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ABSTRACT

We study multi-agent general-sum Markov games with nonlinear function approx-
imation. We focus on low-rank Markov games whose transition matrix admits a
hidden low-rank structure on top of an unknown non-linear representation. The
goal is to design an algorithm that (1) finds an e-equilibrium policy sample effi-
ciently without prior knowledge of the environment or the representation, and (2)
permits a deep-learning friendly implementation. We leverage representation learn-
ing and present a model-based and a model-free approach to construct an effective
representation from collected data. For both approaches, the algorithm achieves
a sample complexity of poly(H,d, A, 1/¢), where H is the game horizon, d is the
dimension of the feature vector, A is the size of the joint action space and ¢ is the
optimality gap. When the number of players is large, the above sample complexity
can scale exponentially with the number of players in the worst case. To address
this challenge, we consider Markov Games with a factorized transition structure and
present an algorithm that escapes such exponential scaling. To our best knowledge,
this is the first sample-efficient algorithm for multi-agent general-sum Markov
games that incorporates (non-linear) function approximation. We accompany our
theoretical result with a neural network-based implementation of our algorithm
and evaluate it against the widely used deep RL baseline, DQN with fictitious play.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) studies the problem where multiple agents learn to
make sequential decisions in an unknown environment to maximize their (own) cumulative rewards.
Recently, MARL has achieved remarkable empirical success, such as in traditional games like GO
(Silver et al., 2016, 2017) and Poker (Moravcik et al., 2017), real-time video games such as Starcraft
and Dota 2(Vinyals et al., 2019; Berner et al., 2019), decentralized controls or multi-agent robotics
systems (Brambilla et al., 2013) and autonomous driving (Shalev-Shwartz et al., 2016).

On the theoretical front, however, provably sample-efficient algorithms for Markov games have been
largely restricted to either two-player zero-sum games (Bai et al., 2020; Xie et al., 2020; Chen et al.,
2021; Jin et al., 2021c) or general-sum games with small and finite state and action spaces (Bai and
Jin, 2020; Liu et al., 2021; Jin et al., 2021b). These algorithms typically do not permit a scalable
implementation applicable to real-world games, due to either (1) they only work for tabular or linear
Markov games which are too restrictive to model real-world games, or (2) the ones that do handle
rich non-linear function approximation (Jin et al., 2021c) are not computationally efficient. This
motivates us to ask the following question:

Can we design an efficient algorithm that (1) provably learns multi-player general-sum Markov
games with rich nonlinear function approximation and (2) permits scalable implementations?

This paper presents the first positive answer to the above question. In particular, we make the
following contributions:
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1. We design a new centralized self-play meta algorithm for multi-agent low-rank Markov games:
General Representation Learning for Multi-player General-sum Markov Game (GERL_MG?2).
We present a model-based and a model-free instantiation of GERL_MG?2 which differ by the way
function approximation is used, and a clean and unified analysis for both approaches.

2. We show that the model-based variant requires access to an MLE oracle and a NE/CE/CCE
oracle for matrix games, and enjoys a O (H®d* A% log(|®||®|)/e?) sample complexity to learn
an e-NE/CE/CCE equilibrium policy, where d is the dimension of the feature vector, A is the
size of the joint action space, H is the game horizon, ® and VU are the function classes for the
representation and emission process. The model-free variant replaces model-learning with solving
a minimax optimization problem, and enjoys a sample complexity of O (H®d* A3 M log(|®|)/e?)
for a slightly restricted class of Markov game with latent block structure.

3. Both of the above algorithms have sample complexities scaling with the joint action space size,
which is exponential in the number of players. This unfavorable scaling is referred to as the curse
of multi-agent, and is unavoidable in the worst case under general function approximation. We
consider a spatial factorization structure where the transition of each player’s local state is directly
affected only by at most L = O(1) players in its adjacency. Given this additional structure, we pro-
vide an algorithm that achieves O(M* H® d2(L+D? 42(L+1) /€2) sample complexity, where A is the
size of a single player’s action space, thus escaping the exponential scaling to the number of agents.

4. Finally, we provide an efficient implementation of our reward-free algorithm, and show that
it achieves superior performance against traditional deep RL baselines without principled
representation learning.

1.1 RELATED WORKS

Markov games Markov games (Littman, 1994; Shapley, 1953) is an extensively used framework
introduced for game playing with sequential decision making. Previous works (Littman, 1994; Hu
and Wellman, 2003; Hansen et al., 2013) studied how to find the Nash equilibrium of a Markov game
when the transition matrix and reward function are known. When the dynamic of the Markov game
is unknown, recent works provide a line of finite-sample guarantees for learning Nash equilibrium
in two-player zero-sum Markov games (Bai and Jin, 2020; Xie et al., 2020; Bai et al., 2020; Zhang
et al., 2020; Liu et al., 2021; Jin et al., 2021c; Huang et al., 2021) and learning various equilibriums
(including NE,CE,CCE, which are standard solution notions in games (Roughgarden, 2010)) in
general-sum Markov games (Liu et al., 2021; Bai et al., 2021; Jin et al., 2021b). Some of the analyses
in these works are based on the techniques for learning single-agent Markov Decision Processes
(MDPs) (Azar et al., 2017; Jin et al., 2018, 2020).

RL with Function Approximation Function approximation in reinforcement learning has been
extensively studied in recent years. For the single-agent Markov decision process, function approxi-
mation is adopted to achieve a better sample complexity that depends on the complexity of function
approximators rather than the size of the state-action space. For example, (Yang and Wang, 2019; Jin
et al., 2020; Zanette et al., 2020) considered the linear MDP model, where the transition probability
function and reward function are linear in some feature mapping over state-action pairs. Another line
of works (see, e.g., Jiang et al., 2017; Jin et al., 2021a; Du et al., 2021; Foster et al., 2021) studied the
MDPs with general nonlinear function approximations.

When it comes to Markov game, (Chen et al., 2021; Xie et al., 2020; Jia et al., 2019) studied the
Markov games with linear function approximations. Recently, (Huang et al., 2021) and (Jin et al.,
2021c¢) proposed the first algorithms for two-player zero-sum Markov games with general function
approximation, and provided a sample complexity governed by the minimax Eluder dimension.
However, technical difficulties prevent extending these results to multi-player general-sum Markov
games with nonlinear function approximation. The results for linear function approximation assume a
known state-action feature, and are unable to solve the Markov games with a more general non-linear
approximation where both the feature and function parameters are unknown. For the general function
class works, their approaches rely heavily on the two-player nature, and it’s not clear how to apply
their methods to the general multi-player setting.

Representation Learning in R Our work is closely related to representation learning in single-
agent RL, where the study mainly focuses on the low-rank MDPs. A low-rank MDP is strictly more
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general than a linear MDP which assumes the representation is known a priori. Several related
works studied low-rank MDPs with provable sample complexities. (Agarwal et al., 2020b; Ren et al.,
2021) and (Uehara et al., 2021) consider the model-based setting, where the algorithm learns the
representation with the model class of the transition probability given. (Modi et al., 2021) provided a
representation learning algorithm under the model-free setting and proved its sample efficiency when
the MDP satisfies the minimal reachability assumption. (Zhang et al., 2022) proposed a model-free
method for the more restricted MDP class called Block MDP, but does not rely on the reachability
assumption, which is also studied in papers including (Du et al., 2019) and (Misra et al., 2020). A
concurrent work (Qiu et al., 2022) studies representation learning in RL with contrastive learning
and extends their algorithm to the Markov game setting. However, their method requires strong data
assumption and does not provide any practical implementation in the Markov game setting.

2 PROBLEM SETTINGS

A general-sum Markov game with M players is defined by a tuple (S, {A;} M, P*, {r;}}1,, H,dy).
Here S is the state space, A; is the action space for player 4, H is the time horizon of each episode
and d; is the initial state distribution. We let A = A; X ... x Ay and use a = (a1, a9, ...,an)
to denote the joint actions by all M players. Denote A = max; |A;| and A = |A|. P* = {P}}L,
is a collection of transition probabilities, so that P;(+|s, a) gives the distribution of the next state if
actions a are taken at state s and step h. And r; = {rj, ; }}L_, is a collection of reward functions, so
that 1, ;(s, @) gives the reward received by player ¢ when actions a are taken at state s and step h.

2.1 SoLUTION CONCEPTS

The policy of player 4 is denoted as 7; := {7 : S — A, }ne[m). We denote the product policy of
all the players as 7 := 7 X ... X s, here “product” means that conditioned on the same state, the
action of each player is sampled independently according to their own policy. We denote the policy of
all the players except the ith player as m_;. We define Vh’fi(s) as the expected cumulative reward that
will be received by the ith player if starting at state s at step h and all players follow policy 7. For
any strategy 7_;, there exists a best response of the ith player, which is a policy uf(7_;) satisfying

Vh‘fz(w’i)"”’i(s) = max,, V, " *(s) forany (s, h) € S x [H]. We denote VJ:,ZT” )T

h,i h,i

Let v;r"w‘i = Egud, [Vi’f‘i(s)} ,OF = Egog, [iji(s)}.

Definition 2.1 (NE). A product policy 7 is a Nash equilibrium (NE) if v} = UZ’Li ,Vi € [M]. And
we call w an e-approximate NE if max; | {v;-r’”’i —ul} <e

The coarse correlated equilibrium (CCE) is a relaxed version of Nash equilibrium in which we
consider general correlated policies instead of product policies.

Definition 2.2 (CCE). A correlated policy w is a CCE lthTZr’i (s) < Vi(s)foralls € S,h €
[H],i € [M]. And we call m an e-approximate CCE if max;e ] {v;r’ﬂ’i -} <e.

The correlated equilibrium (CE) is another relaxation of the Nash equilibrium. To define CE, we first
introduce the concept of strategy modification: A strategy modification w; := {wn i }ne(m) for player
1 is a set of H functions from S x A; to A;. Let Q; := {Qh,i}he[H] denote the set of all possible
strategy modifications for player ¢. One can compose a strategy modification w; with any Markov
policy 7 and obtain a new policy w; o 7 such that when policy 7 chooses to play a := (a1, ...,an)
at state s and step h, policy w; o w will play (a1, . .., a;i—1,wn (S, @i), @it1, - - ., apr) instead.
Definition 2.3 (CE). A correlated policy 7 is a CE if max;e|p maxy, e, Vi () < V)T, (s) for
all (s,h) € S x [H]. And we call w an -approximate CE if max;c[p{max,, e, v;*°" — v} <e.
Remark 2.1. For general-sum Markov Games, we have {NE} C {CE} C {CCE}, so that they
form a nested set of notions of equilibria (Roughgarden, 2010). While there exist algorithms to
approximately compute the Nash equilibrium (Berg and Sandholm, 2017), the computation of NE for
general-sum games in the worst case is still PPAD-hard (Daskalakis, 2013). On the other hand, CCE
and CE can be solved in polynomial time using linear programming (Examples include Papadimitriou
and Roughgarden (2008); Blum et al. (2008)). Therefore, in this paper we study both NE and these
weaker equilibrium concepts that permit more computationally efficient solutions.
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2.2 LowW-RANK MARKOV GAMES

In this paper, we consider the class of low-rank Markov games. A Markov game is called a low-rank
Markov game if the transition probability at any time step h has a latent low-rank structure.

Definition 2.4 (Low-Rank Markov Game). We call a Markov game a low-rank Markov game if
for any s,s' € S,a € A,h € [H],i € [M], we have P (s'|s,a) = ¢}(s,a) w}(s"), where
95 (s,a)ll2 < 1and ||w}(s")|l2 < Vdforall (s,a,s).

A special case of low-rank Markov Game is the Block Markov game:

Definition 2.5 (Block Markov Game). Consider any h € [H]. A Block Markov game has an emission
distribution op,(-|z) € Ags and a latent state space transition T}, (%' |z, a), such that for any s €
S, o1(s|z) > 0for a unique latent state z € Z, denoted as }(s). Denote Z = | Z|. Together with the
ground truth decoder vy, it defines the transitions P} (s'|s,a) = . c z on(8'|2")Th (215 (5), a).

With the definition of the Block Markov game, one can naturally derive a feature vector that in addition
takes the one-hot form: we just need to let the ground truth ¢} (s, @) at step h be a Z - A-dimensional
VECLOT €(y+ (5),a) Where e; is the i-th basis vector. Correspondingly, for any s € S, wj(s)isa Z - A
dimensional vector such that the (2, a)-thentry is ), > 0x(s[2")T1(2'|2, @). Then P} (s'|s,a) =

% (s,a) Twy(s'), so that the Block Markov game is a low-rank Markov game with rank d = Z - A.

Learning Objective The goal of multi-agent reinforcement learning is to design algorithms for
Markov games that find an e-approximate equilibrium (NE, CCE, CE) from a small number of
interactions with the environment. We focus on the low-rank Markov games whose feature vector ¢*
and transition probability P* are both unknown, and the goal is to identify a e-approximate equilibrium
policy with a number of interactions scaling polynomially with d, A, H, % and the log-cardinality
of the function class, without depending on the number of raw states which could be infinite.

3 ALGORITHM DESCRIPTION

In this section, we present our algorithm GERL_MG?2 (see Alg. 1). The algorithm mainly consists
of two modules: the representation learning module and the planning module. We develop the
representation learning module base on the past works on the single agent MDP (e.g. Agarwal et al.
(2020b); Uehara et al. (2021); Modi et al. (2021)), and but modify them to work with UCB-style
planning module. Here we denote d7, ;, as the state distribution under transition probability P and

policy  at step h, and U(.A) as the uniform distribution over the joint action space.

3.1 REPRESENTATION LEARNING

In the representation learning module, the main goal is to learn a representation function qAﬁ to
approximate ¢*, using the data collected so far. In each episode, the algorithm first collects some
new data using the policy derived from the previous episode. Note that in our data collection scheme,

for each time step h, we maintain two buffers D,(l") and @,(L") of transition tuples (s, a, ") (line 7 of
Alg. 1) which draw the state s from slightly different distributions. Based on the data collected in
history, the representation learning module estimates the feature ngS(") and transition probability P,
We propose two versions of the representation learning algorithm (model-based, Alg. 2; model-free,
Alg. 3) based on whether we are given the full model class M, of the transition probability, or only
the function class of the state-action features ®y,.

Model-based Representation Learning In the model-based setting, we assume the access to
a realizable model class M, = {(wp, ¢n) : wn € Yp,¢p € P}, h € [H| such that the true
model is included in this class, i.e., w} € Uy, ¢ € Oy, Vh € [H]. Following the norm bounds
on ¢j,w;y, we assume that the same norm bounds hold for our function approximator, i.e., for
any ¢, € ®p,,wy, € ¥y, we have ||¢p(s,a)|z < 1 and ||wy(s")|2 < V/d for all (s,a,s’), and

J én(s,a)Twy(s')ds’ = 1. Given the dataset D := Dé") u 252”), MBREPLEARN learns the features
and transition probability using maximum likelihood estimation (MLE):

(12)2”), A;Z”) = (arg)max Ep [log (d)(s,a)—rw(s’))] , P}E")(s’|s,a) = qu”)(s,a)ngﬁ)(s’).
w,p)EMyp,
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Algorithm 1 General Representation Learning for Multi-player General-sum Low-Rank Markov
Game with UCB-driven Exploration (GERL_MG?2)

1: Input: Regularizer ), iteration N, parameter {a/(™ }N_, {¢(M}N_
2: Initialize 7(%) to be uniform; set D,(LO) =0, 1320) =0, Vh € [H].
3: for episoden =1,2,--- | N do

4 Set Vi, <0, vﬁ;ﬁ“ “0

5: forsteph=H,H—-1...,1do
6: Collect two triples (3 a, s’)7 (8',a’,5") with
s~ dply a~U(A), s ~ Pi(s,a),
sdpl ) @~ UA), & ~ Py y(5,a), @ ~U(A), 3 ~ P, @),
7: Update datasets: D(”) D,(L” 2 U{(s,a,s)}, D (n) ,(Ln Dy u{(,a,s"}
8: Learn representatlon via model-based or model free methods
¢\ P") — MBREPLEARN (D,(L”) uD, h) or MFREPLEARN (D,(l”) uD™, h, )\)
9: Compute BA,(L”) from equation 5, for each (s,a) € S x A,i € [M], set
Qnl(s,a)  ruits,a) + (BVV)L L) (5.0) + B (s, a)
Q“”?(s,a) — rpi(s,a) + (P(n)Vﬁﬁr)l 2) (s,a) — A}(ln)(s,a).
10: Compute 7T}(L ") from equation 2 or equation 3 or equation 4. For each s € S,i € [M], set

Vi (s) (D#)Qh’i) (), V{(s) (]Dﬂ}(;l) Q;@?) (s), Vses.
11:  end for
12:  Let A(") = maXiG[M] { (n) _ } +2H+/A((™), where v 11 = /s V1 b (s)ds, and

= s V (s)ds.
13: end for X
14: Return 7 = 7("") where n* = arg min, ¢y A™).

Model-free Representation Learning In the model-free setting, we are only given the function
class of the feature vectors, ®;,, which we assume also includes the true feature ¢;. Given the dataset
D = D;L") U @,(1”), MFREPLEARN aims to learn a feature vector that is able to linearly fit the
Bellman backup of any function f(s) in an appropriately chosen discriminator function class F},. To
be precise, we aim to optimize the following objective:

9 - - 2
min max |minE { s,a) 0 — f(s } — min E( m) ( s,a) 0 — f(s ) ,
mip o [ [(6(6.0)70 - £)°] - win B | (3(s,0)70 - 1)
where the first term is the empirical squared loss and the second term is the conditional expectation of

f(s") given (s, a), subtracted for the purpose of bias reduction. Once we obtain an estimation ¢ ,
We can construct a non -parametric transition model defined as:

-1
B (s's,0) = 6" (s,0)" | D0 1V (5,a)00 (5,a)" + A ST G a1y (1)
(5,a)eD (5,a,5")eD

We show that doing Least-square Value Iteration (LSVI) is equivalent to doing model-based planning

inside ]5}5") (line 10 of Alg. 1), and thus the model-free algorithm can be analyzed in the same way

as the model-based algorithm. In practice, for applications where the raw observation states are

high-dimensional, e.g. images, estimating the transition is often much harder than estimating the

one-directional feature function. In such cases, we expect the W class to be much larger than the ®
class and the model-free approach to be more efficient.

3.2 PLANNING

Based on the feature vector and transition probability computed from the representation learning
phase, a new policy 7("*1) is computed using the planning module. The planning phase is conducted
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Algorithm 2 Model-based Representation Learning, MBRepLearn

1: Input: Dataset D, step h.
2: Compute (1, ¢) := arg max,, 4 ¢, Ep [logw(s') " ¢(s, a)].
3: Return ¢, P: P(s'|s,a) = w(s') T d(s,a).

Algorithm 3 Model-free Representation Learning, MFRepLearn

1: Input: Dataset D, step h, regularization \.
2: Denote least squares loss: £y p(¢, 0, f) :==Ep {(¢(s,a)—r9 - f(s’))Q} + |63

3: Compute ¢ = arg mingeq, Maxser, [ming L1 p(4,0, f) —ming q, Lxp(0,0, f)]
4: Return gz@, P where P is calculated from equation 1.

with a Upper-Confidence-Bound (UCB) style approach, and we maintain both an optimistic and a

pessimistic estimation of the value functions and the Q-value functions V;Z) ; Kzni) ) 75:? ) QE:LL) which

are computed recursively through the Bellman’s equation with the bonus function B;l”) (Line 9 and 10
of Alg. 1). Here the operator I is defined by (D f)(s) := Equr(s) [f(s,a)],Vf : S x A — R, and

w,(L") is the policy computed from M induced Q-value functions @,(1”2 For the model-based setting,

we simply let lenl) be the optimistic estimator @E:lz) . For the model-free setting, for technical reasons,

we instead let QEL"B be the nearest neighbor of @;:LZ) in V}, with respect to the || - || metric, where
Nj, € RS*4A is a properly designed set of functions, whose construction is deferred to the appendix.

Depending on the problem settings, the policy 77,(1”) takes either one of the following formulations:

« For the NE, we compute 7.") = (77‘;:11), 7r,(:2), e ,ﬂfln&) such that Vs € S,i € [M],

nhCls) = argmax (D, Q1Y) () @

Th,i

* For the CCE, we compute 77,(1”) such that Vs € S, € [M],

max (D, 0 Q1) (9) < (Drn Qi) (s): 3

Th,i
+ For CE, we compute w}(l") such that Vs € S,i € [M],
max (th,iowg’”@:ﬁ) (s) < (Dﬂ(n)Ql(_:Li)) (s). (@)

wWh,i €2n,i

Without loss of generality we assume the solution to the above formulations is unique, if there are
multiple solutions, one can always adopt a deterministic selection rule such that it always outputs the
same policy given the same inputs.

Note that although the policy is computed using only the optimistic estimations, we still maintain a
pessimistic estimator, which is used to estimate the optimality gap A(™) of the current policy. The
algorithm’s output policy 7 is chosen to be the one with the minimum estimated optimality gap.

The bonus term B }(L") is a linear bandit style bonus computed using the learned feature g{):

3 (s,a) = mm{a<n>||¢zg"><s,am(i?))_l,ﬂ}. )

where f}é") - Z(s,a)eD;") (;ASEL")(S, a) AEL") (s,a)” + Mg is the empirical covariance matrix.

4 THEORETICAL RESULTS

In this section, we provide the theoretical guarantees of the proposed algorithm for both the model-
based and model-free approaches. We denote | M| := maxj¢[g] |[Mp| and |®| := maxp¢c(py [Pr].
The first theorem provides a guarantee of the sample complexity for the model-based method.
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Algorithm 4 Model-based Representation Learning for Factored MG (MBREPLEARN_FACTOR)
1: Input: Dataset D, step h.
2: Compute (w;, ¢;) == arg max,, 4 m, ; Ep [logw(s;) " ¢(s[Zi], a;)], for each i € [M].

3: Return {$;}M, P: P(s']s,a) = [T, (wi(s;)%(s[zi]ﬂi)).

Theorem 4.1 (PAC guarantee of Algorithm 1 (model-based)). When Alg. 1 is applied with model-
based representation learning algorithm Alg. 2, with parameters A\ = © (dlog(NH|®|/5)) , o™ =

S} (Hd\/Alog(lMlHN/é)) (M =9 (nfl log(\MlHN/é)) , by setting the number of episodes N

to be at most
O (HSd* A% ™2 log” (HdAIMI/s¢)) ,
with probability 1 — 0, the output policy 7 is an e-approximate {NE, CCE, CE}.

Theorem 4.1 shows that GERL_MG?2 can find an e-approximate {NE, CCE, CE} by running the
algorithm for at most O (H%d* A% ~2) episodes, which depends polynomially on the parameters

H,d, A,e~! and only has a logarithmic dependency on the cardinality of the model class |M|. In
particular, when reducing the Markov game to the single-agent MDP setting, the sample complexity
of the model-based approach matches the result provided in (Uehara et al., 2021), which is known to
have the best sample complexity among all oracle efficient algorithms for low-rank MDPs.

For model-free representation learning, we have the following guarantee:

Theorem 4.2 (PAC guarantee of Algorithm 1 (model-free)). When Alg. 1 is applied with
model-free representation learning algorithm Alg. 3, and A = © (dlog(NH|®|/5)), o™ =

C) (HAd\/M log(dNHAM|<I>\/6)) , (") = © (d?An~log(INHAM|®|/5)), and the Markov game

is a Block Markov game. When we set the number of episodes N to be at most

O (HSd*A3Me?log” (HdAM|2|/5¢))

for an appropriately designed function class {Ny}f_, and discriminator class {Fp}_,, with
probability 1 — 6, the output policy 7t is an e-approximate {NE, CCE, CE}.

For the model-free block Markov game setting, the number of episodes required to find an &-
approximate {NE, CCE, CE} becomes O (H®d*A3Me~2). While it has a worse dependency
compared with the model-based approach, the advantage of the model-free approach is it doesn’t
require the full model class of the transition probability but only the model class of the feature vector,
which applies to a wider range of RL problems.

The proofs of Theorem 4.1 and Theorem 4.2 are deferred to Appendix B and C. Theorem 4.1 and
Theorem 4.2 show that GERL_MG?2 learns low-rank Markov games in a statistically efficient and
oracle-efficient manner. We also remark that our modular analysis can be of independent theoretical
interest. Unlike prior works that make heavy distinctions between model-based and model-free
approaches, e.g. (Liu et al., 2021), we show that both approaches can be analyzed in a unified manner.

5 FACTORED MARKOV GAMES

The result in Theorem 4.1 is tractable in games with a moderate number of players. However, in
applications with a large number of players, such as the scenario of autonomous traffic control,
the total number of players in the game can be so large that the joint action space size A = AM
dominates all other factors in the sample complexity bound. This exponential scaling with the number
of players is sometimes referred to as the curse of multi-player. The only known class of algorithms
that overcomes this challenge in Markov games is V-learning (see, e.g., Bai et al., 2020; Jin et al.,
2021b), a value-based method that fits the V-function rather than the Q-function, thus removing the
dependency on the action space size. However, V-learning only works for tabular Markov games with
finite state and action spaces. Extending V-learning to the function approximation setting is extremely
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non-trivial, because even in the single agent setting, no known algorithm can achieve sample efficient
learning in MDPs while only performing function approximation on the V-function.

In this section we take a different approach that relies on the following observation. In a setting where
the number of agents is large, there is often a spatial correlation among the agents, such that each
agent’s local state is only immediately affected by the agent’s own action and the states of agents in
its adjacency. For example, in smart traffic control, a vehicle’s local environment is only immediately
affected by the states of the vehicles around it. On the other hand, it takes time for the course of
actions of a vehicle from afar to propagate its influence on the vehicle of reference. Such spatial
structure motivates the definition of a factored Markov Game.

In a factored Markov Game, each agent ¢ has its local state s;, whose transition is affected by agent
1’s action a; and the state of the agents in its neighborhood Z;. We remark that the factored Markov
Game structure still allows an agent to be affected by all other agents in the long run, as long as the
directed graph defined by the neighborhood sets Z; is connected. In particular, we have

Definition 5.1 (Low-Rank Factored Markov Game). We call a Markov game a low-rank factored
Markov game if for any s,s' € S,a € A, h € [H],i € [M], we have
M
Pi(s'ls,a) = [ [¢h.:(s[Z), @i) Twh i(s7)] -
i=1
where Z; C [M], ¢j, ;(s[Zi], a;),wy; ;(s7) € R¢,
forall (s[Z;],a;,s;). We assume |Z;| < L,¥i € [M]. And we are given a group of model classes

%

My, h € [H],i € [M] such that (¢}, ;, wy, ;) € Mp;.

hi(slZid a2 < 1and |[wy ,(s))ll2 < Vd

h,i —

We are now ready to present our algorithm and result in the low-rank factored Markov Game setting.
Surprisingly, the same algorithm GERL_MG2 works in this setting, with the representation learning
module Alg. 2 replaced by Alg. 4, and a few changes of variables. For simplicity, we focus on

the model-based version. Define gz_SELnl) (s,a) = Qjez, gf)ﬁln ]) (s[Z;],a;) € R%”" where @ means the
Kronecker product. Let

M
i (s,a) =Y min{a™|}") (s, @) () A 1= ma (51" — o]} + 2H M/ AC
i=1 & ‘

where 5" := Y (eayent) Oni(s,@)dni(s,@)T + Mz, Then, GERL_MG2 with ¢ and the
newly defined (™, A(™) achieves the following guarantee:

Theorem 5.1 (PAC guarantee of GERL_MG?2 in Low-Rank Factored Markov Game). When
Alg. 1 is applied with model-based representation learning algorithm Alg. 4, with L = O(1)

and parameters X = © (Ld" log(NHM|®|/5)) o™ = © (HfldL VL log(\M\HNM/é)) ,¢M =
S} (n’l log(\M\HNM/é)) , by setting the number of episodes N to be at most

0 (M4H6d2(L+1)2[12(L+1)5*2 log? (HdALMww/sg))

)

with probability 1 — 0, the output policy 7 is an e-approximate {NE, CCE, CE}.

Remark 5.1. This sample complexity only scales with exp(L) where L is the degree of the connection
graph, which is assumed to be O(1) in Definition 5.1 and in general much smaller than the total
number of agents in practice. We remark that the factored structure is also previously studied in
single-agent tabular MDPs (examples include Chen et al. (2020); Kearns and Koller (1999); Guestrin
et al. (2002, 2003); Strehl et al. (2007)). Chen et al. (2020) provided a lower-bound showing that the
exponential dependency on L is unimprovable in the worst case. Therefore, our bound here is also
nearly tight, upto polynomial factors.

6 EXPERIMENT

In this section we investigate our algorithm with proof-of-concept empirical studies. We design our
testing bed using rich observation Markov game with arbitrary latent transitions and rewards. To
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Table 1: Top: Short Horizon (H=3) exploitability of the final policy of DQN and GERL_MG?2.
Bottom: Long Horizon (H=10) exploitability of the final policy of DQN and GERL_MG?2. Note
that lower exploitability implies that the policy is closer to the NE policy.

H=3 Environment 1 H=3 Environment 2 H=3 Environment 3
DQN 0.0851 (0.1152) 0.0877 (0.1961) 0.0090 (0.0200)
GERL_MG?2 0.0013 (0.0018) 0.0032 (0.0032) 0.0004 (0.0009)

H=10 Environment 1 = H=10 Environment 2  H=10 Environment 3
DQN 0.2730 (0.3270) 0.0340 (0.0760) 0.0320 (0.0170)
GERL_MG?2 0.0780 (0.1560) 0.0070 (0.0160) 0.0060 (0.0130)

solve the rich observation Markov game, an algorithm must correctly decode the latent structure (thus
learning the dynamics) as well as solve the latent Markov game to find the NE/CE/CCE strategies
concurrently. Below, we first introduce the setup of the experiments and then make comparisons
with prior baselines in the two-player zero-sum setting. We then follow by showing the efficiency of
GERL_MG?2 in the general-sum setting. All further experiment details can be found in Appendix. F.
Here we focus on the model-free version of GERL_MG?2. Specifically, we implement Algorithm. 3
with deep learning libraries (Paszke et al., 2017). We defer more details to Appendix. F.2.

Block Markov game Block Markov game is a multi-agent extension of single agent Block MDP,
as defined in Def. 2.5. We design our Block Markov game by first randomly generating a tabular
Markov game with horizon H, 3 states, 2 players each with 3 actions, and random reward matrix

Ry, € (0,1)*3*H and random transition matrix Ty (ss,ar,) € As, ,,. We provide more details
(e.g., generation of rich observation) in Appendix F.1.

Zero-sum Markov game In this section we first show the empirical evaluations under the two-player
zero-sum Markov game setting. For an environment with horizon H, the randomly generated matrix
R denotes the reward for player 1 and —R " denotes the reward for player 2, respectively. For the
zero-sum game setting, we designed two variants of Block Markov games: one with short horizon
(H = 3) and one with long horizon (H = 10). We show in the following that GERL_MG?2 works in
both settings where the other baseline could only work in the short horizon setting.

Baseline We adopt one open-sourced implementation of DQN (Silver et al., 2016) with fictitious
self-play (Heinrich et al., 2015).

We keep track of the exploitability of the returned strategy to evaluate the practical performances of
the baselines. In the zero-sum setting, we only need to fix one agent (e.g., agent 2), train the other
single agent (the exploiter) to maximize its corresponding return until convergence, and report the
difference between the returns of the exploiter and the final return of the final policies. We include the
exploitability in Table. 1. We provide training curves in Appendix. F.3 for completeness. We note that
compared with the Deep RL baseline, GERL_MG?2 shows a faster and more stable convergence in
both environments, where the baseline is unstable during training and has a much larger exploitability.

General-sum Markov game. In this section we move on to the general-sum setting. To our best
knowledge, our algorithm is the only principled algorithm that can be implemented on scale under
the general-sum setting. For the general sum setting, we can not just compare our returned value
to the oracle NE values, because multiple NE/CCE values may exist. Instead, we keep track of the
exploitability of the policy and plot the training curve on the exploitability in Fig. 2 (deferred to
Appendix. F). Note that in this case we need to test both policies since their reward matrices are
independently sampled.

7 DISCUSSION AND FUTURE WORKS

In this paper, we present the first algorithm that solves general-sum Markov games under function
approximation. We provide both a model-based and a model-free variant of the algorithm and present
a unified analysis. Empirically, we show that our algorithm outperforms existing deep RL baselines
in a general benchmark with rich observation. Future work includes evaluating more challenging
benchmarks and extending beyond the low-rank Markov game structure.
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REPRODUCIBILITY STATEMENT

For theory, we provide proof and additional results in the Appendix. For empirical results, we provide
implementation and environment details and hyperparameters in the Appendix. We also submit
anonymous code in the supplemental materials.
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A ADDITIONAL NOTATIONS

Given a (possibly not normalized) transition probability P : S x A x S x [H] — [0, 1] and a policy
m: S x [H] — A4, we define the the density function of the state-action pair (s, @) at step h under
transition P and 7 by

dp1(s,a) = di(s)mi(als), dpji(s,a):= D dpy(5,a)Pu(sl5,a)maia(als), vh > 1.
3€8,acA

We abuse the notations a bit and denote d7, ;, (s) as the marginalized state distribution, i.e., d%;,(s) =
> acadpp(s,a). Forany n € [N], h € [H], define

n 1 0
pi(s.a) = = 3 dR (s)uala),
i=1

n

_(n 1
il(sa)= 3B 0

: P*,h—1
i=1

a~ua 7515, @)ua(a)],

n I~ 0
1M (s, a) = EZd Cn(s a).
=1

When we use the expectation E (s q)~,[f (s, a)] (or Es~,[f(s)]) for some (possibly not normalized)

distribution p and function f, we simply mean ) s .4 0(s,@)f(s,a) (or Y s p(s)f(s)) so
that the expectation can be naturally extended to the unnormalized distributions. For an iteration n, a
distribution p and a feature ¢, we denote the expected feature covariance as

Snpp = E(s.a)~p [6(5,@)6(5,0) ] + Mo,
Meanwhile, define the empirical covariance by

S = Y e(s.a)é(s,a)” + M.
(s,a)GD’(l")

B ANALYSIS OF THE MODEL-BASED METHOD

B.1 HIGH PROBABILITY EVENTS

We define the following event

H(n * 2 n
51 1 Vn € [NLh € [HLP € {pgn)vﬁsln)}v E(s,a)rvp |:HP}£ )(|S7a') - P}L('|57G)H1:| < C( )a

@

52 1 Vn e [N}vh € [H},Qsh € (I)hvs € Saa € A7 ||¢h(sva)|‘(i;n) >_1 =0 <||¢h(sﬂa)||2_1

.y,

£ = 51 ﬁé’g.

To prove £ holds with a high probability, we first introduce the following MLE guarantee, whose
original version can be found in (Agarwal et al., 2020b):

Lemma B.1 (MLE guarantee). For a fixed episode n and any step h, with probability 1 — 4,

- 2 1 M|
(n) x
E(s,a)N{o.Sp;’“+0.5,3(h”>} [th (‘1s,a) — Ph(’|57‘1)HJ S " log 5

As a straightforward corollary, with probability 1 — §,

1. nH|M|
—log

VneNt,Vhe [H], E HP,5”>(.s,a)—Pg(-|s,a)Hj5n1o ;

(5,0)~{0.5p{™ +0.55"} [

(6)

Proof. See Agarwal et al.(Agarwal et al., 2020b) (Theorem 21). ]
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Based on Lemma B.1 and Lemma E.1 in Appendix E, we directly get the following guarantee:
Lemma B.2. When P}En) is computed using Alg. 2, if we set
NH|® 1 HN
A =0 (dlog YAIPIY on — g (L og M 7
) n )
then & holds with probability at least 1 — 9.

B.2 STATISTICAL GUARANTEES

Lemma B.3 (One-step back inequality for the learned model). Suppose the event £ holds. Consider
a set of functions {gy }IL_, that satisfies g, € S x A — R, s.t. ||gnllcc < B. For any given policy
T, we have

E(s,a)~ [9n(s,a)]

IO
\/AJE(M)NPYL) [¢3(s,a)], h=1

E(s,a)~ar

(n) H
mln a
PO e H% 1(5,4) =71 s,

PP

Recall Zn,pﬁﬁ%&iﬁ) = nE(S,G)NPELﬂ') [(%ln) (s, a)qggln)(s, a)T} + Alg.

Proof. For step h = 1, we have

]E(s,a)Nd”ﬁ( - [91(5 a)] Eé"’dha'\‘ﬂ'l( )[91(5 a)]
di(s)mi(als
S\/max 71((73) 1(al )]E(S,)a,)mpm) [93(s',a’)]
ol plV(s,a) 1
dy(s)mi(als)
= ———FE n
\/Igsl%))( dl(S)UA(a) (s',a )Np( ) [gl(s a )]
SVAE o) o0 9k (s, @),
Forstep h = 2,..., H — 1, we observe the following one-step-back decomposition:
Esayay,,, , lon(s a)l
]E(é a)~ dP(n) h—1" Ph 1(‘5 a),a~mp(s) [gh(57a)]
Eadr,,, , . |Ona(5 @ / > g (s)mn(als)gn(s, a)d ]
" SacA
=E(s,a)~ar 0N min{ 5 a / Z wl(Ln)l s)mn(als)gn(s, a)ds, B}
L acA
SE(g,a)Ndem).h_l min Ag:z)l(g’ d)HZ’l /S Z ﬁ),(l@l(s)wh(ab)gh(s,a)ds
' nopf™ B acA o™,
L h—1" h,

where we use the fact that g, is bounded by B. Then,

2
- (")

s)ma(als)gn (s, a)ds

SacA = , (n
nooh 04
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.
( / > (s)m(als )gh<s,a>ds> (nE(S wrop) [ (5, @) (s,0) ] +Md) ( / > (s)

acA

2
SnE(é,a)Npgl"j </ Z A(n) ELn)l(s a)nh(a|s)gh(s,a)ds)

acA

acA

+ B3\ d

(HZQGA wh(a\s)gh(s,a)H < B and by assumption Hwﬁl")l )H <Vd)
2

2
— 2
= 5 @), (Es~ﬁh@1<§,a>,a~m(s) [gh(s’“)}) + B Ad
[ 2
<nE aympl™ (ESNP,;A(,;@)’aw,rh(s) lgn (s, a)]) } + B*Ad 4+ nB%*¢™ (Event &)
< 2 2 2,¢(m)
_nE(S,&)wﬁb@l,wP,;fl(é,a) an~my(s) [9n(s,@)] + B*Ad + B°n¢ (Jensen)
gnAIE(S )pl™ s PE_ L (5,).am U (A) [gﬁ(s,a)} + B2\ + B*n¢™ (Importance sampling)
<nAE _(n) gh s,a)] + B*Xd + B*n ), (Definition of p("))
(s;a)~p
$,a)~pPp,
Combing the above results together, we get
E(s,a)wcl"p(n)JI [g}z(57 a’)]
<E(,a)~dr ) mt min El")l( ,a)H / Z ﬁ),(l")l s)mn(als)gn(s, a)ds
™ = n 2(n
! i RS
Bz, , | )HE ’ \/nAE(M)Nﬁ;m [92(s,a)] + B2Ad + B2nC(™), B
R QRON '
L h—
which has finished the proof. O

Lemma B.4 (One-step back inequality for the true model). Consider a set of functions {gn } L that
satisfies g € S X A = R, s.t. ||gn|loc < B. Then for any given policy 7, we have

E(s a)~dT, [gh(sva)]

P*,h

VAE )y 93 (s.@)], h=1

<

E (s a)~dr \/nAE(s wrept) (9 (5.0)] + B2Xd, =2

P* h—

Recall Xy =nE 0 o (65 (s,a)¢},(s,a)T] + M.

Proof. For step h = 1, we have
E(s,a)wd;*yl [91(s, a)] =Esnd;,anm (s) [91(s,a)]

d
<, [max 1((8))71(a|8)E(s @ opl [91(5 a’)}
(@) pi" (s, a) &

di(s)mi(als)
= E n 2(el ol
\/{%‘ di(s)uala) i 9104
g\/AIE(S,a)NpYL) (g (s, a)].

Forstep h = 2, ..., H — 1, we observe the following one-step-back decomposition:

]E(s a)~dT, [gh(sﬂa’)}

P*.h
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s)mn(als)gn(s, a)ds>
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=E(s,a)~ar, P (5.a),a~m(s) [9n (S, @)]

P* h—17%

=E.a)~ay. [¢;—1(§7d)T/ Zwﬁ_l(S)Wh(GIS)gh(s,a)d«S]

SacA

sl || [ S oiomnan

"”71‘% 1 acA

Then,
2

th 1(s)mn(als)gn (s, a)ds

SacA

z
n oy

acA

SHE(E’ A, [(/ Z wi_1(s)" ¢i—1(3,a@)mn(als)gn(s, a)ds >

acA

(/ > wioi(s)ma(als )gh(s,a)dS>T( ME(, aymnt™, [¢271(570)¢271(8,0)T} +>Jd> (/ > wia(

acA

+ B3\ d

(Use the assumption ||>°, 4 wh(a|s)gh(s,a)”00 < Band [|w}_,(s)||, < Vd.)

2 2
[(ESNP}’L‘?I(E,&),&NW;L(S) [gh(S,a)}) ] + B*)\d

=nE __
(3@~

<nIE A Pt (5.8).ammn(s) [gi(s,a)] + B*\d (Jensen)
2 2 .
§nAIE(§’a)NW;L,:)1,Swpgil(g’&)yaNU(A) [g7(s,a)] + B*\d (Importance sampling)
gnAIE( a)mpl™) [gi(s,a)} + B2)\d, (Definition ofp(n))
$:A)~Pp

Combing the above results together, we get

E(s7a)~d§* W [gh(57 a)]
=E(s.a)~dy. , s~Ppy(5.a),a~m(s) 90 (8, @)

<EGadg. ,_, |[19h-105.8)[ g / > wi_i(s)malals)gn(s, a)ds
L ERTCRLI S SacAa S
R RERL Y
<E@a)~dg. , | H‘Zsh 1(5,a) |5 \/”AE(W) P g7 (s, @)] + B2\d,
noy e 1]
which has finished the proof. O

Lemma B.5 (Optimism for NE and CCE). Consider an episode n € [N] and set o) =
S} (H\/ nAC™M + d)\). When the event & holds and the policy 7™ is computed by solving NE or
CCE, we have

<n>
5(n)(s) - UT

(2

) > —H+\A(™, VYn € [N],ie[M].

(™)
Proof. Define /12"2(|s) := arg max,, (]D) e _Q,Tl’i"‘ ) (s) as the best response policy for player

7 at step h, and let 77(”) = ,u;nl) X Wﬁn) .. Let f(n)(s,a) = HP}(L")(-|s,a) - Pg(-\s,a)’ X then

according to the event £, we have

E(; a)pl [(fh< ))Tsd"% E(, aymst™ [(fh< ))1s<<">, Wn € [N].h € [H],

17
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l|én (s, a)||(

$v(n)
Zh~¢h

)-1:(9

<|¢h(5aa)

||2—1

n
npep

), VnG[N],hE[H],qShGCDh.
®n

A direct conclusion of the event £ is we can find an absolute constant ¢, such that

}(Ln)(s, a) =min ¢ a™ (;Asgl") (8, &)H o )7 H
(Zh‘{igzn))
>min { ca™ égp(&d)” . H 3, VnelN]|hel[H].
o (™) (0
PR Th
Next, we prove by induction that
() o = 3(n) il ()
E__ sz [thi (8) = Vi (5)] > Z IEI(S a)mdi ) [Bh, (s,a) — Hmin{f,,’ (s, a), 1}} , Vhe[H].
PO n Py AN
(7
First, notice that Vh € [H],
() £ ) () SR
E, o0 |Vid(s) = Vil ()] =B, oo |(Rpon@n7) (8) = (Doco @i ) (9)
p(n) p P p h h
() I
2B o0 |(Daw@i) (5) = (D@17 ) (5)
£ P 1 h h
_ 7(") _‘_77_‘_(7711_)
_E(S’a)NdE((T:L)),h |: h,i (s,a) — Qh,i (s, a):| )

ready to prove equation 7:

e When h = H, we have

E

s~d

v

7(n)

) o

e
(s) — H,i

where the inequality uses the fact that w}(l")

>E

— (s,a)

)

=E

T (s,a)

ZE(S,G)NMW

—(n) fw )
Eswdﬂn) |:Vh,i () = Vii (3)}
p(n) p
SE o [0 s,0) - QL (s.a)
- (570')”‘1;(',;)1,,, | h,i ) h,i 9

=E

=E

=E ~(n)
(S’G)Ndﬁ(nhh L

(s,a)wdﬁ(n)

(s’a)wdi(”)

15("),?1 L

[ 5(n)
h

A;(Ln)(sya) + (Pé")vhﬂ,i

(n)

~S(n =—(n)
(s,a) + (P;E ) <Vh+1,i

—A,(Ln)(s,a) + ((P,En) — Pg)

JCON

ﬂA,(ln)(s, a)— Hmin{ ,(ln)(s, a), 1” + IESNdim

18

is the NE (or CCE) solution for {

Nd-;‘((")

B(n) o

~d®

p(n) g

p(n) g

- Vh+

(n)
T
Vh+1,i

o

i)
317 (s, )]

i

Suppose the statement is true for step h + 1, then for step h, we have

1,

Joo

P(") ht1

—(n)
hi

+ ESNdi(n)

M
} . Now we are
i=1

)

i
H,i

(s.a)

)sa) = (Pl ) (o)

)) (s,a) + ((P,ﬁ’” - P;)

Vi

7(n)
|:Vh+1,i
P(M) g1
7(n)
|:Vh+1,i

(s) =V,

(s,a) —Hmin{ gl)(s,a),IH .

e

—1

+1,i

(s) —

_'. ﬂ.("_)
h41,i

Jo

(n)
Tvﬂ'fi
VthLi

©)

)
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> Z E, ayear® [B,ﬂi’)(s,a) - Hmin{ ™) (s, a), 1}} ,

p(n) ps

where we use the fact

i, i z‘)
Vh+1 i

~(n Tvﬂ'(—ﬂ%)
‘(PIS )~ P,f) Vi1

(s,a) <min {H,

(1) - FiCls.a)] |
)(~|s,a) - Pg(-|8,a)H1}
=H min {l,ff(btl)(s,a)}

and the last row uses the induction assumption.

J

<H min {1, ) Ah

Therefore, we have proved equation 7. We then apply A = 1 to equation 7, and get

—(n) ) (n) ()
Eswa, Vi (8)=Viy " (8)| =E,_ e |Vii(s) = Vi " ()

p(n) 1

i]E(‘g a)md) {B,(ln)(s, a) — H min {f}(ln)(s, a), IH

h=1 P h

By aymart [ ) (s } HZ (s.a)md®() [min {ff(bn)(s,a), 1}] .

1 p(n) p P(m) n

Y

tuﬂm

>
Il

Next we are going to bound the second term, let g, (s, a) = min{f,(Ln) (s,a), 1} and apply Lemma
B.3 to g, we have for h = 1,

By, [ {000 1)] €48 [(700.0) ] < VA

P("> 1

And Vh > 2, we have

]E(s,a)wd"(") [min {f}(Ln)(s7 a), 1}}

JICONA
5 2
B ayar min § 025, d)H -1 nAE o) {(fh (s, )) } +d\ +n¢, 1
, P(n) h—1 Zn p;n)l ¢§l")
SE(g &)~dr™ min gn)1( a) H 1 VRAC +dX +n¢m, 1
> P(n) h—1 En p(") ¢(n)
- h—1"

2
Note that we here use the fact min{f,gn)(s, a),1} <1, E. a)mpl™ [(f,i”)(s’ a,)) ] < ¢™ and

2
IE(é ) [(f,(ln)(s, a)) ] < ¢, Then according to our choice of o), we get

(n)
; (n) . co
E(s,a)~d”(") [mln {fh (s,a), IH < E(g,a)~d“("> min i

JICONS

RN a)H 1 1
() p(n) h— E (n) ¢(n)
Combining all things together,
) n ()
@l(n) B UZT —i 7]Es~d1 |:V( )( ) Vfl —i (S):|
H H
= Z (s, a)~d"<n) |: (") ] Z (s,a) ~d7'("> [min { f(Ln) (87 a)7 ]‘}:|
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H—
Z aymdi?) B}(Ln)(s, a) — min { ca™ ’(ﬁzn)(& &)Hz* JH 3| — HyAC™)
h=1 pin,n npl™ (M)
> — Hy/AC™,
which proves the inequality. O

Lemma B.6 (Optimism for CE). Consider an episode n € [N] and set o™ =
e) (H nACM 4 d)\). When the event £ holds, we have

7™ (s) — max v°™ " (s) > —H\/AC™,  Vn € [N],i € [M].

weR;

Proof. Denote W1(1 Z) = arg max,, cq, , (]D)w om(m MAXwEQ, Q‘“"”( )> (s) and let7r( n) d)h’iow,(ln).

Let fh (s,a) = ‘

-|s, a) — P} (-|s,a)|| ,then according to the event £, we have
1

2 2
e | (760@) | 260 By o | (1760) ] <60, v ne o

||¢h(8,a)||(gm ) <|¢h(8 allls-— | ) vn € [N],h € [H],¢n € Op.

Py, )tbh

A direct conclusion of the event £ is we can find an absolute constant ¢, such that

H L H
(”)
( }L d)(/'L))

ﬁ,(ln)(s, a) =min { a®

> min { ca™ ’ég")(g, a)HZ_ JHYS. Wne[N],helH].
gln) Ebn)
Next, we prove by induction that
H
—(n wor(m) Aln . n
E, o [VEM«)(S) — max Vis (s)} > B [5@,)(5@) — Hmin {f,g, (s, a), 1}] . VheH.
P 1 wen; pep ORY.

(®)
First, notice that Vh € [H],

E_ gz |:Vl(:i)<s) — max V;ffﬂ( )(8)} =E__zm [(D (n>Q(n))( ) — <D () max Qwow( )> (5)}

PO weL N
n wow( n)
SE__ oo {(]D) @) () - (]D) ) max Qi >(s)}
p(n) h
=E n) @Eln-)(s,a) max Q‘“o“( )(s,a) .
(s,a)~ d;(”) T " weN
() . : S M
where the inequality uses the fact that ;" is the CE solution for {Q hi } . Now we are ready to
=1

prove equation 8:
* When h = H, we have

—(n wor(™ —(n wor (™
E__ gz ng)l(s) — max V7§ (s)} ZE g { Eq’)i(s, a)— max Qi (s, a)]

PO H wER; — (sa)~die)

=E , aymar™ {B;(Ln)(s, a)}

p(n) g

EE(S,G)Nd“”) [B,(ln)(s,a) — Hmln{ (n )( s, a), 1H :

pP(n) H

20
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* Suppose the statement is true for i + 1, then for step h, we have

(n) or(™
E .o |V x Vi
TR0 = Vi)
[ =) worr (™)
By |0 (50) — max Q5 ()
=E A(")(s a)+ (P“”V(”) ) (s,a) — | Pr max V“’M( ") (s, a)
T (s,a)~ d;((’;)h h ) h h+1,i ) h h+1,i )
[ - n NXONERW) wor (™) H(n * wor (™
ZE(S@)N%@(&)) . ;(L )(Saa) + (P;E ) <Vh+1,i Vh+1 i )) (s,a) + <(P;§ )~ Ph) m: Vh+1 i
“E,_ o |37 (s,a) + (P<”> P) max Ve ) (s.@)
(sa)~die) |
(n) or(™)
B e [Vih(o) - mavir” o)
P(M) i1
[ 5(n) . (n) (n) wor (™)
7E Ndﬁ-(") h (Sa (1) — H min h (57 (1,), 1 + E dw("> Vthl 1(8) ma. Vh+1,z ( )
(s,a) pln) L P(") ht1
A(n) : (n)
> h,zi IE( a)~ d,r((,;)) . [ﬁh, (s,a) — H min {fh, (s,a), 1H ,

where we use the fact

n)

‘(Plgn) Ph) htron Vifffz

(s,a) <min {H,

§Hmin{1,

(1 * wor (™
B (1sv0) = P s o) e v

J

P ()s.a) = Pi(ls.a)| }

=H min {1, £ (s, u,)}

and the last row uses the induction assumption.

Therefore, we have proved equation 8. We then apply h = 1 to equation 8, and get

Eoma, [V (5) — max Voo™ )(s)} -E

(n) wow(”)
max {Vl i (8) — max Vy* (s)]

#(n)
~d weN;

p(n) 1

E Z ]E( Ja)~dr™

h=1 Pk
H

= Z ]E(s,a)
h=1

[B,(ln)(s, a)— Hmin{ ,(ln)(s, a), IH

A1 (s,0)] - HZ e

Next we are going to bound the second term, let g, (s, a) = min{f,(Ln) (s,a), 1} and apply Lemma
B.3 to g, we have for h = 1,

{min{fl(”)(s,a), 1H < \/A (5:a)mpl™ [(fl(”)(s,a)>2] <AV A,

And Vh > 2, we have
[min {f}(Ln)(s7 a), 1}}

i o0 o8 [(5700)
P )

a7

#(n)
p(n) Jh ~d

p(n) p

E ~(n)
(s,a)wdp(n),l

#(n)
(9 a)~d™ B

<E __  m
(5:8)~dEn) o
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SE g |ming 620G @), VRACE AN+ n¢), 1

(n)
P(n) h—1 n P%) <¢>(")

2
Note that we here use the fact min{f,(ln)(s, a),1} <1, IE(S )l [(f,i")(& a)) ] < ¢ and

2
]E(S @yl [(f,(l”)(s, a)) ] < (™). Then according to our choice of a(™), we get

(n)
n . cx 7(n ~ ~
E(s a)mdi() [f}(L )(8, a)] < E(g a)mdn™) min { —— (;52_)1(3, a)HE_1 )1
’ JICONN ? P(n) h—1 (71.) <f>< )
Combining all things together,
Egn) — max vf’ow(n) =Esq, {V(n)( ) — max V‘”‘”r }
we; we,;
H
h=1 ’ p(n) h h=1 P(n) h
H-1 . .
> E(s a)di ﬁ,(ln)(s, a) — min { co™ ‘¢£L")(§7 &)H ~ JH | = Hy AC™
h=1 P n = <n> 5
which proves the inequality. O

Lemma B.7 (Pessimism). Consider an episode n € [N] and set o) = © (H\/ nA¢™ + dA).
When the event £ holds, we have

o™ (s) —of " (s) < HVACW,  Vn e [N,i € [M].

Proof. Let f,(Ln)(s,a) = HP}E")(.|S7a) — Pr(s,a)

, then according to the event £, we have
1

E(Sa (n) |:(fh (S,a))2:| < C(”)7 E(Sa ~(n) |:(fh (S,a))2:| < C(")7 Vn € [N],he [H],

||¢h(85a) a(n) 71 = S} H(bh(saa)”Z*l ) Vn € [N]’h S [H]ad)h S (I)h~
(Eh’¢h) ( )’¢h

n
P

A direct conclusion of the event £ is we can find an absolute constant ¢, such that

ﬁ,(ln) (s,a) =min { a™

e, o

hydﬂ)go

> min { ea™

éﬁ;‘)(g,a)H . JH b, Vne[N)heH].
(n) ;(n)
n,pp by,

Again, we prove the following inequality by induction:

H
E, .o [zg’}g(s) - vhﬁ")(s)} <SS B i [—B}ﬁ)(s,a) +Hmin{ }(f)(s,a),l}} . Vhe[H].
h'/=h

P p p(n) pt
©))
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e When h = H, we have
D) O
B0 V) = VES )] =B o) o (@0 (5.0) - QR (5, 0)]

(s,a)

S

P.H p(n) g
_ 3
E(e a)~ d”((z)) H |: Bu (870')]
<K et By’ (s,a)+ Hmin< fi;7 (s, a),
p(n) m

* Suppose the statement is true for i + 1, then for step h, we have

Lt (V) = Vi (s)]

P(n) p

E

_ [~ (n) An®
=B an ~dn) @ (s,a) = Qhi (s, ‘1)]
H(n n n ()
:E(&a) dfr((’”) _/B}(L )(5» a)+ ( Py )VgL-gl z) (s,a) — (P;:Vh+1,i) (Saa):|
P n h. L
n n () n
:E(s,a)w’t((“’)) _ﬂ (s.a) + (P( ) (KELJA i = Vi, z)) (s;a) + ((P( ) Ph) Vh+1 1) (s,a)}
JICONS
—E [ A(n)( )+ P(n) pr)yr () ( ) JrE V(n) _yr () ( )
(ssa)~dz () b\ h h) Va1 )15, @ ~dr(™ Vht1i = Vhtri
pln) p L PO hat
[ Aln . n n (n)
S _52 '(s,a) + Hmln{ ;2 (s, a), 1}] +E__m [(K§Hz1 i = Vi z) (3)]

p(n) p P(") ht1

( ) (n)
<h,§_: E(sa) a) . [ (s, a)+Hm1n{ (s,a), 1H .
where we use the fact

- (n I N e (n)
‘(Pf(b ) *Ph> Vi1,

P("><|s a) - Pi(ls.a)| ||V
" (fs,a) = Pi(ls,a)|| }

=H min {1, f(TL)(S, a)}

and the last row uses the induction assumption.

(s,a) <min {H

o

gHmin{ ,

The remaining steps are exactly the same as the proof in Lemma B.5 or Lemma B.6, we may prove

E o ayar™ [rnin{fl(n)(&a),1}}S\/W7

P(n) 1
and
E [/ (s,0)] < B min d 2 50 (5 a,)H 1 Vh > 2
(s,a)~ dW((z)) h h ’ - (g’d)wd?(z)),hq H o s (n)  2(n) ’ 7
nep 9
Combining all things together, we get
n () n ()
v = of" =Eaa, [V37(5) = Vi (9)]
H ~
< Z E, aynar™ [—ﬂ,(ln)(s, a) + H min {f,g")(s, a), 1}]
he1 ’ p(n)
H-1 X .
< B ayar™ |~ ,(Ln)(s, a) + min { ca™ ’cbgln)@, &)H2*1 JH 3| + HVAC™
h=1 P().h gl 3
H+/AC™),
which has finished the proof. O
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Lemma B.8. For the model-based algorithm, when we pick A\ = © (dlog %), ¢m =
S} ( log |M|HN) and o) = © (H\/nA((”) + d)\), with probability 1 — §, we have

N
S TAM < HAPAN® log

n=1

IM|HN
B

Proof. With our choice of A and ¢(™), according to Lemma B.2, we know & holds with probability
1 — 4. Furthermore, we have

HN NH|® / HN
o™ =0 (H Alog% + d?log 5') =0 (dH Alog M|5>

Let fhn)(s a)= HP (-|s,a) — Pr(:|s, a)Hl. According to the definition of the event £, we have

2
By | (7 0,@) | < ¢, [6n(5,0)] (50 )1 =© <||¢h(s,a>|gnlp ) . Vn€[N],he [H],n € o
(10)

By definition, we have

A = max {@(-n) - yﬁ")} + 2H\/AC).

i€[M]

For each fixed i € [M],h € [H] and n € [N], we have
(n)
E, g |Via (s) = V47 (5)]

=E__ [(D <n>Q(n)> (s) — (Dﬁwgﬁ)) (S)}

P*.h

() N
= oy, [Oh (5:0) — Q15,0

P*.h

“E, ooar 280 (s,a) + (B (VL = v L)) (s, )]

P*,h

e 2007 s00) + (P = Pr) (Vi —0)) (e @) +E, oo [Vidh i) =140 (9)]

P*,h P*,h+1

A(n n (n) n
SE(S,Q)N(H(”) 25}& )(s,a) + 2H2f}(L )(57(1)} +E g™ |:Vh+1 (s) — V§L+)1 i(s )} .

P*.h P* ht1

=E

Note that we use the fact V,(:gl J(8) — Vgﬁr)l ;(s) is upper bounded by 2H?, which can be proved
easily using induction using the fact that Bh (s, a) < H. Applying the above formula recursively
to Es~d;;(jf)h+1 [V;ﬁ_)l (s) — V;ﬁr)l ;(s )} , one gets the following result (or more formally, one can

prove by induction, just like what we did in Lemma B.5, Lemma B.6 and Lemma B.7):

E, 45 71 () = Vi) <2ZIE ) 37 (s, )] +2H22E s 7 (s.0)]

(a) (b)
(11)

First, we calculate the first term (a) in Inequality equation 11. Following Lemma B.4 and noting the
bonus 6}(:1) is O(H), we have

S (n)
St 00
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H
< Z E o |min{ a™ (”) (s,a) H JH (From equation 10)
(s,@)~dTy h -1

h=1 nap™)
H-1 , )

< “(5.a)|lw (n) 3(n) 2

S E(g,d)Nd}g(*nL [quh(s, a)||2 L nA (a ) E(S’G)Npgﬁ) h (s,a) _— + H?dA\
h=1 : oo, g™ ()

2
+ A (am)’E H¢><”> Hzil

“’~”(1n) qugn,)

(s.a)~p{"

Note that we use the fact that B = H when applying Lemma B.4. In addition, we have

3 s.0)|.
h ? -1
n,p
(n 7(n n -1
=nTr <]E(S,a)~p§1") |:¢El )(S7a’)¢h (S,Q)T:| (nE(S}a)Npg:,,) |: EL )( )¢§1 )(S,G)T:| + )\Id) )
<d.
Then,

ZE(sa d"(m |: )(57a):| SE(;@)NC{;&"L l||¢2(§7&)||21

nk (n)

(Sva)'\‘ph )

(n) (ﬂ)
h

| VA @)+ 2+ da (@) fn
n ok

n,y

Second, we calculate the term (b) in inequality equation 11. Following Lemma B.4 and noting that
f,gn)(s, a is upper-bounded by 2 (i.e., B = 2 in Lemma B.4), we have

M=

E(S a)wd"'(n) [fh (57 a’)]

P*.h

H—-1 2 2
< Egay [M( Wt \/nAIE(S e [(f,g (s.a)) ]+d/\+\/A]E(S e [( ™(s,a) ]
= h
H-1
<D B aant |105(5,@)]5 VRAC™ +dx+ VAC™
e (saa)’\‘dp*‘h . 'Y}(In)"bh
H—-1
Z IE(s a)~dp [”¢h( )“2*1( N +V AC(”)y
h=1 noy o,

2
where in the second inequality, we use IE( @y {( ’(Ln)(s’ a)) ] < C(”)’ and in the last line,

recall \/nAC™ + d\ < o™ /H. Then, by combining the above calculation of the term (a) and
term (b) in inequality equation 11, we have:

7 — o =B, [VEZ‘)(S) - ng?(S)}
P* 1

H-1

dA (am)?
\/ dA pH2A 4\ ——
h=1
Ho1 /o
H2 (n) .
+H> > ( 7 AC )
h=1
Taking maximum over i on both sides and using the definition of A(™), we get

A = max {EEH) — QE")} +2H+\/AC(M)

i€[M]

"/~ ~
E(a&),\,d;(:;L [||¢h(8 a ||Z 1

sa)wd"'(n) l”ﬁ(id)nzl( .

n
nyp b
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H—-1 -
2 dA (o)
E (5,a) dw(ﬂ l‘bh( )”E;L(")‘w \/dA (a( )) + H2d\ 4 2 )
h=1 s 5
H—1 (n)
i T E AC)
HIP Y T B, 162G |
h=1 Yh 0 Ph

Hereafter, we take the dominating term out. Note that

> ) [qsh( Dl *]é N By, [T 0i6.a)
h

n=1 LRI n=1

(CS inequality)

N
<\ N <log det (Z R O CACA S a)T]) —log det()\ld)> (Lemma E.2)

N
<4/dN1 1+ —
< (14 20).

(Potential function bound, Lemma E.3 noting ||¢} (s, a)||2 < 1 for any (s, a).)

Finally,
N
dA () )
A <H [ 4/dN1 dA (™))" + H2d\ —
S (oo (14 ) faa (o a3 1AL
+H 5y [dNlog (1+ -+ +Z\/ch(”
H
N
<H?d,[NAlog ( 1+ — |a™)
dX
(Some algebra. We take the dominating term out. Note that o™ is increasing in n)
HN
<H3d?AN? log %
This concludes the proof. O
Proof of Theorem 4.1

Proof. For any fixed episode n and agent 7, by Lemma B.5, Lemma B.6 and Lemma B.7, we have

7_r(nv) n n n
v;r’ - —vf( ! (or ma}zxv“’o’r( ) vl( )> < v( —an) +2H\ACM < A,

well;

Taking maximum over ¢ on both sides, we have

7T(n) n n n
Inax{ j R )} <0r max {maxv“"’”( e )}> <A™, (12)
i€[M] ic[M] |we *

From Lemma B.8, with probability 1 — d, we can ensure

\M|HN

N
ST AM < H3?AN? log 5

Therefore, according to Lemma E.4, when we pick N to be
HSq*A? HdA
o (5 (F5)).
€ oe
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we have

1 N
7ZA(n)§€
Nn:l

On the other hand, from equation 12, we have
max { j — vf} or max § maxv;°" — ’UZT
1€[M] i€[M] (we;
(" ) * * *
(n*) (n*) (n*)
= max UZT —f or max ¢ maxvy°" = —o;
i€[M] ie[M] | we;

which has finished the proof. O

C ANALYSIS OF THE MODEL-FREE METHOD

For the model-free method, throughout this section we assume the Markov game is a block Markov
game.

C.1 CONSTRUCTION OF N}, AND F},

Let C, = {Zh X = Mg + Zk 1¢h(sk,ak)¢h(sk,ak)—r\¢h € (I)h,l € [N] sk € S,a €
A,Vk € [I]}. Fix a variable L, for each h € [H], define a function class Fj, € RS*4 by

Fn=1{ f(s,a) :==1h4(s,a) + én(s,a) 0 + min (c||gz5h(s, a)||2;1,H) ’
i € [M],¢p, € @y, ||0]|2 < 2H?*Vd,c € [0,L], %) € Cp}
For a given parameter &, let AV}, be a &-net of F, under the || - ||oc metric. Define II;, as the set of

all possible policies produced by equation 2 (or equation 3 or equation 4, according to the problem
setting). We then define the discriminator function class F}, as followings:

]:l,h = {f(s) = EG.NU(.A) |:|¢h(3aa’)T0 - ¢Ih(saa)T9/H | ¢ha¢;l € (I)h7ma’x{||9||27 ||9/||2} < \/g} )

ils, @
Fop = {f(s) = Egnmpii(s) {ThHH(S) + ont1(s, a)TQ}

i € [M],7hy1 € Hpgr, drgr € Py, 102 < \/g}7

The1.4(s,a
]:3,’1 = { f(S) ‘= max Ea~(ﬂh+1,i><7rh+1,—i)(5) {h-’—li;_f() + Oht1 (S,CL)TQ:H
Ahit,i
xS [M],?Tthl S Hh+17¢h+1 S (I)h+1, H9||2 < \/g}, (For NE and CCE)
T S, a
.7:3,]1 = { f(s) = max E@N(W,Hrl,,iomw])(s) |:h+1’() + (thrl(S, a)T(‘)} ‘
Whi1,i€2n11,4 H
i€ [M],mhy1 € Ipy1, dng1 € Py, |02 < \/g}, (For CE)

min {clléns1(s, a)ls, 1 H }

7E + ¢ny1(s,a)’0

.7'-47h = { f(s) = Ea~7\'n+1(s)

€ [0,L], mp41 € Mpg1, Bpt1 € Chars Prt1 € Prga, |02 < \/g},

g = {f S = [03 1]}7
Fp = (-Fl,h UFon UFszp U ]:4,h) ng.
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C.2 HIGH PROBABILITY EVENTS

We define the following event

& :Vne[N|,helH],pe {pgn),ph } ferFn E, [(( n) —Pﬁ) f) (S,G))T <¢m,

h,op,

(A(
h
&1 Y € [N h e [H].n € @, n(s @l )-1=e<|¢>h<s,a>||z—m¢>

) o
" Fh
£ = 51 N 52.

Similar to the procedure of the model-based case, we first prove a few lemmas which lead to the
conclusion that £ holds with a high probability.

Lemma C.1. For any n € [N],h € [H], we have P}En)(s’|s,a) = qﬁ;”)(s,a)%,ﬁ”)(s') for
some wﬁj” : 8§ — RY  For any function f : S — [0,1] and n € [N],h € [H], we
have HfS b ( )f(s')ds/H2 < Vd, and there exist 0,0 € R? such that (P}f)(s,a) =
¢%(s,a)’0, (P}(Ln)f) (s,a) = Q@Eln)(&a)—ré and max{||0||2, |0]|2} < Vd. Furthermore, we have
0]l < 1.

Proof. By definition, we have
(P (s.0) = [ Pi(s]s,a)f(s)as
S

— i (s,)" / W () f(s)ds’
S
i (s,a) 70,

where § = [ wj(s") f(s")ds’. Furthermore, note that || f||o, < 1, according to the assumption on
wy;, we have

| [wirsnas| <va
s 2
which implies |||z < v/d. For (P,E")f) (s,a), let
-1
GG R D DR S GO CONE Y > VG ety
(5,a)eD™uUD™ (5,a,5)eD™UD™
Since ¢h (s a) is an one-hot vector, one has Hw(n) s') < 1,Vs € S. It follows that
Hfs A(") (s')ds’ < 1, and therefore, ’fs " s’)f(s’)ds’ ) < V/d. By definition, we
have =

(P171) (0 = [ A (s, a) (s
=0 (e [ ) p

= gﬂ)(s, a)Té7

~(n)

where 0 = | S u?;b") (s")f(s")ds’. Due to the property we just derived for ;" similar to the proof of

the true model, we also have [|0]|2 < v/d. Meanwhile, one can easily see that 10]]co < 1, using the

factHfS B ( )f(s’)ds" <1 0
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Lemma C.2 (Covering Number of f"h). When ®, is the set of one-hot vectors and A\ > 1, it’s
3d
possible to construct the &-net Ny, such that |Ny,| < M (%) |®|,Vh € [H]. Furthermore,

3Md
we have |IT;,| < |N,|M < MM (%ﬁﬁd) ||,

Proof. Recall that
Fp = { f(s,a) :=rpi(s,a) + ¢h(s,a)T9 + min{c||¢h(s,a)||2;1,H}‘
(RS [ML(ZSh € (bh7 ||0H2 < 2H2\/g7c € [OaL]aE S Ch}

Note that when @, is the set of one-hot vectors, >;, will be a diagonal matrix. In this case, fh is the
subset of the following function class:

]:-;L = { f(57 a) = Th,i(sv a) + min{c‘bh(sa a’)Telﬂ H} + (,bh(S, a’)T9|
i € [M],¢n € y,0 < ¢ < Lmax{[|0]2, |02} < 2H?Vd}.
Let © be an fy-cover of the set {# € R? : ||f||, < 2H?/d} at scale . Then we know |0 <

d
(@) . Let W be an {,-cover of the set [0, L] at scale &' := we have [W| < M.
Define the covering set by

_&
2H2/d’

Fn = {f(s,a) = rp.(s,a) + min{cop(s,a) 0, H} + én(s,a) 0|i € [M], ¢y, € O, €W, 0,0 € @}.
Then, for any f € F},, by definition, suppose [ takes the following form:

f(s,a) :==rp.i(s,a) + min{cop(s,a) 0, H} + én(s,a) "0, 0<c<L,max{||0]2,]0]2} < 2H?*Vd.
Then we can find 6,0’ € ©, ¢ € W such that [|§ — ||y < &,(|6' — 0|2 < &and |c — & < & Let

f(s,a) :=rp(s,a) + min{épy (s, a)Té’, H} + ¢n(s, a)Té,

then we have

|f(s,a) = f(s,a)
<[|n(s, a)|l2 He - 9H2 + 16n(5, a)ll2 Heé’ — et

2

<&+ - Hé’”2+c‘ o — @

2
<+ 2H*VdZ + Lz
<3LE,

which implies 7y, is a 3Lé-covering of F, » (therefore, is a 3Lé-covering of F},), and we have

|]—‘h|§M<

AH2Ld\>?
) B,

: ~ 3 ~ . = . . 272, 3d
Replacing € by 57, we get an é-covering of F, whose size is no larger than M % |D].

For II;,, since each policy is determined by M members from N}, we have | < \Nh |M , which
has finished the proof.

Lemma C.3 (Covering Number of F;,). When ®;, is the set of one-hot vectors and X > 1. The

2\ 3d
~-covering number of Fy, is at most AM |y 41| (%) |®|2.

Proof. We cover Fi p, Fa n, Fa.n, Fap separately. For Fq p, let © be an £y-cover of the set {§ €
d
R? : ||| < V/d} at scale . Then we know |©] < (#) . Define the covering set of F 5, as

Fip = {f(s) = Eou(a) ng;h(s,a)Té — (s, a)Té'H ] bn, b € B, 0,0 € @} .
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For any f € F j, suppose
F(s) = Equva [|on(s,0) 70 — ¢ (s,0) O[], 1. ¢}, € Pp, max{[|0]]2, |6/[|2} < V7,

Then we can find 6,0’ € © such that || — ]|y < 7, |0/ — 8'||]2 < 7. Let
Then we have

175) = F&) <5 - lonts,ala||o ]+ 5 3 Iohts. ol
acA acA

<27,

J(5) i= Eanva) [|0n(5,0)70 = h(s,0) 77

o — 0

2

which implies ]31,;1 is a 2« covering of i ;. Furthermore, we have

_ 2d 2d
Fral < (7> 2.

For F» p, and F3 5, we construct

.7:—2,]1 = {f(s) = E‘IN"Tthl(S) |:71h+1}{(8’a) + ¢h+1(8,a)—r9~:|

i € [M], ny1 € Ppy1,0 € O, mpp1 € Hh+1}.

Similar to the proof of F 5, we may verify ]}27}7, is a y-covering of F3 5, and

. 24\ ¢
|f2,h|<M|Hh+1|(7) B,

For F3 1, we only prove the case of NE or CCE, the case of CE can be proved in a similar manner.
We construct

~ ~ r iS,a ~
F3n = { f(s) := max ]Ea"’(ﬁthl,iXﬂ'thl,—i)(S) {f%” + ¢h+1(57a)T0} ‘

fht1,i
i€ [M],ppt41 € Ppy1,0 € O, 41 € Hh+1}-

For any f € F3 ,, suppose

7”h+1,z'(87 a)

f(s) = max EaN(ﬁHu XTh41,—i)(8) [ H

Ph+1,i

+ ¢h+1(5,a)T9} .0 € [M], Thi1 € Hpgr, Gngt € Prr, [|0]]2 < V.

Then we can find § € © such that || — || < 7. Let

Thi1.i(s,a ~
f(s) = max ]EC"N([L}H»l,i><7Th+1,—'i)($) |:+1]‘[() + ¢h+1(87a)T0] s

Ah+1,i
we have

rhﬂai(s’a) + ¢h+1(8,a)T9}

f(S) - f(S) = max an(ﬂh,+1‘i XTht1,-i)(8)

Hh+1,7 H
Th+1,i 870) 5
— max EGN(ﬂHM XTht1,—i)(8) [H + ¢h+1(8a a)T9:|
Mh+1,4
Th+1,¢(8,a)
< max (EG‘N(17'IL+1,'£X7T}L+1,'i)(s) |:H + dnt1(s, a)Ta]
Hh+1,1

Th1,i(s, a) ;
- Ea~(ﬁh+1,i XTh41,—i)(s) {H + ¢h+1(57 a)Ta] )

= max (EaN(ﬁhH,ime,,i)(s) [¢h+1(87 a)' 6 — oy s, a)TéD

Hh+1,1i

<16 — 6]l
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<y

)

and

The1,i(s, @)

7 + ¢h+1(3=G)Té}

f(S) - f(s) = max Ell"“(ﬂh+1,i XTht1,-i)(8) |:

Hh+1,i
Thi1, (s, a)
— nax Ea”\'(ﬂh+1,i XTThi1,—i)(8) [ ;f + ¢h+1(5a a)T9:|
Hh+1,i
rhi1,i(s, @) 5
< max <EGN(ﬁh+1,i XTht1,—i)(s) {Il_l, + ¢h+1(57 a)TG]
MHh4+1,4

7'h+1,i(5a a)
- Ea"‘(ﬁh+l,i XTht1,—i)(s) |:H + ¢h+1(57 a)T9:| )

= ,,IIla‘X (EGN(ﬂh+1’i ><7Th+1,7i)(3) |:¢h+1(57 a)Té - ¢h+1(57 a)T0:|)

MHh+1,4
<)o — 8|
<7,

which implies
F(5) = 1()] <.
Therefore, we conclude .7:"3,h is a y-covering of F3 p,, and

. 2d\ ¢
|f3,h|SM|Hh+1|(7) @,

For F, j,, note that when ®}, is the set of one-hot vectors, XJ;, will be a diagonal matrix. In this case,
Fa p 1s the subset of the following function class:

; Tp!
= { 106) 1= By | A I 6,) 70|

0< < Lomnis € Mypn max{[0lla, [0]l2} < vV, dnps € <I>h+1}.

In this case, let W be an £o cover of the set [0, L] at scale 7 := =, we have [W] < LT‘/E. Let

ind & T
Fup = { f(s):= Eanmnii(s) lmm{aphﬂgz’ a) 0 H} + ¢h+1(s,a)T9~]

EEW, i1 € yy1,0,0 € O, 6441 € ‘I)h+1}-

Then, for any f € F4 j, suppose

3 Ty
£(5) = Eammponto [m1n{0¢h+11(;, a)' 0, H} n ¢h+1(s,a)—r€] 7

0<e< Lympyr € Mygy, max{[|0]2, |62} < Vd, dpy1 € 1.

Then we can find 0,0’ € ©, & € W such that |0 — ]| <, |6/ — 0'||2 < yand |c — & < 7. Let

inf s Tp!
]E(s) = Ell/\/ﬂh+1(5) lmm{abh—i_l](-;’ a) 9.4} + dnt1(s, a)Té] )

then we have
£ (s) = f(5)]

" 1 "
Earrr [10051(5: @2 [0 = 0]| + 755 Bammisaio) [onsa (s, @)z |78 — cof

e
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o — 0

é'H +c
2

)

1 -
§7+ﬁ(|0*0\

L

Vi
SRR EL

<3L~,

which implies .7:"4,;1 is a 3L~y-covering of F4 5, and we have
. 2Ld\*"
Fia] < Ml (229) .
Y
In summary, we know .7:'h = .7:"1,h U .7:'2,;1 U ]:'3’;Z U ]:'4’h is a 3L~y-covering of Fj. And
2Ld\ %"
| Fn| < 4M || <’y> 2.

Replacing v by 2, we get an ~y-covering of ), whose size is no larger than

3d
AM |11}, 44| (@Yﬁ) |®|2, which has finished the proof. O

Below we omit the superscript n and subscript & when clear from the context. Denote

1 A
Lap(@0.0) = D (9ls,a)70- £(s)" + DI (13)
(s,a,s")€D
Lo(00.) =7 > ((s.@) 70— ()] (14)
(s,a,s’)ED
Ep(¢> 0, f) = E(s,a)wp,s/wP*(s,a) {(QS(Sv a)Ta - f(S/))2:| . (15)

Lemma C.4 (Uniform Convergence for Square Loss). Let there be a dataset D := {(s;,a;,s})}",
collected in n episodes. Denote that the data generating distribution in iteration i by d;, and
p= % >, di. Note that d; can depend on the randomness in episodes 1,...,i — 1. For a finite
feature class ® and a discriminator class F : S — [0, 1] with ~y-covering number ||F ||, we will
show that, with probability at least 1 — §:

[[£6(6.0, 1) = £,(6". 07, )] = [£0(6,0./) = Lo(6".07. D)
64 log(2Um 1211 1 2n )

<5 [£,(6.0.0) = £,(6".03, D) +

forall p € ¥, ||0]|coc < 1and f € F, where recall that ¢* is the true feature and 0% is defined as

IEs’fvP*(s,a) [f(sl)} = <¢*(sv a)a 9;‘>

n

Proof. To start, we focus on a given f € F. We first give a high probability bound on the following
deviation term:

|‘CP(¢30; f) - ﬁp(¢*a9;vf) - (‘CD(¢a9a f) - ‘C'D((rb*vo;k‘a f))| :

Denote g(s;,a;) = ¢(si,a;)" 0 and g*(s;,a;) = (b*(s,»,ai)TG}. At episode i, let F;_; be the
o-field generated by all the random variables over the first ¢ — 1 episodes, for the random variable

Yi = (g(si, ;) = f(57)* = (9" (si, @) — f(s}))?, we have
EYi|Fi 1] =B [ (g(si,a0) = f(s1)° = (9" (500 @) = f(50))7]
=E[(9(si ai) + 9" (si, a:) — 2£(s7)) (9(si, ai) — g% (s, @i))]
=K {(g<5i;ai) - g*(siﬂi))ﬂ .

Here the conditional expectation is taken according to the distribution d;|F;_1. The last equality is
due to the fact that

E[(g*(si,a:) — f(é’;)) (9(si;ai) — g (si,aq))]
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=Es,.a; [Es; [(9"(si, i) — f(s7)) (9(si, @) — g* (50, @) |30, @]
=0.
Next, for the conditional variance of the random variable, we have:

VY| Fi] <E [Y?|Fi1] =E {(9(81'7 a;) + g* (si, ;) — 2£(}))° (9(s0,@i) — g* (50, @:))” | Fica

<16E [(g(s:: @) — 9" (0, :))° |Fia
<16E[Y;|Fi—1].

Noticing Y; € [—4, 4]. Applying Lemma 1 in (Foster and Rakhlin, 2020), we get with probability at
least 1 — ¢/, we can bound the deviation term above as:

|‘CP(¢)3 03 f) - ‘Cp(d)*a 0;, f) - (ED(¢, 03 f) - ﬁD(¢*7 9}) f))|

2 2
oy 2E Vil Fia]log § 16108
B n? 3n

n 2 2
< 32, ElYi|Fi_1]log 5 N 16log 57 7
- n? 3n
Further, consider a finite point-wise cover of the function class G := {g(s,a) = é(s, a)’0:¢¢
D, ]|0]| < 1}. Note that, with a {o.-cover W of W = {||0||oc < 1} at scale v, we have for all

_ _ d ~
(s,a) and ¢ € P, there exists 0 € W, |(¢(s,a), 0 — 0)| <+, and we have |W| = (%) Let Fbea

~-covering set of F. For any f € F, there exists f € F such that || f — f||Oo < ~. Then, applying a
union bound over elements in ® x W x F, with probability 1 — |®|[W||F|&’, forall € W, f € F,

we have:
1£0(6,0, ) = £,(6", 6}, f) = (Lp(6,6, f) = Lp(¢". 67, 1))
<|£0(6,0. )~ £,(6,65. 1)~ (Lo(6,6, F) — Lo(6*,05.1))| + 164

n Y, 2 2
g\/32 S EVi|Fiollogd 16152

16
n? 3n + 10y
1 oo 16log 2 16log 2
<—) E[Y;|Fi- . % +16
—2n ; [¥il i+ n + 3n + 10y
I 16log 2  16log Z
< S EWFi] + e DR 39y
2n — n 3n
1 32log 2
1 64log 2 ,
5( o(6.0,1) = L6, 07, 1)) + —id (setting 7 = 1/n)
_ o _ 2
where Y; = (é(si,a;) 60— f(s’))2 - (qﬁ)(si,ai)Tﬁ} - f(s’)) . Finally, setting § =
5/ (|<I>\ W] \f|> , we getlog 2 < log w. This completes the proof. O

2(4n)?- |<1>\ 17111 /20
Lemma C.5 (Deviation Bounds for Alg. 3). Let e’ = 128 log( ) . If Alg. 3 is called

with a dataset D of size n, then with probability at least 1 — 6, for any f € F c[0,1)°, we have

£y | (30s.)70;  0°(5.)705) } <oy 24

n

Proof. We begin by using the result in Lemma C.4 such that, with probability at least 1 — 4, for all
1llcc <1,¢ € ®and f € F, we have

’ [‘CP((ba 97 f) - ‘CP((b*aH*v f)] - [£D<¢a 9, f) - L‘D((Z)*,H}, f)] ‘ < % [£P(¢>07 f) - £P(¢*79;7 f)] + 51/2'
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Thus, with probability at least 1 — § we have:
E, [((ﬁ(s, a)Tl; — ¢ (s, a)w;ﬂ
=L, (05, f) = L,(", 07, f) (since By p-(s.a) [ (5)] = ¢"(5, @) T0})
<2(Lo(b,05. 1) — Lo(6",67. 1)) +¢
(Lemma C.4, and || #lloo < 1 according to the proof in Lemma C.1)
<2 (L0 (G.07.0) ~ Lro(@.07.0) + 210318 ) + &

2Xd S
<e' + 0 (by the optimality of ¢, 6 under L p(-, -, f))

which means the inequality in the lemma statement holds. Here, we use ||0} |2 <d. O

Lemma C.6. When Pfgn) is computed using Alg. 3 and the Markov games is a block Markov game,

if we set
A2 M log NVHML|®]
/\_@<dlogNI§M)|), g<n>_@< %8 5 .

n

then € holds with probability at least 1 — 4.
Proof. Combining Lemma C.5 and Lemma C.3, we have that

) A 2\d L ( 5
E Th, — &* Tox)2| < & <¢(™.=0|dM—— "
Jrvréz}}; p [(6(s,a) O — ¢*(s,a) 0F) } <&+ - <( - ;

dNHML|<I>\)

which shows £; holds with a high probability. Combining this result with Lemma E.1, we have
proved Lemma C.6. O

C.3 STATISTICAL GUARANTEES

To ensure the algorithm is well-defined, we first prove the following lemma which implies the
optimistic Q-value estimators always belong to the function class F},.

Lemma C.7. When o™ < L, we have @Efl) € Fu,Yh € [H],i € [M],n € [N].

Proof. Because BA,(L") is upper bounded by H, by induction one can easily get ngr)u < 2H2

Then according to the result of Lemma C.1, we know (]5}5")7,(172111-)(5, a) = ¢§l")(s, a) "0 with

0]]2 < 2H?/d. We conclude @2”2 € Fh. O
We will show later that our choice of o™ and L always satisfies the condition o™ < L.
Lemma C.8. We have

e For NE and CCE,

max (D, o0 @) (5) < (Bl () + 25

Th,i
e For CE,

max (D, @) () < (D @) (s) + 22

Wi €4
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Proof. We only prove the case of NE and CCE, the case of CE can be proved similarly. Let Qg"z) be

the nearest neighbour of @;an) in N3, we have

max( () Qh Z) (s) <max (D ) Q;lnz)) (s)+¢é
Th,is T, Th,i>Th —; ’

Th,i Th,i

< (Dﬂ(m QW) (s)+ & (Definition of 7))

(D (n)Q(n)) (8) + 2¢,
which has finished the proof. O

Lemma C.9 (One-step back inequality for the learned model). Suppose the event € holds. Consider
a set of functions {gp }1._, that satisfies g, € S x A — R, s.t. ||gnllco < B. For a given policy T,
suppose Eq (4 [9n (-, @)] € F1 p, then we have

‘IE(S,G,)Nd"'}5 [gh(sva)]’

(n) n
\/AE(S’G)W [$2(s,a)], h=1

E(s.a)~ar ) min H¢(”)( a)H -1
" o am

Recall Zn7p51¢L)7(£;n) = nE(S’a)Npiﬂ) [¢;Ln)(s, a)d)gzn)(s, a)T} + Mg

Proof. For step h = 1, we have

I[‘E(s,a,)wd;;(n) ) [gl (S,Cl)] :ESNdl,awﬂ'l(s) [gl (Sa a)]
di(s)mi(als
<, [max %E(S @)™ [g2(s',a’)]
(s,a) £1 (Sva')
di(s)m (als)
— E n 2 /7 !
\/%( Gy (s)uala) ot 910 @)
S\/AJE(S’G)W@ 93 (s, @)].
For step h = 2,..., H — 1, we observe the following one-step-back decomposition:
E(S’a)wd;m),h [gh(57 a’)]
:E(g’&)wdwﬁ’(n),h 1’ P )1(‘9 a),a~mp(s) [gh(87a)]
=E, ad7 1(5,a) / Z wh 1 s)mn(als)gn(s,a)d ]
SacAa
“Baray,, min{ (3, / > i (s)mu(als)gn(s, a)ds, B}
L acA
SE(g,a)wg(n)_hil Hz*l th 1(8)mn(als)gn(s, a)ds
' nofy 60, 175 aca () 4(m)
L ' "’ph—l’(ph,—l

where we use the fact that g, is bounded by B. Then,
2

Z @i, (s)mn(als)gn(s, a)ds
aE.A

E n 2(n
mpp)y 8y

35

\/nA E(, s [97 (5, @)] + B2Ad + nA2(()



Published as a conference paper at ICLR 2023

(/ S @™, (s)mn(als )gh(s,a)ds> (nE(S apl™. [Aﬁl’fl(&a)}@l(&af] +)\1d> </ S @\, (s)mn(als)gn(s, a)ds>

acA acA

2
SnE(é,a)Npgl"j </ Z A(n) ELn)l(s a)nh(a|s)gh(s,a)ds) ] 4+ B?)\d

acA
([>acamn(als)gn(s,a H < B and by Lemma C.1 Hfs uA);L")l l(s)dsH <Vdforanyl:S — [0,1].)
2

2
_ 2
N (Es~ﬁh@1<§,a>,a~m(s) [gh(s’“)}) +BAd
] 2

2 2 i .

<nA ]E(§,é)~p§f’;)1 |:(]Es~}5;(1n)1(§,&),a~U(A) [gh(s,a)]> + B°\d (Importance sampling)
2
SNAQE(- a)pl™ [(ESNPQ L(5,8),a~U(A) [9n (8, a)}) ] + B*\d + nA%¢™ (Assumption on gy,)
$@)~Pp 1 -

2 2 2 24(n)
<nA ]E(é,a)~p§fj1,s~P;71(§,a),a~U(A) [gh(s,a)] + B*Ad +nA“E. (Jensen)
§nA2]E(s ) [g;% (s,a)] + B2\ + nA%¢™. (Definition of p(n))

) h

Combing the above results together, we get

E(s,a)~dr R lon(s, a)]
sy, |ming || Ga) [ i sy als)on (s, a)as B
gy 8, Saca Z ) ()
L R by g
<Esad,, , A B e s )]+ BP0, B
L n Pin)l “’Ebn)l
which has finished the proof. O

The following lemma is an exact copy of Lemma B.4, and here we state it again just for completeness.

Lemma C.10 (One-step back inequality for the true model). Consider a set of functions {gn }iL |
that satisfies g, € S X A — Ry, s.t. ||gnllco < B. Then for any given policy 7, we have

P*,h

VAo (s @), h=1

Etads., lon(s.a)]|

nAE o [97(s,a@)] + B2Xd, h>2

H¢Z—1(§7 &') ||E 1 (s,a)~p;

noy ek

E(s a)~dT,

P* h—1

Recall 3, o o =nB o (65 (s,a)¢}(s,a)T] + M.

Lemma C.11 (Optimism for NE and CCE). Consider an episode n € [N] and set a(™ =
] (H\/ nA2¢((m) + d)\). When the event £ holds and the policy 7" is computed by solving NE or
CCE, we have

()
7 (s) — vl (5) > —H\/AC™ — 2HE, Vn e [N],i € [M].

~ TaTr(j{) ~(n ~(n n
Proof. Denote iy, ; (-|s) := argmax, (Du,w,ﬂ’fliQh,i ) (s) and let 7T}(L ) = ;“;m X W}(Ll Let

R )
) (s,a) = + < () _ P*) V,L’rl’; (s,a), note that by definition, we have %VT i (s) is
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bounded by 1, and
1 a0 Thevi(s,a) 1 I
VI (5) =By [ Y (P ) )

H H
. The1,i(s, a) 1 * ()
T pax EaN(MhH,ixﬂ,@lﬂ)(s) [ H + H (Ph+1vh+2,i (s,a)| € Fan

()
where we use the result of Lemma C.1 and get + (P; +1V,2L_’:2’; ) (s,a) is a linear function in ¢j , |

and the 2-norm of the weight is upper bounded by v/d. Then according to the event £, we have

2 2
]E(s,a)wp;"') l:(fi(zn)(s’a)> :| < C(n)v ]E(s,a)fvﬁ;") l:(f}(zn)(saa)> :| < C(n), Vn € [N],h S [H]

h,ép n,ph" >

I68(5,0) (5 -1 =© <||¢>h<s7a>||z-1( | ) . Ve Nlhe [H] o € 0.
Ph

A direct conclusion of the event £ is we can find an absolute constant ¢, such that

,(ln)(s, a) =min a™

e, o

h,d;;;l)
> min { ca™ QAS;”)(&&)H . JH 3, Vnel[N|,hel[H].
E ) am
PR Th
Next, we prove by induction that
) tr()
By, VA0 -V )
P n

H
>y B aar) (355, @) = HFY (s,0)] = 2(H —h+ 1Z Vhe[H].  (16)
h'=h ,

First, notice that Vh € [H],

E %%, tm ) B —(n) )
srd (") hi(8) = Vi " (8)] =E__ e D Qi) (s) = | Do @y (s)
P(") P h h h
~(n) tr ) -
ZESNdﬁ(n) (Dﬁ(n)Qh’i) (s) — Dﬁ(n)th (s)| —2¢
p(n) n h h ?
=K Q" (s,a) - ng) (s,a)| —2¢
(s,a)Ndﬁp((z;’h h,i \5s ki s ,

where the inequality uses the result of Lemma C.8. Now we are ready to prove equation 16,

e When h = H, we have

—(n) fl) —(n) f,r) .
E_ g VH,i(S)*VH,i (s) ZE(SJ)NW}(”) mi(s,a) = Qp ;" (s,a)| =28

SNdﬁ("),H p(n) H

:E(S@)Ndﬁ(n) [B}(Ln)(& a):| — 2

p(n) g

ZE(S,G)Nd,-m) [B;(Ln)(& a) — Hfl(f)(s, a)} — 2¢.

p(n) g

* Suppose the statement is true for i + 1, then for step h, we have

—(n) o
ESNdﬁ<"> Vh,i (s) — Vh,i (s)
JCONS
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(A 1 N
ZE(S a)wd*(") Ez,z) (57 a’) - Qh,i (8, CL):| — 2¢
’ () n |
= -A(n) ~(n)7(n) NP )
_E(S’“)Nd;f((n)> ho($0) + (B Vi ) (s,a) = | BV, ) ) (s,@)| - 28
PN n L
Eg p(n) (7" for A(n o g 5
:E(Sva%d’?i"i s a) + (P}(L ) (ng)l,i = Vit >) (s,@) + ((Pf(L ' Ph) V;j+1,¢ (s,a)| —2¢
P n ,h L

_E [ 40 50 px) 1 —(n) e .
— ~(n) L (s,a)+ ( (P, — Py Vh+17i (s,a)| + Eswﬁf(") Vis1.4(s) — Vh+1,i (s)| —2¢

(S’a)Ndﬁ(">,h L P(n) hy1
[ A(n) (n) —(n) t () .
e |8 (s, @) — HEM (s, a)} VE, oo |Vidaa(s) = Vi (s)] —2¢

p(n) p b P(n) py1

— (s,a)~

H
>N B e [B(sa) — HI (s,a)] <200 — B 1)z,
h'=h

p(n) ps

where the last row uses the induction assumption.

Therefore, we have proved equation 16. We then apply h = 1 to equation 16, and get

(n forl”)

Eov [vi,%s)— <s>]
B —(n) tt)
—Eswd;f(m Vl,i (s) — Vl,i (s)

pn) 4

H
23 F e [B(s0) = HAP (s, a)] 20

H H
:ZE(s,a)w*(") {A’(ln)(s’a)} B HZE(s,a)Nd’.’M) [f,&")(&a)} - 2He.
h=1

h—1 JICONA JICONN

(n) (n)
. 1 A(n) Tvﬂ'ii . . . "(n) 1 * T77T7i . . . %
For the second term, since P, "V}, is linear in ¢, * and 7PV}, is linear in ¢}, and

according to the result of Lemma C.1, the 2-norm of their weights are both upper bounded by v/d.
Therefore, we have Eq. 17 4) [f,gn)(-, a)} € Fi1,5. By Lemma C.9, we have for h = 1,

2 —_—
IE(s,a)Nd"’(n) [fl(n)(&a)} = \/AE(Sva)“’Pgn) |:<f1(n)(s7a)) :| = AC(H).

p(n) 1

And Vh > 2, we have
E(S,a)wd’_"(n) [f}gn) (37 a’):|

p(n) p

T RO 2 ( (n) )2 24(n)

SE(g,a)~d’I’;<<:>) . min < (¢, ( ,a)HZA( o \/nA E(s,a)mﬁﬁf‘) { 7 (s,a)) | +dXN+nA2(M), 1

' L nop by
SE g [mind |07 (5,a)| nA2() +d), 1

(8,a) ) pq =t ) ()
L P LR
2
Note that we here use f,g")(s,a) < 1 B0 {( ,(ln)(s,a))] < (™ and
) h

2
]E(s,a)~ﬁ§”) [(f,g”)(s, a)) ] < ¢, Then according to our choice of o), we get

E COé(n)

O, (5.a) 1

E_l 7 2(n
moi 3

ooty [0 SB[

JICONA P(n) h—1
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Combining all things together,

1 () T
vz(' ) _ U’L —]Eswdl |:V1n2 ( ) - ‘/Li (8)

vV
M=

E ey S8 (500)] 0 Z et [ (5,0)] —2HE

p(n) p JICONN
H-1
> E i an ) B,(ln)(s, a) — min { ca™ ‘¢](1n)(§7 &)H2*1 JH 3| — HVAC™ —2HE
h=1 P") h n,pg”)@g”)
=— H\A(™ —2HE,
which proves the inequality. O

Lemma C.12 (Optimism for CE). Consider an episode n € [N] and set o™
C) <H nA2¢m) + d/\). When the event £ holds, we have

ﬁgn)(s) —mawio"r > H\/W—QHE Vn € [N],Z S [M}

we);
Proof. Denote (:)}(l”) = argmax,, cq, , (]D)w’ or() WAXuEQ, ‘;L’f’i“(")) (s) and let 7 (") = On;
(") . Let f(") ‘ ( pm™ P}’[) max,ecq, V,‘;jff; )‘ (s, a), note that by definition, we have
& maxgeq, V2R, (s) is bounded by 1, and
1 peort™ oy _ E rhy14(s,a) 1 pr V‘“O’T( n) T
g Vet ()= max | Beseenyo | Tog T g \ P lip Vs ) (s.0)| € Fan

(n) R .
where we use the result of Lemma C.1 and get % (P,‘: 1 MaX,eq, V,‘f_fg i ) (s, a) is alinear function

in ¢} and the 2-norm of the weight is upper bounded by \/d. Then according to the event £, we have

2 2
E\ ayep [(f,i”)(s,a)) ] <¢, B, 0 [(f,&m(s,a)) ] <¢™, Vne [N helH]

I60(5,0)] g0y -2 = © <||¢h<s,a>||zlw ¢ ) . Wne (NLhe [H], o, € D

n,pp

A direct conclusion of the event £ is we can find an absolute constant ¢, such that

U

s,a) =min { a™

4 Ga)| L H
E<") ))

> min { ea™

,H b, Vne|[N]hel[H].

Next, we prove by induction that

w(n) wow()
By |VA(9) -~ ma Vi <>]

pn) we

>ZEsa~dw(n> Hf)( a) - Hf\ (s, )}*Q(Hthtl)é, Vhe[H. (17)

p(n) ps

First, notice that Vh € [H|,

— ) wor®™ 1] _ —(n) o™
E,_ gz |:Vh,i (8) — max V7™ (s )} =E__ ;s [(D,rgth,i) (s) — (Dﬁgn max Qi )(8)}

p(n) p ‘*’E p(n) p
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o wow(”) ~
2B {(Dﬁ}(mQ;}) (s) — <D ) maXQ ) (s)} — 98

p(n) p

—(n) wo7r n) ~
:E( a)ydi ) [Qh,i(s,a) néaxQ (s,a)}—%.

p(n) p

where the inequality uses the result of Lemma C.8. Now we are ready to prove equation 17,

* When h = H, we have

n worr (™ i wor (™
E__m Vgﬂ)i(s) — max Vj73 (s)} ZIE(S}G)NC”(W) { ;71(5, a) — max Q7 (s, a)]

p(n) we; p(n) m we;

:E(s,a)Nd"{("’ {B;Ln)(s, a)]

p(n) H
2B (s,a)~d®™) [Bf(zn)(‘s’a‘) - Hfj(fn)<s,ar)} — 2¢.
p(n) JH

* Suppose the statement is true for i + 1, then for step h, we have

(n) wo7r(”)
E__ g {Vm() max V7 (S)}

P(n) p

>E <) @E{?(s,a) max Q“’O”( )(s,a) —2¢
(s,a)~d™ PRSI we
)
_ (n) wor 5
_E(S’G)Nd;({;)m <P Vh+1 2) s,a) — (Ph max Vie1i ) (s, a)} — 22
worr (™) p(n * wor (™
:E(s,a) d’f((’:l)> " ( (Vh+1 i I%%)X Vidi )) (s,a) — <<PIS - Ph) HéaQX Vidi > (s, a)]
— 2
B <n> (n) wor ")
T (sa)~di () . P Ph htron Vh+1 (s,a)
(1) wor(™ ~
FE__sm Vig1,i(s) = Vh+1z (s)| —2¢
p(n) py1
n 7(n) wor (™ ~
EE(S a)mdn?) { }(L )( a)— Hf, )(s,a)} TE__ [Vhﬂ,i(s) —max V7, (s)| — 28
’ JCON p(n) pi1 weR;
H
> B gya B (5.0) ~ HI(s,0)] —2(H —ht 1)z,
W —h p(n)

where the last row uses the induction assumption.

Therefore, we have proved equation 17. We then apply h = 1 to equation 17, and get

—(n o (™)
e |V106) -~ ma vie o)

7 o1 )
£, [P0 - ma v o)

p(n) 1 wesY;

2 ZE (s,a)md™™ {B;(ln)(s, a) — Hf}(l”)(s,a)} _2H¢
h=1

P p

H
- E(S a)~di () [/Bh } H Z (s,a)~d®™) |:ff(7,n) (s a)] —2HE.
et POV h JCONS
For the second term, since HP( ) max,ecq; V}f_ffl is linear in dggbn) and %P}t maxuco, fo-ﬁfi n)

is linear in ¢}, and according to the result of Lemma C.1, the 2-norm of their weights are both upper
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bounded by v/d. Therefore, we have Ea~u(a) [fé”)(, a)} € Fi,n. By Lemma C.9, we have for
h=1,

p(n) 1

2 N
E(s,a)Nd’_’M) [fl(n)<87a)} = \/AE(S G)NP(H) |:(f1(n)(57a)) :| = Ag(n).
And Vh > 2, we have
r (™) |:f}(Ln)(87 a)}

(s,a)~ p(n) p
T(n ~ ~ n 2
<Ejaeae  [ming 4G a) nAE o {(fﬁ (5,a)) ] +dX + nA2( 1
, P(n) h—1 Z (n) ¢(n) ) s
S]E(S &)Nd;\-(n) min ;zn)l( a)” N nAQC(’rL) + d)\7 1
s P(n) p—1 Zn p(") ¢(n)
- h—1""h

2
Note that we here use f,g")(s,a) < 1, E(Sa)~p<n) [(f,(l")(s,a)>] < ¢™ and

2
]E(S @yl [(f,(ln)(s, a)) ] < ¢, Then according to our choice of a(™), we get

E( Y () [f,gn)(s,a)} < IE(~ ) min (/5(71)1( a)H . 1
5,8)~Cs ) 4, 58)~CL ) o (.
ey 1P,
Combining all things together,
7™ _ max vw”( "
weR;

we;

ZZE(S,Q)N(@"”, {f(z } HZ (s,a)~d ™™ [f,ﬂ”)(&a)} —2HE

JICONN

=E,d, [Vgnl)( ) — max V“O’T(")(s)]

>Nk |8 (s,a) — min { ca™ ‘qu”)(g,&)Hzfl JH S| — HAC™ - 2He

h=1 P np{™ 3

=~ HJ/AC™ — 208,

which proves the inequality. O

Lemma C.13 (pessimism). Consider an episode n € [N] and set o'™) = © (H\/nAQC(") + d)\).
When the event € holds, we have

o™ (s) =" (s) < HVAC™, Vn € [N],i € [M].

Proof. Let f,gn)(s, a) = ‘% (P}En) P*) V,H_'i)z
+ Vthl ;(s) is bounded by 1, and

(s,a), note that by definition, we have

() Th+1’i(8, a) 1 N ()
HVh+1 Z( ) :]EQNTI';H)(S) |: H + E (Ph+1vh+2’i> (S, a):| € ]:2’}7(.

) - oo
where we use the result of Lemma C.1 and get % (P}jHVh”H’i) (s,a) is a linear function in ¢} |

and the 2-norm of the weight is upper bounded by v/d. Then according to the event £, we have

Bty | (760@) | 26 By o | (176) | < e ine i
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| én (s, a)||(

||z:—1

50 .
PR

h,op,

)—1 :@<||¢h(s,a) ) , Vne€ [NLhG [H],¢heq>h.

A direct conclusion of the event £ is we can find an absolute constant ¢, such that

L H
)

H

ﬁ,(ln) (s,a) =min { o™
5
h,ng”

4 Ga)| (

(;5(")

> min { ca™ h

)

e

7

(5, d)HE’l

nypglm

VYn € [N],h € [H].

Again, we prove the following inequality by induction:

H
n ﬂ—("> Aln n
E__gm [Kg)(s) - Vi (s)} < Z E(S ) {—B,(L/)(s,a) + Hf,(L, )(s, a)] , Vh e [H].
JICONN h—h ’ p(n) !
(18)
e When h = H, we have
B, o0 (Vi) = VA ()] =B e [@0005.0) - QR (5. 0)]
AT H,i H, (s,a)~dlg(n)7H XN H,i \®»
_ A(n)
*E(s7a)~d"};(z)> B {* H (S,a)}
B | B (s, @) + HI (5. 0)]

pn) JH

Suppose the statement is true for h + 1, then for step h, we have

) )]

n ()
]Eswn((”)) [KEH)(S) — Vi (5)]
P h
B Qs a) - QF (s.0)]
(S’G)Nd;(n)‘h [ Zh,i h,i )
=E _—B(")(s a)+ (P(")V(n) ) (s,a) — (P*V”(n)) (s a)}
(s,a)Nd;;((jj) R R Yht1,i) (S hVh+1, ) \Ss
A(n A(n n a(n) ~(n ()
:E(s,a)Nd’f((")) - f(l )(s,a) + <PIS : (KELJr)l,l o Vh+1,i)> (s,a) + ((P}E ) - Pf:) Vh+1,i) (s, a)}
P") h
=E _—B(n)(s a)+ ((P"™ - pr v (s,a)| + E ym oy
(s,a)wd’f(n) h ) h h h+1,i ) smod (™ Yoht1, h+1,i
pn) p L P(n) py1
[ 5 e
SIE(s a)~d™ ™) *5;8")(57 a) + Hf;(bn)(sv a)} + ]ESN () [(Kml,i - Vh+1,i) (5)}
’ p(n) p b () hy1
H ~
< Z IE(s a)wd"(") [_ }(LT/L) (S’ a’) + Hf(tl)(s’ a)] .
h—=h ’ 15('7L)7h/

where the last row uses the induction assumption.

The remaining steps are exactly the same as the proof in Lemma C.11 or Lemma C.12, we may prove

IE( () [min{fl(")(s,a),l}} <V ACM),
s,a)~ B2
and
(n) ) ea™ oy L
E ey [fh (&a)} SE o) m min ¢h71(s,a)“ ) 10, Vh>2
(s,a)~ P n (5,a)~ P h1 DI o)
" Ph—1%h—1
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Combining all things together, we get

n (0 n ()
o o =B, V() 1 (9)]

E(p oyt |0 (5:0) + HEM (5,0)]

(51‘1)’\‘ pn) h

IA
M=

H—-1
<SSE g | B (5,0) + min oG, H |+ HVAC
= P Zn,pﬁf’>,<£§f’>
<H\A(™,
which has finished the proof. O

Lemma C.14. For the model-free algorithm, suppose N is large enough, when we pick A\ =
6 (d1og YHI21), () — © (£ 1og WML [ — O(NHAMA), & = 57y and o) =

S) (H\/nA2§ n) 4 d)\), with probability 1 — 6, we have

N
STAM™ < HAPARNE M log

n=1

ANHAM|®|
e

Proof. With our choice of A and ¢, according to Lemma C.6, we know &£ holds with probability
1 — 4. Furthermore, with a proper choice of the absolute constants, we have

o =0 (H d?A%M log 5

<0 (110 310 ST

dNHML|®P NH|®
7| | +d210g76| )

<O(NHAMd) < L.

(7 13) (Vi i)

2H2 (V;jl P — KELZ)M) € Fup. By definition, we have

Let (n) (s,a) =

Tz (s,a). We first verify

gz (V00 Vi) =B | i)+ P (Vs — Vih,) (@)

~ ~ -1,
The first term is equal to 7z min <a(”) \/Qﬁ;n) (s,a)T (Zgn)> ;l”)(s, a), H) , which is exactly

the same as that in the definition of F; j, (note that we use the property o) < L,Vn € [N]). For

the second term, note that we have 0 < 5 H2 (Vﬁl"f Vgln 2) < 1,Vh. Therefore, by Lemma C.1,

2H2 Py (V;::_)Q i V;;ﬁr)2 Z) (s,a) is a linear function in ¢y ; whose weight’s 2-norm is upper

bounded by v/d. Combing the above arguments, we conclude e (VESF)1 i Vg:l)l @) € Fuh-

According to the definition of the event £, we have

2
S [ ()] < ol - 1=@(¢h<s,a>||E;;M>, ¥ € [N], 61 € By, h € [H].
(19)

By definition, we have

A = max {@Z(-n) - yﬁ”)} + 2H\/ A,

i€[M)
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For each fixed i € [M],h € [H] and n € [N], we have

E, g0 [Vi () = Vi ()]

SNd;(:L ——h,i
=E___.m [(D <n>@§:¢)> (s) — (D <n)Q(n»)) (5)}
S dP*,h Th Th hvz
_ [~(n) (n)
_E(s,a),\,d;(*”,il | Chi (S, a) - Qh,i (57 a):|
(o A(n ~S(n *(”) n
“E(, amiz), (2507 (P (Vi = Vi) (5. a)]
_ (6 5(n) A(n) «\ (77(n) (n) —(n) (n)
—E(S@)Nd;(:)h _Qﬁh + ((Ph - Ph) (Vh+1,z' - Kh—‘,—l,i)) (s,a)] + EsNd?(*n,;Lﬂ {Vh+1,i(s) - Kh+1,i(s)
P n —(n) n
<E gz |20 (5.0) + 22, (sa)| +E_ o [T - v )]

P* ht1

H
2B e B (s0) + B A (5,a)]
h'=h

* !

where the last inequality is calculated using induction. In particular,

H H
—(n) (n) A(n) > (n)
Byag) {V“‘ (s) = Vi, (S)] = 2;E<s,a>~d;‘fﬁl {ﬂ h (S’“)} +2H };Ew,a)w;i‘i {fh (S’“)} '

(a) (b)
(20)

First, we calculate the first term (a) in Inequality equation 20. Following Lemma C.10 and noting the
bonus ﬁ}(L") is O(H), we have

H
35 gy 7100

*,h

h=1
H
,SZE(S @)drl?) min | o™ ‘¢§Ln)(s,a)“ o JH (From equation 19)
h=1 Ph nypglﬂ)r‘l;;:)
H-1

~ 2
o (sa)| + H2d)

(n) s(n)
P PR

A

nA (a(”))2E(S_’a)~p$)

e
> B s aymart®) [”qﬁh(s’a)”?l

=1 no o,

h
2 ~(n 2
*J“mw By |00

o™

Note that we use the fact that B = H when applying Lemma D.3. In addition, we have

2(n) 2
nkE y o, (s, @) -

nop{™ )

h

7(n 7(n 7 (n 2(n -1
=nTr <]E(S,a)~p§ln) |:¢Ez )(s,a)d" >(5,a)T} ("E@,G)Np;;» { (s, a) 2)(5’“)1 +)\Id> >

<d.

(s,@)~p"

Then,

\/dA (am)? + H2d) + \/dA (am)?/n.

n,'v;L )’d);;

H
3(n) x(z =~
};E(s,awd;ﬂ {Bh (s’a)} = ]E(g,a)w;(:j; [||¢h(s’a)||2"l n
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Second, we calculate the term (b) in inequality equation 23. Following Lemma D.3 and noting

2
( ,(l")(s, a)) is upper-bounded by 1 (i.e., B = 1 in Lemma D.3), we have

H
SE, o (s, a)]
= (s,a) dP*,h

H-1 (n) 2 (n) :
* (5 = " !

< > E s ayas ) [lwh(&a)nzn}w}f)ﬁ;] NAE(, 0ywpt I:(fh (s,a)> ] A+ AR o [(f1 (S,a)) ]

H-1
<Y Bt Lm( @)l | VAT 4 R AT

h=1 nog o,

(n) H-1
S5 Y Eaaz, | 164G @) A
STH (5,a)~dp% ), TR e,

h—1 *'h

2
where in the second inequality, we use IE(S a)pl™ [(f}(ln)(s, a)) ] < C(n)’ and in the last line,
’ h

recall \/nAC(™ +d\ < o) /H. Then, by combining the above calculation of the term (a) and
term (b) in inequality equation 23, we have:

ERESTLE R I HORR U IO]
P*,1

2

H—-1
s = 2 dA (o
=D N LA [H(pg(s,a)nzlm VAA (a®)? + H2dx + dA (a™)”
h=1 P oy 9
H-1 a n)
2 S N n
TH D ( 77 B ayag?) [nms,a)nznl( ) AT >).
h=1 h
Taking maximum over i on both sides and use the definition of A(™) we get
A®) = ma {0 = o} 420/ AL
i€
H-1 2
2 dA (a(m)
S (B, (10565 [ ia (o) s zan 4y A0
h=1 ™R
H-1 a n)
2 - ] * (= B (n)
+H }; ( H E(gﬁ),\,d;&'ﬂl [¢h(87a)||2n,i§"t),¢g AC > .

Hereafter, we take the dominating term out. Note that

(3,a)
w0

E 3 dw(ﬂ [¢h( )”271 ) *‘| S N E §(~1 dﬂ(” |:¢h( ) - £7L)7¢Z¢Z(§’d):|
5 \
(CS inequality)

N
SAIN <logdet (Z E(g,a)wd;(;"il [05(5,@)p5 (3, a)T]> —logdet()\ld)> (Lemma E.2)

< I 1+ —
_\/dN og( +d/\)

(Potential function bound, Lemma E.3 noting ||¢} (s, a)||2 < 1 for any (s, a).)

=

Finally,

dA (a(™ )

N
(n)
;A <H \/leog< >\/dA (a)? +H2d>\+z m

n=1
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+ H? <é\/leog< + ) N)+Z\/A§(”>+2HNE

N
< 2 (N)
<H \/NAlog <1+d/\>a

(Some algebra. We take the dominating term out. Note that (™ is increasing in n)
dANHAM|®|

— 5

This concludes the proof. O

<H3d?A3N3M? log

Proof of Theorem 4.2

Proof. For any fixed episode n and agent ¢, by Lemma C.11, Lemma C.12 and Lemma C.13, we
have

71'(”.) n n n P
vj’ o vf( ! <0r m%xv“’”( ' vf( )> < @(”) fygn) + 2/ ACm +2HE < AW 4 2HE.
well;
Taking maximum over ¢ on both sides, we have
7'r(n.) n n
max {vj -t — vf( )} <or max {max vw"”( " Tr( )}) <A™ 4 9HE, (21)
ie[M] ie[M] |weQ
From Lemma C.14, with probability 1 — §, we can ensure

N
S (AM t2HE) < HPd?ATNEM? log

n=1

ANHAM|®|
—

Therefore, according to Lemma E.4, when we pick N to be

HSd*A3 M HAIAM|dP
o (T (HE)).
€ oe

we have

N
~ Z (A™) 4 2HE)

On the other hand, from equation 21, we h

max{ R (or max {maxv;‘wﬁ—v;}}>
ic[M] ie[M] | we
{ RS 7r<n*>} ( { wor (™) W(n*>}>
= max < v; — ] Or max { max vy — ]
i€[M] ie[M] |we;
| XN
<AM) p2HE = min AM 420 < =Y (AM™ 2HE) <«
< b < =
which has finished the proof. O

D ANALYSIS OF THE FACTORED MARKOV GAMES

D.1 HIGH PROBABILITY EVENTS

Define the set 1, ; = {¢n.i(s, @) := Qjcz, on.;(s[Z;], a;)|n; € Pn;}. Let |@] = max, ; |, ;]
and |®| = maxy, ; |®, ;|. Clearly, we have |®| < |®|L. Define the following event

2
& :Vne[N),helH]ie[M],pe {p; %ﬁg’”}, {HP(" 1512, ai) — Py (152, az) 1] < ¢,
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E: Vne [N he[H i€ [M],éni € Pni, ldnils,a)l ., 1 =0©(lni(s.a)llg-r
(Eh'ﬂ(%}z,i) n’pgln)’d)h K

£ .= 51 ﬂgg.

The following lemma shows that the event £ holds with a high probability with proper choices of the
parameters.

Lemma D.1. When P}En) is computed using Alg. 2, if we set

NHM|D|\ .y o1, |IMHNM
(5 ) ) C - 9 n IOg (5 )

A=0 (LdL
then & holds with probability at least 1 — 9.

The proof of Lemma D.1 is follows a similar procedure as that of Lemma B.2, with minor changes
on the notations as well as some modifications on the union bound.

D.2 STATISTICAL GUARANTEES

Lemma D.2 (One-step back inequality for the learned model). Suppose the event € holds. Consider

a set of functions {gn }1_ | that satisfies g, € S|Zi] x A; — R4, s.t. ||gn|lso < B. For a given
policy m, we have

AN (A EAIED)

\/AE(S a)~ p(”) [gl( [Zi]aai)], h=1

’]E(s a)~d™

<
Eay~ar ) min ¢ A H&@M(& &)H o \/"E(S ayeptm [07(5[Z], @i)] + B2Ad" +nB2 (™, B
PR h=1 N OREON ’ h
Ph—1Ph1,i
where 7(n )(3 a) = ®jeZ¢ ¢§Ln_)17j(S[Zj],aj), and by npl" B

NE oo [0 (5, @) (5, @) |+ MLz

Proof. Forstep h = 1, we have

[91(5[Zi], a:)] =Esndy aimm (s) [91(5]Zi], @i)]

dy (s)mi(ails)
<\/H}ax ?E(S’,GQ)NP(JL) [g%(SI[ZiL a;)]
_ di(s)mi(ass) 2(gf !
‘%m) “D(s)uaan) D 9112 a)
g\//lIE(s’ai)Npgn) (93 (s[Zi], @i)].
For h > 2, we observe the following one-step-back decomposition:

. p 905123, @]

Esayodr
(s,ai) dﬁ(n),1

EG.a~ar,

=B ayar B, (5.8), a1 (o) I (31 Z1], @0)]

p(n) p—

=E(s.amin, [ / H [0, 61230, a0) Tl (s5)] S0 Trh(ails)gh(s[ZiLai)ds]

a;EA;

a;,€A;

~EGaray,, | | lmn{ /. 1l (62, G121, a) ol (0] 32 m(ails)gh(s[Zi],ai)ds,B}]
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(n)

<E(s,a)~ar min E:% 4(31Z50,a5)

() h—
a;€EA;
1

(8020, 6123080) "0 )] 1

§Z]“J)] [

) [® ¢§Ln)1 N
[]EZ
51

JjEZ
(n) ,(7,)

PRl Ph

=E ~ min
(5,a)~d™ Bn) h_

(/)

a;€EA;

~(n)
wp, - 1,5 SJ

=E,a)~ar

p(n) p—1

| As|

~(n)
Wy, - 1]5]

1
| Al 2

a;EA;

0E (@

a; €A JEZ

7E(s a)~d™

p(n) p—1

A1)

<E ~
(5,a) dP(n) Jh—1 |:

,B} |

D3

a; €A

J

Then,

Joar

<nkE

2

9n(s[Zi], ai)ds[Z;]

L ()

® 121,(:1)1’].(3]-)

JEZi

(n) ;
SRl SR

) o4, (5,a5)) gn(slZ

],a;)ds[Z

>0 T (@i256)

a,€EAjJEZ;

(Hﬁ Y aieq, 9n(s[Zil, ai)

[ 2
(Eswpéi)l(g,d),aiNU(Ai) [gh(S[Zi], al)]> :| + B2)\d~

N
(g.a)~p{",

Z]IAI

< B and Hwh 11

=nkE __ n
(3,a)~p{",

2
<nE,. . (ESNP}:71(§7&),aiNU(Ai) [g}L(S[Zi], CLZ)]) :| + B2+ ’I’LB2£(H)

(3.a)~p}"

<nE, . .

(3, a)Nph )1;3NP;

1(8,a),a;~U(A;) [g%(S[Zi], al)] + B2Ad" + B2n€(n)

=nE,_ . o [g}(s[Z],ai)] + B*Ad" + B*n¢™)
(Svaz)NPh
Combing the above results together, we get

E(,a:)~d [9n.(s[Z:], @i)]

o

<EGarar,, | |:m1n{AH¢(hn)“ (5, a)H NO)

o}

\Azl 2

a;€EA;

(]EZ

(n)
1’

PR~ d;sln—)l,i

> gn(slZi), ai)ds[Z), B

a;EA;

Wy 1,5 (s

(Definition of p;,

Wy, — IJSJ

whn_l,j(sj)} ﬁ > gh(S[Zi]zai)dsz}]

i

Z gn(s[Zi], a;)ds|Z], B}]

grn(s[Zi),a:)ds[Z;], B }]

) gn(sZi], ai)ds[Zi]

+ B2\d*

I A

(Event &)

(Jensen)

) gn(sZi], ai)ds[Zi]

<E(s,a)~dm min{ A H¢§LH)1 ;(3 d)Hz—l
(n)
TP —

p(n) p_1
1">§L)

which has finished the proof.

\/HE( Jpm (95 (s1Zi], @i)] + B2Ad" + B2n((™, B
s,ai)~py,

O

Lemma D.3 (One-step back inequality for the true model). Consider a set of functions {gy }L, that

satisfies gn, € S[Z;] x A; = Ry, s.t. ||gnlleo < B. Then for any policy w, we have
E(s,ai)~az, , [gh(S[Zi],ai)}‘
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VAE o o [ Z]a)], h=1,
<

AE G gy, [H% 1i(5,8)|[ g

vy

(

\/nE(s a)~ p<") [gh( [Zz]a a’z)} + BQ)\dL’ h > 2’

" 3
1Pho1

where ¢}, (s, a) = ez Ph-1,;(s[Z5]. aj), and 3w

" Yh ’¢n,i
RE( ) o [Fhi(5: @) 45, @) | + Mzt

Proof. For step h = 1, we have

E(s,a)Nd;*’1 [gl (5[21]7 ai)] :]E’SNdl,(liNﬂ‘l(S) [gl(S[Zz]aaz)}

di(s)m1(a;ls
< fmax BT g (12, a))
(@) p{"(s,@;)

di(s)m (ails)
:Vé“w e, (an) Pttt 1120

<A o0 l93(51Zi), 1))

H — 1, we observe the following one-step-back decomposition:
E.a~az, , l9n(s[Zi], ai)]

=Es,a)~a

Forsteph =2,...,

P* h— 105 _1(57&)7ai’\‘77h( ) [gh(s[zlL al)]

Eai,, || o612 /Z & w1 (55) | mnlails)gn(siZ], a))ds
JjEZ;

a;€A; \JEZ;

S R L e Y / > i | ® i) | outslzi.agasiz)
JEZ;

a;€A; J€Z;

<ABGaymar. , ||| Q ¢ho15G1Z) a))

J€EZ;

n-1
L n"Y}(LTL)l’J);Lfl,i

/ 2 g | @ wicrils) | an(slZ,addslz)

a;,€A; JE€EZ; =
TN S
Then,
2
/ > i | @ wicise) | ontelzi, anasiz)
a;€EA; JEZ;

(n)  Zx
" Th—1Ph—1

ST 5 gy (™), (/ Z <® wh_1,; Sa)) (@ ¢>2_1,j(§[zﬂ»ﬁj)> gh(S[Zz‘]aaz‘)dS[Zi}) + B*Ad"
a;EA; JjEZ

J€Z;

(Use the assumption HzaneA- ﬁg;L(s[Zi], ai)

< Band ||wj_y ;(s:)]|, < Vd.)
[ 2
=NE (; ayar(™, _(EMP;Ll(ﬁ,&),awU(Ai) [gh(S[ZiLai)]) } + B*Ad"

2 2 L
ST (6 8y, om P (5,8~ (A1) [gn(s(Zi], @i)] + B*Md (Jensen)
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SnE (g~ P [gi(s[Z], @)] + B*Ad", (Definition of p{™)
which has ﬁmshed the proof. O

Lemma D.4 (One-step back inequality for the true model). Consider a set of functions {gn }L | that
satisfies gn, € S|Ujez, Z;] X AlZ;] = R, s.t. ||gnllee < B. Then for any policy m, we have

7., 90 (5Uje 2,25, alZi))]

AE o o [ 6ljez Z) alZ])], h=1,

‘E(s a)~dr,

A"EG ayna, —14(8, EL)HE . \/”]E(s,a)Npgp 97 (s[Ujez, Z;], alZi])] + B2AdL*,  h > 2,
™ “’;(zml Ph_1
where (bz,i(sv a) = ®k€Ujez Z; d)h*lyj(s[zk]’ ak’)’ and E"»’Y;(Ln)a‘g’;l,i -

RE, 4 o0 [0hi(5, @005, @) |+ A s 21

Proof. This Lemma can be proved using similar steps as those in the proof of Lemma D.3, noting
that in this case the dimension of ¢7 . is at most L. O

Lemma D.5 (Optimism for NE and CCE). Consider an episode n € [N] and set o) =
] (H[h/n((") + dL>\>. When the event £ holds and the policy ©™) is computed by solving
NE or CCE, we have

) "

7 (s) — v (5) > —HM\/AC™, Vn e [N],ie [M].

(n) _ tr) - _
Proof. Denote  fi;,"; (|s) = argmax, () th (s) and let 7, =
/12"2 x w,(ln) Let f,(ln)(s,a) = HP’L -|s,a)—Ph(~|s,a H1 and f(”)( [Zi],a;) =

HPh,i |sZi], ai) — Py ,(+]s][Zi], ai) ‘1

. Then according to the event £, we have

2 2
E s a)mpf [(fﬁ)(s[zi]’“i)) ] <M By {( (12 a0)) ] < (™, Vne[N),heH)ie[M]

(n) 3
h,$p n,py,

||¢thaH< o )1:@<H¢h7i(s,a)||z_l ) > Vn € [N],h € [H], ni € Bp;,i € [M].

A direct conclusion of the event £ is we can find an absolute constant ¢, such that

M
,(In)(&a) :Zmin o™ ‘q@é’?(é, EL)H -1, H
= ( wi:fZ)

‘(b(n) HE ) JH Y, Vn€|[N],hel[H].

M
> E min { ca™
i=1

Next, similar to the proof in Lemma B.5, we may prove

(n), (n)

H
(n) 5(n) . (n)
Esoa, |:V11( ) — } ZE(S @)~ d,r((:?) } [ 5 (&a)} - H};E(&a)ng(Z))’h {mm{ N (s,a),lH .
For the second term, note that we have the relation min{ fén)(s,a), 1} <

ZMl mln{f(")( [Zi],a;i),1}. By Lemma D.2, we have for h = 1,

E,ayeqr  [min {7 (12, 00),1}] < \/AIE(é st [( (s [zl],ai))Q] < JAcm.

p(n) 1

50



Published as a conference paper at ICLR 2023

And Vh > 2, we have
E(s,a)wd*<"> [min {ff(:l) (slZi], ai), 1}}

P h
2
< . 5 (™ s12 ) L (n)
NE(s,a)Ndjgin’) . min AH% 1i(8 a)Hz— o 50 \/nE(m)NﬁL) [(fh,z (s[Zi], ai) } +d* A+ ¢t 1
' L e e

SE. ;o) oge min { A Hcﬁh Ll &)H o n¢™ +dEx 1

($8) L6 s (5,

L LT NS A

2
Note that we here use min{f}(ﬂ)(s[Zi],ai), 1} <1, IE(g a)mpl) [(f}(an) (s[Zi],ai)) } < ¢ and

2
]E(S Ayl [(f,(lf?(s[Zi], ai)) ] < ¢(™). Then according to our choice of a(™), we get

(n)
; n ) ca
]E(S’a) aim [mm{ffs,i)(S[ZiLai),lH S]E(g,a)wdw“) min I

JSONY P(n) p—1

(n) 1z~
“bhq,i(&a)Hz,l i1
QRO

n,pp,

Combining all things together,

—(n 1, (_n,) n Tfﬂ(—ni)
o™ ol K, [vi?m—vu (s)

H H

> Z E(S aymd ™ [ ,(Ln)(s, a)} - H Z E( )y [min { ,(Ln)(s, a), IH
h—1 p(n) p he1 p(n) p
H—-1 .

> E(Sa ™) ,(ln (s,a) me ca™ }gégnj) s,a H . H — HM/ A¢(™)
h=1 Pk 2 5

h h,j
> — HM /A,
which proves the inequality. O

Lemma D.6 (Optimism for CE). Consider an episode n € [N] and set o™ =

S} (Hfh/ng“(") + dL/\). When the event £ holds, we have

ﬁgn)( ) — max v’ (S)Z—HM\/W7 Vn € [N],i € [M].

weN;
Proof. Denote oD,(lnl) = argmax,, cq, . (]D)w on(m MAXueQ, me )) (s) and let " =
ong o Y. Let f{"(s,a) | (ls,a) = Pi(ls,a)| - and fi7) (5120 a0) =

o) (124, ai) — Pa(ls[Zi), aq)

X Then according to the event £, we have
2 2
E(, ayepi [(fms[zz-],ai)) ] < B g [( o (s, a:)) ] <¢™, Vne[N|,helH)ieM]

Hqgh’i(s,a)H( () ) 1 =0 <H¢h’i(8,a)’|21 ; > , Vne [N],h S [H],(;Bh)i S ‘i)h’i,l' S [M}

h.dp nof

A direct conclusion of the event £ is we can find an absolute constant ¢, such that

h ¢§"

(n) (n) H (”) 5 H . H
L (s,a) =min ¢ « Z by,.4(5,a) (2('” )) ,
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H,, Vnel[N],helH].

)

Hz*l
RN

n,p

M
>cmin { o™ Z H(;BEZ)(E, a

i=1
Next, similar to the proof in Lemma B.6, we may prove

Esvd, V(n)( ) — max “’0”( ) } ZE(SG ~dr) [ﬂh } HZ (s.a) ) [min{ ,(L")(s,a),lH.

(CONS p(n) p

Note that we can use exactly the same steps in the proof of Lemma D.5 to bound the second term,
and we get for h = 1,

E . oy {min {fl(rz)(s[Zi],al) 1}} </ A¢m)
( ) P(”) 1 ’
And Vh > 2,
8 i {557 612 00.1)] = i@,
7(n min S(S 7 70,1' 5 >~ ~ ~ #(n

(S7a)Nd;((”)),h ot H (S7a)Nd15((")),h71 ot E ! (n) *(n)
Combining all things together,

m(-n) — max v“"”(n)

we);
=Esd V(n)( ) — max V“’f’”(n)(s)
srvd T L weq, b
H
o) - min {175, 1}]

> ~(n n
= ZE(s,a)wg((n)) . {’Bh H Z]E(s a~d min | f,7 (s, @), 1

h=1 ’ h=1 e

H-1

5(n ) (n) || (n) _ Ac(n

S SENNPI (RS o CRCY A W | meee

= | A4
> — HM\J A¢™,
which proves the inequality. O
Lemma D.7 (pessimism). Consider an episode n € [N] and set o™ = (HA\/ n¢(m) + dE A )

When the event £ holds, we have

o™ (s) — o7 ™

T

(s) < HM\/ AC™,  Vn € [N],i € [M].

Proof. Let ,g")( a) = ]3,5")(-|s,a)—P}f(-|s,a)H1 and f(")([ Zi), a;) —

If’}(bz)(\s[Zl], a;) — P ;(-|s[Zi],a;)|| . Then according to the event £, we have

1

E o aymp( [(fﬁﬁ)(S[Zi],ai))Z)] <S¢ B g {( (s [ZZLaZ-))Q] <(¢™, VYne[N],he[H]ie[M]

H(bhz s, a H( o )—1 =06 <H¢h7i(s,a)“21 > y Vn € [N],h S [H],qgh,i S Ci)hJ,Z' € [M}

n) -
hdp i .05 Ph i

A direct conclusion of the event £ is we can find an absolute constant ¢, such that

,(L") (s,a) me a™

h, ¢§"

655, ) L H
(o)
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M
>3 min { cal™ ‘&273(5,&)”271 JHYS, Vnel|N),helH]
i=1 n,p(™ ()
h h,i
Next, similar to the proof in Lemma B.7, we may prove
E d"((’;’) [Vg"z)(s) } Z E(S aymarl {—B}(:,L)(s,a) —|—H1nin{ (n )(s a), 1}] , Vhe[H].
P h!'=h P Jh
(22)
and we get for h = 1,
B, qyeqr  [min {7 (120, a0),1}] < 4/ ¢
p(n) 1
And Vh > 2,
E [min{ ™) (5[Zi], as) 1” Ly Hqﬁ(”) (s a)”
(S’a)NdE((?L)),h, P R - H (g’d)NdE((T:L)),h,—l hoLi Zil(n) (n)
n.pg, 2100y
Finally, we get
n () n 7,(n)
v —or " =B, [V () Vi (9)]
H—-1
B, 0y 3 (5, @ +me a(™ Wg s, a Hzfl H || + HMy Aco)
h=1 P h QD!
<HM\/A¢(m)
which has finished the proof. O

Lemma D.8. When the event € holds and o™ = © (HA\/nC(") + dL)\) satisfies o) < a(?) <

< oz(N), we have
(n) 298 r gL 4L N o)
ZA S H?Md" A% [Nlog {14 =+ Jal™).
n=1

Proof Let f(V(s,a) = |[BCls,@) = PiCls,a)| and £ (512, 00)

. Then according to the event £, we have

Py (15121, @) = P (1sl2). a0)|

2 2
B ampfy [(ﬁf( 2], a:) ]SC“", B amp [(é?( [ZA,a»)]sdnh Vn e [N].h e [H],i € [M]

||(j>;”saH( ) > 1—@<H¢hlsa ||E 1 >, V’HE[N],he[H],&h7i€é}17i,i€[M}.

h¢h1 "p()d’h

By definition, we have

A(n) — max {ﬂgn) _ QE”)} +2HM AC(TL)
i€[M]

With similar steps as those in the proof of Lemma B.8 (note that V,(lnz) (s) — K%nz) (s) is upper bounded
by 2H?M), we have

H
(n) n n
E, g Vi () = V{7 (5)] < 2;1&(87@)%”@) 3 (s,a)] +2H2MZE(W)NU[;% 3 (s,a)]

P*h
' h=1

(@) (b)
(23)
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First, we calculate the first term (a) in Inequality equation 23. Following Lemma D.4, we have

M=

E(S’a)wdﬂ<n> [B,&n)(s,a)}

h:l P* . h
H M
< E g E o |min | o™ d)(" (s,a) H
~ (s,@)~dTp h 51 s
== e 5
H-1 M
AL Tk (= ~
S AYE JGa)|l
(3,a) dp* h ) B
h=1 i=1 "”Y;Ln)"b}*z,i
2
(n) (”) 2 L2
n(a ) IE(S a)mpl™ (b . + H?d"" \
o™ 50

}11

L 12 ~(n) 2
+ |AL (™) E (n) H¢1,i (Saa')H -1

mof (1)

(s,a)~py

Note that we use the fact that B = H when applying Lemma D.3. In addition, we have

B | |20,
n
(s.a) E;llgn), ()

T(n n T(n Tn -1
=nTr (E(s,a)wﬁf” { 2,2(&‘1) 5, )(s a) } (”E(s,a)Npﬁl") [¢§L73(S,a) 2)3(5,0;)? +/\Id|zi\> )
<d".
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A ~
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1

=
Il

T
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M
Z d"(") Hqﬁhz d)Hz ) \/dL (a(n))2 + H2dL* )\

no™ 6

HM

dL AL (a("))2/n.

Second, we calculate the term (b) in inequality equation 23. Following Lemma D.3 and noting
f(:i) (s[Z:], a;) is upper-bounded by 2 (i.e., B = 2 in Lemma D.3), we have
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H-1

E%s

(n) sx

E )Nd};(*n;)h [||$Z,z(§a &’)Hz—l ] n((ﬂ) L din+ \/f

i=1 h=1 Y 0 Phg
Oé(n) iH 1E B . Hé; (g,d)H . + /A((n)’
T H (5.8~ ! E"ﬁﬁn)@z,i

2
where in the second inequality, we use ]E(g )mpl™) [(f;(f;) (s[Zi], ai)) } < C(n), and in the last line,

recall Av/n¢(™) + dEX < o™ /H. Then, by combining the above calculation of the term (a) and
term (b) in inequality equation 23, we have:
(n) (n)

,U‘
) [Vgnz) K(ﬁ?(s)}
M H-1 - 2
5 o > dL AL (q(n)
5) ( oo, | Vo A
=1 h=1 ("> B
M H-1 a(n) —
+H2MZ TE@ a)~dy), |65,:(5, @) Hz 1( " +\JAC )
i=1 h=1 P

Taking maximum over i on both sides and use the definition of A(™) we get

A = max {@gw <">} £ 2H M/ Ac(n)

1€[M)]

M H-1 [ . dL AL (a(m)?
=D DD DN P F | ¥ a)Hifl( | V(o) + H2d0 ) + +)

i=1 = | e

n

B*
" Yp ’¢h,i

M H—1
+H2MZ Z (E g, l||¢hz )HZ—l(

i=1 h=1
Hereafter, we take the dominating term out. Note that

+ \/Ag(m) :

N ~
;E(mw’;ﬂ |4, (s’a)Hz—l o
N ~
< N;E(gy) ', |:¢h (3,a)7 2_71 ™ g h,i(gvd)] (CS inequality)
N
<KV <log det <A1dujgzizj - ZlE(M)N ) [&;,i(g, &)452,1(5,&)TD —log det(/\Id|uj€Zizj|)>

(Lemma E.2)

N
1.2
\/d Nlog (1 + dA)

(Potential function bound, Lemma E.3 noting ||¢j, ;(s[Zi], a;)[|2 < 1 for any (s, a).)
Similarly, we have

N _ N
;E(g,a)w;&’f; [H@ﬁ,i(g’ d)Hz—l ™ g ] < \/dLNlog (1 + d)\)

™Yk
Finally,
N
dL AL (n)
> AW <HM \/dLQNlog (1 + )AL\/dL (M) + H2dE* )\ + Z 75:1 )
n=1 n=1
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N
+ H3M? (;I\/dLNlog (1+(Ji\;>a(N)+Z Ac(n)>
n=1

<SH2M?dY" A%\ [N log (1 + ji\/[\)a(N).

(Some algebra. We take the dominating term out. Note that o™ is increasing in n)
This concludes the proof. O
D.3 PROOF OF THE MAIN THEOREMS

Lemma D.9. For the model-based algorithm, when we pick A\ = © (LdL log %M@l), a® =
S) (Hfl\/nf(") + dL)\) and (™ = © (% log IMW#) with probability 1 — 6, we have

1 |IM|HNM
2 log ———.

N
ST AM < EEMPA T AN 5

n=1

Proof. The result of Lemma D.1 implies with our choice of A and ¢(™), the event £ holds with
probability at least 1 — 4. In this case, we have

a™ =0 (HA\/ log M + Ld?" log NH;W"I)') , (24)
which is a constant unrelated with n. Therefore, using the result of Lemma D.8, we get
f: A < [2gL* AL )2, | Nlog (1 + é\Qa(N) < H3M2AEAD* AL L3 N3 Jog 7‘M|I§NM,
n=1
which has finished the proof. O

Proof of Theorem 4.1

Proof. For any fixed episode n and agent i, by Lemma D.5, Lemma D.6 and Lemma D.7, we have

wel,;

ﬂ_(”‘) n n n n n A
ol T ™ <or max v — of )) <o — o 4 2HMACm < A,

Taking maximum over ¢ on both sides, we have

(TL) n n n
max {v:’ﬂi —vf( )} (or max {max v;*’o”( : —vf( )}> <A™, (25)
i€[M] ie[M] (we;

From Lemma B.8, with probability 1 — §, we can ensure

|M|HN M

N
ZA(n) < H3M2d(L+1)2AL+1L%N% log 5

n=1

Therefore, according to Lemma E.4, when we pick N to be

LSMAHS@2(LAD* A2+ HIALM| M|
0 log () ,

g2 oe

we have

1 N

il (n)
g A < e,
n=1

56



Published as a conference paper at ICLR 2023

On the other hand, from equation 25, we have
max {vj’ﬁ”' - UZT} (or max {maxv - Uf})
i€[M] ie[M] (wen

() (n*) (n*) (n*)
= max v, —oF or max < max vy’ — ol
i€[M] ) ie[M] |weQ;

AT = min Z <e

which has finished the proof, noting our assumption that L = O(1). O

E AUXILIARY LEMMAS

Lemma E.1 (Concentration of the bonus term (Zanette et al. (2021), Lemma 39)). Set A7) >
O(dlog(nH|®|/9)) for any n. Define

T s = M gy [0(5, a)p’ (s,a)] + A"y, B = Z o(si,aiN)o7 (s}, af) + AT

With probability 1 — 6§, we have
Vne NT,Vhe [H|,Vp e P, cillg(s,a)llg1 < ||¢(5,a)||(2%)71 < ezl é(s, a)lls—

o™ e o™ 0

Lemma E.2 (Agarwal et al. (2020a), Lemma G.2). Consider the following process. Forn =1,..., N,
M, = M, _1 4+ G, with My = M1 and G,, being a positive semidefinite matrix with eigenvalues
upper bounded by 1. We have

nl

2log det(My) — 2log det(Aol) Z T (G

Lemma E.3 (Potential function lemma). Suppose Tr(G,,) < B2.

NB?
2logdet(My) — 2logdet(Aol) < dlog |1+ i
0

Proof. Letoy,--- , 04 be the set of singular values of My recalling My is a positive semidefinite

matrix. Then, by the AM-GM inequality,

i=1 =1

d d
log det(My)/ det(AoI) = log [[(¢:/Xo) < logd <‘1’ S (o //\0))>

Since we have Y, 0; = Tr(My) < d\g + N B2, the statement is concluded. O
Lemma E.4. For parameters A, B, e such that 42
pick N = 1og2 A432 =0 (A log? AB) we have
A

——1log(BN) <¢

N g(BN) <
Proof. We have

4 10g<A A%B 1o 2A24B2)
—— log(BN) =¢
Note that
A’B ., A*B?  A'B? , A1B? AQB
= log = < = & log oS3
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A%B
82

where the right hand side is always true whenever
we get

is larger than some given constant. Therefore,

A
——log(BN) <e.
N g(BN) <

F EXPERIMENT DETAILS

F.1 DETAILED ENVIRONMENT SETUP

In this section we introduce the details of the environment construction of the Block Markov games.
For completeness we repeat certain details already introduced in the main text. We design our Block
Markov game by first randomly generating a tabular Markov game with horizon H, 3 states, 2
players each with 3 actions, and random reward matrix R, € (0, 1)3X32 *H and random transition
matrix T}, (sp, an) € A(Shy1). For the reward generalization, for each (s, a, s) entry in the reward
matrix, we assign it with a random number sampled from a uniform distribution from -1 to 1. For
the probability matrix generation, for each conditional distribution T'(+|s, a), we randomly sample 3
numbers from a uniform distribution from -1 to 1 and form the probability simplex by normalization.
For the generation of rich observation (emission distribution), we follow the experiment design of
(Misra et al., 2020): the dimension of the observation is 2/'°8(# +ISI+11 For an observation o that
emitted from state s and time step h, we concatenate the one-hot vector of s and h, adding i.i.d.
Gaussian noise A/(0, 0.1) on each entry, pend zero at the end if necessary, and finally multiply with a
Hadamard matrix. In our setting, we have variants with different horizons H.

F.2 IMPLEMENTATION DETAILS

For the implementation of GERL_MG?2, we break down the introduction into two parts: the
implementation of Alg. 3 and the implementation of game solving algorithm with current features
(line. 10 and line. 11 of Algorithm. 1). For the implementation of Algorithm. 3, we follow the same
function approximation as (Zhang et al. (2022)) and adapt their open-sourced code at https://
github.com/yudasong/briee. Weinclude an overview of the function class for completeness:
we adopt a two layer neural network with tanh non-linearity as the function class as the discriminator
class. For the decoder, we let 1)(0) = softmax(A' o), where A € RI®/*3 and we let ¢(0,a) =
1(0) ® a. Here a denotes the one-hot encoding in the joint action space.

Different from Zhang et al. (2022), we solve the optimization problem by directly solving the min-
max-min problem instead of using an iterative method. We show the implementation in Algorithm. 5.
We first perform minibatch stochastic gradient descent aggressively on the discriminator selection
step (line. 5, on é and f) and the feature selection step (line. 6, on ¢), where in each step we first
compute the linear weight w and w closed-formly and then perform gradient descent/ascend on the
features and discriminators. Note that here the number of iteration 7" is very small.

For solving the Markov games, in addition to following Algorithm. 1, to solve line.10 (i.e., solving
equation 2 or equation 3 or equation 4), we implement the NE/CCE solvers based on the public repos-
itory: https://github.com/quantumiracle/MARS. Note that the essential difference lies
in that (Xie et al., 2020) assumes that the algorithm has the access to the ground-truth feature but our
algorithm needs to utilize the different features we learn for each iteration. We also adopt the Deep
RL baseline from the same public repository.

F.3 ZERO-SUM EXPERIMENT TRAINING CURVES

In this section we provide the training curves of GERL_MG?2 and Deep RL baseline in the zero-sum
setting in Figure. 1.

F.4 GENERAL-SUM EXPERIMENT DETAILS

In this section we complete the remaining details for the general-sum experiment. We include the
training curve in Fig. 2.
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Figure 1: Training curve in the zero-sum setting. We evaluate each method over 5 random seeds
and report the mean and standard deviation of the moving average of evaluation returns, wherein for
each evaluation we perform 1000 runs. We use “Oracle” to denote the ground truth NE values of the
Markov game. The x-axis denotes the number of episodes and the y-axis denotes the value of returns.
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Figure 2: Training curve of GERL_MG?2 in the general sum setting. In this setting, the y-axis denotes
exploitability instead of raw returns.

F.5 HYPERPARAMETERS

In this section, we include the hyperparameter for GERL_MG?2 in Table. 2, and the hyperparameter

for DQN in Table. 3 and Table. 4.

Table 2: Hyperparameters for GERL_MG?2.

Value Considered Final Value

Decoder ¢ learning rate {1le-2} le-2
Discriminator f learning rate {1le-} le-2
Discriminator f hidden layer size {128,256,512} 256
RepLearn Iteration 7' {10,20,30,50} 10
Decoder ¢ number of gradient steps {64,128,256} 256
Discriminator f number of gradient steps {64,128,256} 256
Decoder ¢ batch size {128,256,512} 512
Discriminator f batch size {128,256,512} 512
RepLearn regularization coefficient A {0.01} 0.01
Decoder ¢ softmax temperature {1,0.5,0.1} 1
LSVI bonus coefficient 8 {0.1,0.5,1} 0.1
LSVI regularization coefficient A {1} 1
Warm up samples {0,200} 0
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Algorithm 5 Model-free Representation Learning in Practice

1: Input: Dataset D, step h, regularization ), iterations 7.

Denote least squares loss: £ p(¢,0, f) :=Ep [(q&(s,a)TH — f(s))Q} + M|0]13.

Initialize ¢¢ € P, arbitrarily;

fort =0,1,...,7 do o
Discriminator selection: f; = argmax ;. , [ming £y p (¢, 0, f) — mingeg 5 Lap(9,0, f)]

. . t . i
Feature selection: ¢y 11 = argmincq, >, ming, £x p(¢,0;, fi), ¢ < 11
end for

Return ¢, P where P is calculated from equation 1.

PR DR R

Table 3: Hyperparameters for DQN in short horizon environment.

Value considered  Final Value

Target update interval {1000} 1000
€0 { 1 } 1
EN {0.01} 0.01
e decay frequency {8000} 8000
Batch size {8000} 8000
Optimizer {Adam} Adam
Learning Rate {0.0001} 0.0001
Hidden layer {[32,32,32]} [32,32,32]
Self-play § {1.5} 1.5

Table 4: Hyperparameters for DQN in long horizon environment.

Value considered Final Value

Target update interval {1000} 1000
€0 { 1 } 1
EN {0.01} 0.01
€ decay frequency {8000} 8000
Batch size {8000} 8000
Optimizer {Adam} Adam
Learning Rate {0.0001} 0.0001
Hidden layer {[32,32,32]} [32,32,32]
Self-play § {1.5,2} 2
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