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ABSTRACT

SQL is the core of data engineering across industries, powering large-scale work-
flows for data extraction, transformation, and loading. However, in enterprise
production scenarios, it is challenging to generate fully correct SQL code in a
single attempt—even for experienced developers or advanced Text-to-SQL LLMs.
Multiple iterations of debugging are typically required, yet LLMs often get lost in
multi-turn corrections. To address this gap, we introduce Squirrel Benchmark,
the first benchmark designed for enterprise-level SQL reasoning and debugging.
Our benchmark is built upon two key innovations: (1) an automated construction
workflow that employs reverse engineering to systematically inject realistic bugs
into large-scale SQL code, enabling scalable and diverse benchmark generation;
and (2) an execution-free evaluation framework tailored for enterprise settings,
providing fast, accurate, and resource-efficient assessment. Squirrel Benchmark
comprises 469 Squirrel-Syntax queries featuring syntax errors with explicit error
messages, and 516 Squirrel-Semantic queries targeting semantic errors where SQL
code fails to meet the user’s requirement. These codes are substantially complex,
averaging over 140 lines with abstract syntax trees of high complexity (average
width > 11, depth > 8.7). We evaluate nearly 30 LLMs on Squirrel Benchmark.
Even state-of-the-art reasoning models struggle: Claude-4-Sonnet achieves only
36.46% success on Squirrel-Syntax and 32.17% on Squirrel-Semantic. Most mod-
els fail to reach 20% success, underscoring the significant gap between current
LLM capabilities and the demands of enterprise SQL debugging. To bridge this
gap, we systematically explore four potential solution strategies and conduct
extensive experiments to evaluate and compare their effectiveness. Our experi-
ments not only highlight the challenges but also shed light on effective strategies
for advancing SQL debugging with LLMs.

1 INTRODUCTION

Databases are a cornerstone of modern data infrastructure, powering critical applications across
finance, web services, and scientific computing. Structured Query Language (SQL) remains the
predominant interface for human—data interaction, enabling large-scale extraction, transformation,
and loading (ETL) workflows (Chamberlin & Boyce, 1974; Armbrust et al., 2015). Recent research
on Text-to-SQL large language models (LLMs) has sought to help analysts automate routine queries,
streamline data workflows, and support advanced business intelligence (Zhong et al., 2017; Yu et al.,
2018; Li et al., 2025a).

Enterprise SQL code is often lengthy, complex, and deeply nested, making it extremely challenging
for both experienced developers and Text-to-SQL LLMs to generate correct code in a single attempt
(Lei et al., 2025). Instead, success typically requires multi-step reasoning and iterative debugging. As
shown in Figure 1, debugging generally involves localizing errors, analyzing their causes, consulting
schema definitions, applying targeted modifications, and re-running lint checks to verify whether
requirements are satisfied—usually repeating this loop multiple times. Unfortunately, LLMs struggle
with this iterative correction process. They frequently fall into anti-patterns such as repeating identical
actions without meaningful follow-up, which leads to wasted effort when an initial correction fails
(Bouzenia & Pradel, 2025; Laban et al., 2025).
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Figure 1: Squirrel Benchmark evaluates LLMs on real-world enterprise-level SQL debugging workflows. It
involves multi-step reasoning and actions, including understanding requirements and schemas, diagnosing error
messages, and iteratively refining scripts through cycles of reasoning and debugging.

To bridge this gap, we propose moving beyond Text-to-SQL generation and shifting the focus to a
model’s ability to iteratively debug and self-correct. We introduce Squirrel Benchmark, a bench-
mark for evaluating LLMs on enterprise-scale SQL debugging. Our construction pipeline utilizes
an automated reverse-engineering framework to synthesize realistic and reproducible tasks. This
approach minimizes human effort while ensuring high-quality benchmark generation, also provid-
ing a foundation for synthetic training data. Furthermore, we design an execution-free evaluation
framework tailored to enterprise SQL scenarios. Squirrel Benchmark offers a practical reference
point for selecting SQL-focused LLMs in industry. The benchmark comprises 469 Squirrel-Syntax
tasks (syntax errors with explicit error messages) and 516 Squirrel-Semantic tasks (semantic errors in
which the SQL output does not match the user’s requirement). SQL programs in our benchmark are
highly complex, averaging over 140 lines (> 420 tokens), with ASTs of width > 11 and depth > 8.7,
and incorporating over 15 functions per script on average.

Our evaluation on Squirrel Benchmark indicates significant room for improvement in deploying LLMs
within SQL-SWE workflows. Extensive experiments show that even state-of-the-art LLMs struggle:
Claude-4-Sonnet achieves only 36.46% success on Squirrel-Syntax and 33.17% on Squirrel-Semantic,
while most models fail to reach 20%. These results underscore the difficulty of enterprise SQL
debugging and highlight substantial room for improvement. To address this gap, we systematically
explore four potential solution strategies and conduct comprehensive experiments to assess their
effectiveness. Our results not only illuminate the challenges faced by LLMs in SQL debugging but
also provide insights into strategies that can advance performance. Moreover, Squirrel Benchmark
exhibits a strong correlation with real-world debugging outcomes, establishing it as a reliable
benchmark for aligning models with industrial applications. In summary, this work makes the
following contributions:

* We propose an automated reverse-engineering workflow for constructing high-quality SQL
debugging benchmarks, which can also be adapted to synthesize realistic training data.

* We present Squirrel Benchmark, a large-scale benchmark comprising 469 syntax and 516
semantic tasks, designed to capture the complexity, diversity, and practicality of enterprise SQL
development.

* We conduct a comprehensive evaluation of nearly 30 open-source and proprietary LLMs,
showing that even the state-of-the-art LLMs face substantial challenges.

* We introduce three SFT and an agent method as baselines, offering a novel and efficient pathway
for further studies.

2 PRELIMINARY

2.1 TASK DEFINITION

SQL debugging is a fundamental but underexplored problem in data development. Existing Text-
to-SQL research primarily focuses on translating natural language to SQL queries, but real-world
scenarios often involve correcting issues in SQL scripts. The goal of SQL debugging is to automati-
cally repair buggy SQL scripts while preserving the user’s intent. This task begins with a buggy SQL
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(b), accompanied by auxiliary context C (e.g., error messages or natural language intent descriptions)
and the database schema (o). The objective is to generate a corrected SQL (q):

q:fy(C,O’,b) (1)
where ¢ is syntax correct and faithful to the intent encoded in (C, b, 7).

We categorize bugs into two primary types: (I) Syntactic errors. b is non-executable. Here, C is
the error message £, and the goal is to produce an executable repair while preserving its intended
semantics. (IT) Semantic errors. b executes successfully but fails to meet the user’s requirements.
In this case, C is a natural language specification R, and the task is to modify § to satisfy R. By
covering both types, Squirrel Benchmark unifies execution repair with intent comprehension, offering
a challenging and realistic benchmark for SQL debugging.

2.2 CHALLENGES

Despite its practical importance, SQL debugging introduces several unique challenges that are not
sufficiently addressed in existing SWE research.

Challenge 1: Lack of Enterprise-level SQL Scripts. Industrial SQL workloads, such as ETL
workflows and scheduled analytical jobs, are typically long, complex, and schema-heavy. Scripts can
span hundreds of lines, involve deeply nested subqueries and multi-way joins. and reference dozens of
tables and columns. This level of intricacy significantly amplifies the challenge for LLMs. In contrast,
most existing Text-to-SQL (Li et al., 2024) and SQL-debugging (Li et al., 2025b) benchmarks focus
on short, relatively simple queries that are far removed from the scale and complexity of enterprise
environments. Unfortunately, such industrial-grade SQL scripts are rarely available in the open-source
community, resulting in a pronounced mismatch between academic benchmarks and real-world needs.

Contribution 1: The First Enterprise-level SQL Debugging Benchmark

To address this gap, we introduce a large-scale, enterprise-level benchmark that captures the complexity of
real-world ETL and analytical workloads (Section 3.1).

Challenge 2: Lack of a Comprehensive Bug Taxonomy. SQL bugs are heterogeneous: some
manifest as execution failures (syntax errors), while others silently yield incorrect results (semantic
errors). Although recent benchmarks such as BIRD-Critic (Li et al., 2025b) have advanced debugging
evaluation, they lack a systematic taxonomy of SQL-specific bug types and their prevalence. Without
such categorization, it is difficult to understand where models struggle most and how to target
improvements effectively. A comprehensive analysis of SQL bug categories is therefore crucial, not
only for benchmarking but also for guiding the design of future bug-fixing models.

Contribution 2: A Hierarchical SQL Bug Taxonomy

We develop a hierarchical taxonomy of SQL bug types derived from an extensive analysis of real-world
errors. This provides a structured framework for fine-grained evaluation (Section 3.2).

Challenge 3: Lack of Reliable and Comprehensive SQL debugging Benchmark. High-quality
benchmarks for SQL Debugging are scarce. Manually curated datasets are costly to produce and
prone to evaluation leakage if models memorize solutions from public templates or repositories.
Existing resources often lack diversity, realistic bug patterns, and coverage of enterprise-scale scripts,
limiting their usefulness for robust model evaluation. Building a reliable, large-scale benchmark that
is both comprehensive and faithful to real-world workflows is therefore a significant challenge.

Contribution 3: An Automated SQL-SWE Synthesis Pipeline

We introduce an automated pipeline for synthesizing and validating SQL bug-fixing examples, ensuring
scalability, diversity, and resistance to data leakage (Section 3.3).

3 SQUIRREL BENCHMARK CONSTRUCTION

Figure 2 shows the automated benchmark construction pipeline. It comprises four stages: (1)
enterprise-level SQL script generation (Section 3.1), (2) SQL bug taxonomy design (Section 3.2),
(3) issue SQL construction via reverse engineering (Section 3.3), and (4) validation and analysis
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Figure 2: Overview of the Squirrel Benchmark construction and evaluation pipeline. Benchmark construction
consists of 4 main stages: (1) Enterprise-level SQL Script Generation, (2) SQL bug taxonomy Design, (3)
Issue SQL Construction via reverse engineering, and (4) Validation and Analysis. This pipeline ensures
diversity, realism, and rigorous evaluation of SQL Debugging task.

(Section 3.4). Section 3.5 further introduces an efficient execution-free evaluation methodology.
Section 3.5 presents an execution-free evaluation methodology. All synthetic content is generated
with Claude-4-Sonnet (anthropic, 2025) at temperature 0. Examples and prompts are detailed in
Appendix I and J.

3.1 ENTERPRISE-LEVEL SQL SCRIPTS GENERATION
Because enterprise SQL scripts are proprietary and rarely accessible, we synthesize realistic, high-

quality enterprise SQL.

Seed Enterprise SQL Curation. We curate high-quality SQL scripts g along with corresponding
table definitions o from real-world enterprise applications. To ensure that queries are non-trivial
and representative of practical workloads, we filter scripts that fall below a complexity threshold 7.
Complexity is quantified via a composite metric:

C(q) = a(Dast(q) + Wast(q)) + BL(q) )
where Dast, Wasr, and L(q) denote AST depth, AST width, and code length, respectively.

For each retained SQL script, we utilize an LLLM to abstract its business domain (d), intention (1),
and descriptive scenario (S). All scenarios are aggregated into a Scenarios Library, denoted as
Ddomain = {d}. The resulting seed dataset is then defined as:

Dseed = {(qu Ti, di7 Iia Si7 AST(Q%)MQZ S st C(Ql) > T}7 (3)
where Q, denotes the candidate SQL pool.

The final seed corpus contains 1,000+ SQL scripts spanning 26 business scenarios, averaging over
120 lines with AST depth > 8 and width > 12. Each script is rigorously validated to be bug-free,
resulting in a corpus that accurately captures both the structural complexity and semantic diversity of
enterprise SQL.

Solution SQL Synthesis. To expand coverage across domains and code structures, we synthesize
new SQL scripts using the seed corpus and the Scenarios Library:

1. Seed Sampling. Select (q;, 04, d;, I;, S;, AST(q;)) € Dseed and a target domain dy € Dyomain-
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2. Scenario Creation. Conditioned on d;, the LLM generates a new scenario description S; together
with schema definitions o, following the structure of the seed corpus.

3. SQL Synthesis. Given (I;,S;, AST(¢;), S, 0¢), the LLM generates a new SQL script ¢; that
preserves the complexity of the seed SQL scripts while adapting to the new schema and scenario.
This ensures that synthesized queries remain realistic, non-trivial, and representative of enterprise
workloads.

4. Execution-based Validation. To ensure the correction, each candidate ¢, is validated via execution.
Specifically, o; is instantiated to construct a fake test database, ¢; is executed, and only queries that
successfully execute are retained:

Qu = {(41,01) | exec(qr, 04) == passed} (4)

This synthesis pipeline ensures that the final SQL dataset exhibits (i) enterprise-grade complexity, (ii)
broad domain coverage via controlled scenario transfer, and (iii) guaranteed execution correctness.

3.2 SQL BuG TAXONOMY

We construct an SQL bug taxonomy by manually annotating 268 erroneous SQL scripts collected from
real-world production logs. Each bug is classified according to a three-level hierarchical error type:
(i) macro categories (e.g., DML, DDL, semantic, and logic), (ii) construct-specific subcategories
(e.g., INSERT statements), and (iii) atomic faults (e.g., mismatched column counts). This taxonomy
organizes common failure patterns and forms a bug library of realistic error templates. The library
underpins our controlled bug-injection process (Section 3.3), ensuring that Squirrel Benchmark
captures authentic SQL error modes. Table 4 and 3 report the distribution of bug types.

3.3 ISSUE SQL CONSTRUCTION

We construct issue SQL queries through reverse engineering, transforming correct SQL scripts into
buggy versions. The process is guided by three principles: structural awareness, taxonomy-guided
selection, and minimal-change injection, ensuring that the generated bugs are both realistic and
diagnostically useful.

Step 1: Structural Profiling and Taxonomy-Guided Selection For each ground-truth SQL g,
we first analyze its structural and semantic profile, including the AST, function patterns, and clause
usage. Based on this profile, we then select the top-k candidate bug types from our hierarchical SQL
bug taxonomy. This approach ensures that the injected errors are well-suited to the given SQL while
providing broad coverage of real-world error scenarios.

Step 2: Minimal Change-Based Bug Injection. Each injected bug represents the smallest possible
modification that induces the targeted error type. This principle preserves maximal similarity between
the buggy SQL b and its reference gy, isolating the error signal and reducing confounding factors.
As aresult, evaluating whether a model can localize and repair the fault becomes both precise and
interpretable.

3.4 VALIDATION AND ANALYSIS

We validate Squirrel Benchmark via a model-driven attack—defense process. The goal is to filter out
trivial cases that most models can easily solve, while retaining challenging but solvable instances that
better reflect real-world debugging.

Automated Verification. We first attack the benchmark by evaluating each generated instance with
a diverse set of advanced LLMs (including Qwen3-Coder-32B(Yang et al., 2025a), GPT-5(Openai,
2025), DeepSeek-V3.1(DeepSeek, 2025), Claude-4-sonnet(anthropic, 2025), and others). Instances
fall into three categories: (i) If the majority of models succeed, the instance is deemed too easy and
discarded,; (ii) If only a few models succeed, the instance is considered an edge case and retained; (iii)
If none of the models succeed, the instance is flagged for manual review. This adversarial filtering
ensures that the benchmark emphasizes cases where current models diverge, thereby sharpening its
discriminatory power.

Human Verification. Instances flagged as potentially unsolvable are subjected to manual inspection
by three expert annotators with extensive SQL experience. Following a cross-validation protocol,
annotators assess whether the task is logically inferable from the provided context and whether
multiple valid solutions exist. Instances that fail to meet these criteria are removed. For cases where
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multiple correct answers are possible, annotators supplement the benchmark with all valid alternative
solutions.

Through this attack—defense protocol, Squirrel Benchmark removes trivial cases, yielding a challeng-
ing yet solvable testbed.

3.5 EVALUATION METRICS

The prevailing metrics for SQL debugging are Exact Match (EM) and Execution Accuracy. However,
EM is notoriously strict, failing to credit semantically equivalent queries with divergent syntax.
Execution Accuracy, while more forgiving, introduces false positives when test databases lack the
necessary content to reveal logical errors (Zhan et al., 2025). Direct execution in production also
poses practical barriers, being computationally expensive and raising data privacy concerns. To
overcome these challenges, we introduce an execution-free evaluation framework based on three
metrics (Detailed definitions and formulas are provided in Appendix D.1.2.):

(1) Exact Match Score (EM): This metric assesses strict syntactic correctness by checking for
string-level identity between the predicted and reference SQL queries, thereby serving as a baseline
for syntactic alignment.

(2) Graph Match Score (GM): This metric evaluates structural and functional equivalence by
comparing the optimized abstract syntax tree of the predicted and reference queries, thereby capturing
semantic correctness where EM fails.

(3) Modify Better Score (MB): This metric gauges iterative improvement capability by comparing
the edit distances from the predicted SQL and the original SQL to the reference, thereby measuring
how much closer the refinement is to the target.

4 BENCHMARK STATISTICS

We present a statistical analysis of Squirrel Benchmark, comparing its key features with existing
SQL datasets in Table 1 and Figure 3. Our benchmark is designed to emphasize both complexity and
realism, closely mirroring the challenges found in real-world industrial environments—particularly
in terms of SQL script structure, error taxonomy, and task diversity.

Table 1: Statistical comparison of Squirrel Benchmark with representative text-to-SQL and SQL debugging

benchmarks. The table evaluates benchmarks on scale (# examples), script length (avg. tokens and lines), and
structural complexity (avg. function count, AST depth, and width).

Length of SQL Complex of SQL
Benchmark Type E:aII:S;eS #Tok. #Line. #Func. #AST Depth #AST Width

P /SQL  /SQL /SQL /SQL /SQL
Spider 1.0 (Yu et al., 2018) Text-to-SQL 2,147 18.50 — — — —
Spider 2.0-snow (Lei et al., 2025) Text-to-SQL 121 154.63  56.12 14.90 11.95 9.66
Spider 2.0-lite (Lei et al., 2025) Text-to-SQL 256 131.79  49.84 13.65 11.97 10.05
BIRD (Li et al., 2024) Text-to-SQL 1,789 30.90 — — — —
BIRD-Critic-open (Li et al., 2025b) SQL debugging 600 49.18 9.73 4.30 8.03 6.01
BIRD-Critic-postgresql (Li et al., 2025b) ~ SQL debugging 530 51.44 6.92 4.78 8.25 6.34
BIRD-Critic-flash (Li et al., 2025b) SQL debugging 200 34.53 2.84 4.06 7.85 5.20
Squrriel-Syntax SQL debugging 469 496.90 163.69 21.62 8.93 11.69
Squrriel-Semantic SQL debugging 516 42593 141.58 17.34 8.75 11.12

Complexity of SQL Scripts. The SQL scripts in Squirrel Benchmark are not only longer but also
structurally more complex, presenting challenges that better mirror real-world enterprise systems.
With an average length of 140 — 160 lines and over 420 tokens, our scripts are an order of magnitude
larger than those in BIRD-Critic (which average under 10 lines). This scale directly implies a higher
probability of errors and a greater need for models to maintain long-range context and dependency
understanding. Additionally, the high number of functions per script (17.34 in Squirrel-Semantic,
21.62 in Squirrel-Syntax) necessitates reasoning across multiple subqueries and nested expressions—a
capability that many existing sequence-to-sequence models lack. This scale and functional richness
underscore the increased complexity and practical difficulty of the debugging tasks in our benchmark.

Hierarchical Error Taxonomy. Figures 3(a) and (b) show the two-level error taxonomy for Squirrel-
Syntax and Squirrel-Semantic. Detailed error type statistics are in Appendix H. Squirrel Benchmark
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Figure 3: Statistics of errors and domain distribution in Squirrel Benchmark. (a) Twé-level error types in
Squirrel-Syntax, highlighting the distribution of syntax errors. (b) Two-level error types in Squirrel-Semantic,
showing the distribution of semantic errors. (c) Distribution of SQL code across different business domains.

covers a broad spectrum of common syntax and semantic errors, enabling fine-grained evaluation
of model capabilities. Syntax errors include issues related to grammar, structure, and dialect, while
semantic errors encompass type mismatches, aggregation errors, and logical inconsistencies. This
hierarchical classification allows for detailed insight into model performance across error types,
supporting a more rigorous assessment of debugging ability.

Diversity of Task Scenarios. As shown in Figure 3 (c), the domains in Squirrel Benchmark span
finance, e-commerce, healthcare, and more than ten additional areas, ensuring that models are
evaluated against a broad range of business logic and contextual dependencies. For example, a
program from the financial domain may involve complex window functions for time-series analysis,
whereas an e-commerce program might require reasoning over multi-table joins across user and
product schemas. This diversity tests a model’s ability to generalize beyond simplistic syntactic
patterns and demands domain-aware reasoning. Consequently, performance on Squirrel Benchmark
provides a stronger indicator of a model’s practicality and readiness for deployment in heterogeneous
real-world environments.

5 EXPERIMENTS

Due to space limitations, we provide detailed experimental settings in Appendix D. This section
focuses on the most important results.

5.1 MAIN RESULTS

Existing LLMs are far from being experts on enterprise SQL debugging. As shown in Table 2,
we evaluate a diverse set of LLMs on Squirrel, including the Qwen, DeepSeek, Claude, GPT, Gemini,
and Doubao families. Claude-4-Sonnet achieves the best performance, with a peak success rate of
36.46% GM score on Squirrel-Syntax and 32.17% GM score on Squirrel-Semantic. Interestingly,
although our benchmark is constructed through reverse engineering using Claude-4-Sonnet, it still
struggles with forward debugging. Other closed-source LLMs perform even worse, with most
failing to exceed 20% GM. Among open-source models, DeepSeek-V3 achieves 30.28% on Squirrel-
Syntax, and Qwen-2.5-Coder-32B attains 23.45% on Squirrel-Semantic, demonstrating competitive
performance relative to closed-source systems.

Code generation LLMs struggle with SQL debugging. In previous studies, most code LLMs
are heavily optimized for code generation, achieving strong performance on benchmarks such as
SWE-Bench (Jimenez et al., 2024), BIRD (Li et al., 2024), and Spider (Yu et al., 2018). For example,
OmniSQL (Li et al., 2025a), a Text-to-SQL-specialized model, achieves 87.6% on Spider and 64.5%
on BIRD. However, its performance on Squirrel-Syntax and Squirrel-Semantic drops sharply to only
6.4% GM, underscoring the substantial gap between SQL generation and SQL debugging.

Reasoning-oriented LLMs (RLMs) exhibit stronger refinement abilities. Comparing RLMs with
non-RLMs, we find that RLMs consistently perform better across both open-source and closed-source
families. Notably, most RLMs achieve MB scores above 50%, indicating that while their predictions
often move closer to the correct solution, they rarely solve the task in a single attempt.

Squirrel-Semantic is more challenging than Squirrel-Syntax. Across all evaluated models, perfor-
mance on Squirrel-Semantic is consistently lower than on Squirrel-Syntax. This is because Squirrel-
Syntax provides explicit error messages, which help models localize faulty positions, whereas
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Table 2: Evaluation results of LLMs on Squirrel-Syntax and Squirrel-Semantic. For each section, the best
performance is highlighted in bold, and the second-best is underlined. EM, GM, and MB denote exact match

score, graph match score, and modify-better score, respectively.

| | |  Squirrel-Syntax | Squirrel-Semantic

Model Size |, Reasonin MoE
| | & | EM

GM MB | EM GM MB

Open Source

Qwen-2.5-Instruct 7B 2.13 8.53  33.05 1.94 5.62 14.15
Qwen-2.5-Coder 7B 3.20 896 37.53 4.84 7.75  18.99
Qwen-2.5-Coder 32B 1279 2026 52.88 | 17.44 2345 34.69
Qwen-3-Instruct 235B v 9.38 2047 61.19 | 1027 1550 27.57
Qwen-3-Coder-Instruct 30B v 5.54 2090 44.14 6.40 15.12 24.42
Qwen-3-Coder-Instruct 480B v 1493 2388 61.62 | 17.05 1996 31.84
QwQ 32B v 8.76  20.51 4145 | 1047 1531 20.16
Seed-Coder-Instruct 8B 8.53 1493 4243 8.72 14.15 24.61
OmniSQL 32B 0.21 6.40 50.75 0.39 640 21.17
Deepseek-V3 685B v 1791 3028 6034 | 11.24 21.32  33.27
Deepseek-V3.1 685B v 1791 3049 63.61 | 12.02 1473 32.47
Deepseek-R1 671B v v 1834 2198 58.64 | 1589 22.09 30.14
Closed Source

Claude-4-Sonnet — v 23.88 36.46 68.02 | 31.78 32.17 43.69
GPT-40-mini-2024-07-18 — 1.71 4.69 13.01 5.62 6.40 8.74
GPT-40-2024-11-20 — 2.14 4.69 13.79 291 4.84 6.86
GPT-4.1 — 640 17.70 61.25 8.52 17.05 30.49
GPT-5 — v 1343 1855 66.52 | 16.28 1647 29.90
Gemini-2.5-Pro — v 1578 21.54 6237 | 14.15 23.06 34.37
Kimi-K2 — v v 14.07 2772 61.83 | 1570 2093 31.84
Ol-preview — v 8.32 21.11 46.27 8.14 1143 1443
O3-mini — v 384 19.83 63.54 | 1047 28.68 40.78
Doubao-Seed-1.6 230B v v 19.19 3092 6439 | 16.09 2093 32.82
Doubao-Seed-1.6-flash 230B v v 1.50 363  9.62 1.55 3.11 6.42
Doubao-Seed-1.6-thinking | 230B v v 1535 2324 6098 | 16.67 2093 30.87
Comparison of different SFT method on Qwen-2.5-Coder

+ SFT 2644 30.70 48.40 | 1434 1570 18.02
+ diff-SFT 7B 22.17 2281 3433 7.95 9.30  12.60
+ DM-SFT 27.27 33.18 55.67 | 15.12 1899 24.81

Squirrel-Semantic requires reasoning about deeper semantic inconsistencies without surface-level

cues.
5.2 CAN SFT SOLVE THE SQL DEBUGGING?

As detailed in Appendix D.3.1 and Figure 7, we propose
3 representative SFT approaches as baselines: (1) Vanilla
SFT, which directly fine-tunes the model on parallel SQL
debugging pairs; (2) DM-SFT (Duan et al., 2024), which
dynamically masking the loss for unchanged tokens in re-
sponses; (3) Diff-SFT, which frames SFT as a search-and-
replace task, focusing only on the modified code segments.
Results in Table 2 and Figure 4 shows:

(1)Targeted in-domain SFT significantly improves SQL
debugging performance. Specifically, Qwen-2.5-Coder-
7B + SFT substantially outperforms the base Qwen-2.5-

Qwen-2.5-Coder-7B+DM-SFT
chn—Z.S—CedchBASFT

EH

Qwen-2.5-Coder-7B+diff-SFT
Qwen-2.5-Coder-32B|

GM Score
w
8

5

Qwen-Z‘S;CoderJB

Qwen-2.5-Coder-7B+diff-SFT
Qwen-2.5-Coder-7B+DM-SFT

Figure 4: SFT baseline performance on
Squirrel-Syntax. The horizontal axis repre-
sents the average inference speed, and the
vertical axis shows the GM score.

Coder-7B, achieving a 33.17% gain in GM score on Squirrel-Syntax, and even surpasses Qwen-2.5-

Coder-32B by 10.44%. (2) DM-SFT improves performance

over vanilla SFT by masking the loss on

non-diff tokens during training. This design forces the model to focus more on diff segments within
pairs, thereby enhancing its effectiveness. (3) Diff-SFT predicts only the diff segments instead of
generating the full code, offering a substantial inference speed advantage and reducing generation
hallucination. On our benchmark, it requires only half the time of other methods, which is particularly
beneficial for longer code snippets in enterprise applications. However, due to a mismatch between
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the search-and-replace task and the pretraining/SFT objectives of the base model, its GM score is
slightly lower. Overall, these three SFT strategies provide strong baselines for future research on
SQL debugging. More analysis is available in Appendix E.1.

5.3 CAN AGENT METHODS SOLVE THE SQL DEBUGGING?

As detailed in Appendix D.3.2 and Figure 8, we also pro-
pose an agentic baseline. In this setup, a main agent
analyzes error messages and formulates plans for SQL ‘
modifications, while a code-generation sub-agent executes ¢, |
the corresponding code edits. TQS checking' results and |
refined SQL are then returned to the main agent, creat- ., ‘ | i
ing an iterative loop that continues until the main agent 0 jm N

|
r
determines that the code modifications are complete. ‘ W ‘

Figure 5 shows that agent-based systems can signifi- gioyre 5: Agent performance on Squirrel-
cantly boost performance, but results heavily depend Syntax. ‘+* denotes agent-based methods,
on the main agent’s capabilities. For example, using while others are single-model baselines.
Kimi-K?2 as the main agent and Qwen3-Coder as the sub-

agent increases EM accuracy by 65% compared to the Kimi-K2 single-model baseline. In con-
trast, when GPT-40 serves as the main agent—despite a 300%+ gain over its single-model perfor-
mance—the combined system still underperforms the single Qwen3-Coder model. We also observe a
decline in the MB score of agent-based systems, as multiple rounds of modification can gradually
cause the model to deviate from the original SQL. These observations provide initial insights for
future exploration of agentic methods in SQL debugging.

6 RELATED WORK

Code Generation and Text-to-SQL Benchmarks. Early text-to-code benchmarks, including Hu-
manEval (Chen et al., 2021), SQL-Spider (Yu et al., 2018), and BIRD (Li et al., 2024), focus on simple
and short code snippets (Zhuo et al., 2025; Jain et al., 2025; Bytedance, 2025). To address the gap with
real-world applications, SWE-Bench (Jimenez et al., 2023) evaluates models on complete software
issues, which require a comprehensive understanding of codebases. Similarly, Spider2.0 (Lei et al.,
2025) extends Text-to-SQL evaluation to enterprise contexts. BIRD-Critic (Li et al., 2024) introduces
SQL debugging, but it only handles short, simplified StackOverflow queries that lack enterprise-level
complexity. Most of these benchmarks rely on manually curated datasets, which are costly and
prone to data leakage (Chou et al., 2025). In this work, we introduce the first enterprise-level SQL
debugging benchmark, which is automatically constructed via reverse engineering.

LLMs for Automated Software Engineering. Recent work applies LLMs to automated software
engineering through three primary paradigms: (1) Single-model approaches, which attempt to
produce patches directly from a description and buggy code, often using few-shot prompting or
SFT (Huang et al., 2024; Yasunaga & Liang, 2021; Allamanis et al., 2021). These single-model
methods are bottlenecked by the need to build large-scale SFT datasets (Pan et al., 2024; Li et al.,
2025b; Ma et al., 2024; Yang et al., 2025b; Pham et al., 2025). (2) Multi-stage Workflows, which
guide models through defect localization, patch generation, and validation (Xia et al., 2024; Zhang
et al., 2024; Gong et al., 2025). (3) Agent-based Methods, which leverage analysis, execution traces,
or test feedback for iterative refinement (Yang et al., 2024; Wang et al., 2025; Bouzenia et al., 2024;
Chen et al., 2023). In this work, we provide both SFT-based Single-model solutions and Agent-based
methods, offering the community a comprehensive understanding of SQL debugging tasks.

7 CONCLUSION

We introduce Squirrel Benchmark, the first benchmark for enterprise-level SQL debugging. With
its automated construction workflow and execution-free evaluation, Squirrel Benchmark enables
scalable and reliable assessment of LLMs. Despite recent advances in LLM reasoning, our evaluation
of nearly 30 models shows that real-world enterprise SQL debugging remains a significant challenge.
To encourage further progress, we highlight four promising directions, including three SFT-based
strategies and one agent-driven approach. Importantly, Squirrel Benchmark correlates strongly with
practical debugging performance, making it a reliable reference for both academic research and
industrial deployment.

'The TQS tool is introduced in Appendix D.1.3.
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CODE OF ETHICS AND ETHICS STATEMENT

Our methodology utilizes publicly accessible resources, including the LLMs and toolkits such as
LLaMA-Factory and vLLM. The benchmark datasets used in our evaluation were synthetically
generated using these models and are scheduled for public release upon acceptance. While a portion
of our SFT data incorporates proprietary enterprise information and is therefore not fully disclosable,
we recommend that researchers use our automated benchmark construction pipeline to replicate the
training data. This work is centered on the English language and is strictly for research purposes.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we detail our datasets and annotation process in Section 3 and provide full
experimental settings in Appendix D.
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A USE OF LLMs

We claim the following regarding the use of LLMs in this work: (1) Claude-4-Sonnet was used
for data construction; details are provided in Section 3, with prompts listed in Appendix J. (2)
LLMs were employed for evaluation on the benchmark introduced in this paper; the specific models
are listed in Appendix D.2. (3) LLMs were used during manuscript preparation solely for text
polishing and refinement. (4) We used Cursor for programming assistance; however, all code was
manually reviewed. We further claim that all core ideas and intellectual contributions were developed
exclusively by the authors, without input from any LLM.

B BACKGROUND OF ETL SQL DEBUGGING.

Our benchmark targets industrial Extract-Transform—Load (ETL) workloads, which differ substan-
tially from traditional Text-to-SQL or analytics-oriented SQL generation. We summarize the key
distinctions below.

Task objectives and nature. ETL is primarily a data engineering task focused on preparing, trans-
forming, and integrating raw data into a clean and consistent warehouse for downstream consumption.
The goal is reliable data production rather than interactive analysis. In contrast, Data Analysis /
Text-to-SQL tasks aim to explore existing datasets and answer analytical questions. These tasks
resemble the work of data analysts: flexible, insight-driven, and focused on extracting knowledge
from already-curated data rather than producing new datasets.

Data scale and operations. ETL pipelines operate on full-scale production data. For example,
computing daily active users may require scanning and joining hundreds of millions of raw event
records. The dominant SQL operations involve INSERT, UPDATE, DELETE, and MERGE, reflecting
an emphasis on data movement, reshaping, and materialization. By contrast, Data Analysis / Text-to-
SQL workloads typically query curated warehouse tables using complex SELECT statements that
return relatively small result sets—reports, leaderboards, or summary statistics. These tasks focus on
the correctness of the query output rather than on large-scale data transformation.

C SEED DATA CURATION

Source of Seed Enterprise-level SQL Scripts. Enterprise SQL scripts are typically proprietary and
thus rarely accessible for research. To construct our seed dataset, we mine production SQL scripts
executed on our internal data platform, which supports tens of thousands of developers daily. Because
Hive/Spark SQL is the dominant dialect in this environment, the resulting seed data naturally reflects
this syntax. All collected scripts are fully de-identified prior to processing.

Filtering and Validation of Seed SQL Scripts. To ensure both quality and representativeness, we
apply a multi-stage filtering and validation pipeline. First, we perform representativeness filtering as
described in Section 3.1, selecting scripts based on structural complexity, length, and feature usage to
ensure that the seeds are non-trivial and reflective of real enterprise workloads. Second, we apply
correctness validation: (1) production execution logs confirm that each script has successfully run in
the online environment, and (2) all scripts are further validated using the TQS tool, which performs
pseudo-execution to detect syntax errors and verify schema-level semantics. (A detailed description
of TQS is provided in Appendix D.1.3.)

Source of SQL Bug Taxonomy. To construct the SQL bug taxonomy, we analyze a corpus of
production logs and select 268 representative samples for detailed manual inspection. Three domain
experts—each with more than three years of professional experience in SQL analysis and data quality
verification—annotate these logs over a two-week period. The error categories identified in these
annotations form the basis of the final SQL Bug Taxonomy.
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D EXPERIMENTAL SETTINGS

D.1 EVALUATION
D.1.1 CHALLENGES IN EXECUTION-BASED EVALUATION

Evaluating enterprise SQL generation and debugging systems presents several unique challenges.
First, conventional execution-based accuracy—where correctness is determined by comparing a
program’s output to a reference—is often impractical in production environments. This is due to two
primary constraints: (1) Security and Privacy: Production databases typically contain proprietary
or sensitive data, making arbitrary code execution infeasible; (2) Efficiency: Executing complex
SQL scripts on large-scale production datasets is computationally expensive and time-consuming.
Second, correctness is not binary. Unlike in standardized benchmarks, real-world SQL debugging
admits multiple valid solutions. A repair can be correct through various syntactic paths or logical
approaches. Third, string-based metrics are a poor proxy for quality. Comparing predicted SQL to
a reference string ignores functional equivalence. Therefore, a robust evaluation framework must
balance efficiency and accuracy while reliably reflecting SQL quality in real-world problem-solving.

D.1.2 EVALUATION METRICS

To address challenges in SQL debugging evaluation, we introduce an execution-free evaluation
methodology based on three complementary metrics.

Exact Match Score (EM). This metric provides a strict, reproducible measure of syntactic correct-
ness by comparing the predicted SQL string directly against the reference:

| X
EM = N ; 1[¢; = qi] ©)

where §; is the predicted SQL, ¢; is the reference SQL, and 1[-] is the indicator function. While
stringent, EM serves as a clear lower bound on model performance.

Graph Match Score (GM). To assess the semantic equivalence of SQL queries, we represent each
query as an optimized abstract syntax tree, illustrated in Figure 6. Each node corresponds to a
logical relational operator (e.g., Join, Project, Filter), and the hierarchical structure encodes operator
dependencies and execution order. We use Apache Calcite (Begoli et al., 2018) to compile SQL
queries into its canonical intermediate representation. Calcite applies a suite of logical rewrites—such
as operator reordering and clause simplification—to produce normalized logical plans that are robust
to superficial syntactic differences. This intermediate form also encodes both control and data
dependencies as edges, yielding graph structures that capture deeper aspects of query semantics.
These enriched graphs enable more faithful comparison and interpretation of SQL behavior. The
GM score is computed by performing graph isomorphism over the normalized representations. This
allows our method to detect semantic equivalence even when queries differ substantially in surface

form:
N

> " 1[Graph(g;) 2 Graph(g;)] (6)

i=1

1
GM = —
N
where 2 denotes graph isomorphism. This approach recognizes semantically equivalent codes that
may differ syntactically.

Modify Better Score (MB). For iterative debugging scenarios, absolute correctness is insufficient;
we must measure progressive improvement. The MB metric evaluates whether a prediction moves
closer to the correct solution by comparing AST edit distances:

1 N
MB = — ; 1[d(qi, qi) < d(bi, q)] @

where d(-, -) denotes normalized AST edit distance, §; is the predicted repair, g; is the reference
SQL, and b; is the original buggy query. This metric specifically assesses a model’s capacity for
incremental repair in debugging workflows.
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eoe , e0e@
id_name_table id_grade_table '

WITH tmpa AS ( id_name_table id_grade_table
SELECT a.id, ' SELECT id, name
a.name, v 7 ! FROM id_name_table v v
b.grade . 'y, - N .
FROM ( Sean_1 Scan_2 ' thpb S ( Sean_1 Scan_2
SELECT * SELECT id, grade
' 7
FROM id_name_table @ \ / i FROM id_grade_table = \
) a JOIN_1 ' E,ELECT d JOIN_1
( Scan_1 Left JOIN Scan_2 'R : ;a;“e Scan_1 Left JOIN Scan_2
SELECT * (keys: 0:id 1:id) ' b.grade (keys: 0:id 1:id)
FROM id_grade_table ¢ ' FROM tmpa a
) b !
ON a.id = b.id; Sink_1 ! tmpb b Sink_1
(Schema: id, name, grade) : ON a.id = b.id; (Schema: id, name, grade)

Data Source Table Scan Operation TableSink

Figure 6: Illustration of Graph Match Score. Although the left and right SQL snippets differ syntactically,
their optimized abstract syntax trees are structurally identical. Graph matching evaluates semantic equivalence
through tree isomorphism.

Together, these metrics provide a comprehensive evaluation framework that balances efficiency,
reproducibility, and semantic understanding while avoiding the practical limitations of execution-
based assessment.

D.1.3 EXECUTION-BASED VALIDATION

The earlier discussion on the impracticality of execution accuracy may appear to conflict with
the execution checks referenced in this paper. To clarify, all execution-based validation in our
work is strictly non-executive—that is, we do not run SQL scripts against a live engine. Instead,
we rely on TQS, an enterprise-grade SQL quality validation tool built on Apache Calcite, which
performs comprehensive static analysis, including syntax and semantic checks to ensure scripts are
syntactically valid and logically well-formed, as well as schema and column validation to confirm
that all referenced tables and fields exist in the physical schema. This static-analysis approach provides
rigorous error detection during development while avoiding the practical limitations associated with
true execution-based evaluation.

D.2 LLMs

This study ensures a robust evaluation by leveraging a diverse set of LLMs, encompassing both
open-source and proprietary architectures to cover a broad range of capabilities. The evaluated
models are as follows:

Open-Source Models

* DeepSeek Series: DeepSeek-R1-0528 (DeepSeek-Al, 2025b), DeepSeek-V3-0324 (DeepSeek-
Al, 2025a), Deepseek-V3.1

¢ Qwen Series: Qwen-2.5-Instruct, Qwen-2.5-Coder (Hui et al., 2024), Qwen-3-235B-A22B-
Instruct-2507 (Yang et al., 2025a), Qwen-3-Coder-480B-A35B-Instruct (Qwen, 2025), QwQ-32B

¢ Specialized Code Models: Seed-Coder-8B (Seed et al., 2025), OmniSQL-32B (Li et al., 2025a)
Close-Source Models

* Anthropic: Claude-Sonnet-4 (Anthropic, 2025)

¢ OpenAl: GPT-40-mini-2024-07-18, GPT-40-2024-11-20 (OpenAl, 2024), GPT-4.1 (OpenAl,
2025), 03-mini (OpenAl, 2025), ol-Preview, GPT-5

¢ Google: Gemini 2.5 Pro (Gemini, 2025)
¢ Moonshot AI: Kimi-K2 (Kimi-Team, 2025)

¢ ByteDance: Doubao family (Doubao-Seed-1.6, Doubao-Seed-1.6-flash, Doubao-Seed-1.6-
thinking) (Seed, 2025)

D.3 BASELINES
D.3.1 SFT BASELINES

We propose three distinct supervised fine-tuning (SFT) methods as baselines.
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Figure 7: Illustration of three distinct supervised fine-tuning (SFT) methods.

Vanilla SFT. This is the standard sequence-to-sequence fine-tuning approach. The model takes as
input the error message, the DDL, and the issue SQL, and is trained to generate the complete, corrected
reference SQL. While simple, this method establishes a fundamental baseline for performance.

DM-SFT (Dynamic-Masked SFT). In enterprise SQL debugging, the differences between an issue
SQL and its reference SQL are often minimal within lengthy code snippets. Consequently, Vanilla
SFT models can rapidly reduce loss by learning to copy the large, unchanged portions of the input,
potentially failing to focus on the critical, erroneous segments. To mitigate this, we adopt Dynamic-
Masked SFT (DM-SFT) (Duan et al., 2024), which randomly masks the loss calculation for 50% of
the tokens that are identical between the input and output. By increasing the loss contribution of the
changed tokens, this method encourages the model to prioritize learning the necessary edits.

Diff-SFT. Generating the complete SQL code significantly increases inference overhead. We propose
an alternative method that outputs only a ”diff”” snippet, framing the task as a search-and-replace
operation. The model’s objective is to identify the erroneous code segment in the input and generate
the corresponding corrected snippet.

D.3.2 AGENT BASELINES

User Query 66 Lines Omitted-
67 result_base AS (

G:B 68 SELECT
Ei M q .
rror Message 69 recommendation_strategy_list

70 FROM (...

DDI =200+ Lines Omitted-
Instruction & ST TTTTTTTTTTTmTTooTooommmoses

Sketch code ' Tool
. : <I> :
S ad : aD :
Refresh memory ' ). !
A =» : g
. H H
i Code Generation H
. Code & : Agent TQS Checker,
Main Agent Linter Feedback — *emmmmmemememememeeeemens ;

Figure 8: Overview of the agentic method, which consists of a main agent, a code-generation sub-agent, and a
TQS checker tool. The main agent observes the error message and the issued SQL, analyzes the cause of the
failure and the required modification, and generates a code-editing instruction for the code generation sub-agent.
The code generation sub-agent applies the instruction to modify the code; the updated code is automatically
passed through a TQS checker to detect errors, and the resulting code and lint feedback are used to update
the main agent’s memory. This iterative loop continues until the main agent determines that all necessary
modifications have been completed.

As illustrated in Figure 8, we design an agentic framework that coordinates multiple specialized
components to iteratively refine generated SQL queries and resolve execution failures. The framework
consists of three modules: a main agent, a code-generation sub-agent, and a TQS tool.

The main agent serves as the central controller. It receives the error message and the proposed SQL
code for the issue from the previous iteration. Based on these inputs, it analyzes the underlying cause
of failure, identifies the modifications required to fix the issue, and produces a structured instruction
describing the intended code change. This instruction is sent to the code-generation sub-agent. The
code-generation sub-agent performs the actual code editing. It interprets the modification instruction
and updates the SQL sketch code accordingly. Once the revision is complete, the generated code
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is automatically processed by a TQS checker, which detects syntax errors, style violations, and
structural inconsistencies. The resulting code and lint feedback are then incorporated into the main
agent’s memory. This interaction forms an iterative correction loop. The main agent continuously
observes the updated code and diagnostic feedback, issuing refined modification instructions until it
concludes that the SQL query is correct and no further edits are required.

D.4 DATASET

Our training dataset consists of three components:
* Reverse-engineered data: We manually injected bugs into correct SQL queries collected from
production logs, yielding a total of 2, 015 samples.

* Log-mined data: We extracted erroneous SQL queries and their associated error messages
from online execution logs. For each instance, the reference SQL was manually written and
validated by domain experts, resulting in 1,971 samples.

¢ Synthetic data: We generated additional samples from the BIRD (Li et al., 2024) and Spider (Yu
et al., 2018) Text-to-SQL datasets to expand the SFT data, producing 1,054 samples.

D.5 HYPERPARAMETERS

Fine-tuning. For self-supervised fine-tuning, models are trained for 5 epoch with a learning rate of
le — 5 and a per device batch size of 64. We employed the AdamW optimizer and a cosine learning
rate scheduler with a warm-up phase corresponding to 3% of the total training steps.

Evaluation. Following Yang et al. (2024); Chen et al. (2024), we use a temperature of 0.0 for
deterministic action decoding and input truncation to manage context length.

D.6 EXPERIMENTAL ENVIRONMENTS

All experiments are conducted on 32 NVIDIA H20 GPUs. Our code primarily relies on Python 3.12
and PyTorch 2.7.0. Models are self-supervised fine-tuned with LLaMA-Factory (Zheng et al.,
2024) 2, and inference is performed with vLLM (Kwon et al., 2023).

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 ADDITIONAL ANALYSIS OF SFT PERFORMANCE ON SQUIRREL BENCHMARK

Training Loss Performance of Qwen-2.5-Coder-7B on Squirrel
50
0.30 Raw Loss
0.25 Smoothed Loss 40
v 0.20 . 30
go1s E
20
0.10 Syntax-EM
0.05 10 Syntax-GM
Syntax-MB
000 0 100 200 300 400 500 600
0 100 200 300 400 500 600
Steps
Steps
(a) Training loss curve. (b) Performance at different training steps.

Figure 9: Analysis of Qwen-2.5-Coder-7B Vanilla SFT on Squirrel Benchmark, showing corresponding training
loss and step-wise performance.

Rapid loss decay in SQL debugging fine-tuning. Figure 9a illustrates that the training loss quickly
drops below 0.05 within a few steps, approaching zero. This behavior arises because the constructed
SQL debugging parallel data contain inputs with error messages and issue SQL statements, and
outputs with the corrected SQL. In most cases, only a small portion of tokens differ between the input
and output. Consequently, the model primarily copies tokens from the input, leading to extremely

Zhttps://github.com/hiyouga/LLaMA-Factory.git
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low training loss. When the majority of output tokens carry minimal information, the model tends to
ignore the truly informative segments that require correction.

Performance improves with increased training steps. Figure 9b shows that as training progresses,
model performance steadily improves, particularly during the early steps. Beyond approximately 400
training steps, the gains become marginal, indicating diminishing returns. This trend suggests that
while additional in-domain training helps, the benefit of further fine-tuning eventually saturates.

F LIMITATIONS

This work introduces a benchmark for enterprise SQL debugging, providing a foundation for future
research in software engineering. However, several limitations remain.

First, the synthetic nature of the benchmark. Although the dataset is automatically generated by
LLMs, we manually inspected and cross-validated cases that all models failed (detailed in Section
3.4). Nevertheless, undetected artifacts may still exist. Developing more robust automated validation
methods is an important direction for future work.

Second, constraints of the evaluation framework. Our rule-based, execution-free evaluation
combines exact match, graph match, and edit-direction criteria (detailed in Appendix D.1.2). While
effective for debugging scenarios where minimal and precise fixes are expected, this approach is
inherently limited by its reliance on reference solutions. For more semantic tasks in which solutions
may vary widely, a more flexible and semantics-aware evaluation methodology is needed. We identify
this as an area for improvement.

Third, the limited SQL dialect coverage. Squirrel Benchmark is currently built on Hive/Spark
SQL, one of the most widely adopted dialects in large-scale enterprise data infrastructures. Although
broader dialect coverage would be valuable, our construction methodology is fundamentally dialect-
agnostic, allowing datasets to be synthesized for other SQL dialects. Future iterations will explore
additional dialect-synthesis approaches or leverage automated SQL translation tools (e.g., SQLGlot?
) to expand the benchmark’s coverage.

3https://github.com/ddkang/sglglot.git
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G CASE STUDY

Error Message: org.apache.calcite.sql.parser.SqlParseException: Encountered "AS" at line 14, column 54.
Was expecting one of: ")" ..."MULTISET" ... "ARRAY" ...

Predict SQL Preference SQL
21 SELECT attorney_id, 21 SELECT attorney_id,
22 case_type_id, 22 case_type_id,
23— CAST (consultation_revenue_7d * 100 23+ CAST(consultation_revenue_7d * 100 AS
— AS BIGINT) AS consultation_revenue), + BIGINT) AS consultation_revenue,
24 consultation_bookings_7d AS 24 consultation_bookings_7d AS
consultation_bookings, consultation_bookings,

Figure 10: Model Hallucination: After modifying the code according to the error message, the model also
inserted an extra “)” in similar fragments, which caused the fix to fail.

Level 1 Error Type Level 2 Error Type Level 3 Error Type
Error Type:

Query Validation & Rules Subquery Scope Outer query references alias not visible in subquery

Error Message:  org.apache.calcite.runtime.CalciteContextException:: at line 233:37: Table 'b' not found

Issue SQL Predict SQL Reference SQL

FRon 2 ron

seLecr orsTins seweer m SELECT pISTINCT

seLect

Fron
I A
seLect

SELECT  product_Ld,

last_preaiin_entry_date, 27 last_preaiun_entry_date,
s tnership_date, thers

te
i1_product pronotion analytics 230
0221131 A 5(date-1)" 1

Figure 11: Long Context Reasoning Limitation: The error code uses a non-existent table b (which is usually
an alias for a longer table name in SQL), but the model fail to detect this error during the repair process.
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H SQL BuG TAXONOMY

H.1

BUG DISTRIBUTION OF SQUIRREL-SEMANTIC

Table 3: Error type distribution in Squirrel-Semantic

Level 1 Error Type Level 2 Error Type ‘ Level 3 Error Type Count
i Using COUNT(column) instead of COUNT(*) and misunderstanding NULL exclusion 43
Aggregate Logic . . .
Using SUM()/AVG() on a column with NULLs without COALESCE 27
JOIN condition placed in WHERE clause (accidental CROSS JOIN) 41
Join Logic Failing to handle NULLSs in JOIN keys (causing rows to disappear) 13
Missing condition causing Cartesian product 2
Three-valued logic error: NOT (a = b) not equivalent to a !=b when NULLSs present 14
Boolean & Logic
Improper Boolean usage (e.g., WHERE col = TRUE) 9
NULL compared with = (should use IS NULL) 33
NULL Handling
Confusion between IS NULL and =NULL 2
Semantics & Logic
Using RANK() instead of ROW_NUMBER() or DENSE_RANK() leading to duplicates/skips 31
Window Function Logic
Incorrect partitioning/ordering in window function leading to wrong row assignment 4
Misplaced LIMIT inside subquery affecting outer results 3
Subquery Scope . . .
Correlated subquery missing correlation condition 2
X Missing condition causing Cartesian product 12
JOIN Logic . L
Wrong join key used inside nested subquery 2
Set Operations UNION vs. UNION ALL misuse (unintended deduplication) 55
Date/Time Logic Confusion between DATE, TIMESTAMP, and INTERVAL types 23
Pattern Matching Incorrect LIKE usage 2
Separator Rule collect_set/concat_ws separator uses semicolon 54
Functions & Expressions
Function Semantics Misunderstanding the empty handling of aggregate functions 1
Misuse of ROLLUP / CUBE 14
GROUP BY Extensions . .
Rollup/Cube/Grouping Sets producing unexpected super-aggregate rows 3
Joins & Groupin Grouping by a functionally dependent column unnecessaril 17
pine GROUP BY Logic pine by . v aep . Y
Rollup/Cube/Grouping Sets producing unexpected super-aggregate rows 4
JOIN Type Selection Using INNER JOIN when LEFT JOIN is needed (loss of data) 64
Duplicate rows due to many-to-many join not being accounted for 1
Result & Quality Correctness
Incorrect output data 1
Implicit Casting Implicit cast changing semantics (e.g., string to number) 15
Types & Data Formats -
Data Format Misused format placeholder 1
Identifiers & Objects Qualification Qualifying a column with the wrong table alias in a complex join 22

H.2 BUG DISTRIBUTION OF SQUIRREL-SYNTAX
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Table 4: Error type distribution in Squirrel-Syntax

Level 1 Error Type ‘ Level 2 Error Type Level 3 Error Type ‘ Count

Missing parameter for explode 15

Incorrect explode parameter 9

Parameter Completeness explode(map) requires two aliases 2

date_add missing parameter (also typo data_add) 2

array_contains wrong argument type 1

get_json_object wrong argument type 4

Parameter Type array_contains wrong argument type 3

. . from_json wrong argument type 1
Functions & Expressions - Missiig LATERgAL!?VIEW b oF
LATERAL VIEW Required |\ i alias for LATERAL VIEW function output 1

Date Difference datadiff argument/typo error 5

Type Conversion Multiple AS in CAST 15

Nesting Limit Aggregate expressions cannot be nested 2

Separator Rule collect_set/concat_ws separator uses semicolon 11

Date/Time to_unix_timestap typo 1

Function Spelling concat_ws typo 1

. Missing END or THRN in CASE WHEN 72

CASE Expression Mullipige END in CASE WHEN 4

. . Missing argument in IN 7

Conditional Logic IN subiuel‘f:; returns multiple columns 1

Window function misused with GROUP BY 3

- Window Functions Window function used inside WHERE/HAVING 3

Query Validation & Rules Window function frame clause misuse (e.g., ROWS BETWEEN error) 1
Subquery Scope Outer query references alias not visible in subquery 2

Aggregation & Subquery SELECT list contains non-aggregated column not in GROUP BY 62

Pattern Matching Incorrect LIKE usage 2

Aggregate Usage Aggregate function in SELECT without GROUP BY 1

Boolean & NULL NULL compared with = (should use IS NULL) 2

Incorrect clause ordering - JOIN after WHERE 7

Invalid SELECT clause syntax with subquery 6

Missing SELECT before FROM clause 5

Multiple WHERE 4

Clause Structure Missing partition conditions in WHERE clause 3
Missing logical connector in WHERE 26

Non-query expression in illegal context 3

Missing FROM clause 2

Column count mismatch in UNION 1
Grammar & Structure WITH AS not first 26
CTE/View Unnecessary WITH AS 13
Trailing comma after last view 23

Keyword spelling error 3

Keywords & Operators Space in |= 2

Missing IN keyword 2

Statement Ending Extra trailing statements 4

Parentheses / Brackets Missing closing parenthesis 5

Alias / AS Redundant AS 3

SELECT List Missing column list after SELECT 1

Variable error 13

Variables/Placeholders Missing partition conditions in DELETE statement 2

Partition column comparison with numeric type not allowed 2

Identifiers & Objects Ambiguous References Colurpn exisls' in Tnultiple tables but aliAas omitted 8
Ambiguous alias in nested subquery with same column name 1

Schema/Object Fif:ld{Table Q()'es not exist 3 11

Missing partition query conditions 2

Naming/Alias Duplicate names (column/alias) 5
Missing grouping column 14

GROUP BY Missing HAVING clause for aggregate filtering 1

Joins & Grouping . Missing condition causing Cartesian product 6
JOIN Ambiguity Missing table prefix for duplicate column names in join 35

Nested Joins Ambiguous column reference due to multiple levels of alias 1
Punctuation error 49

Punctuation & Formatting | Punctuation/Parentheses Incorrect quote type for column alias with special characters 4
Missing semicolon between statements 5
Insert Statement Insert error 3

DML & DDL Mismatched column count 5
Create Table Statement Table creation error 10

Compatibility/Dialect Function Differences TRANSFORM Wlth lambda expression not supported mn Hive 3
wm_concat function not supported in the current SQL dialect 1
Type System Type mismatch 16

Types & Data Formats D}‘;It)efl“ iyme toyinix,timestap typo 2
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I EXAMPLES

1.1 SQUIRREL-SYNTAX EXAMPLE

org.apache.calcite.runtime.CalciteContextException:: from line 139, column 37 to line 139, column 48: Column 'passenger_id' not found in table

'result_base'

fomit 50 Lines]

retention pipeline AS (
encrypted_contact,
device_identifier,
passenger_id,
recommendation_timestamp,
journey_score,
traveler_profile_id,
passenger_id_collection,
device_id_collection,
is_selscted,
reJection_reason,
recommendation_strategy_list,
'retention pipeline' AS data_source

FROM  base
WHERE ~ is_retained - '1'
),
result_base AS (
ECT
passenger_id
recommendation_strategy_list
FROM  (

SELECT passenger_id
MAX (Journey_score) AS journey_score

FROM  (
SELECT  encryptad contact,
ice_identifier,

passenger id
recommendation_timestamp,
journey_score,
traveleT profile_id,
passenger_id_collection,
device_id collection,
is_selecta:
reJection_reason.
recommendation_strategy_list,
data_source

ROM  recommendation_model

SELECT encrypted_contact,
device_identifier,
passenger_id,
recommendation_timestamp,
Journey_score,
traveler_profile_id,
passenger_id_colTection,
device_id collection,
is_selected,
reJection_reason,
recommendation_strategy_list,

data_source
FROM  retention_pipeline

GROUP BY
passenger_id
)

ORDER BY
journey_score DESC

LIMIT 200000

), result AS (

SELECT encrypted_contact,
device_identifier,
passenger_i
recommendation_timestamp,
Journey_score,
traveler profile_id,
passenger_id_collection,
device_id_collection,

0 AS i5_test_user,
recommefidation _strategy list

FROM  (

SELECT base.encrypted_contact,
result_base.recommendation_strategy_list,
base.device_identifier,
base.passenger_id,
base. recommendation_timestamp,
base. journey_score,
base.travelef profile id,
base.passenger_id_collection,
base.device_id_collection

FROM  result_base
OTN base
oN result_base.passenger_id - base.passenger_id

)

),
experiment mapping AS (
ELECT  passenger_id,
(

bstr(
Yhd( (CAST (passenger_id AS STRING)),
[P

16,

10

) AS BIGINT
2 AS BIGINT
AS experiment_group_label

FROM «

SELECT passenger_id
FROM  result
GROUP BY
passenger_id

)

COLLECT SET{data_source) AS recommendation_strategy list

)

INSERT OVERWRITE TABLE fake base_test. _journey_
EARTITION (processing date - '5(d re) Tmodel veraion < Tvt
SELECT result.-

experiment_mapping.experiment group_label,
concat ('§{DATE+2) ', ' '5(DATE+8)T) AS active period
EROM  result
EFT JO
exper)ment napping
oN result periment_mapping. _id

retention pipeline AS

)

omit 50

FROM
WHERI

FROM

data_:

ORDE!

FROM

).
experiment_mapping AS (
LECT  passenger_id,

)

INSERT OVERWRITE TABLE fake base test
PARTITION (processing_date

Lines) Issue SQL
encrypted_contact,
device_identifier,

passenger_id,
recommendation_timestamp,
journey_score,

traveler profile_id,
passenger_id_colTection,
device_id_collection,

is_selscted,

reJection_reason
recommendation_strategy list,
'retention_pipeline' AS data_source

ase
E  is_retained - '1'

result_base AS (
SELECT

recommendation_strategy_list

SELECT  passenger.id,
X(journey_score) AS journey_score
ot ECT_SETTdata_source) AS recommendation_strategy list
FROM  (
SELECT encrypted_contact,
evice identifier,
passenger_id,
recommendation_timestamp,
journey_score,
traveleT profile_id,
passengeT_id_colTection,
device_id_collection,
is_selacted,
reJection_reason
recommendation strategy list,
data_source
FROM  recommendation_model
UNION

encrypted_contact,
device_identifier,
passenger_id,
recommendation_timestamp,
journey_score,

traveler profile_id,
passenger_id_collection,
device_id collection,
is_selected,
reJection_reason
recommendation_strategy list,

source
FROM  retention_pipeline

GROUP BY
passenger_id

)
R BY

journey_score DESC
T 200000

(
CT encrypted_contact,

device_identifier,

passenger_id,

recommendation_timestamp,

journey_score,

traveler profile id,

passenger_id_collection,

device_id_collection,

0 AS i5_tast_user,

recommendation_strategy_list

(

SELECT base,encrypted_contact

esult base.recommendation strategy list,
base.dsvice_identifier,
base.passenger_id,
base. recommendation_timestamp,
base.journey_score,
base.traveler_profile_id,
base.passenger_id_collection,
base.device_id_collection

FROM  result_}
JOIN  base
oN result b _id - base. _id

CAST(
CAST(
conv(
substr (
md5 (CAST (passenger_id AS STRING)),

) AS BIGINT
) % 2 AS BIGINT
BS experiment_group_label

FROM «

FROM

on

SELECT passenger_id

FROM  result
GROUP BY
passenger_id

)

rney
"s{date}', model ver51on Tv2')

result.”,

experiment. nepping.experinent group label

concat ("${D "-v, "S(DETE+B)T) AS active period
result

N

experiment_mapping

result id - experiment_mapping. id

Figure 12: The example of Squirrel-Syntax, where an explicit error message exists.
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1.2 SQUIRREL-SEMANTIC EXAMPLE

In the original table, passenger_id is not a unique key. Could you help me check why the output contains a large number of duplicate rows? Please fix the bug.

-

-- 60+ Lines Omited.
result_base AS (

SELECT
recommendation_strategy_list
FROM (

SELECT passenger_id,

MAX (journey_score) AS journey_score,
COLLECT_SET (data_source)
AS recommendation_strategy list

FROM (

SELECT encrypted contact,
device_identifier,
passenger_id,
recommendation_timestamp,
journey_score,
traveler_profile_id,
passenger_id_collection,
device_id collection,
is_selected,
rejection_reason,
recommendation_strategy_list,
data_source

FROM  recommendation_model

NION ALL

SELECT encrypted_contact,
device_identifier,
passenger_id,
recommendation_timestamp,
journey_score,
traveler profile id,
passenger_id_collection,
device id collection,
is_selected,
rejection_reason,
recommendation_strategy_list,
data_source

FROM  retention_pipeline

GROUP BY
passenger_id

ORDER BY
journey score DESC

LIMIT 200000

), result AS (

SELECT encrypted_contact,
device_identifier,
passenger_id,
recommendation_timestamp,
journey score,
traveler_profile_id,
passenger_id _collection,
device_id_collection,

0 AS is_test_user,
recommendation_strategy_list

FROM (

SELECT base.encrypted_contact,
result_base.recommendation strategy list,
base.device_identifier,
base.passenger_id,
base.recommendation_timestamp,
base.journey_score,
base.traveler_profile_id,
base.passenger_id_collection,
base.device_id_collection

FROM  result base

JOIN  base

on result_base.passenger_id - base.passenger_id

)
experiment_mapping AS (
SELECT passenger_id,

ubstr (
md5 (CAST (passenger_id AS STRING)),

AS BIGINT
) AS experiment_group_label
FROM (
SELECT passenger_id
FROM result
GROUP BY
passenger_id

INSERT OVERWRITE TABLE fake base test.passenger_journey recommendations

PARTITION (processing_date = 'S{date}', model_version = 'v2')
SELECT result.*, - -
experiment_mapping.experiment_group_label,
concat ('${DATE+2}", '~', 'S{DATE+8)') AS active period
FROM result
experiment_mapping
oN result.passenger_id - experiment_mapping.passenger_id

-- 60+ Lines O
result_base AS (

Issue SQL

SELECT
recommendation_strategy list
FROM (

SELECT passenger_id,

MAX (Journey_score) AS journey_score,
COLLECT_SET (data_source)
AS recommendation_strategy list

FROM (

SELECT encrypted_contact,
device_identifier,
passenger_id,
recommendation_timestamp,
journey_score,
traveler_profile_id,
passenger_id_collection,
device_id collection,
is_selected,
rejection_reason,
recommendation_strategy_list,
data_source

FROM  recommendation_model

ON ALL

SELECT encrypted_contact,
device_identifier,
passenger_id,
recommendation_timestamp,
journey_score,
traveler_profile_id,
passenger_id_collection,
device_id collection,
is_selected,
rejection_reason,
recommendation_strategy_list,
data_source

FROM  retention_pipeline

GROUP BY
passenger_id

ORDER BY
journey score DESC

LIMIT 200000

), result A5 (

SELECT encrypted_contact,
device_identifier,
passenger_id,
recommendation_timestamp,
journey_score,
traveler_profile_id,
passenger_id_collection,
device_id_collection,

0 AS is_test_user,
recommendation_strategy_list

FROM (

SELECT base.encrypted_contact,
result_base.recommendation_strategy list,
base.device_identifier,
base.passenger_id,
base.recommendation_timestamp,
base.journey_score,
base.traveler_profile_id,
base.passenger_id_collection,
base.device_id_collection

FROM  result base

JOIN  base

oN result_base.passenger_id - base.passenger_id

),
experiment_mapping AS (
SELECT passenger_id,
CAST(

) AS BIGINT

) % 2 AS BIGINT
) AS experiment_group_label
FROM (
SELECT passenger_id
FROM  result

INSERT OVERWRITE TABLE fake base test.passenger_journey recommendations
PARTITION (processing_date = 'S${date}', model_version = 'v2')

SELECT result.*,

experiment_mapping.experiment_group_label,

concat ('${DATE+2}', '~', 'S{DATE+8}') AS active period
FROM result

experiment_mapping
oN result.passenger_id - experiment_mapping.passenger_id

Figure 13: The example of Squirrel-Semantic.
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J PROMPTS TEMPLATE

All data synthesis and evaluation using the LLM-as-a-Judge methodology are performed with Claude-
4-Sonnet (Anthropic, 2025), with the temperature parameter set to 0.0. The detailed prompts are
described below.

J.1 ENTERPRISE-LEVEL SQL SCRIPTS GENERATION PROMPTS

Prompt for Scenario Creation

F## Instruction

You are a professional SQL ETL and schema generation expert. Your task is to transfer a database
schema from a source domain to a target domain, preserving structural complexity and table
relationships, but fully adapting table names, field names, and semantics to the target domain.

#7 Steps

1. Analyze Source DDL:
- Examine the number of tables, fields, data types, relationships, and naming patterns.
- Treat this as a structural seed for generating an equivalent schema.

2. Generate Target Schema:

- Create a logically equivalent schema under the target domain.

- Rules:

- Use the database fake_base_test.

- Format: CREATE TABLE IF NOT EXISTS fake_base_test.table_name ( ... );

- Avoid SQL reserved keywords as column names.

- Reflect business meaning in the target domain.

- Optionally add auxiliary fields to maintain equivalent complexity.

- All names, comments, and logic must be consistent with the target domain and unrelated to the source
domain.

3. Validation:
- Ensure DDL syntax is correct.
- Ensure schema and scenario are fully adapted to the target domain, with no remnants from the source.

## Notes

- Do not reuse proprietary identifiers or field names from the source domain.
- Only use the user-provided target domain.
- Preserve the structural pattern, complexity, and relationships of the source schema.

## Input Data

Source DDL: DDL
Target Domain: SCENARIO

## Output Format(JSON)
{
"mock scenario": "Scenario description",
"mock ddl": "Corresponding CREATE TABLE statements"”

Prompt for Generating Enterprise-level SQL

## Instruction

You are a professional SQL ETL code generation expert. Using the provided source SQL as a reference,
and given the target domain scenario and its corresponding DDL, generate an SQL ETL script for the
target domain that preserves the logical structure and complexity of the source code while adapting it
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fully to the target domain.
## Requirement

1. Logical structure equivalence:

- Analyze the ETL workflow, table relationships, and processing steps in the source SQL code.

- Preserve the overall structure, complexity, and transformation logic, but replace all table names, field
names, and data types to match the target domain.

2. Strictly match the target DDL:

- All SQL must be fully based on the provided target DDL.

- Table names and field names must match the target DDL exactly.

- Do not retain any original business terms, identifiers, or domain concepts from the source code.

3. Output requirements:

- The code must be executable, and SQL syntax must be correct.

- Maintain a clear hierarchy and readability (include appropriate comments).

- Naming should reflect the target business domain, ensuring a one-to-one correspondence between SQL
and the target DDL.

## Input Data
Source SQL: SQL
Target Domain Scenario: SCENARIO

Target DDL: DDL

# 7 Output Format

'mock code': 'Generated target domain SQL ETL code'

J.2 ISSUE SQL CONSTRUCTION PROMPTS

Prompt for Error Type Selection

## Role:
You are an expert SQL engineer specializing in designing realistic SQL bugs for testing and debugging
scenarios.

## Task:

Given a correct SQL query, your job is to:
Select the top { TOP_K} appropriate error type from the provided taxonomy.

##Key Guidelines:

- Minimal Change: Only introduce the chosen bug. Do not alter the original query’s structure or intent
more than necessary.

- Realism: The bug should reflect mistakes that real developers are likely to make.

##£Input:

1. Correct SQL: {SQL}

2. DDL (optional): {DDL}

3. Original Intent: {CODE INTENTION}

4. Error Type Taxonomy: { SEMANTIC ERROR TYPES}

##Output Requirements:
Your output must include:
- The selected error type(s) at Level 1-3 granularity.
##Output Format:
{
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candidate_errors:
{
"levell _error_type": Level 1 error type,
"level2_error_type": Level error type,
"level3_error_type": Level 3 error type

N

"levell_error_type": Level 1 error type,
"level2_error_type": Level error type,
"level3_error_type": Level 3 error type

N

Prompt for Squirrel-Syntax Issue SQL Construction

## Role:
You are an expert SQL engineer specializing in designing realistic SQL bugs for testing and debugging
scenarios.

## Task:
Given a correct SQL query, your task is to introduce an error into the correct query with the smallest
possible change.

#7 Key Guidelines:

- Minimal Change: Only introduce the chosen bug. Do not alter the original query’s structure or intent
more than necessary.

- Realism: The bug should reflect mistakes that real developers are likely to make.

#+# Input:
1. Correct SQL: {SQL}

2. DDL (optional): {DDL}

3. Original Intent: {CODE INTENTION}

4. Error Type Taxonomy: { SEMANTIC ERROR TYPES}
#+# Output Requirements:

Your output must include:

- The selected error type(s) at Level 1-3 granularity.
- The modified SQL query with the injected bug.

## Output Format:

{
"levell_error_type": Level 1 error type,
"level2_error_type": Level 2 error type,
"level3_error_type": Level 3 error type,

"issue_sqgl": SQL query with the injected bug

Prompt for Squirrel-Semantic Issue SQL Construction

#7 Role:
You are an expert SQL engineer specializing in designing realistic SQL bugs for testing and debugging
scenarios.

## Task:
Given a correct SQL query, your job is to:
1. Introduce the error into the SQL query with the smallest possible change.

28



Under review as a conference paper at ICLR 2026

2. Write a realistic user-style issue report describing how the bug causes the query to behave incorrectly,
and the user’s real intention.

#7 Key Guidelines:

- Minimal Change: Only introduce the chosen bug. Do not alter the original query’s structure or intent
more than necessary.

- Realism: The bug should reflect mistakes that real developers are likely to make.

## Input:
1. Correct SQL: {SQL}

2. DDL (optional): {DDL}
3. Original Intent: {CODE INTENTION}
4. Error Type Taxonomy: { SEMANTIC ERROR TYPES}

## Output Requirements:

Your output must include:

- The selected error type(s) at Level 1-3 granularity.

- The modified SQL query with the injected bug.

- A natural-language user bug report describing the mismatch between expected and actual results
(without exposing SQL code, since the user does not know the root cause).

## Output Format:

{
"levell_error_type": Level 1 error type,
"level2_error_type": Level 2 error type,
"level3_error_type": Level 3 error type,
"user_query": Bug report written in natural language.

Describe the expected vs. actual outcome clearly.
"issue_sqgl": SQL query with the injected bug
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J.3 BENCHMARK EVALUATION PROMPT

Prompt for Squirrel-Syntax Generation

You are an SQL assistant.

## Task

Based on the error messages and table schema, your task is to fix the issue in the SQL and write the
correct SQL.
Remember that you can not change any existing comments and SQL code without errors.

## Input Data

The issue SQL: BUG SQL

Related tables schema: DDL

Error Messages: ERROR MESSAGE

## Output (JSON):

'predict_sqgl': The fixed SQL.

Prompt for Squirrel-Semantic Generation

You are an SQL assistant.

## Task

Based on the user query and input table schema, please fix the bugs in the Issue SQL and
write the corresponding correct SQL code.
Remember that you can not change any existing comments and SQL code without errors.

#+# Input Data
User Query:USER QUERY

Related tables schema: DDL
Error Messages: ERROR MESSAGE

#+ Output (JSON):

'predict_sqgl': The fixed SQL.

Prompt for diff Generation

<background_info>
\texttt {DDL_PLACEHOLDER}
</background_info>

" code
SQL_CODE_PLACEHOLDER

<error_msg>
ERROR_MESSAGE_PLACEHOLDER
</error_msg>
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“*Tlast_edit
<<<<<<< SEARCH
LAST_EDIT_BEFORE_PLACEHOLDER

LAST_EDIT_AFTER_PLACEHOLDER
>>>>>>> REPLACE

J.4 AGENT PROMPT

Prompt for Main Agent

You are a SQL expert. Please review the SQL code (with the table DDL) and the error message reported.
Your task is to analyze the error and provide fixing edit instructions.

Input:

- Tables DDL

DDL_PLACEHOLDER

- Hive SQL Code:

“""sgl SQL_CODE_PLACEHOLDER™ ™"
- Error Message:
ERROR_MESSAGE_PLACEHOLDER

Output Requirements:
You must strictly follow this XML format in your response:

<analysis>

Examine the error message and identify the root cause. Explain what is wrong with the current code
and why the error occurred.

</analysis>

<instructions>

Provide clear, step-by-step instructions on how to fix the code. Explain what changes need to be made
and where they should be applied.

</instructions>

<sketch_sqgl>

Provide the edit sketch using the special comment ~ . . .~ to represent unchanged code between edited
lines. Specify each edit in sequence, minimizing unchanged SQL code while making it clear what the
edit is and where it should be applied.

</sketch_sqgl>

Ensure your instructions(in Chinese) and sketch are clear enough that another model can apply them
correctly without accidentally deleting or modifying unintended parts of the code.
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