 56.82 68.23
uΘ(100K) 24.13 98.59 77.08 57.71 70.44

DiT Structure

uWan
Θ (Wan2.1-I2V-14B) 23.93 97.87 79.17 58.09 70.23

In-Context Expert Transformer Layer Distribution‡

uΘ(Lodd) 24.05 98.52 75.00 57.58 70.22
uΘ(Lodd,≤⌊0.5Nl⌋) 23.72 98.19 70.83 56.71 69.61
uΘ(Lfirst-half) 23.90 98.41 75.00 57.18 69.94
uΘ(Lfirst-last) 23.96 98.33 72.92 57.06 70.02

Video Prompt Representation

un ref
Θ (noisy reference) 23.98 98.41 75.00 57.42 70.18

Ours
uΘ (VAP) 24.13 98.59 77.08 57.71 70.44
† Notation. uΘ (our VAP parameterized by Θ). s (in-context single-branch finetuning), sl (in-context single-branch LoRA finetuning), uc (unidirec-

tional cross-attention injection), ua (unidirectional residual addition), i (identical position embedding in reference and target), n (temporal shift +
negative temporal/width shifts of position embedding), Wan (Wan2.1 as DiT backbone). n ref (noisy reference prompts).

‡ MoT layers. uΘ(L) activates MoT blocks on layer index set L ⊆ [Nl] = {1, . . . , Nl} of the backbone with Nl Transformer layers. We instantiate
Lfirst-half={1, 2, . . . , ⌊0.5Nl⌋}, Lfirst-last={1, Nl}, Lodd,≤⌊0.5Nl⌋={1, 3, . . . , ⌊0.5Nl⌋}, and Lodd={1, 3, . . . , Nl}.

§ Scale. uΘ(M) indicates the number of video training pairs used (M ∈ {1K, 10K, 50K, 100K}).

Addition uua
Θ : same as A3 but inject features via residual addition. We evaluate on the same

benchmark of VAP-Data. Results in Tab. 2 show: A1. MoT boosts performance by preserving the
base DiT’s generative ability while enabling plug-and-play in-context control. A2. LoRA helps
retain the backbone’s ability, but its limited capacity struggles with complex in-context generation,
yielding suboptimal results. A3. Layer-wise bidirectional information exchange in MoT lets the
reference video-prompt representation adapt synchronously to the target tokens, improving semantic
alignment. A4. Even with new data, residual-addition methods rely on rigid pixel-to-pixel mapping,
mismatching semantic-controlled generation and degrading performance.

Position Embedding Designs. To validate the effectiveness of our temporally-biased RoPE, we
evaluate two variants. (1) ui

Θ: applying identical RoPE to both the reference and target videos,
which enforces an unrealistic pixel-wise alignment prior and leads to degraded performance; (2)un

Θ:
in addition to introducing a temporal bias ∆, following in-context image generation (Tan et al.,
2025), we add a width bias by placing the reference video to the left of the target video. Experiments
show that this increases the difficulty of spatial referencing and results in performance degradation.

Scalability. As shown in Tab. 2, VAP improves across all metrics as training data grows, demonstrat-
ing strong scalability. This follows from our unified design that treats reference videos as prompts
without task-specific modifications, together with the MoT framework, which preserves the back-
bone’s generative capacity while enabling plug-and-play in-context generation.

DiT Structure. To test transferability, we equip Wan2.1-I2V-14B with VAP equal in parameter
counts to CogVideoX-I2V-5B version (evenly inserted across 1

4 layers; ≈ 5B), which—benefiting
from Wan2.1’s stronger base—improves dynamic degree and aesthetic score but, because the only
1
4 in-context interaction, yields slightly worse reference alignment than VAP on CogVideoX.

Mixture-of-Transformers Layer Distribution We analyze how different layer distributions affect
our in-context DiT Expert. (1)uΘ(Lfirst-half): initializing and copying from the first half of the pre-
trained DiT; (2)uΘ(Lfirst-last): from the first and last layers; (3)uΘ(Lodd,≤⌊0.5Nl⌋): from the odd
layers of the first half; and (4)uΘ(Lodd): from all odd layers. The results show that balanced feature
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interaction improves generation quality (uΘ(Lfirst-last) outperforms uΘ(Lfirst-half), and uΘ(Lodd) out-
performs uΘ(Lodd,≤⌊0.5Nl⌋)). However, while reducing layers can improve training and inference
efficiency, it inevitably harms certain aspects of performance (uΘ(VAP) outperforms uΘ(Lodd)).

Video Prompt Representation Inspired by Diffusion Forcing (Chen et al., 2024a; Song et al., 2024;
Guo et al., 2025b), we study video prompt representation by injecting noise into it. However, this
often leads to severe artifacts. The core reason is that, unlike long-video generation in Diffusion
Forcing, where copy-paste or overly static results are common, our reference videos already differ
significantly in appearance and layout from the target videos. Thus, adding noise to the video prompt
corrupts the contextual information and degrades generation quality.

G USE OF LARGE LANGUAGE MODELS (LLMS)

Scope of use. We used a large language model (LLM) only for writing polish, including gram-
mar correction, phrasing refinement, and improvements to clarity and readability. The LLM did
not contribute to research ideation, problem formulation, method design, experimental setup, re-
sult selection, interpretation, or drafting of technical content (theorems, algorithms, proofs, metrics,
or analyses). All technical claims, experiments, figures, tables, and conclusions were conceived,
implemented, and verified by the authors.

Process and safeguards. LLM assistance was applied post hoc to author-written passages to im-
prove presentation quality, without introducing new technical material or references. We reviewed
each edited passage for accuracy and faithfulness to the original meaning and ran standard pla-
giarism checks. No proprietary or sensitive data were disclosed to the LLM beyond non-sensitive
manuscript text; when necessary, potentially identifying details were redacted.

No material impact on research outcomes. The use of LLMs had no bearing on the research
ideas, empirical results, evaluation protocols, or conclusions reported in this paper.

25


	Introduction
	Related Works
	Video Generation
	Controllable Video Generation

	Methods
	Preliminary
	Reference Videos as Task-Agnostic Prompts
	Plug-and-Play In-Context Control
	Temporally Biased Rotary Position Embedding

	Experiments
	Implementation Details
	Metrics
	Dataset
	Comparison with Previous Methods
	Ablation Study

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Gallery
	Application
	Implementation Details
	Hyperparameters
	Metrics

	Dataset
	Dataset Details
	Dataset Limitations

	Limitation Analysis
	Influence of Reference Video and Caption
	Influence of Multiple Reference Videos
	Efficiency

	Ablation Study
	Use of Large Language Models (LLMs)

