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Abstract

Effective communication is pivotal for addressing complex collaborative tasks in multi-agent
reinforcement learning (MARL). Yet, limited communication bandwidth and dynamic, in-
tricate environmental topologies present significant challenges in identifying high-value com-
munication partners. Agents must consequently select collaborators under uncertainty, lack-
ing a priori knowledge of which partners can deliver task-critical information. To this end,
we propose Interference-Aware K-Step Reachable Communication (IA-KRC), a novel frame-
work that enhances cooperation via two core components: (1) a K-Step reachability protocol
that confines message passing to physically accessible neighbors, and (2) an interference-
prediction module that optimizes partner choice by minimizing interference while maximiz-
ing utility. Compared to existing methods, IA-KRC enables substantially more persistent
and efficient cooperation despite environmental interference. Comprehensive evaluations
confirm that IA-KRC achieves superior performance compared to state-of-the-art baselines,
while demonstrating enhanced robustness and scalability in complex topological and highly
dynamic multi-agent scenarios.

1 Introduction

Multi-Agent Reinforcement Learning (MARL) enables collaborative decision-making through interactions
between multiple agents and their environment. This paradigm has demonstrated significant potential in
autonomous driving (Chen et al., 2025), game AI (Vinyals et al., 2019), UAV coordination (Liao et al.,
2025), where effective inter-agent communication is crucial for successful cooperation. However, practical
constraints in communication bandwidth and system scalability make fully-connected communication infea-
sible (Zhu et al., 2024), necessitating efficient distributed communication strategies (Hu et al., 2024). This
raises a fundamental research question: How to identify the most valuable communication partners in com-
plex multi-agent systems? Prior work (Siedler, 2021) shows that poor partner selection can not only diminish
cooperation benefits but may actually degrade overall system performance. Moreover, real-world environ-
ments often possess complex topologies and exhibit highly dynamic group behaviors, further complicating
the identification of high-value communication targets.

Existing approaches for selecting communication partners mainly rely on neighborhood-based constraints.
Hüttenrauch et al. (2019); Jiang & Lu (2018) use Euclidean distance as the selection criterion, considering
spatially nearby agents as potential communication partners. However, in complex environments, Euclidean
distance often significantly overestimates actual reachability, resulting in inefficient communication. As
shown in Figure 1 (a), when obstacles are present, agents A and B may have a small Euclidean distance
(blue dashed line) but be separated by a long traversable path (yellow arrow path), hindering effective
cooperation. To overcome this limitation, other works have proposed visual perception-based approaches
that establish communication links only between agents with direct line of sight (green region) (Chen et al.,
2021; Baker et al., 2019) (Figure 1 (b)). While this method more accurately reflects physical connectivity, it
remains limited in complex environments where agents may fail to detect nearby partners that are occluded
from view.
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Moreover, existing methods often overlook the interference caused by adversarial dynamics and interactions
among agents, which can lead to ineffective cooperation even when agents are close neighbors. For instance,
enemy attacks can create high-risk zones that severely disrupt the cooperation of friendly agents, thereby
significantly increasing the cost of cooperation. As illustrated in Figure 1(c), the red high-risk zone severely
disrupts communication between agents A and B, forces them to take a detour to cooperate, resulting in
prohibitively high path transition costs. This observation underscores the critical importance of dynamic
interference modeling for effective collaborator selection. While recent work by Naderializadeh et al. (2020)
attempts to address this challenge using graph neural networks (GNNs) to infer cooperative structures and
implicitly capture adversarial interference through end-to-end learning, such approaches typically exhibit
limited scalability and performance degradation in large-scale multi-agent scenarios (Gogineni et al., 2023).
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Figure 1: Limitations of common neighborhood constraints in MARL communication. (a) Euclidean distance
may misrepresent actual accessibility: agents A and B appear close (blue dashed line) but are separated by
a long traversable path (yellow arrow); (b) Vision-based constraints capture physical proximity better but
miss reachable agents hidden from view; (c) Even with direct visibility, hostile interference (red region) can
block cooperation, forcing detours (yellow arrows).

This paper posits that high-value communication should occur between agents that are both physically
reachable and experience minimal interference, thereby enabling sustained and effective collaboration. To this
end, we propose the Interference-Aware K-step Reachable Communication (IA-KRC), which consists of two
modules as shown in Figure 2. K-step Reachable Communication: This module restricts communication
to agents that are mutually reachable within K movement steps. This definition considers agents’ actual
mobility capabilities in complex environments, providing a more accurate characterization of neighborhood
relationships compared to Euclidean distance or line-of-sight metrics. Interference-Prediction Module:
This component evaluates potential interference from agents beyond the K-step neighborhood, including
adversarial interference and cooperative conflicts. By integrating these predictions, IA-KRC can further
identify low-interference, high-value communication partners within the reachable domain. Furthermore,
we develop an IA-KRC-based learning algorithm that efficiently identifies high-value communication and
optimizes policy learning in an end-to-end framework.

We validate IA-KRC in challenging multi-agent combat scenarios constructed within the StarCraft Multi-
Agent Challenge (SMACv2) framework Samvelyan et al. (2019), featuring dense obstacles and maze-like
topologies. Under our self-play framework against strong baselines including CommFormer, Euclid, Vision,
RL-Vision, MAPPO, and QMIX, IA-KRC achieves a win rate advantage of at least 4.58× and up to 31.56×.
This significant advantage stems from IA-KRC’s ability to achieve sustained and effective cooperation in
topologically complex and interference-laden environments.

2 Related Work

Learning to communicate in MARL. Effective communication is critical for collaboration in MARL.
However, under bandwidth and scalability constraints, determining whom to communicate with becomes a
central challenge.
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Figure 2: Overview of IA-KRC framework for MARL communication. The K-step Reachability Module
restricts communication to agents within a physically reachable domain based on shortest transition dis-
tance. The Interference Prediction Module evaluates potential conflicts or adversarial effects, selecting
low-interference partners. Combined, these modules enable dynamic grouping and robust leader–follower
collaboration in complex environments.

Traditional metrics such as Euclidean distance or line-of-sight visibility often fail to accurately capture the
constraints of communication relevant neighborhoods. Recent efforts learn communication topology end-to-
end using attention mechanisms or GNNs Naderializadeh et al. (2020); Hu et al. (2024); Niu et al. (2021);
Su et al. (2020), such as introducing personalized peer-to-peer communication via learned message routing
policies Meng & Tan (2024). Although powerful in small-scale settings, these models lack explicit spatial
priors (e.g., physical reachability), do not account for dynamic interference, and often scale poorly with the
number of agents Christianos et al. (2021). Beyond spatial cues, some methods explore semantic-level group-
ing Sunehag et al. (2018), or employ self-supervised learning for message aggregation Guan et al. (2022),
but these struggle with dynamic spatial feasibility in topologically constrained tasks. Furthermore, recent
advances learn communication graphs via differentiable architecture search and graph–transformer hybrids
Zhang et al. (2025); Inala et al. (2020), or adopt multi-level asynchronous communication for sequential
coordination Ding et al. (2024), to obtain dynamic, sparse topologies with scalable routing. While these
methods improve communication efficiency through learned selection, aggregation, or hierarchical policies,
most operate on abstract feature spaces without explicitly grounding communication in physical environ-
mental constraints, and consequently may be less effective when spatial accessibility and dynamic physical
interference fundamentally constrain collaboration. Our work addresses these limitations by introducing a
more faithful spatial foundation for communication learning: we explicitly model both multi-step physical
reachability and dynamic environmental interference as structural priors for communication, enabling robust
partner selection in physically grounded, dynamic environments.

The concept of K-Step reachability is well-established in single-agent reinforcement learning, where it
primarily serves to constrain the selection of subgoals Nachum et al. (2018); Vezhnevets et al. (2017). Our
work represents the first application of reachability constraints within multi-agent systems, specifically for
the purpose of selecting communication partners. A critical limitation of prior approaches is their difficulty in
scaling to multi-agent settings. This is because the inherent interference in such environments—arising from
teammate motion, opponent behaviors, and evolving policies Lowe et al. (2017)—means that relying solely on
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reachability is insufficient to guarantee sustained and effective cooperation. Addressing this gap, our paper
introduces, for the first time, an interference-aware formulation of K-Step reachability. While some works
have modeled influence or interference Jiang et al. (2020); Omidshafiei et al. (2022), these concepts have not
been integrated with reachability to guide communication. Our approach closes this gap by jointly modeling
physical reachability and dynamic interference, enabling robust partner selection in physically grounded,
dynamic environments.

3 Preliminaries

In this work, we consider the cooperative MARL scenario formulated as a decentralized partially observable
Markov decision process (Dec-POMDP) (Oliehoek et al., 2016), a common framework for modeling coopera-
tion among multiple autonomous agents under uncertainty. Formally, a Dec-POMDP is described as a tuple
⟨S,A,O,P, r, γ, N⟩, where S represents the global state space shared by all agents, A = A1×A2×· · ·×AN is
the joint action space of N agents, andO is the observation space available to each agent. LetN = {1, . . . , N}
denote the set of agents. The state transition probability P(s′ | s, a) : S×A×S → [0, 1] specifies the probabil-
ity of transitioning to state s′ from state s given joint action a. The global reward function r(s, a) : S×A → R
defines the common objective for all agents. The discount factor γ ∈ [0, 1) determines the relative impor-
tance of future rewards. Each agent i independently receives a local observation oi based on an observation
function O(s, i) : S × {1, . . . , N} → O.

To facilitate effective decentralized cooperation, agents are partitioned into cooperative groups, where each
group g ∈ G consists of a leader and several followers. Each group g maintains a joint action-observation
history τg and learns a shared group policy πg(ag | τg) : T |g| → ∆(Ag), where T |g| denotes the space of
joint histories for agents in group g, Ag is the joint action space of the group, and ∆(Ag) is the probability
simplex over Ag. Our goal is to efficiently resolve leader election and follower assignment.

4 Method

The objective of IA-KRC is to facilitate sustained and effective cooperation by ensuring that communication
occurs between agents that are not only physically reachable but also subject to minimal interference. As
illustrated in Figure 2, the IA-KRC framework comprises two main components: the K-Step Reachabil-
ity Module and the Interference Prediction Module. The former quantifies the physical path accessibility
between agents, restricting communication to those in close proximity. The latter assesses the potential com-
munication interference that other agents may impose on a target agent. By integrating these two modules,
IA-KRC enables the selection of reliable, long-term cooperative partners within a neighborhood by filtering
for low-interference candidates.

The principle of K-step reachability dictates that an agent must be able to reach the state of another agent
within K time steps. In this context, conventional proximity metrics like Euclidean distance are inadequate,
as they often fail to capture the underlying topological structure of MDPs. To address this, we introduce
the concept of the shortest transition distance as a more suitable metric for evaluating reachability between
agents. In a stochastic MDP, the number of steps required for a transition is not deterministic. Consequently,
we define shortest transition distance by minimizing the expected first-hitting time over the set of all possible
policies, as formally presented in Definition 1.

Definition 1. Let x1, x2 ∈ X be two agent states. Then, shortest transition distance from x1 to x2 is
defined as:

dst(x1, x2) := min
π∈Π

E[Tx1,x2 |π] = min
π∈Π

∞∑
t=0

tP (Tx1,x2 = t|π),

where Π is the complete policy set and Tx1,x2 denotes the first hit time from x1 to x2.

Considering the topological complexity, we do not assume the environment is reversible; that is, dst(x1, x2)
is not necessarily equal to dst(x2, x1). Therefore, shortest transition distance is a quasi-metric, as it does
not satisfy symmetry. Shortest transition distance measures the time steps required to transition from
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(a) Impact of time-varying regulation rules on shortest
transition distance. Red line: door state changing over
time; yellow arrow: shortest transition path.

(b) Illustration of the multi-layer map used to compute
K-Step reachability.

Figure 3: Illustration of the time-varying regulation (a) and the multi-layer map structure (b).

state x1 to x2 in the most efficient manner, and it has been a subject of study in several works on single-
agent reinforcement learning (Chebotarev & Deza, 2020; Zhang et al., 2020). However, in multi-agent
environments, selecting communication partners based solely on this distance is insufficient. This is because
actions from other agents can interfere with cooperation, even when two agents are in close proximity. For
instance, cooperative agents working together to unlock mechanisms can reduce shortest transition distance,
while adversarial agents may block critical pathways, rendering the shortest transition routes practically
unreachable. To address this, our proposed Interference Prediction Module explicitly measures the cost of
cooperation. Accordingly, the interference-aware shortest transition distance is defined as follows.

Definition 2. Let C(Tx1,x2 = t|π) be the cooperation cost incurred when the first-hitting time from x1 to
x2 is t under policy π. We assume C(Tx1,x2 = t|π) ≥ 0. Then, the interference-aware shortest transition
distance is defined as:

dIA(x1, x2) := min
π∈Π

∞∑
t=0

tP (Tx1,x2 = t|π)× C(Tx1,x2 = t|π).

Based on the interference-aware shortest transition distance, we introduce the notion of interference-aware
K-step reachable region to bound the communication scope among agents.

Definition 3. Let x1 ∈ X . Then, the interference-aware K-Step reachable region of x1 is defined as:

SIA(x1, K) := {x2 ∈ X | dIA(x1, x2) ≤ K}.

4.1 Computing K-step reachability using multi-layer map

Although the interference-aware reachable region has been formally defined, evaluating shortest transition
distance dst(s1, s2) between any two agent remains non-trivial. In a non-stationary MARL environment,
the distance calculated at time t can become invalid at t+n: moving agents or obstacles may block the
previously optimal path, forcing dst to change (see Figure 3a). Re-computing all pairwise distances every
step is prohibitively expensive, while caching past results is unreliable because their validity quickly decays.
Some prior works have attempted to utilize multi-layer perceptrons to record and store state neighborhood
information (Paraskevopoulos et al., 2017). However, MLPs struggle to fit non-stationary data, rendering
this approach ineffective in our context.

To avoid unnecessary global updates, our approach first detects where the environment has actually changed
and then refreshes distances only for those local regions. Empirically, shortest transition distances evolve on

5



Under review as submission to TMLR

distinct time scales: obstacle-induced changes are slow, environmental rule-based changes (e.g., door states
as shown in Figure 3a) occur at a moderate rate, whereas agent state changes and adversarial interference
alter transition costs almost instantly. We therefore introduce a multi-layer map (Figure 3b) that separates
information by its rate of change, in which each layer records elements that change on different time scales,
thereby allowing us to quickly localize the environmental regions where changes have occurred.

The multi-layer map serves as an abstract representation of the multi-agent environment, comprising three
mutually decoupled layers. The Geometric Layer stores static elements and extremely slowly changing dy-
namic elements, updated through agent observations. The Regulation Layer stores environmental rule-based
information, such as the opening and closing of doors and changes in traffic lights in real-world scenarios.
This rule-based information evolves at a moderate rate and is updated based on the actual transitions of
agents within the environment. The Interference Layer stores adversarial interference information of entities,
dynamically generating real-time interference potential fields from the stored information to precisely track
these most rapidly changing attributes. By monitoring the confidence levels of all layers and updating in-
formation below confidence thresholds, the map achieves asynchronous updates. Rather than replicating
the full environment, this abstraction discretizes and models only the essential dynamic factors,
enabling efficient tracking of non-stationary elements. Details are provided in the Appendix.

By maintaining the multi-layer map, we can efficiently compute shortest transition distance between any
pair of states at any time without requiring agents to execute actions in the actual environment to measure
distances. Only when changes are detected in a specific layer (Geometric, Regulation, or Interference) is that
layer incrementally refreshed. We only recompute distances for agent pairs within K steps of the updated
regions in each layer, thus avoiding expensive global updates. At computation time, the three layers are
aggregated into a unified graph representation G(t) = Aggregate(G(t)

geo,G(t)
reg,G(t)

int), where G(t)
geo, G(t)

reg, and G(t)
int

denote the Geometric, Regulation, and Interference layer graphs at time t, respectively. Given the states of
two agents, the shortest path can be computed by applying any shortest path algorithm on the aggregated
graph G(t). In this work, we employ Dijkstra’s algorithm (Dijkstra, 1959), denoting its policy as πD. In this
regard, the distance defined in Definition 2 can be implemented as follows:

dIA(x1, x2|G(t)) :=
∞∑

t=0
tP (Tx1,x2 = t|πD,G(t))× C(Tx1,x2 = t|πD,G(t)).

4.2 Computing Cooperation Cost with an Interference Potential Field

In the course of agent cooperation, interference from other agents or environmental entities is unavoidable,
undermining the stability and persistence of collaboration. Particularly in multi-agent game-theoretic sce-
narios, actions such as attacks or threats from adversarial agents frequently disrupt the cooperative process.
Consequently, considering cooperation cost becomes crucial for selecting high-value partners for interaction.

To quantify the cooperation cost, C(Ts1,s2 = t|πD), we require a method that can both evaluate cumulative
interference along arbitrary paths in real-time and capture the threat directions and intentions of interference
sources, while maintaining interpretability in the decision-making process. To this end, we propose the
directional interference potential field. Unlike traditional isotropic potential fields (Khatib, 1986), our design
features two key innovations: (1) directional modeling: dynamically capturing the forward threat angles of
interference sources through the effective interference distance deff; and (2) intent prediction: utilizing a
neural network to predict attack intent vectors, enabling the potential field to adapt to dynamic adversarial
behaviors. This potential field quantifies the interference strength exerted by each entity on its surrounding
region, while the cooperation cost is the cumulative effect of superimposing the interference fields of all
entities.For the interference potential field of a single entity ei, the interference intensity at state x is denoted
as I(x | ei). We adopt a direction-aware exponential decay model (Goldsmith, 2005):

I(x | ei) := Ibase e− deff λbase ,

where the key directional modulation term is:

deff = dactual(1 + α(1− cos(θ))).
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Here, Ibase is sampled from the agent’s real-time state (e.g., health and attack power). Among these param-
eters, θ is the angle between the neural network’s predicted attack intent direction and the actual position,
α modulates the directional influence strength, dactual is the Euclidean distance, and λbase is the base decay
rate of the potential field’s strength. When the interference source’s intent is directed toward a position
(θ → 0), deff decreases and interference intensifies; when the intent is directed away (θ → π), interfer-
ence weakens. This design endows the partner selection process with clear physical meaning: by avoiding
paths with high directional interference to reduce cooperation cost, thereby achieving interpretable minimal-
interference partner selection.Let I(x) denote the total interference strength at state x, and I(x|ei) be the
interference from entity ei (for i ∈ [1, n]) at state x. Then, we have:

I(x) =
n∑

i=1
I(x|ei).

The cooperation cost is then defined as the average per-step cost along the trajectory:

C(Tx1,x2 = t|πD,G(t)) = 1
t

∑
x∈S(Tx1,x2 =t|πD,G(t))

[1 + I(x)], for t > 0; C(T = 0) := 0.

where S(Tx1,x2 = t|πD) denotes the set of states on the t-step trajectory from x1 to x2 under policy πD.
In the absence of interference (I(x) = 0), dIA reduces to the expected path length E[T ]. The value of Ibase
is computed based on real-time sampling of the agent’s current state (e.g., health and attack power). The
term deff is optimized using a neural network that predicts a vector of attack intent (Casas et al., 2018).
This network is trained via supervised learning to minimize the angular error between its predicted attack
direction and the agent’s actual trajectory. The resulting angle is then used as θ to compute the interference
distance. Details are provided in the Appendix.

4.3 MARL with IA-KRC

Building upon the previously established multi-layer map and interference potential field, we design a dy-
namic grouping mechanism based on interference-aware distance. Agents are partitioned into multiple co-
operative groups, where each group consists of a core leader and several followers. Within each group, we
employ the QMIX value decomposition framework for training.

The process begins with leader election. To align leader selection with the communication horizon and
reduce global dependence, we adopt a K-neighborhood centrality. For each agent i, we define the reachable
neighbor count

N
(K)
i = |{j ∈ N : dIA(xi, xj) ≤ K}|,

where | · | denotes the cardinality of a set. Larger N
(K)
i indicates that agent i can coordinate with more

teammates within the K-step reachable domain, making it a better candidate for centralized communication
and reducing isolated agents. We designate as leaders the top-M agents with the highest N

(K)
i scores, where

M is a predefined number of leaders.

Once the set of leaders is established, each non-leader agent (follower) determines its candidate leaders
using the same K-step criterion; a leader is a candidate only if dIA(xfollower, xleader) ≤ K. To promote load
balancing, the follower then affiliates with the candidate leader whose group is currently the smallest. This
affiliation approach maintains balanced group sizes, mitigating resource centralization, and enhancing overall
coordination efficiency.

Following group formation, we employ the QMIX value decomposition framework to train each group. Each
group g ∈ G learns a cooperative policy, where G denotes the set of all cooperative groups. This is achieved
by training a group-specific joint action-value function Qg

tot to minimize the temporal difference (TD) loss,
summed over all groups:

L(θ) =
∑
g∈G

E(τg,ag,r,τ ′
g)∼B

[
(ytot

g −Qg
tot(τg, ag; θ))2]

.
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Here, ytot
g = r + γ maxa′

g
Qg

tot(τ ′
g, a′

g; θ−) is the TD target based on the global reward r, τg and ag are the
joint history and action for group g, B is the replay buffer, and θ and θ− are the parameters for the online
and target networks, respectively. For more details, please see the Appendix.

(a) Dense-Obstacle Map.

(b) Maze-Structure Map.

Figure 4: Custom SMACv2
maps. White regions denote
obstacles.

(a) Dense-Obstacle Map. (b) Maze-Structure Map.

(c) Group Scales. (d) Standard 8m map.

Figure 5: Learning curves of IA-KRC and baselines over 2.0M steps. (a)
Dense-Obstacle. (b) Maze-Structure. (c) Win rate across scales. (d) Standard
8m. (a)-(c): self-play; (d): built-in AI.

5 Experiments

We designed experiments to systematically address the following research questions about IA-KRC’s effec-
tiveness, scalability, underlying mechanisms, and generalizability:

• RQ1: (Effectiveness) Does IA-KRC outperform the main baselines in dynamic environments?

• RQ2: (Scalability and Structure) How does IA-KRC perform across different team scales and what
kind of cooperative structures does it learn?

• RQ3: (Mechanism) What are the relative contributions of the two modules in IA-KRC to the overall
performance?

• RQ4: (Generalization) Can IA-KRC retain its advantage in scenarios without complex topology?

To answer these questions, unlike existing methods that rely on built-in AI as evaluation baselines, we
develop a self-play framework: within the same environment, two teams using different algorithms engage
in adversarial play while updating their policies online. We adopt this setup because the built-in AI of
the standard SMACv2 environment does not support topological occlusion (vision and attacks are not
blocked by obstacles), and its closed-source nature makes rule modifications infeasible, making it difficult to
validate cooperative performance under complex topologies. We provide environment and rule details in the
supplementary material. The number of surviving agents at the end of each episode determines the winner.
The horizon for the K-Step reachability domain is empirically set to K = 9 unless otherwise stated. All
experiments are repeated 5 times with different random seeds.

8



Under review as submission to TMLR

5.1 Comparative Performance in Complex Topologies

Experimental Setup. To evaluate the effectiveness of IA-KRC in highly dynamic and topologically com-
plex environments, we construct two custom SMACv2 maps (Figure 4). Figure 4 (a) depicts a symmetrical
layout with dense obstacles, requiring complex path planning. Figure 4 (b) adopts a maze-like structure that
creates narrow corridors and communication bottlenecks. These maps are specifically designed to amplify the
challenges of decentralized coordination and test the adaptability of different communication mechanisms.

We compare IA-KRC against the following baseline methods, among which DPP, Euclid, SOG(Vision),
SOG(RL-Vision), and CommFormer adopt the leader-follower framework for agent grouping:

• DPP Yang et al. (2020) groups agents by computing a similarity matrix to ensure diversity.

• Euclid Hüttenrauch et al. (2019) uses Euclidean distance between agents as the basis for grouping.

• SOG(Vision) Shao et al. (2022) forms groups based on mutual visibility, selects leaders randomly.

• SOG(RL-Vision) Shao et al. (2022) elects leaders via reinforcement learning as an extension of
the SOG(Vision) method.

• MAPPO Yu et al. (2022) a centralized-training, decentralized-execution variant of PPO.

• QMIX Rashid et al. (2020) a representative value decomposition approach with a monotonic mixing
network for cooperative MARL.

• CommFormer Hu et al. (2024) employs a graph neural network to learn communication topology
end-to-end via the Gumbel-Softmax technique.

Results and Analysis. The learning curves in Figure 5 clearly demonstrate IA-KRC’s advantages in
both environments. Table 1 reports, for each method, the Dense-side and Maze-side metrics side-by-side (all
metrics refer to IA-KRC): FW (final win rate), HW/S (highest win rate/step), and FL (final loss rate), all
within 2.0M steps. Since draws can occur in the self-play setting, FW alone may not fully quantify algorithm
effectiveness; we therefore also report FL to enable more comprehensive performance comparison.

Method Dense-Obstacle Map Maze-Structure Map

FW HW/S FL FW HW/S FL

DPP 88.37 ± 3.12 88.37 ± 3.45 / 0.87M 2.8 ± 1.3 69.63 ± 4.28 69.63 ± 4.10 / 2.00M 15.2 ± 1.2
Euclid 78.81 ± 2.76 83.51 ± 2.94 / 0.61M 2.7 ± 1.2 77.89 ± 3.31 77.89 ± 3.05 / 1.99M 6.3 ± 1.3
SOG(Vision) 83.51 ± 2.67 83.51 ± 2.43 / 1.99M 2.6 ± 1.1 72.73 ± 3.88 72.73 ± 3.40 / 1.99M 15.0 ± 1.1
SOG(RL-Vision) 81.11 ± 3.01 83.60 ± 2.58 / 0.49M 7.5 ± 1.4 62.68 ± 4.90 62.68 ± 4.21 / 2.00M 3.8 ± 1.1
CommFormer 79.37 ± 2.25 79.37 ± 2.77 / 1.99M 7.6 ± 1.5 70.40 ± 3.56 70.40 ± 3.12 / 1.99M 15.1 ± 1.2
MAPPO 77.79 ± 2.64 77.79 ± 2.64 / 2.01M 13.2 ± 1.6 81.15 ± 2.8 81.15 ± 2.82 / 2.01M 3.1 ± 1.2
QMIX 88.12 ± 2.51 88.12 ± 2.51 / 2.01M 7.6 ± 1.4 71.98 ± 2.6 71.98 ± 2.69 / 2.00M 3.1 ± 1.1

Table 1: Final cumulative win rate (FW), highest cumulative win rate (HW) within 2.0M steps for Dense-
Obstacle and Maze-Structure maps. Additionally, we report final failure rate (FL) corresponding to FW.

On the Dense-Obstacle Map (Figure 5 (a)), IA-KRC achieves final win rates no lower than 77.79% (vs
MAPPO), with peaks of 88.37% (vs DPP) and 88.12% (vs QMIX), demonstrating strong late-stage advantage
and sustained adaptability. On the Maze-Structure Map (Figure 5 (b)), IA-KRC remains ahead under
harder topology: its final win rate ranges from 62.68% (vs SOG(RL-Vision)) to 81.15% (vs MAPPO), and
it maintains stable margins over Euclid, SOG(Vision), CommFormer, and QMIX.

Across both settings, we observe a recurring failure mode in baseline methods: the emergence of isolated
agents that receive little to no valuable messages, leading to fragmented coordination. This often results in
an avalanche effect, where early elimination of unsupported agents cascades into total team failure. IA-KRC
mitigates this by explicitly modeling both reachability and interference, dynamically selecting communication
peers who are both accessible and strategically viable, thus maintaining cohesive and resilient collaboration
throughout the episode.
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5.2 Scaling and Structure Study of Multi-Agent Collaboration in IA-KRC

The two central dimensions of multi-agent collaboration are scale and group structure. Scale determines
the effectiveness and efficiency of collaboration, whereas organizational structure governs how information
is routed, how leader–follower roles are assigned, and whether stable, high-value coalitions can form under
environmental dynamics. A mature collaboration framework should preserve a clear organizational form
and stable performance at any scale—especially at large scale. Accordingly, this section examines dimen-
sions—scale and organizational structure—and investigates how IA-KRC leverages explicit reachability and
interference modeling to sustain high-quality communication and robust coordination as the collaboration
setting varies in scale and organization.

Scaling study. To assess scalability, we conduct 2.0 M-step self-play experiments against SOG(Vision)
across team sizes of 3v3, 6v6, 12v12, and 18v18. As shown in Figure 5 (c), IA-KRC achieves 65% (6v6), 86%
(12v12) and 79% (18v18) by 2.0 M steps. Notably, the 3v3 scenario peaks at approximately 63% near 1.25 M
steps before declining to roughly 56% by 2.0 M steps. This occurs because small team sizes enable both
methods to converge toward similar near-optimal grouping structures, thereby reducing IA-KRC’s relative
advantage. As team size increases, the combinatorial space of group configurations expands factorially. Un-
der this complexity, conventional methods struggle to consistently identify high-quality subgroups, whereas
IA-KRC—leveraging reachability filtering and interference-aware priors—systematically constructs robust
structures, thereby amplifying its performance advantage at scale.

To further understand this scalability advantage, we conducted a quantitative analysis of the computational
complexity in the leader-follower framework. We measured the total computation counts for leader election
and follower assignment across varying team sizes (from 4 to 64 agents) on a 64×64 map with obstacles
and adversaries. As shown in Figure 6, since our algorithm only computes information within the K-step
neighborhood for each agent, the computational complexity remains low. The total computation count grows
approximately linearly with team size N , while the per-agent computation remains nearly constant.

Figure 6: Total computation counts (blue) and com-
putations per agent (red) for leader election and fol-
lower assignment.

IA-KRC SOG(Vision) Euclid

Figure 7: Group structure visualization: (a), (b), and
(c) correspond to different algorithms; nodes with
same color in same group; star=leader; red=isolated.

Structure study. Beyond scale, we further examine how organizational structure affects cooperation
quality. Building on the mainstream hierarchical leader–follower framework (Soni & Hu, 2018; Sheng et al.,
2022), we compare alternative leader-election strategies and follower-assignment policies, and quantitatively
evaluate the resulting group structures. We adopt two criteria: (1) the proportion of isolated agents, defined
as the fraction of timesteps at which an agent has degree 0 in the communication graph, capturing the risk
of the avalanche effect; and (2) algebraic connectivity (λ2), the second-smallest eigenvalue of the Laplacian
of each group’s communication graph—larger λ2 indicates stronger connectivity, smoother information flow,
and greater robustness (Fiedler, 1973; Mohar, 1991). For completeness, the algebraic connectivity is formally
defined as:

λ2(L) = min
x̸=0, x⊤1=0

x⊤Lx

x⊤x
.
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Here, L = D − A is the unnormalized Laplacian of the communication graph, where A is the adjacency
matrix and D is the degree matrix; x is any nonzero vector with x⊤1 = 0 orthogonal to the all-ones vector
1. As shown in Table 2, IA-KRC exhibits a markedly lower isolated-agent ratio than competing meth-
ods and achieves a higher mean λ2 with substantially lower variance, indicating reasonable grouping under
complex topology that effectively mitigates the avalanche effect, while demonstrating stronger information
connectivity and stable group structures that improve transmission efficiency and yield superior training
outcomes. Figure 7 visualizes the grouping structures of different methods: SOG(Vision) contains many
isolated agents, Euclid causes unbalanced resource allocation and inefficient grouping (e.g., cross-obstacle
coordination), whereas IA-KRC strikes a better balance and discovers higher-quality structures. SOG(RL-
Vision) reduces variance by learning leader selection, yet vision-based modeling limitations still yield more
isolated agents and less efficient groupings. CommFormer learns group assignments via graph neural net-
works but struggles to quickly discover suitable structures in large, complex environments, resulting in many
isolated agents and low spectral connectivity; nevertheless, its inductive bias maintains relatively low vari-
ance and comparatively stable structures. Overall, IA-KRC consistently outperforms baselines in the Maze
environment;

Method Iso Rate λ2 mean λ2 var

IA-KRC 0.0058 0.4622 0.0125
SOG(Vision) 0.2090 0.2221 0.2295
SOG(RL-Vision) 0.2009 0.2287 0.1242
Euclid 0.1823 0.2647 0.2198
CommFormer 0.6316 0.0220 0.0714
. . . .

Table 2: Isolated-agent ratio (Iso Rate), mean al-
gebraic connectivity (λ2), and its variance (var) in
Maze (12v12, 1000 groupings).

Model Variant K FW

(A) IA-KRC 9 83.63 ± 2.71
(B) K-Step Variant 3 75.48 ± 3.02
(C) K-Step Variant 6 79.89 ± 2.95
(D) K-Step Variant 12 73.66 ± 3.87
(E) Without interference 9 74.67 ± 3.15
(F) Without K-Step None 65.53 ± 4.76

Table 3: FW of IA-KRC ablation variants on the
Dense-Obstacle Map at 2.0M training steps, under
self-play against Vision.

5.3 Ablation Study of IA-KRC Mechanisms

To assess the contributions of IA-KRC’s two core components, we conducted ablation studies on the
Dense-Obstacle scenario. Specifically, we vary the reachability horizon K in four settings (K = 3, 6, 9, 12)
to investigate its impact on collaboration range and prediction stability. In addition, we evaluate the effect
of disabling the interference prediction module and disabling the K-step reachability module (replaced by
Euclidean distance) respectively, to assess its role in partner selection under dynamic disturbances and com-
plex topologies. All ablation variants were trained in our self-play setting against the SOG(Vision) baseline;
Table 3 reports the IA-KRC variants’ final win rate under this setup.

Impact of K-step horizon. Table 3 shows that final performance at 2.0M steps improves as K increases
from 3 (75.48%) to 6 (79.89%), peaking at K=9 (83.63%), but then decreases at K=12 (73.66%). This con-
firms a nonmonotonic relationship between horizon length and coordination quality. Smaller horizons such
as K=3 restrict collaboration to immediate neighbors, limiting access to valued teammates farther away.
This leads to lower final performance, though early results remain competitive. A moderate horizon (K=6)
provides a balance of reach and stability, whereas K=9 maximizes midrange partner selection without overex-
tending predictive uncertainty. When K increases to 12, noise accumulation in long-range cost estimates and
diffuse communication graphs causes performance degradation in later stages. These results indicate that a
constrained communication radius is essential for stable and effective grouping under uncertainty.

Impact of interference prediction and K-Step reachability. Model (E), which disables interference
prediction while keeping K=9, reaches a final win rate of 74.67%—nearly 9 points lower than the full model.
The gap widens as training progresses, as distinguishing safe from risky partners becomes critical. Without
interference modeling, agents over-commit to unreliable links (e.g., enemy threats or congestion hotspots).

Model (F), which disables the K-Step reachability module (replacing it with a Euclidean-distance criterion),
attains a final win rate of 65.53%, about 18 points lower than the full model. Because K-step reacha-
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bility degenerates into Euclidean distance, the assessment of actual accessibility becomes overly optimistic
in dense-obstacle environments; also, the Euclidean metric weakens the constraining effect of interference
prediction on the true transition cost.

By contrast, the full IA-KRC—combining interference-aware partner selection with a K-step reachability
constraint on the communication domain—effectively avoids high-cost links, yielding more cohesive and
resilient communication structures and markedly stronger late-stage performance and robustness.

The ablation confirms that both the K-Step horizon and interference modeling are indispensable. Horizon
length provides temporal foresight, whereas interference prediction safeguards spatial reliability. Together
they enable IA-KRC to form high-utility groups, outperforming methods based on proximity or visibility.

5.4 Generalization to Standard Obstacle-Free Environments

To verify generalization, we evaluated IA-KRC on the obstacle-free SMACv2 8m scenario, which lacks
topological constraints. We train against the built-in AI instead of using the self-play framework. All
experiments were conducted on a lightweight training platform equipped with an AMD Ryzen 9 7945HX
CPU, 32GB RAM, and an NVIDIA RTX 4060 GPU. We compared IA-KRC with QMIX, MAPPO, SOG,
dpp, and CommFormer, with all algorithm parameters set to the default configurations provided by the
authors in their open-source implementations. As shown in Figure 5 (d), even in this simplified environment
where no obstacles exist and communication complexity is significantly reduced, IA-KRC maintains clear
superiority, achieving faster convergence and attaining a win rate second only to CommFormer. However,
under the same training conditions, CommFormer’s architecture is overly "heavyweight," with training time
exceeding IA-KRC by more than 4 times; in comparison, IA-KRC incurs only approximately 19% additional
training time relative to other baseline algorithms. This demonstrates that IA-KRC achieves a superior
balance between computational efficiency and performance.

In obstacle-free settings, the K-Step reachability constraint typically approximates Euclidean distance under
continuous, isotropic motion, while aligning with Manhattan or Chebyshev metrics under grid-based motion
primitives. Nonetheless, IA-KRC continues to outperform baseline algorithms, indicating that its advantage
stems not only from geometric constraints but also from its interference-aware modeling mechanism. The
dynamic influence map enables agents to effectively capture crowding, conflict zones, and temporal instability
among teammates—dynamic interference factors that significantly affect collaboration even in environments
without physical obstacles. In contrast, the SOG and DPP method exhibits prolonged exploration phases,
limiting improvements in coordination efficiency. CommFormer demonstrates rapid growth and strong per-
formance but suffers from excessive resource consumption, restricting its practical applicability. MAPPO
and QMIX perform reasonably in the 8m setting but overall remain inferior to IA-KRC. These results
fully confirm that IA-KRC’s core mechanisms—reachability filtering and interference prediction—generalize
effectively beyond complex topologies, providing robust and significant performance advantages even in
environments with minimal structural constraints.

6 Conclusion

We proposed IA-KRC, a hierarchical communication mechanism for multi-agent reinforcement learning that
integrates K-Step reachability and interference-aware modeling to form effective, low-conflict collaboration
structures. Central to our approach is a multi-layer map framework that decouples slow-changing envi-
ronmental topology from rapidly evolving agent adversarial dynamics, ensuring real-time computation of
interference-aware K-step reachable distances to enable effective cooperation.

Extensive experiments across diverse SMACv2 scenarios validate the effectiveness and generality of IA-
KRC. In complex environments with Dense-Obstacle and Maze-Structure settings, IA-KRC consistently
outperformed baselines such as CommFormer and MAPPO, converging faster and achieving higher win
rates. Even in the standard 8m scenario without obstacles, IA-KRC maintained an advantage over Euclidean
baselines, highlighting its robust generalization beyond structural complexity. These results demonstrate that
IA-KRC is not only effective under spatial constraints but also excels in capturing behavioral interference in
open environments.
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APPENDIX

This appendix provides detailed specifications for the key components of the Interference-Aware K-step
Reachable Communication (IA-KRC) framework, including its core algorithm, the neural network for inter-
ference prediction, and the hyperparameters used in the experiments.

A.1 Implementation Details of the IA-KRC Algorithm

Key Variables and Functions. Before presenting the algorithm, we define the key functions and variables
used:

Variables:

• dIA(s1, s2): Interference-aware shortest transition distance (Definition 2)

• SIA(s1, K): Interference-aware K-step reachable region (Definition 3)

• N
(K)
i : Reachable neighbor count within K-step domain for agent i

• L: Set of elected leaders

• F : Set of followers (non-leader agents)

Functions:

• update_from_sight(): Updates geometry layer with visual observations

• update() on Lr: Updates regulation layer using agent transitions

• confidence_refresh(·; Lg, Lr): Confidence-driven asynchronous updater over layers

• interference_prediction_module(): Produces interference costs for Li

• aggregate_graph(): Aggregates geometry obstacles, regulation constraints, and interference
weights; sets obstacle ⇒ ∞, free base = 1, and non-obstacle edges w(u, v) ← 1 + finfluence(M, v)
when interference is enabled

• dijkstra_reachable(): Shortest-path query on aggregated graph to get SIA(s, K)

The complete IA-KRC algorithm is presented in Algorithm 1.
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Algorithm 1 IA-KRC Algorithm
1: Input: Agent states {si}N

i=1, enemy observations Eobs, environment observations envobs, parameters
K, M

2: Output: Collaborative groups G = {G1, G2, ..., GM}
3: {Phase 1: Multi-Layer Map Update}
4: Initialize layers: Lg, Lr, Li

5: Extract agent_pos, map_matrix from observations
6: Lg.update_from_sight(agent_pos, map_matrix, sight_range)
7: Lr.update(agent_transitions)
8: confidence_refresh(experience_stats; Lg, Lr)
9: {Phase 2: Interference Prediction}

10: if interference enabled then
11: interference_costs← interference_prediction_module(Eobs, agent_pos)
12: Li.update(interference_costs)
13: end if
14: {Phase 3: Graph Aggregation and Reachability}
15: Gagg ← aggregate_graph(Lg, Lr, Li)
16: for each agent i do
17: SIA(si, K)← dijkstra_reachable(Gagg, si, K)
18: N

(K)
i ← |{ j ̸= i : sj ∈ SIA(si, K) }|

19: end for
20: {Phase 4: Leader Election and Follower Assignment}
21: L ← top M agents with highest N

(K)
i scores

22: Initialize groups: Gl ← {l} for each l ∈ L
23: F ← {1, ..., N} \ L
24: for each follower f ∈ F do
25: Lcand ← {l ∈ L : sf ∈ SIA(sl, K)}
26: if Lcand ̸= ∅ then
27: l∗ ← arg minl∈Lcand

|Gl|
28: Add f to group Gl∗

29: end if
30: end for
31: return G = {G1, G2, ..., GM}

A.2 Multi-Layer Map Module

Geometry Layer. Maintains physical connectivity on a grid using agents’ visual observations and line-
of-sight within a circular perception radius. Newly observed obstacles and free cells update only local
neighborhoods; a full grid rebuild is triggered only when novel obstacles are discovered. This layer exposes
update_from_sight to incrementally refresh obstacle cells, visited cells, and adjacency.

Algorithm 2 Geometry layer: LOS-based incremental update
1: Input: agent position p, map matrix M , sight range R
2: for each cell q with ∥q − p∥ ≤ R and LOS(p, q) do
3: if M [q] = −1 then
4: mark q as obstacle; update local adjacency
5: else
6: mark q as visited free cell; update local adjacency
7: end if
8: end for
9: If new obstacles found: rebuild local grid connections; otherwise keep incremental updates
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Regulation Layer. Stores environment rule-based connectivity inferred from actual agent transitions (e.g.,
doors, traffic rules). At each step and for each agent, it logs the tuple (st, at, st+1, success) derived from
the chosen action and observed position change. If success is true, it updates a directed edge st→st+1 in
the regulation graph; failures are forwarded to the confidence-driven asynchronous mechanism for localized
revalidation without directly modifying raw geometry.

Algorithm 3 Regulation layer: transition logging with success/failure
1: Input: time t, agent id i, current state st, action at, next state st+1, flag success
2: Append (i, t, st, at, st+1, success) to transition_log
3: if success then
4: if edge (st, st+1) not in _adj then
5: add directed edge st→st+1 with base weight w(st, st+1)← 1
6: else
7: optionally update running statistics for (st, st+1)
8: end if
9: send record to confidence mechanism: update_stats(edge=(st, st+1), succ←1, total←1)

10: else
11: send record to confidence mechanism: update_stats(edge=(st, st+1), succ←0, total←1)
12: end if

Confidence-Driven Asynchronous Mechanism. Tracks per-edge reliability statistics (success/total),
maintains a FIFO of recently blocked candidates, and triggers localized refresh based on a confidence thresh-
old τc and decay factor ηupd. When reliability for edge (u, v) falls below the threshold (e.g., persistent
failures), it marks (u, v) as a blocked candidate and schedules a future revalidation with decayed frequency;
otherwise the edge remains usable. This mechanism operates externally to the three layers (Geometry, Reg-
ulation, Interference) as an asynchronous updater, supplying obstacle candidates to aggregation without
touching raw geometry.

Algorithm 4 Confidence-driven asynchronous update: reliability-based blocking with FIFO
1: Input: stats map S[(u, v)] = (succ, total), threshold τc, decay ηupd, FIFO queue Q
2: for each edge (u, v) in S do
3: r ← succ

max(1, total)
4: if r < τc then
5: mark (u, v) as blocked; push (u, v) into FIFO Q (evict oldest if capacity reached)
6: schedule revalidation time tnext ∝ ηupd
7: else
8: keep (u, v) active (unblocked)
9: end if

10: end for

Graph Aggregation and Query. Aggregation combines: (i) geometry-layer obstacles, (ii) regulation-layer
constraints and blocked candidates proposed by the confidence mechanism (treated as obstacles), and (iii)
interference weights from Section A.3. The base edge weight policy is: obstacle/non-transferable ⇒ ∞;
otherwise base = 1. With interference enabled, the influence map M (see Section A.3) assigns costs to all
non-obstacle transitions by starting from 1 and then computing w(u, v) ← 1 + f_influence(M, v) per the
formula, yielding dynamic traversal costs. Consequently, the aggregated result satisfies: free space has base
1, obstacles are ∞, and influenced regions are data-dependent.
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Algorithm 5 Aggregate-and-Query under policy πD (geometry + regulation + interference)
1: Build obstacle set O ← geometry_obstacles ∪ regulation_constraints ∪ confidence_blocked_candidates

2: for each candidate edge (u, v) do
3: if (u, v) ∈ O then
4: w(u, v)←∞
5: else
6: w(u, v)← 1
7: end if
8: end for
9: if interference enabled then

10: obtain influence map M from Section A.3; for non-obstacle (u, v) set w(u, v)← 1 + f_influence(M, v)
(cf. A.3)

11: end if
12: Run Dijkstra with weights w to obtain costs and SIA(s, K)
13: Return reachable set and costs

A.3 Interference Prediction Module

The Interference Prediction Module quantifies the traversal risk by modeling the influence of adversarial
agents as a potential field. In this field, high-threat enemies generate high-cost regions. The module’s core
is the calculation of a potential field for each enemy, which incorporates directional influence via a predicted
attack intent angle θ. This influence is modulated by a threat level, which is heuristically determined from
the enemy’s current state and recent actions. As detailed in Algorithm 6, a neural network predicts an
attack intent vector for each enemy to derive the angle θ. The resulting path cost map informs the IA-KRC
framework’s reachability calculations and agent coordination. Figure 8 shows an example of the dynamically
computed transition cost map.

Key Variables and Functions for Algorithm 2
Variables:

• Eobs: Visual observations of enemies.

• Minfluence: A grid representing the cumulative enemy influence across the map.

• Mcost: A grid representing the pathfinding cost for each location.

• e: An individual enemy entity.

• Ibase: Dynamically computed base influence strength for an enemy.

• λbase: Influence decay rate (hyperparameter).

• α: Angle influence factor (hyperparameter).

• θe: Predicted attack intent angle for enemy e.

• deff(p1, p2, θe): Effective distance considering the predicted attack angle.

• dactual(p1, p2): Euclidean distance between two points.

• cost_multiplier: A factor to scale influence into path cost (hyperparameter).

Functions:

• extract_enemies(Eobs): Parses observations to get a list of enemy entities and their states.
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• calculate_influence(e): Computes the dynamic base influence strength Ibase of an enemy based
on its attributes (e.g., health, recent actions).

• predict_attack_intent(e): Predicts the attack intent angle θe for an enemy using a neural network.

• normalize_map(M): Normalizes map values to a standard range.

Algorithm 6 Interference Prediction and Cost Calculation
1: Input: Enemy observations Eobs, hyperparameters α, λbase
2: Output: Path cost map Mcost

3: {Phase 1: Initialize Maps}
4: Initialize Minfluence with zeros.
5: Initialize Mcost with ones.
6: {Phase 2: Calculate Enemy Influence}
7: Enemies← extract_enemies(Eobs)
8: for each enemy e in Enemies do
9: Ibase ← calculate_influence(e) {Compute influence from state}

10: θe ← predict_attack_intent(e) {Predict directional intent}
11: for each cell p on the map within influence range of e do
12: dactual ← dactual(p, e.position)
13: deff ← dactual × (1 + α(1− cos(θe))) {Calculate effective distance}
14: I(p|e)← Ibase × exp(−λbase × deff)
15: Minfluence[p]←Minfluence[p] + I(p|e)
16: end for
17: end for
18: {Phase 3: Compute Path Cost Map}
19: Mcost ← 1.0 + cost_multiplier ×Minfluence {Convert influence to traversal cost}
20: For each obstacle position pobs: Mcost[pobs]←∞
21: Mcost ← normalize_map(Mcost)
22: return Mcost

Neural Network and Parameter Details

This section provides further implementation details for the key components of the Interference Prediction
Module.

Neural Network for Attack Intent Prediction. The attack intent angle θe for each enemy is derived
from a predicted attack vector, which is generated by a dedicated neural network. This network takes an
enemy’s state as input and outputs a 2D vector representing its most likely direction of attack. The network
architecture is a feed-forward Multi-Layer Perceptron (MLP) with two hidden layers:

• Input Layer: A flattened vector representing the enemy’s state, including its recent trajectory (last
10 positions) and current health.

• Hidden Layers: The first hidden layer consists of 128 neurons with a ReLU activation function,
followed by a second hidden layer of 64 neurons, also with ReLU activation.

• Output Layer: A linear layer with 2 neurons, producing the (x, y) components of the predicted
attack intent vector.

Training Process. The attack intent prediction network is trained via supervised learning on data col-
lected during simulation. For each enemy at each time step, we create a training sample consisting of its
current state (the network input) and its actual movement vector over the next time step (the ground truth).
The network is trained to minimize the angular difference between its predicted attack vector vpred and the
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Figure 8: Transition cost map computed from the start agent (yellow) after multi-layer map and interference
map processing. Blue regions indicate low traversal cost due to high ally density and minimal enemy inter-
ference, while yellow regions represent high traversal cost caused by distant locations and strong adversarial
agent interference.

ground truth movement vector vtrue. The loss function is defined as the negative cosine similarity:

Lintent = 1− vpred · vtrue

∥vpred∥∥vtrue∥

Training is performed using the Adam optimizer with a learning rate consistent with the main policy training
(see Table 4).

Dynamic Influence Calculation. The base influence strength Ibase for each enemy is computed dynam-
ically via the calculate_influence(e) function in Algorithm 2:

Ibase = Iconfig × Te

where Iconfig is the configured base influence strength (default 2.0), and Te is the threat level: Te =
Tmove+Tattack+Thealth+Tmobility

4 , with Tmove = min(1.0, |trajectory|/50.0), Tattack = min(1.0, |attacks|/10.0),
Thealth = normalized_health, and Tmobility = min(1.0, d̄recent/3.0).

Effective Distance (deff). The effective distance deff = dactual(1+α(1−cos(θe))) creates a forward-facing
cone of influence, where θe is the angle between the predicted attack intent vector and the vector from enemy
position to location p. The hyperparameter α controls the directional effect strength.

A.4 IA-KRC Training Details in Multi-Agent Reinforcement Learning

The IA-KRC framework is integrated within a multi-agent reinforcement learning (MARL) system that
employs value decomposition methods for cooperative policy learning. This section details the training
architecture and implementation specifics of how IA-KRC’s dynamic grouping mechanism is incorporated
into the MARL training pipeline, extending traditional value-based methods to accommodate interference-
aware coordination.

Group-Specific Value Function. The core of our framework is the monotonic decomposition of the
group’s joint action-value function. Qg

tot is represented as a monotonic combination of the individual utility
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functions Qi for all agents i ∈ g. This property is crucial for decentralized execution, as it guarantees that
a greedy action selection by each agent based on its local Qi corresponds to the maximization of the joint
Qg

tot. The relationship is formalized as Qg
tot = fg({Qi}i∈g, s), where fg is a mixing network specific to group

g and conditioned on the global state s. This architecture implies that each group effectively learns its own
cooperative policy, tailored to its members and the current state, while still contributing to the global team
objective.

Agent Architecture. Each agent utilizes a recurrent neural network (RNN) with an attention mechanism.
This network processes the agent’s local observation history τi to maintain a hidden state ht

i. At each
timestep, the RNN’s input includes the agent’s current observation, its previous action, and any messages
received from its group leader. The resulting hidden state ht

i is then fed into a feed-forward layer to compute
the per-action Q-values Qi(τi, ·).

Mixing Network. The framework employs a mixing network architecture, specified as flex_qmix in the
configuration, to combine individual Qi values into the joint Qg

tot. Consistent with QMIX, the weights of
this mixing network are generated by a hypernetwork that takes the global state s as input, allowing the
mixing function to adapt to different environmental conditions. To enhance training stability, the mixing
weights are normalized using a softmax function.

Training Process. The system is trained end-to-end by minimizing the total TD loss, summed across all
dynamically formed groups, as defined in the main paper. Experiences are collected using parallel runners
and stored in a replay buffer. The learner (msg_q_learner) samples mini-batches to perform updates. The
TD target for each group g is computed as:

ytot
g = r + γ max

a′
g

Qg
tot(τ ′

g, a′
g; θ−)

where θ and θ− are the parameters of the online and target networks, respectively. The target network is
periodically updated with the online network’s parameters every 200 episodes.

A.5 Hyperparameter Settings

Table 4: Key Hyperparameter Settings

Parameter Value Parameter Value Parameter Value

General RL Parameters

Learning Rate 5e-4 Optimizer Adam Discount Factor (γ) 0.99
Batch Size 32 Replay Buffer Size 5000 Target Update Interval 200 ep.
Epsilon Start 1.0 Epsilon Finish 0.05 Epsilon Anneal Time 500k steps
Experience Buffer Size 10000 Opponent Learning Rate 1e-3

IA-KRC Framework and Interference Prediction

K-step Horizon (K) 9 Number of Leaders (NL) 3 Cost Multiplier 1.5
Interference Decay (λbase) 0.3 Angle Influence (α) 0.5 Influence Range 5.0
Base Influence Strength 2.0 Intent Net Hidden Dim 1 128 Intent Net Hidden Dim 2 64

Agent and Mixer Architecture

RNN Hidden Dim 64 Attention Heads 4 Hypernet Embed Dim 128
Mixing Net Dim 32

A.6 Avalanche Effect Demonstration

This section demonstrates the avalanche effect through a competitive evaluation between IA-KRC and Vision
algorithms after 2.0M training steps. The red team represents Vision agents, while the green team represents
IA-KRC agents. The following four stages illustrate how initial tactical advantages can cascade into decisive
victory through the avalanche effect mechanism.
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Figure 9: Stage 1: Due to vision limitations, the red
team (Vision) forms two isolated agents. These iso-
lated agents cannot communicate or coordinate with
other teammates, resulting in low collaboration effi-
ciency and becoming surrounded by the green team
(IA-KRC).

Figure 10: Stage 2: The isolated Vision agents are
eliminated through concentrated fire from IA-KRC
(IA-KRC loses 1 agent while Vision loses 3 agents),
creating an 11v9 situation. The avalanche effect be-
gins to manifest.

Figure 11: Stage 3: Leveraging the numerical advan-
tage, IA-KRC adopts an aggressive strategy. With
superior firepower, they continuously expand the
combat capability gap.

Figure 12: Stage 4: IA-KRC achieves complete vic-
tory, eliminating all Vision agents at the cost of
only 4 agents, demonstrating the effectiveness of
interference-aware coordination in multi-agent com-
bat scenarios.
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