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ABSTRACT

SQL is the core of data analysis and engineering across industries, powering large-
scale workflows for data extraction, transformation, and loading. However, in
enterprise-level scenarios, it is challenging to generate fully correct SQL code in a
single attempt—even for experienced developers or advanced Text-to-SQL LLMs.
Multiple iterations of debugging are usually required, yet LLMs often get lost in
multi-turn correction. To address this gap, we introduce Squirrel Benchmark,
the first benchmark designed for enterprise-level SQL reasoning and debugging.
Our benchmark is built upon two key innovations: (1) an automated construction
workflow that employs reverse engineering to systematically inject realistic bugs
into large-scale SQL code, enabling scalable and diverse benchmark generation;
and (2) an execution-free evaluation framework tailored for enterprise settings,
providing fast, accurate, and resource-efficient assessment. Squirrel Benchmark
comprises 469 Squirrel-Syntax queries featuring syntax errors with explicit error
messages, and 516 Squirrel-Semantic queries targeting semantic errors where SQL
fails to meet the requirement. The SQLs are substantially complex, averaging over
140 lines with abstract syntax trees of high complexity (average width > 11, depth
> 8.7). We evaluate nearly 30 LLMs on Squirrel Benchmark. Even state-of-the-art
reasoning models struggle: Claude-4-Sonnet achieves only 36.46% success on
Squirrel-Syntax and 32.17% on Squirrel-Semantic. Most models fail to reach 20%
success, underscoring the significant gap between current LLM capabilities and
the demands of enterprise SQL debugging. To bridge this gap, we systematically
explore four potential solution strategies and conduct extensive experiments to
evaluate and compare their effectiveness. Our experiments not only highlight the
challenges but also shed light on effective strategies for advancing SQL debugging
with LLMs.

1 INTRODUCTION

Databases are a cornerstone of modern data infrastructure, powering critical applications across
finance, web services, and scientific computing. Structured Query Language (SQL) remains the
predominant interface for human–data interaction, enabling large-scale extraction, transformation,
and loading (ETL) workflows (Chamberlin & Boyce, 1974; Armbrust et al., 2015). Recent research
on Text-to-SQL large language models (LLMs) has sought to help analysts automate routine queries,
streamline data workflows, and support advanced business intelligence (Zhong et al., 2017; Yu et al.,
2018; Li et al., 2025a).

Enterprise SQL code is often lengthy, complex, and deeply nested, making it extremely challenging
for both experienced developers and Text-to-SQL LLMs to generate correct code in a single attempt
(Lei et al., 2025). Instead, success typically requires multi-step reasoning and iterative debugging. As
shown in Figure 1, debugging generally involves localizing errors, analyzing their causes, consulting
schema definitions, applying targeted modifications, and re-executing queries to check whether
requirements are satisfied—usually repeating this loop multiple times. Unfortunately, LLMs struggle
with this iterative correction process. They frequently fall into anti-patterns such as repeating identical
actions without meaningful follow-up, which leads to wasted effort when an initial correction fails
(Bouzenia & Pradel, 2025; Laban et al., 2025).
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···66 Lines Omitted···
67 result_base AS (
68     SELECT  
69             recommendation_strategy
70     FROM    (...
107    ORDER BY ...
109    LIMIT   200000
110), test AS (...
114), result AS (...
115    SELECT...
125    FROM    (
126                SELECT base.encrypted_contact,
127                       result_base.recommendation_strategy,
128                       base.device_identifier,
129                       base.passenger_id,...
···6 Lines Omitted···
135                FROM   result_base
136                JOIN   base
137                ON     result_base.passenger_id = base.passenger_id
            )
139    UNION ALL
···100+ Lines Omitted···

ERROR: from line 137, column 37 to line 137, column 48: Column
'passenger_id' not found in table 'result_base'

Execution Feedback

AI Coding AssistantHuman Developer

Database 
device_identifier passenger_id ... timestamp

... 100+ Columns Omitted...

Tab1
result_base

Document

Tab n ...... ... ...

Monitor the scheduled traffic,
including passenger profiling,
 device tracking, ...

1

2

3

4 5
68    SELECT

++ passenger_id  
69 recommendation_strategy

(1) Locate Error
(2) Check Statement
(3) Inspect Select

(4) Verify Column
(5) Correct Statement

Figure 1: Squirrel Benchmark evaluates LLMs on real-world enterprise-level SQL debugging workflows. It
involves multi-step reasoning and actions, including understanding requirements and schemas, diagnosing
executor errors, and iteratively refining queries through cycles of reasoning and debugging.

To bridge this gap, we propose moving beyond Text-to-SQL generation and shifting the focus to a
model’s ability to iteratively debug and self-correct. We introduce Squirrel Benchmark, a bench-
mark for evaluating LLMs on enterprise-scale SQL debugging. Our construction pipeline utilizes
an automated reverse-engineering framework to synthesize realistic and reproducible tasks. This
approach minimizes human effort while ensuring high-quality benchmark generation, also provid-
ing a foundation for synthetic training data. Furthermore, we design an execution-free evaluation
framework tailored to enterprise SQL scenarios. Squirrel Benchmark offers a practical reference
point for selecting SQL-focused LLMs in industry. The benchmark comprises 469 Squirrel-Syntax
tasks (syntax errors with explicit error messages) and 516 Squirrel-Semantic tasks (semantic errors in
which the SQL output does not match the user’s requirement). SQL programs in our benchmark are
highly complex, averaging over 140 lines (> 420 tokens), with ASTs of width > 11 and depth > 8.7,
and incorporating over 15 functions per script on average.

Our evaluation on Squirrel Benchmark indicates significant room for improvement in deploying LLMs
within SQL-SWE workflows. Extensive experiments show that even state-of-the-art LLMs struggle:
Claude-4-Sonnet achieves only 36.46% success on Squirrel-Syntax and 33.17% on Squirrel-Semantic,
while most models fail to reach 20%. These results underscore the difficulty of enterprise SQL
debugging and highlight substantial room for improvement. To address this gap, we systematically
explore four potential solution strategies and conduct comprehensive experiments to assess their
effectiveness. Our results not only illuminate the challenges faced by LLMs in SQL debugging but
also provide insights into strategies that can advance performance. Moreover, Squirrel Benchmark
exhibits a strong correlation with real-world debugging outcomes, establishing it as a reliable
benchmark for aligning models with industrial applications. In summary, this work makes the
following contributions:

• We propose an automated reverse-engineering workflow for constructing high-quality SQL
debugging benchmarks, which can also be adapted to synthesize realistic training data.
• We present Squirrel Benchmark, a large-scale benchmark comprising 469 syntax and 516
semantic tasks, designed to capture the complexity, diversity, and practicality of enterprise SQL
development.
• We conduct a comprehensive evaluation of nearly 30 open-source and proprietary LLMs,
showing that even the state-of-the-art LLMs face substantial challenges.
• We introduce three SFT and an agent method as baselines, offering a novel and efficient pathway
for further studies.

2 PRELIMINARY

2.1 TASK DEFINITION

SQL debugging is a fundamental but underexplored problem in data-centric machine learning.
Existing Text-to-SQL research primarily focuses on translating natural language to SQL queries, but
real-world scenarios often involve correcting issues in SQL scripts. The goal of SQL debugging is to
automatically repair buggy SQL scripts while preserving the user’s intent. This task begins with a
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buggy SQL (b), accompanied by auxiliary context C (e.g., error messages or natural language intent
descriptions) and the database schema (σ). The objective is to generate a corrected SQL (q̂):

q̂ = fθ(C, σ, b) (1)

where q̂ is executable and faithful to the intent encoded in (C, b, σ).
We categorize bugs into two primary types: (I) Syntactic errors. b is non-executable. Here, C is
the error message E , and the goal is to produce an executable repair while preserving its intended
semantics. (II) Semantic errors. b executes successfully but fails to meet the user’s requirements.
In this case, C is a natural language specification R, and the task is to modify q̂ to satisfy R. By
covering both types, Squirrel Benchmark unifies execution repair with intent comprehension, offering
a challenging and realistic benchmark for SQL debugging.

2.2 CHALLENGES

Despite its practical importance, SQL debugging introduces several unique challenges that are not
sufficiently addressed in existing SWE research.

Challenge 1: Lack of Enterprise-level SQL Scripts. Industrial SQL workloads, such as ETL
workflows and scheduled analytical jobs, are typically long, complex, and schema-heavy. Scripts can
span hundreds of lines, involve deeply nested subqueries and multi-way joins. and reference dozens of
tables and columns. This level of intricacy significantly amplifies the challenge for LLMs. In contrast,
most existing Text-to-SQL (Li et al., 2024) and SQL-debugging (Li et al., 2025b) benchmarks focus
on short, relatively simple queries that are far removed from the scale and complexity of enterprise
environments. Unfortunately, such industrial-grade SQL scripts are rarely available in the open-source
community, resulting in a pronounced mismatch between academic benchmarks and real-world needs.

Contribution 1: The First Enterprise-level SQL Benchmark

To address this gap, we introduce a large-scale, enterprise-level benchmark that captures the complexity of
real-world ETL and analytical workloads (Section 3.1).

Challenge 2: Lack of a Comprehensive Bug Taxonomy. SQL bugs are heterogeneous: some
manifest as execution failures (syntax errors), while others silently yield incorrect results (semantic
errors). Although recent benchmarks such as BIRD-Critic (Li et al., 2025b) have advanced debugging
evaluation, they lack a systematic taxonomy of SQL-specific bug types and their prevalence. Without
such categorization, it is difficult to understand where models struggle most and how to target
improvements effectively. A comprehensive analysis of SQL bug categories is therefore crucial, not
only for benchmarking but also for guiding the design of future bug-fixing models.

Contribution 2: A Hierarchical SQL Bug Taxonomy

We develop a hierarchical taxonomy of SQL bug types derived from an extensive analysis of real-world
errors. This provides a structured framework for fine-grained evaluation (Section 3.2).

Challenge 3: Lack of Reliable and Comprehensive SQL debugging Benchmark. High-quality
benchmarks for SQL Debugging are scarce. Manually curated datasets are costly to produce and
prone to evaluation leakage if models memorize solutions from public templates or repositories.
Existing resources often lack diversity, realistic bug patterns, and coverage of enterprise-scale scripts,
limiting their usefulness for robust model evaluation. Building a reliable, large-scale benchmark that
is both comprehensive and faithful to real-world workflows is therefore a significant challenge.

Contribution 3: An Automated SQL-SWE Synthesis Pipeline

We introduce an automated pipeline for synthesizing and validating SQL bug-fixing examples, ensuring
scalability, diversity, and resistance to data leakage (Section 3.3).

3 SQUIRREL BENCHMARK CONSTRUCTION

Figure 2 shows the automated benchmark construction pipeline. It comprises four stages: (1)
enterprise-level SQL script generation (Section 3.1), (2) SQL bug taxonomy design (Section 3.2),

3
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Invalid IF NULL arguments
Joins & Grouping GROUP BY Duplicate column
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... ... ... ... ... ...
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Benchmark Construction

DB Schema
Issue SQL

Error Message

Predict SQL Human Validate 
hard samples

LLM Testing

set tqs.pbo.ov..
.....
....

! ERROR: from line 137, column 37 to line 137, column 48: Column 'passenger_id' not found in table 'result_base'

...

Preserve 
boundary samples

Omit 
esay samples

Query

Scenario
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Mock
SQL

Execution-
based Verify

Scenarios
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Seed SQL
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Description/ Scenario

📜 140–160+ Lines / SQL
⚙️ 20+ Functions / SQL
📊 3 Tables / Task
🗂️ 100+ Columns / Task

···66 Lines Omitted···
67 result_base AS (
68     SELECT  
69             passenger_id,
70             recommendation_strategy_list
71     FROM    (...
107    ORDER BY ...
109    LIMIT   200000
110), test AS (...
114), result AS (...
115    SELECT...
125    FROM    (
126                SELECT base.encrypted_contact,
127                       result_base.recommendation_strategy_list,
128                       base.device_identifier,
129                       base.passenger_id,...
···6 Lines Omitted···
135                FROM   result_base
136                JOIN   base
137                ON     result_base.passenger_id = base.passenger_id
            )
139    UNION ALL
···100+ Lines Omitted···

(1) SQL Analysis

(2) Select Top-k Bugs

···66 Lines Omitted···
67 result_base AS (
68     SELECT  
69             passenger_id,
70             recommendation_strategy_list
···100+ Lines Omitted···

(3) Inject Bug

Semantic
(516)

Syntax
(469)

Matching

Figure 2: Overview of the Squirrel Benchmark construction and evaluation pipeline. Benchmark construction
consists of 4 main stages: (1) Enterprise-level SQL Script Generation, (2) SQL bug taxonomy Design, (3)
Issue SQL Construction via reverse engineering, and (4) Validation and Analysis. This pipeline ensures
diversity, realism, and rigorous evaluation of SQL Debugging task.

(3) issue SQL construction via reverse engineering (Section 3.3), and (4) validation and analysis
(Section 3.4). Section 3.5 further introduces an efficient execution-free evaluation methodology.
Section 3.5 presents an execution-free evaluation methodology. All synthetic content is generated
with Claude-4-Sonnet (anthropic, 2025) at temperature 0. Examples and prompts are detailed in
Appendix F and G.

3.1 ENTERPRISE-LEVEL SQL SCRIPTS GENERATION

Because enterprise SQL scripts are proprietary and rarely accessible, we synthesize realistic, high-
quality enterprise SQL.

Seed Enterprise SQL Curation. We curate high-quality SQL scripts q along with corresponding
table definitions σ from real-world enterprise applications. To ensure that queries are non-trivial
and representative of practical workloads, we filter scripts that fall below a complexity threshold τ .
Complexity is quantified via a composite metric:

C(q) = α
(
DAST(q) +WAST(q)

)
+ βL(q) (2)

where DAST, WAST, and L(q) denote AST depth, AST width, and code length, respectively.

For each retained SQL script, we utilize an LLM to abstract its business domain (d), intention (I),
and descriptive scenario (S). All scenarios are aggregated into a Scenarios Library, denoted as
Ddomain = {d}. The resulting seed dataset is then defined as:

Dseed = {(qi, σi, di, Ii, Si,AST(qi))|qi ∈ Qs, C(qi) > τ}, (3)

where Qs denotes the candidate SQL pool.

The final seed corpus contains 1,000+ SQL scripts spanning 26 business scenarios, averaging over
120 lines with AST depth > 8 and width > 12. Each script is rigorously validated to be bug-free,
resulting in a corpus that accurately captures both the structural complexity and semantic diversity of
enterprise SQL.

Solution SQL Synthesis. To expand coverage across domains and code structures, we synthesize
new SQL scripts using the seed corpus and the Scenarios Library:

4
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1. Seed Sampling. Select (qi, σi, di, Ii, Si,AST(qi)) ∈ Dseed and a target domain dt ∈ Ddomain.

2. Scenario Creation. Conditioned on dt, the LLM generates a new scenario description St together
with schema definitions σt, following the structure of the seed corpus.

3. SQL Synthesis. Given (Ii, Si,AST(qi),St, σt), the LLM generates a new SQL script qt that
preserves the complexity of the seed SQL scripts while adapting to the new schema and scenario.
This ensures that synthesized queries remain realistic, non-trivial, and representative of enterprise
workloads.

4. Execution-based Validation. To ensure the correction, each candidate qt is validated via execution.
Specifically, σt is instantiated to construct a fake test database, qt is executed, and only queries that
successfully execute are retained:

Qgt =
{
(qt, σt)

∣∣ exec(qt, σt) == passed
}

(4)

This synthesis pipeline ensures that the final SQL dataset exhibits (i) enterprise-grade complexity, (ii)
broad domain coverage via controlled scenario transfer, and (iii) guaranteed execution correctness.

3.2 SQL BUG TAXONOMY

We construct an SQL bug taxonomy by manually annotating 268 erroneous SQL queries collected
from real-world applications. Each bug is classified according to a three-level hierarchical error type:
(i) macro categories (e.g., DML, DDL, semantic, and logic), (ii) construct-specific subcategories
(e.g., INSERT statements), and (iii) atomic faults (e.g., mismatched column counts). This taxonomy
organizes common failure patterns and forms a bug library of realistic error templates. The library
underpins our controlled bug-injection process (Section 3.3), ensuring that Squirrel Benchmark
captures authentic SQL error modes. Table 4 and 3 report the distribution of bug types.

3.3 ISSUE SQL CONSTRUCTION

We construct issue SQL queries through reverse engineering, transforming correct SQL scripts into
buggy versions. The process is guided by three principles: structural awareness, taxonomy-guided
selection, and minimal-change injection, ensuring that the generated bugs are both realistic and
diagnostically useful.

Step 1: Structural Profiling and Taxonomy-Guided Selection For each ground-truth SQL qgt,
we first analyze its structural and semantic profile, including the AST, function patterns, and clause
usage. Based on this profile, we then select the top-k candidate bug types from our hierarchical SQL
bug taxonomy. This approach ensures that the injected errors are well-suited to the given SQL while
providing broad coverage of real-world error scenarios.

Step 2: Minimal Change-Based Bug Injection. Each injected bug represents the smallest possible
modification that induces the targeted error type. This principle preserves maximal similarity between
the buggy SQL b and its reference qgt, isolating the error signal and reducing confounding factors.
As a result, evaluating whether a model can localize and repair the fault becomes both precise and
interpretable.

3.4 VALIDATION AND ANALYSIS

We validate Squirrel Benchmark via a model-driven attack–defense process. The goal is to filter out
trivial cases that most models can easily solve, while retaining challenging but solvable instances that
better reflect real-world debugging.

Automated Verification. We first attack the benchmark by evaluating each generated instance with
a diverse set of advanced LLMs (including Qwen3-Coder-32B(Yang et al., 2025a), GPT-5(Openai,
2025), DeepSeek-V3.1(DeepSeek, 2025), Claude-4-sonnet(anthropic, 2025), and others). Instances
fall into three categories: (i) If the majority of models succeed, the instance is deemed too easy and
discarded; (ii) If only a few models succeed, the instance is considered an edge case and retained; (iii)
If none of the models succeed, the instance is flagged for manual review. This adversarial filtering
ensures that the benchmark emphasizes cases where current models diverge, thereby sharpening its
discriminatory power.

Human Verification. Instances flagged as potentially unsolvable are subjected to manual inspection
by three expert annotators with extensive SQL experience. Following a cross-validation protocol,
annotators assess whether the task is logically inferable from the provided context and whether
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multiple valid solutions exist. Instances that fail to meet these criteria are removed. For cases where
multiple correct answers are possible, annotators supplement the benchmark with all valid alternative
solutions.
Through this attack–defense protocol, Squirrel Benchmark removes trivial cases, yielding a challeng-
ing yet solvable testbed.

3.5 EVALUATION METRICS

The prevailing metrics for SQL debugging are Exact Match (EM) and Execution Accuracy. However,
EM is notoriously strict, failing to credit semantically equivalent queries with divergent syntax.
Execution Accuracy, while more forgiving, introduces false positives when test databases lack the
necessary content to reveal logical errors (Zhan et al., 2025). Direct execution in production also
poses practical barriers, being computationally expensive and raising data privacy concerns. To
overcome these challenges, we introduce an execution-free evaluation framework based on three
metrics (Detailed definitions and formulas are provided in Appendix C.1.):

(1) Exact Match Score (EM): This metric assesses strict syntactic correctness by checking for
string-level identity between the predicted and reference SQL queries, thereby serving as a baseline
for syntactic alignment.

(2) Graph Match Score (GM): This metric evaluates structural and functional equivalence by
comparing the abstract syntax trees (ASTs) of the predicted and reference queries, thereby capturing
semantic correctness where EM fails.

(3) Modify-Better Score (MB): This metric gauges iterative improvement capability by comparing
the edit distances from the predicted SQL and the original SQL to the reference, thereby measuring
how much closer the refinement is to the target.

4 BENCHMARK STATISTICS

We present a statistical analysis of Squirrel Benchmark, comparing its key features with existing
SQL datasets in Table 1 and Figure 3. Our benchmark is designed to emphasize both complexity and
realism, closely mirroring the challenges found in real-world industrial environments—particularly
in terms of SQL script structure, error taxonomy, and task diversity.

Table 1: Statistical comparison of Squirrel Benchmark with representative text-to-SQL and SQL debugging
benchmarks. The table evaluates benchmarks on scale (# examples), script length (avg. tokens and lines), and
structural complexity (avg. function count, AST depth, and width).

Length of SQL Complex of SQL

Benchmark Type # Test
Examples # Tok.

/SQL
# Line.
/SQL

# Func.
/SQL

# AST Depth
/SQL

# AST Width
/SQL

Spider 1.0 (Yu et al., 2018) Text-to-SQL 2,147 18.50 — — — —
Spider 2.0-snow (Yu et al., 2018) Text-to-SQL 121 154.63 56.12 14.90 11.95 9.66
Spider 2.0-lite (Yu et al., 2018) Text-to-SQL 256 131.79 49.84 13.65 11.97 10.05
BIRD (Li et al., 2024) Text-to-SQL 1,789 30.90 — — — —

BIRD-Critic-open (Li et al., 2025b) SQL debugging 600 49.18 9.73 4.30 8.03 6.01
BIRD-Critic-postgresql (Li et al., 2025b) SQL debugging 530 51.44 6.92 4.78 8.25 6.34
BIRD-Critic-flash (Li et al., 2025b) SQL debugging 200 34.53 2.84 4.06 7.85 5.20

Squrriel-Syntax SQL debugging 469 496.90 163.69 21.62 8.93 11.69
Squrriel-Semantic SQL debugging 516 425.93 141.58 17.34 8.75 11.12

Complexity of SQL Scripts. The SQL scripts in Squirrel Benchmark are not only longer but also
structurally more complex, presenting challenges that better mirror real-world enterprise systems.
With an average length of 140− 160 lines and over 420 tokens, our scripts are an order of magnitude
larger than those in BIRD-Critic (which average under 10 lines). This scale directly implies a higher
probability of errors and a greater need for models to maintain long-range context and dependency
understanding. Additionally, the high number of functions per script (17.34 in Squirrel-Semantic,
21.62 in Squirrel-Syntax) necessitates reasoning across multiple subqueries and nested expressions—a
capability that many existing sequence-to-sequence models lack. This scale and functional richness
underscore the increased complexity and practical difficulty of the debugging tasks in our benchmark.
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Figure 3: Statistics of errors and domain distribution in Squirrel Benchmark. (a) Two-level error types in
Squirrel-Syntax, highlighting the distribution of syntax errors. (b) Two-level error types in Squirrel-Semantic,
showing the distribution of semantic errors. (c) Distribution of SQL code across different business domains.

Hierarchical Error Taxonomy. Figures 3(a) and (b) show the two-level error taxonomy for Squirrel-
Syntax and Squirrel-Semantic. Detailed error type statistics are in Appendix E. Squirrel Benchmark
covers a broad spectrum of common syntax and semantic errors, enabling fine-grained evaluation
of model capabilities. Syntax errors include issues related to grammar, structure, and dialect, while
semantic errors encompass type mismatches, aggregation errors, and logical inconsistencies. This
hierarchical classification allows for detailed insight into model performance across error types,
supporting a more rigorous assessment of debugging ability.

Diversity of Task Scenarios. As shown in Figure 3 (c), the domains in Squirrel Benchmark span
finance, e-commerce, healthcare, and more than ten additional areas, ensuring that models are
evaluated against a broad range of business logic and contextual dependencies. For example, a
program from the financial domain may involve complex window functions for time-series analysis,
whereas an e-commerce program might require reasoning over multi-table joins across user and
product schemas. This diversity tests a model’s ability to generalize beyond simplistic syntactic
patterns and demands domain-aware reasoning. Consequently, performance on Squirrel Benchmark
provides a stronger indicator of a model’s practicality and readiness for deployment in heterogeneous
real-world environments.

5 EXPERIMENTS

Due to space limitations, we provide detailed experimental settings in Appendix C. This section
focuses on the most important results.

5.1 MAIN RESULTS

Existing LLMs are far from being experts on enterprise SQL debugging. As shown in Table 2,
we evaluate a diverse set of LLMs on Squirrel, including the Qwen, DeepSeek, Claude, GPT, Gemini,
and Doubao families. Claude-4-Sonnet achieves the best performance, with a peak success rate of
36.46% GM score on Squirrel-Syntax and 32.17% GM score on Squirrel-Semantic. Interestingly,
although our benchmark is constructed through reverse engineering using Claude-4-Sonnet, it still
struggles with forward debugging. Other closed-source LLMs perform even worse, with most
failing to exceed 20% GM. Among open-source models, DeepSeek-V3 achieves 30.28% on Squirrel-
Syntax, and Qwen-2.5-Coder-32B attains 23.45% on Squirrel-Semantic, demonstrating competitive
performance relative to closed-source systems.

Code generation LLMs struggle with SQL debugging. In previous studies, most code LLMs
are heavily optimized for code generation, achieving strong performance on benchmarks such as
SWE-Bench (Jimenez et al., 2024), BIRD (Li et al., 2024), and Spider (Yu et al., 2018). For example,
OmniSQL (Li et al., 2025a), a Text-to-SQL–specialized model, achieves 87.6% on Spider and 64.5%
on BIRD. However, its performance on Squirrel-Syntax and Squirrel-Semantic drops sharply to only
6.4% GM, underscoring the substantial gap between SQL generation and SQL debugging.

Reasoning-oriented LLMs (RLMs) exhibit stronger refinement abilities. Comparing RLMs with
non-RLMs, we find that RLMs consistently perform better across both open-source and closed-source
families. Notably, most RLMs achieve MB scores above 50%, indicating that while their predictions
often move closer to the correct solution, they rarely solve the task in a single attempt.

Squirrel-Semantic is more challenging than Squirrel-Syntax. Across all evaluated models, perfor-
mance on Squirrel-Semantic is consistently lower than on Squirrel-Syntax. This is because Squirrel-
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Table 2: Evaluation results of LLMs on Squirrel-Syntax and Squirrel-Semantic. For each section, the best
performance is highlighted in bold, and the second-best is underlined. EM, GM, and MB denote exact match
score, graph match score, and modify-better score, respectively.

Squirrel-Syntax Squirrel-Semantic
Model Size Reasoning MoE EM GM MB EM GM MB

Open Source
Qwen-2.5-Instruct 7B 2.13 8.53 33.05 1.94 5.62 14.15
Qwen-2.5-Coder 7B 3.20 8.96 37.53 4.84 7.75 18.99
Qwen-2.5-Coder 32B 12.79 20.26 52.88 17.44 23.45 34.69
Qwen-3-Instruct 235B ✓ 9.38 20.47 61.19 10.27 15.50 27.57
Qwen-3-Coder-Instruct 30B ✓ 5.54 20.90 44.14 6.40 15.12 24.42
Qwen-3-Coder-Instruct 480B ✓ 14.93 23.88 61.62 17.05 19.96 31.84
QwQ 32B ✓ 8.76 20.51 41.45 10.47 15.31 20.16
Seed-Coder-Instruct 8B 8.53 14.93 42.43 8.72 14.15 24.61
OmniSQL 32B 0.21 6.40 50.75 0.39 6.40 21.17
Deepseek-V3 685B ✓ 17.91 30.28 60.34 11.24 21.32 33.27
Deepseek-V3.1 685B ✓ 17.91 30.49 63.61 12.02 14.73 32.47
Deepseek-R1 671B ✓ 18.34 21.98 58.64 15.89 22.09 30.14

Closed Source
Claude-4-Sonnet — ✓ 23.88 36.46 68.02 31.78 32.17 43.69
GPT-4o-mini-2024-07-18 — 1.71 4.69 13.01 5.62 6.40 8.74
GPT-4o-2024-11-20 — 2.14 4.69 13.79 2.91 4.84 6.86
GPT-4.1 — 6.40 17.70 61.25 8.52 17.05 30.49
GPT-5 — ✓ 13.43 18.55 66.52 16.28 16.47 29.90
Gemini-2.5-Pro — ✓ 15.78 21.54 62.37 14.15 23.06 34.37
Kimi-K2 — ✓ ✓ 14.07 27.72 61.83 15.70 20.93 31.84
O1-preview — ✓ 8.32 21.11 46.27 8.14 11.43 14.43
O3-mini — ✓ 3.84 19.83 63.54 10.47 28.68 40.78
Doubao-Seed-1.6 230B ✓ ✓ 19.19 30.92 64.39 16.09 20.93 32.82
Doubao-Seed-1.6-flash 230B ✓ ✓ 1.50 3.63 9.62 1.55 3.11 6.42
Doubao-Seed-1.6-thinking 230B ✓ ✓ 15.35 23.24 60.98 16.67 20.93 30.87

Comparison of different SFT method on Qwen-2.5-Coder
+ SFT 26.44 30.70 48.40 14.34 15.70 18.02
+ diff-SFT 22.17 22.81 34.33 7.95 9.30 12.60
+ DM-SFT

7B
27.27 33.18 55.67 15.12 18.99 24.81

Syntax provides explicit error messages, which help models localize faulty positions, whereas
Squirrel-Semantic requires reasoning about deeper semantic inconsistencies without surface-level
cues.

5.2 CAN SFT SOLVE THE SQL DEBUGGING?
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Figure 4: SFT baseline performance on
Squirrel-Syntax. The horizontal axis repre-
sents the average inference speed, and the
vertical axis shows the GM score.

As detailed in Appendix C.3.1 and Figure 7, we propose
3 representative SFT approaches as baselines: (1) Vanilla
SFT, which directly fine-tunes the model on parallel SQL
debugging pairs; (2) DM-SFT (Duan et al., 2024), which
dynamically masking the loss for unchanged tokens in re-
sponses; (3) Diff-SFT, which frames SFT as a search-and-
replace task, focusing only on the modified code segments.
Results in Table 2 and Figure 4 shows:

(1)Targeted in-domain SFT significantly improves SQL
debugging performance. Specifically, Qwen-2.5-Coder-
7B + SFT substantially outperforms the base Qwen-2.5-
Coder-7B, achieving a 33.17% gain in GM score on Squirrel-Syntax, and even surpasses Qwen-2.5-
Coder-32B by 10.44%. (2) DM-SFT improves performance over vanilla SFT by masking the loss on
non-diff tokens during training. This design forces the model to focus more on diff segments within
pairs, thereby enhancing its effectiveness. (3) Diff-SFT predicts only the diff segments instead of
generating the full code, offering a substantial inference speed advantage and reducing generation
hallucination. On our benchmark, it requires only half the time of other methods, which is particularly
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beneficial for longer code snippets in enterprise applications. However, due to a mismatch between
the search-and-replace task and the pretraining/SFT objectives of the base model, its GM score is
slightly lower. Overall, these three SFT strategies provide strong baselines for future research on
SQL debugging. More analysis is available in Appendix D.1.

5.3 CAN AGENT METHODS SOLVE THE SQL DEBUGGING?
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Figure 5: Agent performance on Squirrel-
Syntax. ‘∗’ denotes agent-based methods,
while others are single-model baselines.

As described in Appendix C.3.2 and Figure 8, we adopt
an agentic framework for SQL debugging. In this frame-
work, a main agent analyzes error messages and plans SQL
modifications, while a code generation sub-agent executes
the fixes. Execution results are iteratively fed back to the
main agent, forming a ReAct loop (Yao et al., 2022) that
continues until the SQL executes successfully.

Figure 5 shows that agent-based systems can signifi-
cantly boost performance, but results heavily depend
on the main agent’s capabilities. For example, using
Kimi-K2 as the main agent and Qwen3-Coder as the sub-
agent increases EM accuracy by 65% compared to the
Kimi-K2 single-model baseline. In contrast, when GPT-4o serves as the main agent—despite a
300%+ gain over its single-model performance—the combined system still underperforms the single
Qwen3-Coder model. We also observe a decline in the MB score of agent-based systems, as multiple
rounds of modification can gradually cause the model to deviate from the original SQL. These
observations provide initial insights for future exploration of agentic methods in SQL debugging.

6 RELATED WORK

Code Generation and Text-to-SQL Benchmarks. Early text-to-code benchmarks, including Hu-
manEval (Chen et al., 2021b), SQL-Spider (Yu et al., 2018), and BIRD (Li et al., 2024), focus
on simple and short code snippets (Zhuo et al., 2025; Jain et al., 2025; Bytedance, 2025). To ad-
dress the gap with real-world applications, SWE-Bench (Jimenez et al., 2023) evaluates models on
complete software issues, which require a comprehensive understanding of codebases. Similarly,
Spider2.0 (Lei et al., 2025) extends Text-to-SQL evaluation to enterprise contexts. BIRD-Critic (Li
et al., 2024) introduces SQL debugging, but it only handles short, simplified StackOverflow queries
that lack enterprise-level complexity. Most of these benchmarks rely on manually curated datasets,
which are costly and prone to data leakage (Chou et al., 2025). In this work, we introduce the
first enterprise-level SQL debugging benchmark, which is automatically constructed via reverse
engineering.

LLMs for Automated Software Engineering. Recent work applies LLMs to automated software
engineering through three primary paradigms: (1) Single-model approaches, which attempt to
produce patches directly from a description and buggy code, often using few-shot prompting or
SFT (Huang et al., 2024; Yasunaga & Liang, 2021; Allamanis et al., 2021). These single-model
methods are bottlenecked by the need to build large-scale SFT datasets (Pan et al., 2024; Li et al.,
2025b; Ma et al., 2024; Yang et al., 2025b; Pham et al., 2025). (2) Multi-stage Workflows, which
guide models through defect localization, patch generation, and validation (Xia et al., 2024; Zhang
et al., 2024). (3) Agent-based Methods, which leverage analysis, execution traces, or test feedback
for iterative refinement (Yang et al., 2024; Wang et al., 2025; Bouzenia et al., 2024; Chen et al., 2023).
In this work, we provide both SFT-based Single-model solutions and Agent-based methods, offering
the community a comprehensive understanding of SQL debugging tasks.

7 CONCLUSION

We introduce Squirrel Benchmark, the first benchmark for enterprise-level SQL debugging. With
its automated construction workflow and execution-free evaluation, Squirrel Benchmark enables
scalable and reliable assessment of LLMs. Despite recent advances in LLM reasoning, our evaluation
of nearly 30 models shows that real-world enterprise SQL debugging remains a significant challenge.
To encourage further progress, we highlight four promising directions, including three SFT-based
strategies and one agent-driven approach. Importantly, Squirrel Benchmark correlates strongly with
practical debugging performance, making it a reliable reference for both academic research and
industrial deployment.
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CODE OF ETHICS AND ETHICS STATEMENT

Our methodology utilizes publicly accessible resources, including the LLMs and toolkits such as
LLaMA-Factory and vLLM. The benchmark datasets used in our evaluation were synthetically
generated using these models and are scheduled for public release upon acceptance. While a portion
of our SFT data incorporates proprietary enterprise information and is therefore not fully disclosable,
we recommend that researchers use our automated benchmark construction pipeline to replicate the
training data. This work is centered on the English language and is strictly for research purposes.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we detail our datasets and annotation process in Section 3 and provide full
experimental settings in Appendix C.
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A USE OF LLMS

We claim the following regarding the use of LLMs in this work: (1) Claude-4-Sonnet was used
for data construction; details are provided in Section 3, with prompts listed in Appendix G. (2)
LLMs were employed for evaluation on the benchmark introduced in this paper; the specific models
are listed in Appendix C.2. (3) LLMs were used during manuscript preparation solely for text
polishing and refinement. (4) We used Cursor for programming assistance; however, all code was
manually reviewed. We further claim that all core ideas and intellectual contributions were developed
exclusively by the authors, without input from any LLM.

B LIMITATIONS

This work introduces a benchmark for enterprise SQL debugging, supporting future software en-
gineering research. However, the study has several limitations. First, the benchmark’s synthetic
nature. Although the dataset was generated automatically, we manually cross-validated items that
all models failed. Nonetheless, the potential for undetected artifacts remains. Developing more
sophisticated automated validation techniques is a key future direction. Second, constraints of the
evaluation framework. Our rule-based, execution-free method uses exact match, graph match, and an
edit-direction criterion. This approach is effective for debugging contexts where minimal, correct
fixes are expected. However, it is inherently limited by its dependence on reference solutions. For
semantic tasks where solution code is diverse, a more flexible evaluation strategy is needed. We
acknowledge this as an area for future improvement.

C EXPERIMENTAL SETTINGS

C.1 EVALUATION METRICS

The evaluation of enterprise SQL debugging systems faces distinct challenges: the process is in-
herently complex, often admitting multiple valid solutions, while practical constraints preclude
execution-based assessment in production environments. An effective framework must therefore (i)
circumvent the prohibitive costs and privacy concerns of query execution; (ii) evaluate structural and
semantic correctness beyond string-level similarity; and (iii) accommodate the legitimate ambiguity
of real-world repairs. To address these requirements, we introduce an execution-free evaluation
methodology based on three complementary metrics.

Exact Match Score (EM). This metric provides a strict, reproducible measure of syntactic correct-
ness by comparing the predicted SQL string directly against the reference:

EM =
1

N

N∑
i=1

1[q̂i = qi] (5)

where q̂i is the predicted SQL, qi is the reference SQL, and 1[·] is the indicator function. While
stringent, EM serves as a clear lower bound on model performance.

Graph-Match Score (GM). To overcome the limitations of string-based comparison, we assess
semantic equivalence through code structure. Each SQL query is parsed into an abstract syntax
tree (AST) and converted into a directed graph. The GM score is then computed based on graph
isomorphism:

GM =
1

N

N∑
i=1

1[Graph(q̂i) ∼= Graph(qi)] (6)

where ∼= denotes graph isomorphism. This approach recognizes semantically equivalent codes that
may differ syntactically.

Modify-Better Score (MB). For iterative debugging scenarios, absolute correctness is insufficient;
we must measure progressive improvement. The MB metric evaluates whether a prediction moves
closer to the correct solution by comparing AST edit distances:

MB =
1

N

N∑
i=1

1[d(q̂i, qi) < d(bi, qi)] (7)
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SELECT  a.id,
        a.name,
        b.grade
FROM    (
          SELECT  *
          FROM    id_name_table
        ) a
LEFT JOIN
        (
          SELECT  *
          FROM    id_grade_table
        ) b
ON      a.id = b.id;

WITH tmpa AS (
    SELECT  id, name
    FROM    id_name_table
),
tmpb AS (
    SELECT  id, grade
    FROM    id_grade_table
)
SELECT  a.id,
        a.name,
        b.grade
FROM    tmpa a
LEFT JOIN
        tmpb b
ON      a.id = b.id;

Scan_1 Scan_2

id_name_table id_grade_table

JOIN_1
Scan_1 Left JOIN Scan_2

(keys:   0:id  1:id) 

Data Source Table Scan Operation TableSink

Sink_1
(Schema: id, name, grade)

Scan_1 Scan_2

id_name_table id_grade_table

JOIN_1
Scan_1 Left JOIN Scan_2

(keys:   0:id  1:id) 

Sink_1
(Schema: id, name, grade)

Figure 6: Illustration of Graph Match Score. Although the left and right SQL snippets differ syntactically,
their optimized abstract syntax trees are structurally identical. Graph matching evaluates semantic equivalence
through tree isomorphism.

where d(·, ·) denotes normalized AST edit distance, q̂i is the predicted repair, qi is the reference
SQL, and bi is the original buggy query. This metric specifically assesses a model’s capacity for
incremental repair in debugging workflows.

Together, these metrics provide a comprehensive evaluation framework that balances efficiency,
reproducibility, and semantic understanding while avoiding the practical limitations of execution-
based assessment.

C.2 LLMS

This study ensures a robust evaluation by leveraging a diverse set of large language models (LLMs),
encompassing both open-source and proprietary architectures to cover a broad range of capabilities.
The evaluated models are as follows:

Open-Source Models

• DeepSeek Series: DeepSeek-R1-0528 (DeepSeek-AI, 2025b), DeepSeek-V3-0324 (DeepSeek-
AI, 2025a), Deepseek-V3.1
• Qwen Series: Qwen-2.5-Instruct, Qwen-2.5-Coder (Hui et al., 2024), Qwen-3-235B-A22B-
Instruct-2507 (Yang et al., 2025a), Qwen-3-Coder-480B-A35B-Instruct (Qwen, 2025), QwQ-32B
• Specialized Code Models: Seed-Coder-8B (Seed et al., 2025), OmniSQL-32B (Li et al., 2025a)

Close-Source Models

• Anthropic: Claude-Sonnet-4 (Anthropic, 2025)
• OpenAI: GPT-4o-mini-2024-07-18, GPT-4o-2024-11-20 (OpenAI, 2024), GPT-4.1 (OpenAI,
2025), o3-mini (OpenAI, 2025), o1-Preview, GPT-5
• Google: Gemini 2.5 Pro (Gemini, 2025)
• Moonshot AI: Kimi-K2 (Kimi-Team, 2025)
• ByteDance: Doubao family (Doubao-Seed-1.6, Doubao-Seed-1.6-flash, Doubao-Seed-1.6-
thinking) (Seed, 2025)

C.3 BASELINES

C.3.1 SFT BASELINES

Input
Vanilla SFT DM SFT Diff-SFTUser Query

Error Message

DDl

···66 Lines Omitted···
67 result_base AS (
68     SELECT  
69             recommendation_strategy_list
70     FROM    (...
···200+ Lines Omitted···

···66 Lines Omitted···
67 result_base AS (
68     SELECT  
69        passenger_id,
60             recommendation_strategy_list
71     FROM    (...
···200+ Lines Omitted···

Diff Statement

Output

Complete SQL snippet Complete SQL snippet Search- Replace
Diff snippet

Full Loss
Dynamic Mask

unchanged token part

Gen Output

Full LossLoss Design

Performance

Speed

Figure 7: Illustration of three distinct supervised fine-tuning (SFT) methods.

We propose three distinct supervised fine-tuning (SFT) methods as baselines.
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Main Agent
Code Generation 

Agent

User Query
Error Message

DDl

···66 Lines Omitted···
67 result_base AS (
68     SELECT  
69             recommendation_strategy_list
70     FROM    (...
···200+ Lines Omitted···

Observation: Code + 
Evaluation Feedback

init message

Refresh memory

Tool

Figure 8: Overview of the agentic method. The main agent observes the error message and the issued SQL,
analyzes the cause of the failure and the required modification sketch, and outputs an action in the form of code
modification instructions. These instructions are executed by a code generation sub-agent, and the resulting
execution feedback is used to update the main agent’s memory. This iterative ReAct loop continues until a
termination condition is met.

Vanilla SFT. This is the standard sequence-to-sequence fine-tuning approach. The model takes as
input the error message, DDL, and the issue SQL (the buggy query), and is trained to generate the
complete, corrected reference SQL. While simple, this method establishes a fundamental baseline for
performance.

DM-SFT (Dynamic-Masked SFT). In enterprise SQL debugging, the differences between an issue
SQL and its reference SQL are often minimal within lengthy code snippets. Consequently, Vanilla
SFT models can rapidly reduce loss by learning to copy the large, unchanged portions of the input,
potentially failing to focus on the critical, erroneous segments. To mitigate this, we adopt Dynamic-
Masked SFT (DM-SFT) (Duan et al., 2024), which randomly masks the loss calculation for 50% of
the tokens that are identical between the input and output. By increasing the loss contribution of the
changed tokens, this method encourages the model to prioritize learning the necessary edits.

Diff-SFT. Generating the complete SQL code increases inference overhead significantly. We propose
an alternative method where the model only outputs a ”diff” snippet, framing the task as a search-
and-replace operation. The model’s objective is to identify the erroneous code segment in the input
and generate the corresponding corrected snippet.

C.3.2 AGENT BASELINES

As illustrated in Figure 8, we design an agentic framework to address SQL debugging by explicitly
structuring the process into observation, analysis, and action phases (Yao et al., 2022). The main
agent receives the error message together with the issued SQL as observations, analyzes the root
cause of the failure and identifies the sketch of the required fix, and then outputs an action in the form
of modification instructions. These instructions are passed to a code generation sub-agent, which
produces the concrete SQL patch. The newly generated SQL is executed, and its results—either
successful outputs or subsequent error messages—are fed back to update the main agent’s memory.
Through this iterative loop of error observation, analysis, and guided code generation, the framework
incrementally refines the SQL until a correct solution is obtained.

C.4 DATASET

Our training dataset comprises three parts:

• Data synthesized from Text-to-SQL datasets BIRD (Li et al., 2024) and Spider (Yu et al., 2018),
containing 1, 054 samples.

• Data constructed via reverse engineering, where bugs were manually injected into correct SQL
code, containing 2, 015 samples.
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• Data mined from online execution logs, containing error messages and the corresponding issue
SQL, with the reference SQL manually written and verified by experts, containing 1, 971 samples.

C.5 HYPERPARAMETERS

Fine-tuning. For self-supervised fine-tuning, models are trained for 5 epoch with a learning rate of
1e− 5 and a per device batch size of 64. We employed the AdamW optimizer and a cosine learning
rate scheduler with a warm-up phase corresponding to 3% of the total training steps.

Evaluation. We use the Pass@1 (Chen et al., 2021a) as the default evaluation metric. Following
Yang et al. (2024); Chen et al. (2024), we use a temperature of 0.0 for deterministic action decoding
and input truncation to manage context length.

C.6 EXPERIMENTAL ENVIRONMENTS

All experiments are conducted on 32 NVIDIA H20 GPUs. Our code primarily relies on Python 3.12
and PyTorch 2.7.0. Models are self-supervised fine-tuned with LLaMA-Factory (Zheng et al.,
2024) 1, and inference is performed with vLLM (Kwon et al., 2023).

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ADDITIONAL ANALYSIS OF SFT PERFORMANCE ON SQUIRREL BENCHMARK

(a) Training loss curve. (b) Performance at different training steps.

Figure 9: Analysis of Qwen-2.5-Coder-7B Vanilla SFT on Squirrel Benchmark, showing corresponding training
loss and step-wise performance.

Rapid loss decay in SQL debugging fine-tuning. Figure 9a illustrates that the training loss quickly
drops below 0.05 within a few steps, approaching zero. This behavior arises because the constructed
SQL debugging parallel data contain inputs with error messages and issue SQL statements, and
outputs with the corrected SQL. In most cases, only a small portion of tokens differ between the input
and output. Consequently, the model primarily copies tokens from the input, leading to extremely
low training loss. When the majority of output tokens carry minimal information, the model tends to
ignore the truly informative segments that require correction.

Performance improves with increased training steps. Figure 9b shows that as training progresses,
model performance steadily improves, particularly during the early steps. Beyond approximately 400
training steps, the gains become marginal, indicating diminishing returns. This trend suggests that
while additional in-domain training helps, the benefit of further fine-tuning eventually saturates.

1https://github.com/hiyouga/LLaMA-Factory.git
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D.2 CASE STUDY

org.apache.calcite.sql.parser.SqlParseException: Encountered "AS" at line 14, column 54.
Was expecting one of: ")" ..."MULTISET" ...  "ARRAY" ...

Error Message:

Preference SQLPredict SQL

Figure 10: Model Hallucination: After modifying the code according to the error message, the model also
inserted an extra “)” in similar fragments, which caused the fix to fail.

Issue SQL Predict SQL Reference SQL

org.apache.calcite.runtime.CalciteContextException:: at line 233:37: Table 'b' not foundError Message:

Query Validation & Rules Subquery Scope Outer query references alias not visible in subquery

Level 1 Error Type Level 2 Error Type Level 3 Error Type
Error Type:

Figure 11: Long Context Reasoning Limitation: The error code uses a non-existent table b (which is usually
an alias for a longer table name in SQL), but the model fail to detect this error during the repair process.
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E SQL BUG TAXONOMY

E.1 BUG DISTRIBUTION OF SQUIRREL-SEMANTIC

Table 3: Error type distribution in Squirrel-Semantic

Level 1 Error Type Level 2 Error Type Level 3 Error Type Count

Using COUNT(column) instead of COUNT(*) and misunderstanding NULL exclusion 43
Aggregate Logic

Using SUM()/AVG() on a column with NULLs without COALESCE 27

JOIN condition placed in WHERE clause (accidental CROSS JOIN) 41

Failing to handle NULLs in JOIN keys (causing rows to disappear) 13Join Logic

Missing condition causing Cartesian product 2

Three-valued logic error: NOT (a = b) not equivalent to a != b when NULLs present 14
Boolean & Logic

Improper Boolean usage (e.g., WHERE col = TRUE) 9

NULL compared with = (should use IS NULL) 33
NULL Handling

Confusion between IS NULL and =NULL 2

Using RANK() instead of ROW NUMBER() or DENSE RANK() leading to duplicates/skips 31
Window Function Logic

Incorrect partitioning/ordering in window function leading to wrong row assignment 4

Misplaced LIMIT inside subquery affecting outer results 3
Subquery Scope

Correlated subquery missing correlation condition 2

Missing condition causing Cartesian product 12
JOIN Logic

Wrong join key used inside nested subquery 2

Set Operations UNION vs. UNION ALL misuse (unintended deduplication) 55

Date/Time Logic Confusion between DATE, TIMESTAMP, and INTERVAL types 23

Semantics & Logic

Pattern Matching Incorrect LIKE usage 2

Separator Rule collect set/concat ws separator uses semicolon 54
Functions & Expressions

Function Semantics Misunderstanding the empty handling of aggregate functions 1

Misuse of ROLLUP / CUBE 14
GROUP BY Extensions

Rollup/Cube/Grouping Sets producing unexpected super-aggregate rows 3

Grouping by a functionally dependent column unnecessarily 17
GROUP BY Logic

Rollup/Cube/Grouping Sets producing unexpected super-aggregate rows 4

Joins & Grouping

JOIN Type Selection Using INNER JOIN when LEFT JOIN is needed (loss of data) 64

Duplicate rows due to many-to-many join not being accounted for 1
Result & Quality Correctness

Incorrect output data 1

Implicit Casting Implicit cast changing semantics (e.g., string to number) 15
Types & Data Formats

Data Format Misused format placeholder 1

Identifiers & Objects Qualification Qualifying a column with the wrong table alias in a complex join 22

E.2 BUG DISTRIBUTION OF SQUIRREL-SYNTAX
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Table 4: Error type distribution in Squirrel-Syntax

Level 1 Error Type Level 2 Error Type Level 3 Error Type Count

Missing parameter for explode 15
Incorrect explode parameter 9
explode(map) requires two aliases 2
date add missing parameter (also typo data add) 2

Parameter Completeness

array contains wrong argument type 1
get json object wrong argument type 4
array contains wrong argument type 3Parameter Type
from json wrong argument type 1
Missing LATERAL VIEW 94

LATERAL VIEW Required
Missing alias for LATERAL VIEW function output 1

Date Difference datadiff argument/typo error 5
Type Conversion Multiple AS in CAST 15
Nesting Limit Aggregate expressions cannot be nested 2
Separator Rule collect set/concat ws separator uses semicolon 11
Date/Time to unix timestap typo 1

Functions & Expressions

Function Spelling concat ws typo 1
Missing END or THRN in CASE WHEN 72

CASE Expression
Multiple END in CASE WHEN 4
Missing argument in IN 7

Conditional Logic
IN subquery returns multiple columns 1
Window function misused with GROUP BY 3
Window function used inside WHERE/HAVING 3Window Functions
Window function frame clause misuse (e.g., ROWS BETWEEN error) 1

Subquery Scope Outer query references alias not visible in subquery 2
Aggregation & Subquery SELECT list contains non-aggregated column not in GROUP BY 62
Pattern Matching Incorrect LIKE usage 2
Aggregate Usage Aggregate function in SELECT without GROUP BY 1

Query Validation & Rules

Boolean & NULL NULL compared with = (should use IS NULL) 2
Incorrect clause ordering - JOIN after WHERE 7
Invalid SELECT clause syntax with subquery 6
Missing SELECT before FROM clause 5
Multiple WHERE 4
Missing partition conditions in WHERE clause 3
Missing logical connector in WHERE 26
Non-query expression in illegal context 3
Missing FROM clause 2

Clause Structure

Column count mismatch in UNION 1
WITH AS not first 26
Unnecessary WITH AS 13CTE/View
Trailing comma after last view 23
Keyword spelling error 3
Space in != 2Keywords & Operators
Missing IN keyword 2

Statement Ending Extra trailing statements 4
Parentheses / Brackets Missing closing parenthesis 5
Alias / AS Redundant AS 3

Grammar & Structure

SELECT List Missing column list after SELECT 1
Variable error 13
Missing partition conditions in DELETE statement 2Variables/Placeholders
Partition column comparison with numeric type not allowed 2
Column exists in multiple tables but alias omitted 8

Ambiguous References
Ambiguous alias in nested subquery with same column name 1
Field/Table does not exist 11

Schema/Object
Missing partition query conditions 2

Identifiers & Objects

Naming/Alias Duplicate names (column/alias) 5
Missing grouping column 14

GROUP BY
Missing HAVING clause for aggregate filtering 1
Missing condition causing Cartesian product 6

JOIN Ambiguity
Missing table prefix for duplicate column names in join 35

Joins & Grouping

Nested Joins Ambiguous column reference due to multiple levels of alias 1
Punctuation error 49
Incorrect quote type for column alias with special characters 4Punctuation & Formatting Punctuation/Parentheses
Missing semicolon between statements 5
Insert error 37

Insert Statement
Mismatched column count 5DML & DDL

Create Table Statement Table creation error 10
TRANSFORM with lambda expression not supported in Hive 3

Compatibility/Dialect Function Differences
wm concat function not supported in the current SQL dialect 1

Type System Type mismatch 16
Types & Data Formats

Date/Time to unix timestap typo 2
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F EXAMPLES

F.1 SQUIRREL-SYNTAX EXAMPLE

[omit 50 Lines]
retention_pipeline AS (
    SELECT  encrypted_contact,
            device_identifier,
            passenger_id,
            recommendation_timestamp,
            journey_score,
            traveler_profile_id,
            passenger_id_collection,
            device_id_collection,
            is_selected,
            rejection_reason,
            recommendation_strategy_list,
            'retention_pipeline' AS data_source
    FROM    base
    WHERE   is_retained = '1'
),
result_base AS (
    SELECT  
            
            recommendation_strategy_list
    FROM    (
                SELECT  passenger_id,
                        MAX(journey_score) AS journey_score,
                        COLLECT_SET(data_source) AS recommendation_strategy_list
                FROM    (
                            SELECT  encrypted_contact,
                                    device_identifier,
                                    passenger_id,
                                    recommendation_timestamp,
                                    journey_score,
                                    traveler_profile_id,
                                    passenger_id_collection,
                                    device_id_collection,
                                    is_selected,
                                    rejection_reason,
                                    recommendation_strategy_list,
                                    data_source
                            FROM    recommendation_model
                            UNION ALL
                            SELECT  encrypted_contact,
                                    device_identifier,
                                    passenger_id,
                                    recommendation_timestamp,
                                    journey_score,
                                    traveler_profile_id,
                                    passenger_id_collection,
                                    device_id_collection,
                                    is_selected,
                                    rejection_reason,
                                    recommendation_strategy_list,
                                 
   data_source
                            FROM    retention_pipeline
                        )
                GROUP BY
                        passenger_id
            )
    ORDER BY
            journey_score DESC
    LIMIT   200000
), result AS (
    SELECT  encrypted_contact,
            device_identifier,
            passenger_id,
            recommendation_timestamp,
            journey_score,
            traveler_profile_id,
            passenger_id_collection,
            device_id_collection,
            0 AS is_test_user,
            recommendation_strategy_list
    FROM    (
                SELECT  base.encrypted_contact,
                        result_base.recommendation_strategy_list,
                        base.device_identifier,
                        base.passenger_id,
                        base.recommendation_timestamp,
                        base.journey_score,
                        base.traveler_profile_id,
                        base.passenger_id_collection,
                        base.device_id_collection
                FROM    result_base
                JOIN    base
                ON      result_base.passenger_id = base.passenger_id
            )
),
experiment_mapping AS (
    SELECT  passenger_id,
            CAST(
                CAST(
                    conv(
                        substr(
                            md5(CAST(passenger_id AS STRING)),
                            -15
                        ),
                        16,
                        10
                    ) AS BIGINT
                ) % 2 AS BIGINT
            ) AS experiment_group_label
    FROM    (
                SELECT  passenger_id
                FROM    result
                GROUP BY
                passenger_id
            )
)
INSERT OVERWRITE TABLE fake_base_test.passenger_journey_recommendations 
PARTITION(processing_date = '${date}', model_version = 'v2')
SELECT  result.*,
        experiment_mapping.experiment_group_label,
        concat('${DATE+2}', '~', '${DATE+8}') AS active_period
FROM    result
LEFT JOIN
        experiment_mapping
ON      result.passenger_id = experiment_mapping.passenger_id

[omit 50 Lines]
retention_pipeline AS (
    SELECT  encrypted_contact,
            device_identifier,
            passenger_id,
            recommendation_timestamp,
            journey_score,
            traveler_profile_id,
            passenger_id_collection,
            device_id_collection,
            is_selected,
            rejection_reason,
            recommendation_strategy_list,
            'retention_pipeline' AS data_source
    FROM    base
    WHERE   is_retained = '1'
),
result_base AS (
    SELECT  
            passenger_id      
            recommendation_strategy_list
    FROM    (
                SELECT  passenger_id,
                        MAX(journey_score) AS journey_score,
                        COLLECT_SET(data_source) AS recommendation_strategy_list
                FROM    (
                            SELECT  encrypted_contact,
                                    device_identifier,
                                    passenger_id,
                                    recommendation_timestamp,
                                    journey_score,
                                    traveler_profile_id,
                                    passenger_id_collection,
                                    device_id_collection,
                                    is_selected,
                                    rejection_reason,
                                    recommendation_strategy_list,
                                    data_source
                            FROM    recommendation_model
                            UNION ALL
                            SELECT  encrypted_contact,
                                    device_identifier,
                                    passenger_id,
                                    recommendation_timestamp,
                                    journey_score,
                                    traveler_profile_id,
                                    passenger_id_collection,
                                    device_id_collection,
                                    is_selected,
                                    rejection_reason,
                                    recommendation_strategy_list,
                                 
   data_source
                            FROM    retention_pipeline
                        )
                GROUP BY
                        passenger_id
            )
    ORDER BY
            journey_score DESC
    LIMIT   200000
), result AS (
    SELECT  encrypted_contact,
            device_identifier,
            passenger_id,
            recommendation_timestamp,
            journey_score,
            traveler_profile_id,
            passenger_id_collection,
            device_id_collection,
            0 AS is_test_user,
            recommendation_strategy_list
    FROM    (
                SELECT  base.encrypted_contact,
                        result_base.recommendation_strategy_list,
                        base.device_identifier,
                        base.passenger_id,
                        base.recommendation_timestamp,
                        base.journey_score,
                        base.traveler_profile_id,
                        base.passenger_id_collection,
                        base.device_id_collection
                FROM    result_base
                JOIN    base
                ON      result_base.passenger_id = base.passenger_id
            )
),
experiment_mapping AS (
    SELECT  passenger_id,
            CAST(
                CAST(
                    conv(
                        substr(
                            md5(CAST(passenger_id AS STRING)),
                            -15
                        ),
                        16,
                        10
                    ) AS BIGINT
                ) % 2 AS BIGINT
            ) AS experiment_group_label
    FROM    (
                SELECT  passenger_id
                FROM    result
                GROUP BY
                passenger_id
            )
)
INSERT OVERWRITE TABLE fake_base_test.passenger_journey_recommendations 
PARTITION(processing_date = '${date}', model_version = 'v2')
SELECT  result.*,
        experiment_mapping.experiment_group_label,
        concat('${DATE+2}', '~', '${DATE+8}') AS active_period
FROM    result
LEFT JOIN
        experiment_mapping
ON      result.passenger_id = experiment_mapping.passenger_id

org.apache.calcite.runtime.CalciteContextException:: from line 139, column 37 to line 139, column 48: Column 'passenger_id' not found in table
'result_base'

correct SQL Issue SQL

Figure 12: The example of Squirrel-Syntax, where an explicit error message exists.
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F.2 SQUIRREL-SEMANTIC EXAMPLE

-- 60+ Lines Omited.
result_base AS (
    SELECT  
            recommendation_strategy_list
    FROM    (
                SELECT  passenger_id,
                        MAX(journey_score) AS journey_score,
                        COLLECT_SET(data_source) 

AS recommendation_strategy_list
                FROM    (
                            SELECT  encrypted_contact,
                                    device_identifier,
                                    passenger_id,
                                    recommendation_timestamp,
                                    journey_score,
                                    traveler_profile_id,
                                    passenger_id_collection,
                                    device_id_collection,
                                    is_selected,
                                    rejection_reason,
                                    recommendation_strategy_list,
                                    data_source
                            FROM    recommendation_model
                            UNION ALL
                            SELECT  encrypted_contact,
                                    device_identifier,
                                    passenger_id,
                                    recommendation_timestamp,
                                    journey_score,
                                    traveler_profile_id,
                                    passenger_id_collection,
                                    device_id_collection,
                                    is_selected,
                                    rejection_reason,
                                    recommendation_strategy_list,
                                    data_source
                            FROM    retention_pipeline
                        )
                GROUP BY
                        passenger_id
            )
    ORDER BY
            journey_score DESC
    LIMIT   200000
), result AS (
    SELECT  encrypted_contact,
            device_identifier,
            passenger_id,
            recommendation_timestamp,
            journey_score,
            traveler_profile_id,
            passenger_id_collection,
            device_id_collection,
            0 AS is_test_user,
            recommendation_strategy_list
    FROM    (
                SELECT  base.encrypted_contact,
                        result_base.recommendation_strategy_list,
                        base.device_identifier,
                        base.passenger_id,
                        base.recommendation_timestamp,
                        base.journey_score,
                        base.traveler_profile_id,
                        base.passenger_id_collection,
                        base.device_id_collection
                FROM    result_base
                JOIN    base
                ON      result_base.passenger_id = base.passenger_id
            )
),
experiment_mapping AS (
    SELECT  passenger_id,
            CAST(
                CAST(
                    conv(
                        substr(
                            md5(CAST(passenger_id AS STRING)),
                            -15
                        ),
                        16,
                        10
                    ) AS BIGINT
                ) % 2 AS BIGINT
            ) AS experiment_group_label
    FROM    (
                SELECT  passenger_id
                FROM    result
                

            )
)
INSERT OVERWRITE TABLE fake_base_test.passenger_journey_recommendations 
        PARTITION(processing_date = '${date}', model_version = 'v2')
SELECT  result.*,
        experiment_mapping.experiment_group_label,
        concat('${DATE+2}', '~', '${DATE+8}') AS active_period
FROM    result
LEFT JOIN
        experiment_mapping
ON      result.passenger_id = experiment_mapping.passenger_id

In the original table, passenger_id is not a unique key. Could you help me check why the output contains a large number of duplicate rows? Please fix the bug.

correct SQL Issue SQL
-- 60+ Lines Omited.
result_base AS (
    SELECT  
            recommendation_strategy_list
    FROM    (
                SELECT  passenger_id,
                        MAX(journey_score) AS journey_score,
                        COLLECT_SET(data_source) 

AS recommendation_strategy_list
                FROM    (
                            SELECT  encrypted_contact,
                                    device_identifier,
                                    passenger_id,
                                    recommendation_timestamp,
                                    journey_score,
                                    traveler_profile_id,
                                    passenger_id_collection,
                                    device_id_collection,
                                    is_selected,
                                    rejection_reason,
                                    recommendation_strategy_list,
                                    data_source
                            FROM    recommendation_model
                            UNION ALL
                            SELECT  encrypted_contact,
                                    device_identifier,
                                    passenger_id,
                                    recommendation_timestamp,
                                    journey_score,
                                    traveler_profile_id,
                                    passenger_id_collection,
                                    device_id_collection,
                                    is_selected,
                                    rejection_reason,
                                    recommendation_strategy_list,
                                    data_source
                            FROM    retention_pipeline
                        )
                GROUP BY
                        passenger_id
            )
    ORDER BY
            journey_score DESC
    LIMIT   200000
), result AS (
    SELECT  encrypted_contact,
            device_identifier,
            passenger_id,
            recommendation_timestamp,
            journey_score,
            traveler_profile_id,
            passenger_id_collection,
            device_id_collection,
            0 AS is_test_user,
            recommendation_strategy_list
    FROM    (
                SELECT  base.encrypted_contact,
                        result_base.recommendation_strategy_list,
                        base.device_identifier,
                        base.passenger_id,
                        base.recommendation_timestamp,
                        base.journey_score,
                        base.traveler_profile_id,
                        base.passenger_id_collection,
                        base.device_id_collection
                FROM    result_base
                JOIN    base
                ON      result_base.passenger_id = base.passenger_id
            )
),
experiment_mapping AS (
    SELECT  passenger_id,
            CAST(
                CAST(
                    conv(
                        substr(
                            md5(CAST(passenger_id AS STRING)),
                            -15
                        ),
                        16,
                        10
                    ) AS BIGINT
                ) % 2 AS BIGINT
            ) AS experiment_group_label
    FROM    (
                SELECT  passenger_id
                FROM    result
 GROUP BY
                        passenger_id
            )
)
INSERT OVERWRITE TABLE fake_base_test.passenger_journey_recommendations 
        PARTITION(processing_date = '${date}', model_version = 'v2')
SELECT  result.*,
        experiment_mapping.experiment_group_label,
        concat('${DATE+2}', '~', '${DATE+8}') AS active_period
FROM    result
LEFT JOIN
        experiment_mapping
ON      result.passenger_id = experiment_mapping.passenger_id

Figure 13: The example of Squirrel-Semantic.
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G PROMPTS TEMPLATE

All data synthesis and evaluation using the LLM-as-a-Judge methodology are performed with Claude-
4-Sonnet (Anthropic, 2025), with the temperature parameter set to 0.0. The detailed prompts are
described below.

G.1 ENTERPRISE-LEVEL SQL SCRIPTS GENERATION PROMPTS

Prompt for Scenario Creation

## Instruction

You are a professional SQL ETL and schema generation expert. Your task is to transfer a database
schema from a source domain to a target domain, preserving structural complexity and table
relationships, but fully adapting table names, field names, and semantics to the target domain.

## Steps

1. Analyze Source DDL:
- Examine the number of tables, fields, data types, relationships, and naming patterns.
- Treat this as a structural seed for generating an equivalent schema.

2. Generate Target Schema:
- Create a logically equivalent schema under the target domain.
- Rules:
- Use the database fake_base_test.
- Format: CREATE TABLE IF NOT EXISTS fake_base_test.table_name ( ... );
- Avoid SQL reserved keywords as column names.
- Reflect business meaning in the target domain.
- Optionally add auxiliary fields to maintain equivalent complexity.
- All names, comments, and logic must be consistent with the target domain and unrelated to the source
domain.

3. Validation:
- Ensure DDL syntax is correct.
- Ensure schema and scenario are fully adapted to the target domain, with no remnants from the source.

## Notes
- Do not reuse proprietary identifiers or field names from the source domain.
- Only use the user-provided target domain.
- Preserve the structural pattern, complexity, and relationships of the source schema.

## Input Data

Source DDL: DDL
Target Domain: SCENARIO

## Output Format(JSON)

{
"mock scenario": "Scenario description",
"mock ddl": "Corresponding CREATE TABLE statements"

}

Prompt for Generating Enterprise-level SQL

## Instruction

You are a professional SQL ETL code generation expert. Using the provided source SQL as a reference,
and given the target domain scenario and its corresponding DDL, generate an SQL ETL script for the
target domain that preserves the logical structure and complexity of the source code while adapting it
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fully to the target domain.

## Requirement

1. Logical structure equivalence:
- Analyze the ETL workflow, table relationships, and processing steps in the source SQL code.
- Preserve the overall structure, complexity, and transformation logic, but replace all table names, field
names, and data types to match the target domain.

2. Strictly match the target DDL:
- All SQL must be fully based on the provided target DDL.
- Table names and field names must match the target DDL exactly.
- Do not retain any original business terms, identifiers, or domain concepts from the source code.

3. Output requirements:
- The code must be executable, and SQL syntax must be correct.
- Maintain a clear hierarchy and readability (include appropriate comments).
- Naming should reflect the target business domain, ensuring a one-to-one correspondence between SQL
and the target DDL.

## Input Data

Source SQL: SQL
Target Domain Scenario: SCENARIO
Target DDL: DDL

## Output Format

{
'mock code': 'Generated target domain SQL ETL code'

}

G.2 ISSUE SQL CONSTRUCTION PROMPTS

Prompt for Error Type Selection

## Role:
You are an expert SQL engineer specializing in designing realistic SQL bugs for testing and debugging
scenarios.

## Task:
Given a correct SQL query, your job is to:
Select the top {TOP_K} appropriate error type from the provided taxonomy.

##Key Guidelines:
- Minimal Change: Only introduce the chosen bug. Do not alter the original query’s structure or intent
more than necessary.
- Realism: The bug should reflect mistakes that real developers are likely to make.

##Input:
1. Correct SQL: {SQL}
2. DDL (optional): {DDL}
3. Original Intent: {CODE INTENTION}
4. Error Type Taxonomy: {SEMANTIC ERROR TYPES}

##Output Requirements:
Your output must include:
- The selected error type(s) at Level 1–3 granularity.

##Output Format:

{
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candidate_errors:
{

"level1_error_type": Level 1 error type,
"level2_error_type": Level 2 error type,
"level3_error_type": Level 3 error type

},
{

"level1_error_type": Level 1 error type,
"level2_error_type": Level 2 error type,
"level3_error_type": Level 3 error type

},
]

}

Prompt for Squirrel-Syntax Issue SQL Construction

## Role:
You are an expert SQL engineer specializing in designing realistic SQL bugs for testing and debugging
scenarios.

## Task:
Given a correct SQL query, your task is to introduce an error into the correct query with the smallest
possible change.

## Key Guidelines:
- Minimal Change: Only introduce the chosen bug. Do not alter the original query’s structure or intent
more than necessary.
- Realism: The bug should reflect mistakes that real developers are likely to make.

## Input:
1. Correct SQL: {SQL}

2. DDL (optional): {DDL}

3. Original Intent: {CODE INTENTION}

4. Error Type Taxonomy: {SEMANTIC ERROR TYPES}

## Output Requirements:
Your output must include:
- The selected error type(s) at Level 1–3 granularity.
- The modified SQL query with the injected bug.

## Output Format:

{
"level1_error_type": Level 1 error type,
"level2_error_type": Level 2 error type,
"level3_error_type": Level 3 error type,
"issue_sql": SQL query with the injected bug

}

Prompt for Squirrel-Semantic Issue SQL Construction

## Role:
You are an expert SQL engineer specializing in designing realistic SQL bugs for testing and debugging
scenarios.

## Task:
Given a correct SQL query, your job is to:
1. Introduce the error into the SQL query with the smallest possible change.
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2. Write a realistic user-style issue report describing how the bug causes the query to behave incorrectly,
and the user’s real intention.

## Key Guidelines:
- Minimal Change: Only introduce the chosen bug. Do not alter the original query’s structure or intent
more than necessary.
- Realism: The bug should reflect mistakes that real developers are likely to make.

## Input:
1. Correct SQL: {SQL}

2. DDL (optional): {DDL}

3. Original Intent: {CODE INTENTION}

4. Error Type Taxonomy: {SEMANTIC ERROR TYPES}

## Output Requirements:
Your output must include:
- The selected error type(s) at Level 1–3 granularity.
- The modified SQL query with the injected bug.
- A natural-language user bug report describing the mismatch between expected and actual results
(without exposing SQL code, since the user does not know the root cause).

## Output Format:

{
"level1_error_type": Level 1 error type,
"level2_error_type": Level 2 error type,
"level3_error_type": Level 3 error type,
"user_query": Bug report written in natural language.
Describe the expected vs. actual outcome clearly.
"issue_sql": SQL query with the injected bug

}
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G.3 BENCHMARK EVALUATION PROMPT

Prompt for Squirrel-Syntax Generation

You are an SQL assistant.

## Task

Based on the error messages and table schema, your task is to fix the issue in the SQL and write the
correct SQL.
Remember that you can not change any existing comments and SQL code without errors.

## Input Data
The issue SQL: BUG SQL
Related tables schema: DDL
Error Messages: ERROR MESSAGE

## Output (JSON):

{
'predict_sql': The fixed SQL.

}

Prompt for Squirrel-Semantic Generation

You are an SQL assistant.

## Task

Based on the user query and input table schema, please fix the bugs in the Issue SQL and
write the corresponding correct SQL code.
Remember that you can not change any existing comments and SQL code without errors.

## Input Data
User Query:USER QUERY
Related tables schema: DDL
Error Messages: ERROR MESSAGE

## Output (JSON):

{
'predict_sql': The fixed SQL.

}

Prompt for diff Generation

<background_info>
\texttt{DDL_PLACEHOLDER}
</background_info>

```code
SQL_CODE_PLACEHOLDER
```

<error_msg>
ERROR_MESSAGE_PLACEHOLDER
</error_msg>
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```last_edit
<<<<<<< SEARCH
LAST_EDIT_BEFORE_PLACEHOLDER
=======
LAST_EDIT_AFTER_PLACEHOLDER
>>>>>>> REPLACE
```

G.4 AGENT PROMPT

Prompt for Main Agent

You are a SQL expert. Please review the SQL code (with the table DDL) and the error message reported.
Your task is to analyze the error and provide fixing edit instructions.

Input:
- Tables DDL
DDL_PLACEHOLDER
- Hive SQL Code:
```sql SQL_CODE_PLACEHOLDER```
- Error Message:
ERROR_MESSAGE_PLACEHOLDER

Output Requirements:
You must strictly follow this XML format in your response:

<analysis>
Examine the error message and identify the root cause. Explain what is wrong with the current code
and why the error occurred.
</analysis>

<instructions>
Provide clear, step-by-step instructions on how to fix the code. Explain what changes need to be made
and where they should be applied.
</instructions>

<sketch_sql>
Provide the edit sketch using the special comment `...` to represent unchanged code between edited
lines. Specify each edit in sequence, minimizing unchanged SQL code while making it clear what the
edit is and where it should be applied.
</sketch_sql>

Ensure your instructions(in Chinese) and sketch are clear enough that another model can apply them
correctly without accidentally deleting or modifying unintended parts of the code.
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