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ABSTRACT

Causal probing methods aim to test and control how internal representations influ-
ence the behavior of generative models. In causal probing, an intervention modifies
hidden states so that a property takes on a different value. Most existing approaches
define such interventions by training an auxiliary probe classifier, which ties the
method to a specific task or model and risks misalignment with the model’s pre-
dictive geometry. We propose Hidden-state Driven Margin Intervention (HDMI),
a probe-free, gradient-based technique that directly steers hidden states using the
model’s native output. HDMI applies a margin objective that increases the proba-
bility of a target continuation while decreasing that of the source, without relying
on probe classifiers. We further introduce a lookahead variant (LA-HDMI) for
text editing that backpropagates through the softmax embeddings, modifying the
current hidden state so that the likelihood of user-specified tokens increases in next
token generations while preserving fluency. To evaluate interventions, we measure
completeness (whether the targeted property changes as intended) and selectivity
(whether unrelated properties are preserved), and report their harmonic mean as
an overall measure of reliability. HDMI consistently achieves higher reliability
than prior methods on the LGD agreement corpus and the CausalGym benchmark,
across Meta-Llama-3-8B-Instruct, and Pythia-70M.

1 INTRODUCTION

In the study of generative models, a key goal is to understand what latent properties they encode and
how these properties shape generation. By property, we mean a linguistic feature of the input that
the model may represent internally and that can take on distinct values. For instance, consider the
sentence: “The cats run across the yard”. Here, the subject has the property of plural number. If we
change to “The cat runs across the yard”, the property would instead be singular number.

A standard diagnostic approach, correlational probing, trains lightweight classifiers (commonly
called “probes”) on hidden states to decode a property (such as sentiment, syntactic role, or topic).
These probes reveal what value of property is present in hidden states, but they do not show
whether/how the model actually uses this property in predicting the next words. For example,
the probe might read off “plural number” but this does not establish whether plurality is what drives
the model to predict “run” instead of “runs” for the next token.

Causal probing addresses the aforementioned limitation by interventions on the hidden state and
tests whether such perturbations alter the next-token distribution of the model. For instance, if we
modify the hidden state so that the subject property changes from singular to plural, we would like
to see whether the model accordingly modifies the verb from singular to plural form. Therefore,
causal probing investigates not only what information is encoded, but also how it is used in prediction
(Elazar et al., 2021; Ravfogel et al., 2020; Kumar et al., 2022). 1

In practice, many causal probing methods rely on training a probe to obtain a direction along which
to perturb the hidden state. For example, PGD (Madry et al., 2018) trains a probe to classify subject
number from hidden states, and then uses the probe’s gradient to adjust the hidden state such that

1Following prior causal probing work (Canby et al., 2024; Ravfogel et al., 2021; Davies et al., 2023), we
sometimes refer to altered property as “counterfactuals”. However, in the structural causal model framework
Pearl (2009), counterfactuals require re-evaluating a system under the same randomness, whereas our setting
just replaces a hidden representation with a modified one. Thus, our experiments are more accurately considered
as interventional queries rather than counterfactual ones.
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the perturbed state is classified by the probe with the opposite label (e.g., flipping the label from
singular to plural). However, this reliance on probes introduces extra property-specific supervision
and training costs, since a separate probe must be trained for each property of interest. Moreover,
there is a risk of misalignment in the sense that the probe imposes its own classification boundary on
the hidden state which may not coincide with how the model internally encodes and uses a property
for generating next tokens.

This motivates our framing of inference-time causal probing. By this, we mean interventions applied
entirely at inference time, requiring no probes or retraining of the generative model. Our proposed
method, Hidden-state Driven Margin Intervention (HDMI), directly leverages the generative
model’s output head as a native readout. HDMI performs a lightweight gradient-based update to
hidden states that shifts the model’s output distribution from the source continuation (e.g., “runs” for
a singular subject) to the interventional target (e.g., “run” for a plural subject). Concretely, it uses the
gradient of the logit margin (defined as the difference between the target and source token logits at
the next decoding step), increasing the probability of the target being selected.

The contributions of the paper are as follows:

• Unlike prior approaches (Davies et al., 2023; Ravfogel et al., 2021; Madry et al., 2018;
Goodfellow et al., 2015) that rely on probes, HDMI directly leverages the generative model
head to obtain intervention directions, ensuring alignment with the model’s own predictive
geometry. The objective of HDMI is to maximize the logit margin that increases the target
continuation’s logit while decreasing the source’s. This formulation naturally extends to
cases where a property can be expressed by multiple acceptable continuations (e.g., plural
verbs “are/were” versus singular verbs “is/was”). Moreover, the gradient computation of the
logit margin reduces to a closed-form matrix–vector product, making HDMI computationally
lightweight and easy to deploy (Section 4).

• We propose a “lookahead” variant of HDMI for text editing, where a user provides an edited
version for a given input, and the goal is to perturb hidden states to steer generation toward
the edited version while preserving fluency. Lookahead HDMI (LA-HDMI) introduces a
softmax embedding transition in the token generation process and modifies the hidden state
of every decoding step influenced by future edit positions (Section 5).

• Using the evaluation framework of Canby et al. (2024), compared to previous work, we
show that HDMI achieves strong performance across LGD agreement and CausalGym suites.
We report completeness and selectivity, metrics that show that interventions alter target
properties but avoid altering unrelated properties (Section 6).

2 RELATED WORK

Our work is related to three research directions: (i) probing methods for analyzing the linguistic
information encoded in hidden states; (ii) causal interventions on internal mechanisms in language
models; and (iii) controllable generation and editing methods that steer model behavior at inference
time.

Probing. A long line of work uses lightweight classifiers—“probes”—to read out linguistic prop-
erties from intermediate representations (Belinkov, 2022; Alain & Bengio, 2016; Hewitt & Liang,
2019; Pimentel et al., 2020). Although such probes revealed that models encode rich structure, their
interpretability and causal effects on the model predictions have been debated. The fact that a property
can be predicted from embedding representations (or correlated) does not imply the model relies on
that property. Some methods have proposed controls to check that a probe’s accuracy is not due to
dataset quirks or the probe memorizing labels (Hewitt & Liang, 2019; Pimentel et al., 2020). This
motivated causal probing, which intervenes on representations and measures behavioral impact.

From correlation to causation. Recent work shifts from correlational probing to causal analysis
that intervenes on internal representations (Elazar et al., 2021; Tucker et al., 2021; Ravfogel et al.,
2021; 2022; Davies et al., 2023). Concept–erasure methods attempt to remove information about
attributes from representations, often to debias (Elazar & Goldberg, 2018) or perform causal analysis.
Iterative Nullspace Projection (INLP) iteratively removes linearly predictive subspaces for a given
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attribute from representations and projects representations onto the nullspace of linear predictors
for a target attribute (Ravfogel et al., 2020; 2022). “Amnesic probing” couples such an erasure with
behavioral checks to study whether removing present information about a property changes the model
predictions (Elazar et al., 2021). Counterfactual interventions instead modify the hidden state so that
the property changes from its factual value to a counterfactual value. Linear counterfactuals such
as AlterRep push representations across rowspace hyperplanes to the counterfactual side (Ravfogel
et al., 2021). Nonlinear counterfactuals include gradient-based interventions (GBIs) that optimize
against an attribute probe with FGSM/PGD-style updates (Goodfellow et al., 2015; Madry et al.,
2018). However, concerns persist that interventions may incompletely transform the target property
or inadvertently alter non-target properties (Kumar et al., 2022; Canby et al., 2024). In contrast,
our approach does not learn a probe for the intervention and instead exploits a direct, model-native
gradient signal from the language model head, aligning the intervention with the model’s predictive
geometry at the specific decoding step.

Controllable model behavior. Plug-and-Play Language Models (PPLM) perform gradient-based
updates to hidden states to guide the token generations (e.g., change the text topic) using external
attribute classifiers, alongside KL regularization to remain on-manifold (Dathathri et al., 2019). GeDi
(Krause et al., 2020) and DExperts (Liu et al., 2021) provide alternative guidance via discriminators or
expert/anti-expert mixtures to make them more controllable. More recently, representation/activation
engineering has explored linear directions to change the behaviors of models (Turner et al., 2023).

Our proposed approach is a form of causal probing that differs from the aforementioned work in
two ways: (i) we do not require training an external attribute model or probe. HDMI uses a targeted,
per-instance, per-step gradient to change a specified continuation. (ii) our margin intervention
objective is to change the target property completely and not to affect unrelated properties. Our
evaluation approach is akin to Canby et al. (2024), which introduced metrics for completeness (did
the intervention achieve changing the value of the targeted property?) and selectivity (did it avoid
altering unrelated properties?).

3 PROBLEM SETTING AND NOTATIONS

Let M be a pretrained language model (LM) with L transformer layers and vocabulary V . For
an input sequence x1:T = (x1, . . . , xT ) and a decoding step T + 1, we denote the layer–ℓ hidden
representation by hℓ(x1:T ) ∈ RD, where ℓ ∈ {1, . . . , L}, and D is the model’s hidden size. Unless
stated otherwise, we drop the position subscript and write hℓ(x) for hℓ(x1:T ). The model’s next-token
logit vector is ϕ(x1:T ) = WU hL(x1:T ) + b ∈ R|V|, where WU ∈ R|V|×D is the unembedding and
b ∈ R| V | is the bias. Unless stated otherwise, we drop the position subscript and write ϕ(x) for
ϕ(x1:T ) by default. The probability distribution for generating the next token is obtained via softmax,

PM ( · | x1:T ) = softmax
(
ϕ(x1:T )

)
∈ ∆|V|−1,

where ∆|V|−1 denotes the probability simplex over V . We assume a family of discrete latent linguistic
properties Z = {Z1, Z2, . . . } defined on input texts. The classical “probing” paradigm evaluates
whether a hidden vector hℓ(x) correlates with a linguistic property Z ∈ Z by training a supervised
classifier on hidden representations hℓ(x). Causal probing instead asks how or whether manipulating
the hidden representation at layer ℓ changes a linguistic property Z ∈ Z and the model’s next-token
prediction denoted as Y .

X Y

Zc Ze

Figure 1: X is the sequence x1:T and
Y is the token at T + 1. Zc and Ze are
latent linguistic properties.

Throughout the paper, we consider two types of proper-
ties. First, a causal property Zc that directly governs the
model’s next-token choice Y at position T + 1. For in-
stance, in English subject–verb agreement, Zc∈{SG, PL}
encodes the subject number (singular or plural) and should
impose the verb agreement at the next token prediction
(e.g., Y ∈ {is, are}). Second, an environment or nuisance
property Ze (e.g., the number of non-subject nouns in a
prepositional phrase) that varies with the context and does not affect Y (e.g., non-subject noun
number does not affect the verb, see Figure 1). Both Zc and Ze take values in finite sets Kc and Ke,
respectively.
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Let fθ : RD→RD be an interventional operator:

h̃ℓ(x) = fθ
(
hℓ(x), z→z′

)
, where z′ ̸=z.

This operator for a given x, intervenes on the hidden state to change the value of Z from z to z′

4 HIDDEN-STATE DRIVEN MARGIN INTERVENTION (HDMI)

Let ϕ : RD→R|V| be a differentiable logit function (by default the LM head ϕ(x); see Section 3).
Consider the input sequence x1:T whose next–token distribution we want to predict. Let hℓ(x) denote
the hidden state representation at layer ℓ. In the following examples, we shall denote the position
T + 1 by [MASK].

In causal probing, the dataset provides two mutually exclusive next–token continuations or labels:

• the source token va ∈ V , which is the token preferred by the model under its original
distribution that realizes the factual value z of Zc, and

• the target token vb ∈ V , which realizes the counterfactual value z′ of Zc we wish the model
to adopt.

For instance, consider the sequence “The key [MASK] on the table.” Without intervention, the base
model might prefer va = is at [MASK] because z = SG. If we wish to flip the subject-number
property to plural (z′ = PL), the target token at this step is vb = are.

Denote the indices of va and vb in the logit vector ϕ by σ = ID(va), and τ = ID(vb).

Single-token margin objective. We aim to find a perturbed hidden state h̃ℓ(x) that raises the
logit (or log-probability) of the target token τ while lowering that of the source token σ at the next
decoding step. We define the margin objective as follows:

L(x) = ϕ(x)τ − ϕ(x)σ. (1)

Maximizing this margin objective increases the probability of the target token while decreasing that
of the source token. We therefore apply gradient ascent on the hidden state hℓ(x). Note that for the
final layer L, and for the ϕ defined in Section 3, because L is linear in hL(x), computing the gradient
is inexpensive:

∇hL
L(x) = W⊤

U

(
eτ − eσ

)
,

where ei is the i-th basis vector in R|V|. For a general ℓ: ∇hℓ
L(x) =

(
∇hℓ

ϕ(x)
)⊤(

eτ − eσ
)
, which

requires computing a matrix–vector product, also a computationally lightweight calculation.

Multi-token extension. Sometimes the property can be realized by several acceptable tokens at the
very next step. For example, for subject-verb agreement, we may wish to use both are and were
for the counterfactual value z′ = PL, and is and was for z = SG.

HDMI can optimize a set-based margin. Let T + = {τ1, . . . , τp}, T − = {σ1, . . . , σq}, and define
the loss as:

Lset(x) =

p∑
i=1

ϕ(x)τi −
q∑

j=1

ϕ(x)σj
. (2)

Let u+ =
∑

i eτi and u− =
∑

j eσj so that Lset(x) = ϕ(x)⊤(u+ − u−). For interventions at the
final layer (ℓ = L), ∇hL

Lset(x) = W⊤
U

(
u+ − u−). The gradient for general ℓ is ∇hℓ

Lset(x) =(
∇hℓ

ϕ(x)
)⊤(

u+−u−), which is the same as equation 1 when p = q = 1. Starting from the original
representation h(0) = hℓ(x), we perform K steps of gradient ascent:

g(k) = ∇h(k)L(x), h(k+1) = h(k) + α g(k), (3)

where α > 0 is the step size. The final state representation h̃ℓ(x) = h(K) is substituted back into the
forward pass at only layer ℓ and position T + 1 for the next token prediction; all other layers and
decoding steps remain unchanged.

4
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5 TEXT EDITING WITH LOOKAHEAD HDMI

In this section, we show a use–case of HDMI in which for a given input sequence x1:T =
(x1, . . . , xT ), a user provides an edited sequence x̃1:T = (x̃1, . . . , x̃T ) , and the goal is to steer
the input sequence toward the edited version fluently. Rather than forcing the LM to reproduce
x̃is, we steer the hidden states of the input sequence so that the generated sequence remains fluent
while implementing the user’s changes. For every decoding step t+ 1 ∈ {1, . . . , T}, we denote the
last-token layer-L hidden hL(x1:t) by ht ∈ RD, the temperature by βg, the next-token logit ϕ(x1:t)
by ϕt and the next-token distribution by yt. Then,

ϕt = WUht + b, yt = softmax
(
ϕt/βg

)
.

Since we considered an autoregressive LM, a hidden state ht, is not aware of future edits. To let the
ht be influenced by future edit positions (t′ > t), we must consider the transition from ht to ht+1

through the expected embedding mt as follows:

ht → ϕt = WUht + b −→ yt = softmax
(
ϕt/βg

)
→ mt = E⊤yt → ht+1 = T (mt)

where E ∈ R|V|×de is the token embedding matrix, de is the embedding size, and mt ∈ Rde is the
expected value of the next-token prediction based on the distribution yt. T denotes the decoder one-
step transition that maps the expected next-token embedding to the next last-layer hidden state. Note
that T maintains a cache of all past tokens’ attention states, which we have omitted here for brevity.
In this formulation, gradients of a margin objective (such as equation 1) can be backpropagated
via a vector–Jacobian product (VJP) through the softmax–expected-embedding–transition chain
to the hidden states of the past decoding steps (t′ < t). Since we do a forward pass with mt, no
gradient flows through argmax/sampling, and therefore, the transitions remain differentiable. Note
that autoregressive LLMs were never trained to consume combinations of expected embeddings;
hence, feeding expected embeddings in their token generation process (forward pass) puts the model
off-manifold and quickly collapses fluency–even without intervening on hidden states. To preserve
fluency while still obtaining useful gradients, we decouple the forward token generation process
from the gradient backpropagation path. At each decoding step, we choose a very low-temperature
βf in softmax and feed that generated embedding into the model, to mimic exactly the standard
inference. In parallel, to compute the gradient with backpropagation, starting from the current hidden
state, we build a differentiable “lookahead” objective by using the expected embedding under a
high-temperature value (βg near 1). In the following, we define the objective function for text editing.

Denote the set of positions that must change (specified by user edits) byM =
{
j ∈ {1, . . . , T} :

xj ̸= x̃j

}
, and let (aj , bj) =

(
ID(xj), ID(x̃j)

)
be their respective indices. Before predicting xt+1,

we build an objective that considers the edits up to Smax steps ahead:

Jt(ht) =

Smax∑
s=1

1{t+s∈M}
[
ϕ(x1:t+s−1)bt+s

− ϕ(x1:t+s−1)at+s

]
.

Maximizing this cumulative margin objective adjusts ht so that the probability of future target tokens
increases while decreasing that of the source ones. To prevent deviating from the input sequence in
the not edited parts and follow the input sequence logit, we also incorporate the source token logit at
position t+ 1 and regulate it using a coefficient λfact:

Jt ← Jt + λfact ϕ
(
x1:t

)
at+1

, λfact ∈ [0, 1].

Starting from h
(0)
t = ht, we perform K steps of gradient ascent

g
(k)
t = ∇

h
(k)
t

Jt, h
(k+1)
t = h

(k)
t + α g

(k)
t ,

where α is the step size. After K inner steps we obtain h′
t = h

(K)
t , and form the following distribution

using a low temperature βf

y′t = softmax
(
WUh

′
t/βf

)
.

We show the next token by taking the argmax of y′t, x
⋆
t+1 = argmax y′t; however, we continue the

forward pass with the expected embedding m′
t = E⊤y′t.

5
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6 EXPERIMENTS

6.1 CAUSAL PROBING WITH HDMI

We study pretrained decoder–only LMs with L transformer layers. The complete code is provided
in the supplementary material. Consider the input sequence x1:T whose next–token distribution we
want to predict. Unless noted otherwise, we intervene at the final layer ℓ=L. In this section, we
often denote hℓ(x1:T ) by hℓ for sake of brevity.

Datasets. We evaluate our approach on two complementary sources.

LGD agreement corpus. We follow the protocol of Canby et al. (2024): natural Wikipedia sentences
from the original LGD dataset (Linzen et al., 2016) are filtered so that both singular and plural
inflections of the target verb are in the dataset. Each dataset sample supplies (i) an input sequence
ending right before the next-token prediction (the model predicts the verb denoted with [MASK] in
the prompt), (ii) mutually exclusive labels ⟨vsg, vpl⟩, that we choose va and vb from (e.g., locks and
lock respectively), and (iii) annotations for the subject number Zc, which is either singular (SG) or
plural (PL) and, when present, the number of the most recent non-subject noun in a prepositional
phrase (Ze). We map Zc∈{SG, PL} to {0, 1} and Ze to a 3–class label {0=∅, 1= SG, 2= PL}.
CausalGym. CausalGym (Arora et al., 2024) groups examples into suites, each targeting
a single grammatical phenomenon (e.g., agreement with prepositional phrase (PP) distractors,
subordination, clefting, filler–gap). Items are provided as minimal pairs ⟨xsrc, xcf⟩, and their
corresponding labels ⟨ysrc, ycf⟩ that are identical except for the property of interest Zc, ensur-
ing that any difference in model preference can be attributed to this property. For instance,
⟨xsrc, xcf⟩=⟨John walked because [MASK], Jane walked because [MASK]⟩ and ⟨ysrc, ycf⟩= ⟨he, she⟩.
From each pair, we create two samples by swapping which label is active; hence, the source/target
tokens (defined in Section 4) are well defined. For example, for the prompt John walked because
[MASK], the source token va is he and the target one vb is she. We take the varied feature as Zc

(in this example “gender”) and similar to LGD dataset, we map Zc∈{male, female} to {0, 1}. For
the environment property Ze we use a preposition–family heuristic over the prompt near the verb:
Ze ∈ {0, 1, 2, 3, 4} ≡ {NONE, OF, IN, WITH/BY, OTHER}, obtained by scanning the last 12 tokens
for the most recent preposition.

A validation probe (Canby et al., 2024) is a lightweight classifier trained to decode a latent property
from hidden states, without participating in the intervention itself. Given layer–ℓ representations
hℓ(x), we train two probes on a disjoint split: (i) probeZc

, which estimates P (Zc | hℓ) and is
used to quantify completeness by checking whether an intervention shifts the encoding toward the
counterfactual value; and (ii) probeZe

, which estimates P (Ze |hℓ) and is used to quantify selectivity
by checking that non-target properties remain stable. Importantly, validation probes are never trained
on intervened representations and never see the test set; their role is to read out what the model
encodes, not to learn to cope with interventions.

The data is partitioned into (1) an interventional split, (2) a validation-probe split, and (3) a held-out
test split for two reasons. First, to avoid leakage: the interventional split is used to fit any probe-driven
intervention (e.g., a Zc probe for gradient-based baselines) and to tune intervention hyper-parameters,
while validation probes are fit only on the validation-probe split. Second, to obtain unbiased metrics:
we subsample the validation-probe split so that Zc and Ze are approximately independent (Canby
et al., 2024), ensuring probeZc

cannot spuriously use Ze (and vice versa). The test split is used
exclusively for final reporting of completeness, selectivity, and reliability after all training and tuning
are performed.

We compared our method (HDMI) with several baselines: HDMI (ours). Gradient ascent on the
next–token margin ( equation 1), i.e. increase ϕ(x)τ while decreasing ϕ(x)σ . In Appendix A.2, there
is an ablation study on only increasing ϕ(x)τ . GBI. Gradient–based counterfactual intervention
via FGSM/PGD (Goodfellow et al., 2015; Madry et al., 2018) against the interventional Zc probe,
targeted to predict a counterfactual value of Zc within an ℓ∞ or ℓ2 ball (default: ℓ∞). AlterRep
Ravfogel et al. (2021). It modifies only the component of the representation hℓ that lies in the row
space of a linear concept classifier (the span of its weight vectors) and leaves the part orthogonal to
that space unchanged.

6
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Table 1: CausalGym and LGD: Completeness, Selectivity, and Reliability for HDMI (ours), AlterRep,
FGSM, and PGD on Meta-Llama-3-8B-Instruct and EleutherAI/pythia-70m. Higher value is better.
C. , S., and R. are short for Completeness, Selectivity, and Reliability, respectively.

Task Method Meta-Llama-3-8B-Instruct EleutherAI/pythia-70m
C. S. R. C. S. R.

agr sv num
obj-relc HDMI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

AlterRep 0.9800 1.0000 0.9899 0.9600 1.0000 0.9796
FGSM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
PGD 0.6307 1.0000 0.7736 1.0000 1.0000 1.0000

agr sv
num pp HDMI 1.0000 0.9362 0.9671 0.9984 0.9409 0.9688

AlterRep 0.9500 0.8680 0.9072 0.5000 0.5108 0.5053
FGSM 1.0000 0.8314 0.9080 0.9984 0.4906 0.6579
PGD 0.3650 0.3648 0.3649 1.0000 0.8550 0.9218

agr refl num
subj-relc HDMI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

AlterRep 0.9898 1.0000 0.9949 0.5000 1.0000 0.6667
FGSM 1.0000 1.0000 1.0000 0.4963 1.0000 0.6634
PGD 0.9636 1.0000 0.9815 0.4912 1.0000 0.6588

agr refl
num pp HDMI 0.9902 0.8272 0.9014 1.0000 0.8983 0.9464

AlterRep 0.9900 0.6540 0.7877 0.5449 0.8843 0.6743
FGSM 0.5341 0.9881 0.6934 0.9642 0.9206 0.9419
PGD 0.3335 0.5155 0.4050 0.6142 1.0000 0.7610

gss subord
subj-relc HDMI 1.0000 0.8969 0.9456 1.0000 1.0000 1.0000

AlterRep 0.9700 0.8938 0.9303 0.6095 1.0000 0.7573
FGSM 0.5500 1.0000 0.7097 0.1507 1.0000 0.2619
PGD 0.6411 1.0000 0.7813 0.3463 1.0000 0.5145

gss subord
pp HDMI 1.0000 0.8969 0.9456 0.9984 0.7371 0.8481

AlterRep 0.9700 0.8938 0.9303 0.6896 0.7051 0.6972
FGSM 1.0000 0.9382 0.9681 0.1333 0.9799 0.2347
PGD 0.9950 0.5298 0.6914 0.3015 0.6628 0.4144

cleft HDMI 1.0000 0.9800 0.9899 1.0000 1.0000 1.0000
AlterRep 0.8603 0.9800 0.9163 0.7300 1.0000 0.8440
FGSM 1.0000 1.0000 1.0000 0.7900 1.0000 0.8827
PGD 0.9946 1.0000 0.9973 0.9599 1.0000 0.9796

filler gap
hierarchy HDMI 1.0000 0.8414 0.9138 1.0000 1.0000 1.0000

AlterRep 0.9900 0.8443 0.9114 0.8299 1.0000 0.9070
FGSM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
PGD 0.8300 1.0000 0.9071 1.0000 1.0000 1.0000

filler gap pp HDMI 0.9710 0.4412 0.6067 0.7404 0.6275 0.6793
AlterRep 0.8095 0.7389 0.7726 0.5100 0.4582 0.4782
FGSM 0.9764 0.0501 0.0954 0.4453 0.9951 0.6153
PGD 0.8480 0.2290 0.3606 0.4561 0.9310 0.6122

filler gap
subj HDMI 1.0000 0.4651 0.6349 1.0000 1.0000 1.0000

AlterRep 1.0000 0.5200 0.6842 1.0000 0.5200 0.6842
FGSM 0.9200 1.0000 0.9583 0.3435 1.0000 0.5114
PGD 0.9050 1.0000 0.9501 0.1787 1.0000 0.3033

LGD HDMI 0.9412 0.8117 0.8716 0.9341 0.8538 0.8921
AlterRep 0.9490 0.6536 0.7741 0.9951 0.3234 0.4881
FGSM 0.5813 0.3337 0.4240 0.4393 0.9959 0.6097
PGD 0.5402 0.4149 0.4694 0.7124 0.532 0.6091
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Figure 2: Reliability by tasks. Reliability is averaged across LLaMA and Pythia-70M models.

Following Canby et al. (2024), we report:

Completeness. Let pafter
c = softmax(probeZc

(h̃ℓ(x))), where the softmax is taken over |Kc| classes.
The desired distribution after applying the interventional operator fθ

(
hℓ(x), z→z′

)
is the one–hot

ez′ ∈ {0, 1}|Kc|, where
[
ez′

]
k
= 1 if k = z′, and zero otherwise; we define

Comp = 1− dTV

(
pafter
c , ez′

)
, dTV(p, q) =

1
2∥p− q∥1,

where dTV(p, q) is the total variation (TV) distance between distributions p and q.

Selectivity. We measure selectivity with TV distance between the post- and pre-intervention
validation-probe distributions and normalize by the maximum possible TV shift, which is defined
as m(p) below. Let pbefore

e = softmax(probeZe
(hℓ(x))) and pafter

e = softmax(probeZe
(h̃ℓ(x))). We

report the selectivity score

Sel = 1− dTV(p
after
e , pbefore

e )

m(pbefore
e )

, m(p) = max
{
1−min

i
pi, max

i
pi
}
.

Reliability. The harmonic mean Rel = 2Comp×Sel
Comp+Sel .

For each split, we hold out a random 20% subset of that split as internal validation to report the
probe accuracy. The probe accuracy for our experiments in different tasks is above 90% except for
some tasks on the Pythia-70M model, where the accuracy of the interventional Zc probe (evaluated
on its holdout within the interventional split) dropped to approximately 70%, which made Alter-
Rep/FGSM/PGD updates unstable. To stabilize these baselines, we adjusted the train/validation
ratio within the interventional split, allocating a larger share to probe training and a smaller share to
its internal validation, which improved probe accuracy. It is noteworthy to emphasize that HDMI
is probe-free and does not rely on an interventional probe at all; consequently, its performance is
independent of the size of the interventional split and of interventional probe accuracy.

Table 1 (on LLaMA-3-8B-Instruct and Pythia-70M) reports Completeness, Selectivity, and Reliability
across LGD and the CausalGym suites for four methods: HDMI (ours), AlterRep, FGSM, and PGD.
More experiments are provided in Appendix A. Figure 2 summarizes the average Reliability across
models for all four methods.

In agreement suites (agr *), HDMI is consistently strong. It achieves perfect Completeness and
higher Reliability except in agr refl num pp suite, where FGSM outperforms in Selectivity.
On subordination and clefting, HDMI remains competitive or better in Reliability. On LLaMA’s
subordination suites, FGSM is often strong and PGD’s performance is mixed; both drop substantially
on Pythia-70M. HDMI remains consistent across models. Filler–gap remains the most challenging
family. On filler gap pp (LLaMA), AlterRep surpasses HDMI, while FGSM/PGD underper-
form markedly. In contrast, on Pythia-70M filler gap pp, HDMI is stronger than AlterRep, and
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(a) The input text (top) contains the source words
girl and stars. The user supplies inline edits, striking
out the source tokens and inserting owl and sun. LA-
HDMI steers the hidden state of not only these words
but also the words before to produce a fluent bottom
sentence. Hence the model generates the instead of a
while keeping the rest of the wording consistent.

(b) The input text (top) contains the source word was.
The user supplies inline edits with target word were.
LA-HDMI performs lookahead steering of the hidden
state, hence the model generates we beforehand.

Figure 3: HDMI editing examples. Left (a) and right (b) show two different edit realizations.

FGSM/PGD performs slightly better. Reliability of HDMI is consistent across models, while others
show mixed Reliability and are sensitive to the quality of the interventional Zc probe they target.

Taken together, the results indicate that a simple, per instance margin ascent (equation 1) provides a
strong performance—high Completeness with competitive Selectivity—translating into higher Relia-
bility on most tasks and across models (Figure 2). The remaining gaps, notably in filler gap pp
on LLaMA, suggest promising directions for the multi-token objective (equation 2), finer layer
selection, and step-size scheduling to further improve Selectivity without sacrificing Completeness.

6.2 LOOKAHEAD HDMI

In this section, we show text-editing examples with LA-HDMI. Figure 3(a) illustrates LA-HDMI
editing with two simultaneous token substitutions (girl→owl, stars→sun). HDMI applies a next-step,
head-aware margin ascent at each decoding step with the expected embedding, allowing gradients to
“look ahead” through the softmax–embedding–transition path (Sec. 5). In this example, lookahead
successfully steers the model to realize the user’s edits while retaining fluency, including the necessary
local contextual adjustments (e.g., the preceding article for owl) without over-editing the rest of the
sentence. Figure 3(b) shows another example where the user asked for change was→were. LA-HDMI
performs lookahead steering before generating he and puts we instead, which is grammatically
correct.

In general, we observe that this lookahead mechanism is sensitive to hyperparameters such as the
horizon Smax, temperatures βg and βf , step size α, and regularization coefficient λfact. When the
token that must be adapted is not close to the edited token—for example a determiner, auxiliary,
or other agreement carrier several positions away—the product of Jacobians along the expected-
embedding path can attenuate the signal, and the gradient may vanish before reaching the earlier
position. In such cases, careful fine-tuning (e.g., modestly increasing Smax, using a slightly higher βg

to reduce peaky distributions, or scheduling α) tends to improve edit realization without sacrificing
fluency. There are some cases where the lookahead mechanism fails. This is an interesting direction
for future work. Please refer to Appendix A for more details.

7 CONCLUSION

We introduced HDMI, a probe-free, inference-time causal probing method that modifies hidden states
via a simple logit-margin, and LA-HDMI for fluent, lookahead text editing. HDMI attains high
completeness and selectivity, yielding strong reliability versus probe-driven baselines. Limitations
include the sensitivity of hyperparameters and attenuation of lookahead gradients in text editing.
Future work includes adaptive layer selection, step-size scheduling, and broader applications of the
multi-token objective.
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A MORE EXPERIMENTS

A.1 MORE CAUSALGYM TASKS

More experiments on causalgym tasks are provided below: On agr gender, all methods are near
ceiling on both models, with HDMI matching the best. On cleft and filler gap hierarchy,
methods are generally at or near ceiling; HDMI ties or leads in most cases.

Table 2: CausalGym and LGD: Completeness, Selectivity, and Reliability for HDMI (ours), AlterRep,
FGSM, and PGD on Meta-Llama-3-8B-Instruct and EleutherAI/pythia-70m. Higher is better.

Task Method Meta-Llama-3-8B-Instruct EleutherAI/pythia-70m
Completeness Selectivity Reliability Completeness Selectivity Reliability

agr sv num
obj-relc HDMI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

AlterRep 0.9800 1.0000 0.9899 0.9600 1.0000 0.9796
FGSM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
PGD 0.6307 1.0000 0.7736 1.0000 1.0000 1.0000

agr gender HDMI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
AlterRep 1.0000 1.0000 1.0000 0.5000 1.0000 0.6667
FGSM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
PGD 0.9350 1.0000 0.9664 1.0000 1.0000 1.0000

npi any
subj-relc HDMI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

AlterRep 1.0000 1.0000 1.0000 0.5000 1.0000 0.6667
FGSM 1.0000 1.0000 1.0000 0.5000 1.0000 0.6667
PGD 0.9600 1.0000 0.9796 0.4999 1.0000 0.6666

cleft HDMI 1.0000 0.9800 0.9899 1.0000 1.0000 1.0000
AlterRep 0.8603 0.9800 0.9163 0.7300 1.0000 0.8440
FGSM 1.0000 1.0000 1.0000 0.7900 1.0000 0.8827
PGD 0.9946 1.0000 0.9973 0.9599 1.0000 0.9796

filler gap
hierarchy HDMI 1.0000 0.8414 0.9138 1.0000 1.0000 1.0000

AlterRep 0.9900 0.8443 0.9114 0.8299 1.0000 0.9070
FGSM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
PGD 0.8300 1.0000 0.9071 1.0000 1.0000 1.0000

LGD HDMI 0.9412 0.8117 0.8716 0.9341 0.8538 0.8921
AlterRep 0.9490 0.6536 0.7741 0.9951 0.3234 0.4881
FGSM 0.5813 0.3337 0.4240 0.4393 0.9959 0.6097
PGD 0.5402 0.4149 0.4694 0.5402 0.4149 0.4694

A.2 ABLATION: REMOVING THE MARGIN TERM (TARGET-ONLY OBJECTIVE)

We hypothesize that the margin objective in equation 1 is critical for reliably flipping the targeted
property. To test this, we removed the source target term and optimized a target-only objective that
promotes the logit of the target token but does not explicitly demote the source token:

Ltarget-only(x) = ϕ(x)τ vs. Lmargin(x) = ϕ(x)τ − ϕ(x)σ.

We evaluated on the LGD corpus with Meta-Llama-3-8B-Instruct. The results are summarized below
and compared against the original HDMI numbers reported in Table 1.

A.3 CASE STUDY WHEN LOOKAHEAD BACKPROPAGATION FAILS

Consider the following input, edited, and generated sequences.

• Factual: Today, the boy with the red shirt took his own bag and left the room.
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Table 3: LGD (Meta-Llama-3-8B-Instruct) ablation of the HDMI objective. The margin-based HDMI
row reproduces the LGD numbers from Table 1.

Objective Completeness Selectivity Reliability

Target-only (ϕτ ) 0.7407 0.8145 0.7758
Margin (equation 1) 0.9412 0.8117 0.8716

∆ (target-only − margin) −0.2005 +0.0028 −0.0958

Table 4: Hyperparameters with the range of values used in the tasks.

Hyperparameter Range

hdmi alpha 1
hdmi inner steps 30
alterrep alpha {0.1, 0.5}
alterrep inlp rank apply 32
probe epochs {75, 100}
probe lr 1× 10−2

probe weight decay 1× 10−6

probe batch size 256
probe hidden 256
inlp epochs {50, 100}
inlp lr 10−2

pgd steps {40, 50, 100}
inlp rank 32
gbi norm ℓ∞
epsilon {0.5, 1, 10}

• Edited: Today, the boy with the red shirt took her own bag and left the room.

• Generated: Today, the boy with the red shirt took her own bag and left the room. She was
very upset and felt not want to talk to anyone.

This example highlights both the strength and the pitfalls of our lookahead steering. On the positive
side, HDMI realizes the intended local edit (his→her) with high completeness. In the example,
the next sentence produces She, indicating that the hidden state has been steered to encode the
counterfactual gender value; hence, the targeted causal property Zc (here: pronominal gender at the
next relevant decoding step) has been changed completely. However, the subject remains the boy,
hence, look ahead and back propagating the gender change has failed here, and reduced fluency.

In practice, when the earlier word (subject here) that must adapt is not adjacent to the edit (e.g., a
preceding determiner or auxiliary several tokens away), the chain of Jacobians along the expected-
embedding path can attenuate, and the gradient signal to that earlier position can effectively vanish.
We have observed this with articles and agreement carriers near noun edits: unless Smax, step size,
and inner steps are tuned, the previous tokens may fail to adapt (or the model may overcompensate
elsewhere). This is a promising direction for future work.

B HYPERPARAMETERS

For hyperparameter tuning, we performed a grid search, systematically exploring a predefined range
of values for each parameter. In the following tables, we provide the fine-tuned parameters for each
task.

Probes are linear or 1–hidden–layer MLPs (hidden size selected from {64, 256, 512} by validation
accuracy), optimized with AdamW for 100 epochs, weight decay 10−6, batch size 256. To avoid
leakage, the interventional Zc probe is trained strictly on the interventional split; probeZc

/probeZe

are trained strictly on the validation–probe split.
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C SYSTEM CONFIGURATION

HOST AND OS

• OS: Ubuntu 22.04.4 LTS
• Kernel: Linux 6.8.0-59-generic (x86 64)

COMPUTE

• CPU: AMD EPYC 9454, 2 sockets, 48 cores/socket, 2 threads/core (192 logical)
• Memory: 1.5 TiB RAM
• GPU: NVIDIA H100 (80 GB HBM3)

STORAGE

• Local NVMe aggregate: ∼8.6–8.7 TB (XFS)

D USE OF LARGE LANGUAGE MODELS

We used Large Language Models (LLMs) to aid or polish the manuscript text. Specifically, LLMs
were used to improve grammar, phrasing, and clarity of exposition; they were also used for code
debugging.
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