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Abstract001

Recent advancements in Vision-Language (VL)002
research have sparked new benchmarks for003
complex visual reasoning, challenging mod-004
els’ advanced reasoning ability. Traditional005
Vision-Language models (VLMs) perform well006
in visual perception tasks while struggling007
with complex reasoning scenarios. Conversely,008
Large Language Models (LLMs) demonstrate009
robust text reasoning capabilities; however,010
they lack visual acuity. To bridge this gap,011
we propose Complex Visual Reasoning Large012
Language Models (CVR-LLM), capitalizing013
on VLMs’ visual perception proficiency and014
LLMs’ extensive reasoning capability. Un-015
like recent multimodal large language mod-016
els (MLLMs) that require a projection layer,017
our approach transforms images into detailed,018
context-aware descriptions using an iterative019
self-refinement loop and leverages LLMs’ text020
knowledge for accurate predictions without ex-021
tra training. We also introduce a novel multi-022
modal in-context learning (ICL) methodology023
to enhance LLMs’ contextual understanding024
and reasoning. Additionally, we introduce025
Chain-of-Comparison (CoC), a step-by-step026
comparison technique enabling contrasting var-027
ious aspects of predictions. Our CVR-LLM028
presents the first comprehensive study across a029
wide array of complex visual reasoning tasks030
and achieves SOTA performance among all.031

1 Introduction032

The concept of complex visual reasoning was in-033

troduced with Visual Commonsense Reasoning034

(VCR) dataset (Zellers et al., 2019) in 2019, which035

tests models’ ability to understand visual content036

as well as commonsense cognition. However, the037

development in this field has remained relatively038

subdued, primarily due to Vision-and-Language039

Models’ (VLMs) limitations in incorporating com-040

monsense knowledge (Gan et al., 2022). Recent041

years have seen significant advancements in com-042

plex linguistic reasoning tasks (Cobbe et al., 2021;043

Wei et al., 2022) due to the emerging GPT3 (Brown 044

et al., 2020), LLaMA (Touvron et al., 2023a), and 045

Vicunna (Chiang et al., 2023). This leap forward 046

has triggered a renewed interest in the complex 047

visual reasoning area, exploring how visual per- 048

ception can enhance linguistic inference and po- 049

tentially overcome previous hurdles (Gan et al., 050

2022). It has led to innovative benchmarks focus- 051

ing on various aspects: commonsense reasoning - 052

WinoGAViL (Bitton et al., 2022), compositionality 053

- Winoground (Thrush et al., 2022), weird image 054

explanation - Whoops (Bitton-Guetta et al., 2023), 055

and humor understanding - NYCCC (Hessel et al., 056

2022). These tasks demand models not only ac- 057

curately interpret image content, but also integrate 058

knowledge from daily experiences, general com- 059

monsense, cultural context, and humor sense. For 060

example, a synthetic image, as shown in Whoop’s 061

example in Figure 1 of “The portrait of the Mona 062

Lisa depicts a stern male face." contradicts the cul- 063

tural context, as the famous painting Mona Lisa 064

depicts a female face. 065

In this paper, we introduce a novel method 066

named Complex Visual Reasoning Large Lan- 067

guage Models (CVR-LLM), based on the "VLMs 068

+ LLMs" concept. Recent Multimodal large lan- 069

guage models (MLLMs) like LLaVA (Liu et al., 070

2024, 2023a) and MiniGPT4 (Zhu et al., 2023; 071

Chen et al., 2023) have proven effective in many 072

VL tasks. However, these models are resource- 073

intensive, relying on millions of image-text pairs 074

for projection layer learning. To overcome this 075

limitation, our approach leverages the visual per- 076

ception strengths of VLMs to translate images into 077

context-aware image descriptions (CaID) via an 078

inference-only, dual-loop self-refinement process 079

that incorporates feedback from LLMs. These de- 080

tailed descriptions enhance the LLMs’ inference 081

process, transforming multi-modal tasks into sim- 082

pler single-modal challenges and streamlining the 083

overall process. In addition, we develop a unique 084
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Figure 1: Five distinct examples from diverse datasets in the complex visual reasoning field (Bitton-Guetta et al.,
2023) challenge AI models’ ability of complex reasoning in different aspects such as general commonsense.

multi-modal ICL approach named Complex Visual085

Reasoning ICL (CVR-ICL), which enhances the086

reasoning capacities of LLMs within a range of087

complex multi-modal environments. Figure 2 pro-088

vides an illustration of how our CVR-LLM is ap-089

plied to the Winoground task. It describes the im-090

ages as appropriate sentences via CaID and utilizes091

the sophisticated reasoning and ICL abilities of092

LLMs through CVR-ICL for more accurate predic-093

tions.094

Our research stands as the pioneering study095

to explore such a broad array of benchmarks096

(WinoGAViL, Winoground, Whoops, VCR, and097

NYCCC), proposing a paradigm centred on the098

"VLM+LLM" concept for addressing complex vi-099

sual reasoning tasks. Experimental results show100

that CVR-LLM achieves SOTA performance across101

all five tasks. Further ablation studies and com-102

parative analyses reveal the effectiveness of each103

module and the superiority of our method over pre-104

vious approaches. Particularly in comparative anal-105

ysis, we introduce the Chain-of-Comparison (CoC)106

technique, inspired by "Chain-of-Thought" and uti-107

lizing GPT4 (Achiam et al., 2023), to address the108

limitations of conventional metrics in evaluating109

abstract concepts. CoC provides a nuanced analy-110

sis by systematically dissecting and quantitatively111

contrasting various facets of the results for a com-112

prehensive evaluation.113

Our contributions are summarized as follows:114

(1) We present the first comprehensive study across115

all complex visual reasoning tasks, including Wino- 116

GAViL, Winoground, Whoops, VCR, and NYCCC. 117

(2) We design a context-aware image description 118

generation method and a specific in-context learn- 119

ing strategy, to enhance the advanced visual rea- 120

soning ability of LLMs to multi-modal complex 121

visual reasoning tasks. (3) We further introduce 122

Chain-of-Comparsion, a novel GPT4-based com- 123

parison technique inspired by "Chain-of-Thought" 124

filling the gaps of traditional metrics in abstract 125

concept evaluation. (4) Experimental results show 126

that our approach surpasses current SOTA models 127

in a range of complex visual reasoning scenarios. 128

2 Related Work 129

2.1 Reasoning Research in Vision-Language 130

Domain 131

In recent years, multi-modal reasoning research 132

has significantly advanced. Beyond the complex vi- 133

sual reasoning benchmarks discussed in Section 1, 134

many studies focus on the reasoning process it- 135

self, such as chain-of-thought (Kojima et al., 2022; 136

Shaikh et al., 2022) or reasoning modules (Zhou 137

et al., 2023b; Jiang et al., 2023), which are crucial 138

for enhancing AI models’ analytical capabilities 139

and performance. For instance, Liu et al. (2023b) 140

introduced a modality-aligned thought chain rea- 141

soning framework to incorporate explicit reason- 142

ing into task-oriented dialogue generation, improv- 143

ing contextual understanding and effectiveness. 144
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Figure 2: An example of our CVR-LLM works on the Winoground dataset. Our method transfers images into
context-aware image descriptions through CaID and leverages the sophisticated reasoning and ICL abilities of
LLMs with the CVR-ICL module, offering a more precise answer.

Lv et al. (2023) proposed a counterfactual cross-145

modality reasoning method for better video mo-146

ment localization. Zhou et al. (2023a) developed147

a multi-step reasoning probability transfer mech-148

anism to improve multi-label interaction classifi-149

cations. Yu et al. (2023) presented a hierarchical150

reasoning network to consolidate multi-level in-151

teractive cues, from coarse to fine-grained details,152

enhancing Human-Object Interaction (HOI) repre-153

sentations.154

2.2 Large Language Models for155

Vision-Language Analysis156

The past two years have seen an unprecedented157

surge in the development and application of158

LLMs (Brown et al., 2020; Touvron et al., 2023a;159

Chiang et al., 2023) across diverse fields. LLMs160

have garnered acclaim for their robust capabili-161

ties, including advanced analytical prowess (Ko-162

jima et al., 2022), extensive text-level knowl-163

edge (Naveed et al., 2023) and superior under-164

standing ability (Chang et al., 2023). Further-165

more, they are equipped with two powerful mecha-166

nisms: chain-of-thought (Kojima et al., 2022) and167

in-context learning (Liu et al., 2021a), which sig-168

nificantly augment their effectiveness and perfor-169

mance in specialized tasks (Naveed et al., 2023).170

For example, Muraoka et al. (2023) developed171

a cross-lingual model trained alongside a cross-172

lingual LLM, leveraging LLMs’ capabilities across173

languages. Lan et al. (2023) proposed reasoning174

question prompts for Visual Question Answering175

(VQA) tasks, unlocking LLMs’ potential in zero-176

shot learning. Additionally, Yang et al. (2023) in-177

troduced SODA, a system that integrates LLMs178

with explainable AI to assist marketers with data179

interpretation, enhancing human-AI collaboration.180

Zhong et al. (2023) used knowledge distillation181

to imbue the SUR-adapter with LLMs’ semantic182

understanding and reasoning capabilities.183

3 Methods 184

In this section, we introduce the CVR-LLM frame- 185

work, highlighting its innovative process for gen- 186

erating context-aware image descriptions (CaID) 187

as well as its complex visual reasoning in-context 188

learning (CVR-ICL) strategy. Initially, we ex- 189

plain the CaID generation process, which differs 190

from traditional image captioning by using a self- 191

refinement loop with feedback from Large Lan- 192

guage Models (LLMs) to produce accurate and 193

contextually relevant descriptions (Section 3.1). 194

Subsequently, we present the CVR-ICL approach 195

(Section 3.2), which enhances LLMs’ contextual 196

understanding and reasoning by assessing relevant 197

cases and selecting suitable complex multi-modal 198

demonstrations. 199

3.1 Context-Aware Image Description 200

Pre-trained VLMs (Li et al., 2023; Alayrac et al., 201

2022) have demonstrated their proficiency in gen- 202

erating detailed image captions on benchmarks 203

such as MSCOCO (Chen et al., 2015). How- 204

ever, while these captions may accurately reflect 205

visual content, they are not customized for com- 206

plex visual reasoning scenarios. Recently, the trend 207

of multi-modal instruction-following agents like 208

miniGPT4 (Zhu et al., 2023; Chen et al., 2023) and 209

LLaVA (Liu et al., 2024, 2023a), integrating open- 210

source LLMs (Chiang et al., 2023; Touvron et al., 211

2023b) with pre-trained vision encoders (Doso- 212

vitskiy et al., 2020; Liu et al., 2021b) to create 213

a MLLM, has become very popular. The effective- 214

ness of these models is heavily reliant on tuning 215

with vast amounts of VL instruction data, which is 216

generated by powerful LLMs like ChatGPT (Ope- 217

nAI, 2022) and GPT4 (Achiam et al., 2023). While 218

promising, their reliance on extensive VL instruc- 219

tion data for tuning requires the substantial resource 220

and time investment. In this work, we introduce a 221
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Figure 3: The framework overview of CaID. It is de-
signed to transfer images into contextualized descrip-
tions, bypassing the need for direct multi-modal fusion
and leveraging LLMs’ extensive knowledge for more
accurate predictions.

more efficient method for generating context-aware222

image descriptions, which depends on the inference223

process and leverages task-specific information and224

feedback from LLMs to craft better prompts, guid-225

ing the caption generation process more effectively.226

Our CaID framework optimizes the process of227

creating context-aware image descriptions through228

a dual-loop self-refinement approach, as shown229

in Figure 3. Initially, it leverages task-specific230

details and LLM insights to craft precise image231

prompts. These initial prompts are designed to232

distill essential task-related information, guiding233

the captioner in producing descriptions that are not234

only cover image content but also deeply aligned235

with the task’s requirements. Specifically, given a236

task specific text description t with an image i (for237

processes involving multiple images, we approach238

each image sequentially), the generation of initial239

context-aware image descriptions can be described240

as follows:241

dinit = C(i,L(t)), (1)242

where dinit is the initial generated context-aware243

image description. C is the image-to-text captioner,244

transfering the image into the description. L is245

the LLM, encapsulating crucial task-related text246

information t (e.g. requirements, questions, cue247

words) into feature prompts.248

In the second loop, our approach is crafted to249

encapsulate essential task-related details as well250

as LLMs’ feedback, enhancing description gener-251

ation with LLMs’ vast knowledge. Specifically, it252

merges initial descriptions with task specifics and253

CVR-ICL examples into a task-focused prompt,254

guiding LLMs to make more precise predictions.255

These predictions are then treated as pseudo labels,256

asking LLMs to design further inquiries for deeper257

insights around them. In this way, we build up a 258

feedback reflection between LLM prediction and 259

context-aware caption, enhancing the richness and 260

accuracy of the content produced. The textual feed- 261

back is then leveraged to refine the image prompts, 262

providing deep insights that inform and guide the 263

generation of nuanced image descriptions. The 264

revised context-aware image descriptions can be 265

described as follows: 266

drevised = C(i,L(t,Q(p))), (2) 267

where drevised is the revised generated context- 268

aware image description. Q is the further query 269

from LLM. p is the prediction from LLM accord- 270

ing to the generated task prompt. Q(p) is the text 271

feedback for updating image prompt. 272

3.2 Complex Visual Reasoning ICL 273

LLMs are renowned for their exceptional in- 274

context learning capabilities, especially with task- 275

specific examples. The optimal in-context exem- 276

plars enable LLMs to leverage their background 277

knowledge for more precise outcomes. However, 278

most of the research works (Liu et al., 2021a; 279

Sorensen et al., 2022) have primarily focused on 280

the text-centric domain, with few works (Alayrac 281

et al., 2022; Zhao et al., 2023) exploring multi- 282

modal in-context learning for VL tasks. Our ap- 283

proach, unlike prior methods focused solely on 284

text similarity in NLP, such as the kNN-augmented 285

in-context example selection (KATE), integrates 286

multi-modal factors, thereby enriching the disci- 287

pline with a fresh perspective. Furthermore, it is 288

also different from MMICL (Zhao et al., 2023) in 289

the multi-modal domain, which employs a vision 290

prompt generator for image-to-visual embedding 291

conversion and merges these with text embeddings 292

as a union measurement factor. 293

Complex visual reasoning tasks demand mod- 294

els capable of selecting in-context examples from 295

a multi-modal domain, leveraging extensive back- 296

ground knowledge and information within it (Zhao 297

et al., 2023). However, our CVR-LLM is grounded 298

in LLMs, which are inherently text-based, lead- 299

ing to a gap between textual and multi-modal do- 300

mains. Directly applying a text-based kNN clus- 301

tering method could result in the loss of important 302

multi-modal information. On the other hand, us- 303

ing multi-modal information for retrieval might ig- 304

nore essential context-aware information within our 305

generated image descriptions. To address this, we 306
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Figure 4: The generic diagram of our proposed CVR-ICL approach. The dual analysis enables our approach to
more effectively select contextually relevant examples from text and multi-modal domains.

propose the complex visual reasoning ICL, which307

aims to select in-context examples for LLMs by308

effectively integrating both text and multi-modal309

components. This dual analysis enables our LLM310

to more effectively select contextually relevant ex-311

amples. ensuring a balanced integration of text312

and multi-modal insights for enhanced in-context313

learning. Figure 4 illustrates the framework of our314

CVR-ICL strategy. Specifically, given a task t with315

an image i, we initially convert the image into a de-316

scription d, which enables the task to be applicable317

not only in multi-modal domains but also in text-318

only scenarios. Then, we employ a multi-modal319

encoder fm and a text encoder ft to transform inputs320

from the multi-modal domain and the text domain321

into vector representations as follows:322

xm = fm(t, i), (3a)323

xt = ft(t, d), (3b)324

where xm is the vector representation in the multi-325

modal domain. xt is the vector representation in326

the text domain.327

Upon transforming each example into two dis-328

tinct vector forms, we compute the cosine similar-329

ity score to identify and select the examples that330

are most relevant. Considering a target sample in331

test set and the ith example in the training set, the332

similarity calculation process can be expressed as333

follows:334

sm = fc(xm, xith
m ), (4a)335

st = fc(xt, x
ith
t ), (4b)336

s = sm + st, (4c)337

where sm is the similarity score between the target338

sample and ith example in dataset on the multi- 339

modal domain, st is the similarity score between 340

the target sample and ith example in dataset on the 341

text domain. s is the final similarity score. fc is the 342

cosine similarity function. Finally, the top-k cases 343

with the highest s are selected as the in-context 344

examples, aimed at boosting the contextual under- 345

standing and prediction accuracy of the LLMs. 346

4 Experiments 347

4.1 Dataset and Metrics 348

To evaluate the effectiveness of our proposed 349

method, we conduct a comprehensive test in com- 350

plex visual reasoning areas. Our evaluation in- 351

cluded WinoGAViL (4373 samples), Winoground 352

(400 samples), Whoops (500 samples), VCR (2653 353

out of over 26k samples, selecting a random 10%), 354

and NYCCC (528 samples), providing a broad as- 355

sessment of our approach’s capabilities. In the 356

terms of metrics, we adhered to the evaluation 357

methods provided by these datasets, ensuring a 358

fair assessment of our method’s performance. 359

4.2 Implementation Details 360

For the basic captioner in context-aware image 361

description (Section 3.1), we choose the BLIP2- 362

flant5xxl (Li et al., 2023) as our baseline. For CVR- 363

ICL phase (Section 3.2), we employ BM25 (Robert- 364

son et al., 1995) and BLIP2 multi-embedding (Li 365

et al., 2023) to encode text and multi-modal in- 366

puts, respectively. It’s important to note that the 367

ICL example results are derived from LLM infer- 368

ence without using actual annotations to prevent 369

data leakage. For our LLMs, we choose three 370

popular LLMs as inference models for generation 371
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Type Model
WinoGAViL Winoground Whoops VCR NYCCC

5/6 10/12 SWOW Text Image Group GPT4 Rate Q->A QA->R Match acc. CrowdAcc

VLM

ViLT (2021) 55.0 52.0 59.0 34.7 14.0 9.2 - - - - -
CLIP ViT-L/14 (2021) 47.0 15.0 66.0 - - - - - - 56.6 55.8

UNITER (2020) - - - 38.0 14.0 10.5 - - - - -
ViLLA (2020) - - - 37.0 13.2 11.0 - - - 48.1 47.0
BLIP (2022) 54.6 45.0 66.5 46.5 27.7 24.2 22.0 29.2 27.5 58.7 58.1

BLIP2 (2023) 49.3 38.8 71.6 44.0 26.0 23.5 31.0 24.5 25.6 58.3 56.7

MLLM

LLaVA 1.0 (2024) - - - - - - 32.0 28.3 40.0 55.8 53.1
LLaVA 1.5 (2023a) - - - - - - 42.4 35.1 44.5 59.3 56.0

MiniGPT4 V1 (2023) - - - - - - 44.6 40.6 47.7 58.5 55.6
MiniGPT4 V2 (2023) - - - - - - 48.2 48.8 49.7 60.4 59.2

VLM+LLM
CVR-LLMLlama3 72.3 70.4 88.7 45.0 29.5 24.5 60.4 50.5 52.4 59.8 57.7
CVR-LLMGPT3.5 73.4 71.6 83.4 42.7 30.5 23.5 61.2 51.1 53.4 59.4 56.8
CVR-LLMGPT4 74.7 73.2 86.5 43.5 35.0 26.5 62.0 52.9 54.3 60.6 57.4

Table 1: The comparison of our CVR-LLM with popular VLMs and MM LLMs on five complex visual reasoning
tasks. Notably, MLLMs like LLaVA and MiniGPT4 exhibit limitations in handling tasks involving multiple
images or computing image-text similarity scores, resulting in their performance being unavailable for tasks like
WinoGAViL and Winoground.

tests including: Llama3-8B (Meta, 2024) for CVR-372

LLMLlama3, GPT3.5 (OpenAI, 2023) for CVR-373

LLMGPT3.5, and GPT4 (Achiam et al., 2023) for374

CVR-LLMGPT4. Performance comparisons are375

conducted directly on the test set without any fine-376

tuning, as WinoGAViL, Winoground, and NYCC377

datasets are exclusively for testing purposes.378

4.3 Comparison to State-of-the-Arts379

In this section, we evaluate our proposed CVR-380

LLM against various models across a range of381

complex visual reasoning tasks, including Wino-382

GAViL, Winoground, Whoops, VCR, and NYCCC.383

These models fall into two categories: VLMs (Kim384

et al., 2021; Radford et al., 2021; Gan et al., 2020;385

Li et al., 2023) and MLLMs (Liu et al., 2024,386

2023a; Zhu et al., 2023; Chen et al., 2023). No-387

tably, MLLMs like LLaVA and MiniGPT4 struggle388

with tasks involving multiple images, making their389

performance data unavailable for WinoGAViL and390

Winoground.391

Table 1 showcases our method’s superiority392

across five tasks, eclipsing both VLMs and LMMs.393

For example, our CVR-LLMLlama3 significantly394

surpasses the SOTA model BLIP2 by achieving an395

88.7% accuracy (+17.1 improvement) in SWOW396

setting on the WinoGAViL benchmarks. Similarly,397

it outperforms the SOTA model MiniGPT4 with a398

62.0% accuracy (+13.8 improvement) on the GPT4399

rate (Bitton-Guetta et al., 2023) for Whoops tasks,400

underscoring our framework’s advanced perfor-401

mance. Additionally, our method performs well on402

three LLM-based categories, demonstrating robust403

generation abilities with consistent performance.404

This highlights the versatility and adaptability of405

our model, ensuring high-quality results across var-406

ious complex visual reasoning tasks. 407

4.4 Ablation Studies 408

In this section, we examine the individual contri- 409

butions of the components within our framework 410

CVR-LLMGPT4. As demonstrated in Table 2, we 411

present an ablation study that quantifies the per- 412

formance impact of each module across various 413

datasets. The experimental findings suggest that the 414

CVR-ICL module significantly boosts the inference 415

performance of LLMs compared to using context- 416

aware image descriptions alone, with the exception 417

of the NYCCC dataset (It may be due to NYCCC’s 418

focus on humor, where precise descriptions are 419

more critical). This highlights the CVR-ICL mod- 420

ule’s effectiveness in enhancing LLM capabilities 421

across various tasks. In addition, our comprehen- 422

sive method, CVR-LLM, which integrates both 423

context-aware descriptions and CVR-ICL, achieves 424

a substantial enhancement in performance relative 425

to the baseline. 426

4.5 Analysis 427

Context-Aware Image Description vs General 428

Image Caption In this section, we investigate 429

CaID’s impact at an abstract level and design a 430

novel method to quantitatively demonstrate the se- 431

mantic gap between context-aware image descrip- 432

tions and general image captions (Note that the 433

performance impact has been shown in Table 2). 434

Figure 5 provides two examples comparing context- 435

aware image descriptions with general image cap- 436

tions and our goal is to determine whether context- 437

aware descriptions offer more contextually relevant 438

information to aid LLMs in decision-making. Un- 439

like traditional sentence evaluations that rely on 440
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Module
WinoGAViL Winoground Whoops VCR NYCCC

5/6 10/12 SWOW Text Image Group GPT4 Rate Q->A QA->R Q->AR Match acc. CrowdAcc NYAcc

Base 60.0 58.3 78.4 28.7 26.2 16.0 36.4 38.0 37.0 21.3 41.8 41.3 46.0
Base+CaID 63.5 62.0 73.7 31.5 30.0 19.7 54.6 43.9 44.2 22.9 51.5 48.7 53.6
Base+CVR-ICL 69.8 66.1 80.9 39.0 29.2 22.0 60.6 48.8 49.2 25.8 48.0 47.6 52.9
CVR-LLMGPT4 73.4 73.2 86.5 43.5 35.0 26.5 62.0 54.3 52.9 30.4 60.6 57.4 63.1

Table 2: The ablation study of our CVR-LLM on five complex visual reasoning tasks. "Base" represents using the
general image captions and GPT4 to complete these tasks. "Base+CaID" means using the context-aware image
descriptions instead of the general image captions and GPT4 to test the performance. "Base+CVR-ICL" represents
using general image captions and GPT4 with our designed CVR-ICL learning methods.

Figure 5: Two examples from WinoGAViL compare
context-aware image descriptions with general image
captions. WinoGAViL is designed to ask the model to
select the image that best matches the cue word.

annotations to compute metrics like BLEU (Pa-441

pineni et al., 2002) and CIDEr (Vedantam et al.,442

2015), we lack direct measures to assess the con-443

textual relevance of sentences. To address this, we444

use GPT4 (Achiam et al., 2023) to evaluate the rela-445

tive effectiveness between two kinds of expressions446

with the prompt: "Evaluate the equivalence of the447

following two options for the task XXX. Option A:448

XXX; Option B: XXX. Please return True if Option449

B is better than Option A in answering questions;450

return False if the opposite is true; return Equal451

if they are the same for the question.". Addition-452

ally, inspired by the concept of chain-of-thought453

(CoT) (Wei et al., 2022), we propose a novel com-454

parison chain-of-comparison (CoC), which imple-455

ments a step-by-step analysis to evaluate the effec-456

tiveness. This method involves a comprehensive457

four-step analysis protocol, depicted in Figure 6. It458

follows a series of cognitive steps that our brains459

undertake to make sense of information, particu-460

larly when engaging with complex problems.461

Figure 7 shows the results of directly employing462

GPT4 to compare the effectiveness of general im-463

age captions with our image descriptions in the spe-464

Figure 6: The illustration of how to use GPT4 for step-
by-step comparsion.

Figure 7: Hypothesis verification with GPT4, which
demonstrates the effectiveness of our CaID against gen-
eral image captions.

cific scenario of answering task-related questions. 465

Furthermore, Table 3 presents the performance de- 466

rived from utilizing GPT4 to conduct a detailed, 467

step-by-step analytical assessment of effectiveness. 468

These empirical results indicate that our approach 469

yields image descriptions with enhanced contex- 470

tual relevance, thereby significantly aiding LLMs 471

in the decision-making process, particularly on the 472

WinoGAViL and Whoops datasets. 473

Complex Visual Reasoning ICL vs Other ICL 474

The CVR-ICL is designed to optimize the selection 475

of in-context exemplars within a multi-modal envi- 476

ronment, thereby enhancing the reasoning abilities 477

of LLMs. This innovative method is contrasted 478

with three alternative configurations: Random In- 479

Context Learning (RICL) (Brown et al., 2020), 480

KATE (Liu et al., 2021a), and Multi-modal Similar 481

In-Context Learning (MMICL) (Zhao et al., 2023). 482

To ensure a fair comparison, we utilized general im- 483

age captions across all models to test performance 484

for eliminating the effect of our context-aware im- 485
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Dataset Option Step 1 Step 2 Step 3 Step 4 Average

WinoGAViL
Caption Better 6.0 4.3 8.3 5.0 5.9
Description Better 75.3 76.0 71.3 76.7 74.8
Equal 18.7 19.7 20.3 18.3 19.3

Winoground
Caption Better 24.0 24.0 29.0 27.0 26
Description Better 59.0 56.0 59.0 56.0 57.5
Equal 17.0 20.0 12.0 17.0 16.5

Whoops
Caption Better 27.0 13.0 14.0 13.0 16.7
Description Better 71.0 80.0 76.0 75.0 75.5
Equal 2.0 7.0 10.0 12.0 7.7

VCR
Caption Better 24.3 32.5 30.1 28.6 28.9
Description Better 53.5 45.4 50.6 52.7 50.5
Equal 22.2 22.1 19.3 18.7 20.6

NYCCC
Caption Better 18.6 15.8 17.4 19.1 17.7
Description Better 58.5 62.3 60.4 61.0 60.5
Equal 22.9 21.9 22.2 19.9 21.8

Table 3: The performance of using GPT4 to assess the
effectiveness of two options (general image caption and
our context-aware image description) based on CoC.

Dataset Category RICL (2020) KATE (2021a) MMICL (2023) CVR-ICL

WinoGAViL
5/6 64.1 68.6 66.3 69.8
10/12 61.7 64.1 62.8 66.1
SWOW 80.7 82.8 80.9 80.9

Winoground
Text 35.0 29.5 27.5 39.0
Image 22.5 30.0 25.0 29.2
Group 18.5 20.0 17.5 22.0

Whoops GPT4 Rate 60.4 62.0 60.8 62.0

VCR
Q->A 45.1 48.6 44.0 48.8
QA->R 46.5 48.9 46.3 49.2
Q->AR 22.5 24.8 23.6 25.8

NYCCC
Match acc. 44.4 47.5 45.5 48.0
CrowdAcc 46.6 46.4 43.7 47.6
NYAcc 50.3 51.2 49.8 52.9

Table 4: The performance of using different ICL meth-
ods on different datasets.

age descriptions. As demonstrated in Table 4, our486

CVR-ICL outperforms other ICL methods, demon-487

strating its adeptness at integrating and leveraging488

both textual and multi-modal domains to select the489

most contextually appropriate exemplars.490

Case Number Selection in Complex Visual Rea-491

soning ICL Figure 8 illustrates the influence of492

varying case numbers in the CVR-ICL on the per-493

formance of our proposed CVR-LLM method. The494

experimental results suggest a trend where the495

model’s performance initially improves with an496

increase in case numbers, exhibits fluctuations at497

higher numbers, and eventually declines as the case498

number becomes excessively large. This pattern499

suggests that the optimal selection for the number500

of cases is four.501

5 Qualitative Results502

To showcase our approach capabilities, we present503

qualitative results in Figure 9. It illustrates how504

LLMs leverage contextual information to ask more505

relevant and insightful questions tailored the spe-506

cific tasks. For instance, when provided with an im-507

age of the chess piece, the LLMs might ask "What508

does the chess piece look like?". Subsequently, the509

Figure 8: The different case numbers in CVR-ICL and
corresponding performance.

Figure 9: Two qualitative results from Whoops illustrat-
ing the capabilities of our approach. Whoops is designed
to ask the model to explain what makes images weird.

captioner model generates contextually appropri- 510

ate descriptions, such as "A chess piece that looks 511

like a unicorn.". This synergy enhances the LLM’s 512

decision-making process, making it more precise 513

and context-aware. More detailed qualitative re- 514

sults with corresponding prompts and CVR-ICL 515

examples are illustrated in Appendix A.1 and Ap- 516

pendix A.2. 517

6 Conclusion 518

In this work, we propose CVR-LLM, an innova- 519

tive approach for complex visual reasoning tasks. 520

This method boosts LLMs’ understanding of visual 521

content for complex reasoning via context-aware 522

image descriptions. We also develop a multi-modal 523

in-context learning technique, enhancing LLMs’ 524

reasoning skills at both image and text levels. Ex- 525

perimental results show that CVR-LLM sets new 526

benchmarks across multiple complex visual reason- 527

ing tasks. We also introduce a nuanced GPT4 based 528

analysis technique Chain-of-Comparison to auto- 529

matically break down and contrast among various 530

aspects of generated results. 531
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7 Limitation532

Although our approach achieves SOTA perfor-533

mance across a wide range of complex visual rea-534

soning benchmarks, it still has two notable limita-535

tions. First, compared to the MLLMs that can per-536

form end-to-end inference directly, our approach537

operates as an LLM-agent-driven framework. This538

involves VLMs generating context-aware image de-539

scriptions, followed by the LLM performing infer-540

ence with ICL to predict the answer. While this two-541

step process enhances contextual understanding542

and reasoning, it may significantly increase time543

consumption compared to direct end-to-end infer-544

ence models. Second, despite its overall strong per-545

formance and generalization ability, our approach546

still lags behind GPT4V in some tasks. Figure 10547

shows that our CVR-LLM can surpass GPT4V in548

SWOW setting in WinoGAViL dataset but fall short549

in others. Our future work will focus on refining550

the integration between VLMs and LLMs compo-551

nents and enhancing the model’s efficiency and552

accuracy across a broader spectrum of complex553

visual reasoning challenges.554

Figure 10: The comparison of our CVR-LLM against
GPT-4V.
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A Appendix814

A.1 Qualitative Results with Corresponding815

Prompt816

Section 5 only illustrates the simplified process of817

our Context-aware Image Description (CaID) gen-818

eration. Here, we delve into more details about the819

generation process and the corresponding prompts.820

Figure 11 provides an example of the CaID gen-821

eration process applied to the VCR (Zellers et al.,822

2019) task. In this example, the initial input con-823

sists of an image showing several individuals, with824

two of them (Person1 and Person4) holding guns.825

The associated question is: "Why do Person1 and826

Person4 have guns?" with multiple-choice options827

such as "1) They are soldiers. 2) Person1 and Per-828

son4 are robbing a hotel room. 3) They are cattle829

thieves. 4) They are about to shoot someone.".830

The CaID process begins by generating a de-831

tailed description of the image. The captioner832

model produces an initial caption: "An image of a833

man in a suit with a gun and another in a suit with a834

gun." This caption, while descriptive, lacks the con-835

text needed to answer the specific question posed.836

To address this, our system prompts the LLM with a837

scenario where it acts as a questioner for the image838

caption model. The LLM is instructed to generate839

a follow-up question to gather crucial information840

for answer prediction. The prompt guides the LLM841

to consider specific details such as the appearance842

and pose of the individuals. In this case, the LLM843

generates the question: "What is the appearance of844

Person1 and Person4?" This question is designed845

to extract more contextually relevant details from846

the image captioner. The captioner then provides847

a refined description: "Person1 is wearing a suit848

with a gun and Person4 is wearing a suit with a849

gun." This additional information helps to better850

understand the scene and narrows down the possi-851

ble answers to the original question. This detailed852

process highlights how our system leverages both853

multi-modal and textual information to generate854

precise and contextually relevant descriptions, ul-855

timately improving the performance on complex856

visual reasoning tasks.857

A.2 Qualitative CVR-ICL examples858

Section 3.2 only illustrates the mechanism of our859

CVR-ICL. Here, we explain more details about its860

implementation. Figures 12 showcases one exam-861

ple of our CVR-ICL on the WinoGAViL (Bitton862

et al., 2022).863

Figure 11: The detailed illustration of our CaID process
on VCR. Best viewed by zooming in.

To accurately calculate similarity scores us- 864

ing the cosine similarity function, we utilize 865

BM25 (Robertson et al., 1995) for text encoding 866

and BLIP2 multi-embedding (Li et al., 2023) for 867

multi-modal inputs. As illustrated in Figure 12, 868

the process begins with encoding both the test and 869

training prompts through multi-modal and text- 870

based encoders. For instance, a test case from 871

WinoGAViL might contain the question "Select two 872

pictures most related to clouds?" along with images 873

of a foggy river, a cloud of sand on a beach, and 874

other related scenes. At the beginning, the multi- 875

modal encoder processes these images as well as 876

the question and generates multimodal-level em- 877

beddings. Simultaneously, we convert these images 878

into context-aware image descriptions and translate 879

the entire case into text form. The text-based en- 880

coder then generates corresponding text-level em- 881

beddings. Next, we calculate the individual cosine 882

similarity scores in both the multi-modal and text 883

domains. The final similarity score, which deter- 884

mines the most relevant cases, is calculated in a 885

balanced manner as S = S1+S2. These scores are 886

then sorted, and the top-k most similar cases are 887

selected as in-context learning examples. This dual- 888

encoding and similarity scoring approach ensures 889

12



Figure 12: The detailed illustration of our CVR-ICL on WinoGAViL. Best viewed by zooming in.

that we capture the nuanced relationships between890

multi-modal inputs and text, thereby enhancing the891

accuracy and relevance of our in-context learning892

framework.893

A.3 Comparative Analysis with Fine-tuned894

Models895

In this section, we explore the impact of fine-tuning896

strategy on performance in complex visual reason-897

ing tasks. Since some tasks in the complex visual898

reasoning field are initially designed in the super-899

vised setting, we are curious whether our approach900

can also perform better with the help of real an-901

notation. For the test-only datasets WinoGAViL902

and Winoground, we randomly divided them into903

splits of 80% training, 10% validation, and 10%904

testing. Due to the small number of cases in these905

tasks, we abandoned training LLMs to avoid catas-906

trophic forgetting. Instead, we choose to fine-tune907

the captioner using the real labels and incorporated908

these real annotations into our CVR-ICL exam-909

ples. Results shown in Table 5 compare our CVR-910

LLM’s performance in zero-shot and fine-tuned911

settings against SOTA performances, revealing that912

our method maintains SOTA performance in sev-913

eral areas.914

Dataset Category
Zero-shot Finetuned

SOTA CVR-LLM SOTA CVR-LLM

WinoGAViL
5/6 55.0 74.7 54.6 82.8
10/12 52.0 73.2 47.2 80.8
SWOW 59.0 88.7 68.8 95.9

Winoground
Text 46.5 43.5 47.0 55.0
Image 27.7 35.0 42.2 42.5
Group 24.2 26.5 30.5 35.0

Whoops GPT-4 Rate 31.0 62.0 71.0 72.0

VCR
Q->A 48.8 52.9 87.4 85.3
QA->R 49.7 54.3 89.6 87.5
Q->AR 28.6 30.4 78.6 77.1

NYCCC
Match acc. 60.4 60.6 84.5 80.9
CrowdAcc 59.2 57.4 73.3 69.6
NYAcc 66.5 63.1 68.2 65.4

Table 5: The comparison of our CVR-LLM against
SOTA performance under two kinds of settings.

A.4 More explanation about our CoC 915

The Chain-of-Comparison (CoC) is designed to 916

qualitatively analyze the semantic contribution of 917

context-aware image descriptions against general 918

image captions. It is inspired by the popular idea 919

of Chain-of-Thought, which implements a step-by- 920

step analysis to evaluate effectiveness. Figure 13 921

shows an example from the Whoops dataset, com- 922

paring the semantic gap between a general caption 923

"An airplane prepares to take off" (Option A) and 924

our context-aware image description "An airplane 925

is taking off from a highway in the middle of the 926

13



Figure 13: The detailed illustration of our CoC on Whoops. Best viewed by zooming in.

desert" (Option B).927

Our CoC prompt asks the LLM to analyze the928

semantic contribution through four steps: Initial929

Perception, Recognizing Incongruity, Contextual930

Analysis, and Linking to the Question. This pro-931

cess mimics the human brain’s analytical process.932

We directly ask the LLM to compare the contribu-933

tions of the two options and determine which is934

better.935

For instance, in the Initial Perception step, the936

LLM identifies Option B as superior because it is937

highly unusual and immediately striking, as air-938

planes typically do not take off from highways,939

especially in desert environments. This scenario940

is much more unusual and striking compared to941

the routine scenario of Option A, which merely942

depicts an airplane preparing to take off at an air-943

port. During the Contextual Analysis step, Option944

B is again favored. The LLM explains that con-945

textually, the scenario raises questions about why 946

an airplane is using a highway in a desert for take- 947

off, which is not standard practice and could imply 948

unusual circumstances or emergencies. Option A, 949

in contrast, has nothing contextually strange about 950

an airplane preparing for takeoff in a typical air- 951

port setting. Finally, in the Linking to the Question 952

step, the LLM determines that Option B provides 953

a clearer connection to the concept of weirdness 954

through its unconventional and striking situation. 955

Option A does not inherently link to weirdness, as 956

it describes a routine occurrence in aviation. 957

This example demonstrates how our CoC frame- 958

work effectively breaks down and evaluates the 959

semantic contributions of different types of im- 960

age descriptions, highlighting the advantages of 961

context-aware image descriptions in complex vi- 962

sual reasoning tasks. 963
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