
Published as a conference paper at ICLR 2023

REPRESENTATION LEARNING FOR GENERAL-SUM
LOW-RANK MARKOV GAMES

Chengzhuo Ni
Princeton University
cn10@princeton.edu

Yuda Song
Carnegie Mellon University
yudas@andrew.cmu.edu

Xuezhou Zhang
Princeton University
xz7392@princeton.edu

Zihan Ding
Princeton University
zihand@princeton.edu

Chi Jin
Princeton University
chij@princeton.edu

Mengdi Wang
Princeton University
mengdiw@princeton.edu

ABSTRACT

We study multi-agent general-sum Markov games with nonlinear function approx-
imation. We focus on low-rank Markov games whose transition matrix admits a
hidden low-rank structure on top of an unknown non-linear representation. The
goal is to design an algorithm that (1) finds an ε-equilibrium policy sample effi-
ciently without prior knowledge of the environment or the representation, and (2)
permits a deep-learning friendly implementation. We leverage representation learn-
ing and present a model-based and a model-free approach to construct an effective
representation from collected data. For both approaches, the algorithm achieves
a sample complexity of poly(H, d,A, 1/ε), where H is the game horizon, d is the
dimension of the feature vector, A is the size of the joint action space and ε is the
optimality gap. When the number of players is large, the above sample complexity
can scale exponentially with the number of players in the worst case. To address
this challenge, we consider Markov Games with a factorized transition structure and
present an algorithm that escapes such exponential scaling. To our best knowledge,
this is the first sample-efficient algorithm for multi-agent general-sum Markov
games that incorporates (non-linear) function approximation. We accompany our
theoretical result with a neural network-based implementation of our algorithm
and evaluate it against the widely used deep RL baseline, DQN with fictitious play.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) studies the problem where multiple agents learn to
make sequential decisions in an unknown environment to maximize their (own) cumulative rewards.
Recently, MARL has achieved remarkable empirical success, such as in traditional games like GO
(Silver et al., 2016, 2017) and Poker (Moravčík et al., 2017), real-time video games such as Starcraft
and Dota 2(Vinyals et al., 2019; Berner et al., 2019), decentralized controls or multi-agent robotics
systems (Brambilla et al., 2013) and autonomous driving (Shalev-Shwartz et al., 2016).

On the theoretical front, however, provably sample-efficient algorithms for Markov games have been
largely restricted to either two-player zero-sum games (Bai et al., 2020; Xie et al., 2020; Chen et al.,
2021; Jin et al., 2021c) or general-sum games with small and finite state and action spaces (Bai and
Jin, 2020; Liu et al., 2021; Jin et al., 2021b). These algorithms typically do not permit a scalable
implementation applicable to real-world games, due to either (1) they only work for tabular or linear
Markov games which are too restrictive to model real-world games, or (2) the ones that do handle
rich non-linear function approximation (Jin et al., 2021c) are not computationally efficient. This
motivates us to ask the following question:

Can we design an efficient algorithm that (1) provably learns multi-player general-sum Markov
games with rich nonlinear function approximation and (2) permits scalable implementations?

This paper presents the first positive answer to the above question. In particular, we make the
following contributions:
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1. We design a new centralized self-play meta algorithm for multi-agent low-rank Markov games:
General Representation Learning for Multi-player General-sum Markov Game (GERL_MG2).
We present a model-based and a model-free instantiation of GERL_MG2 which differ by the way
function approximation is used, and a clean and unified analysis for both approaches.

2. We show that the model-based variant requires access to an MLE oracle and a NE/CE/CCE
oracle for matrix games, and enjoys a Õ

(
H6d4A2 log(|Φ||Ψ|)/ε2

)
sample complexity to learn

an ε-NE/CE/CCE equilibrium policy, where d is the dimension of the feature vector, A is the
size of the joint action space, H is the game horizon, Φ and Ψ are the function classes for the
representation and emission process. The model-free variant replaces model-learning with solving
a minimax optimization problem, and enjoys a sample complexity of Õ

(
H6d4A3M log(|Φ|)/ε2

)
for a slightly restricted class of Markov game with latent block structure.

3. Both of the above algorithms have sample complexities scaling with the joint action space size,
which is exponential in the number of players. This unfavorable scaling is referred to as the curse
of multi-agent, and is unavoidable in the worst case under general function approximation. We
consider a spatial factorization structure where the transition of each player’s local state is directly
affected only by at most L = O(1) players in its adjacency. Given this additional structure, we pro-
vide an algorithm that achieves Õ(M4H6d2(L+1)2Ã2(L+1)/ε2) sample complexity, where Ã is the
size of a single player’s action space, thus escaping the exponential scaling to the number of agents.

4. Finally, we provide an efficient implementation of our reward-free algorithm, and show that
it achieves superior performance against traditional deep RL baselines without principled
representation learning.

1.1 RELATED WORKS

Markov games Markov games (Littman, 1994; Shapley, 1953) is an extensively used framework
introduced for game playing with sequential decision making. Previous works (Littman, 1994; Hu
and Wellman, 2003; Hansen et al., 2013) studied how to find the Nash equilibrium of a Markov game
when the transition matrix and reward function are known. When the dynamic of the Markov game
is unknown, recent works provide a line of finite-sample guarantees for learning Nash equilibrium
in two-player zero-sum Markov games (Bai and Jin, 2020; Xie et al., 2020; Bai et al., 2020; Zhang
et al., 2020; Liu et al., 2021; Jin et al., 2021c; Huang et al., 2021) and learning various equilibriums
(including NE,CE,CCE, which are standard solution notions in games (Roughgarden, 2010)) in
general-sum Markov games (Liu et al., 2021; Bai et al., 2021; Jin et al., 2021b). Some of the analyses
in these works are based on the techniques for learning single-agent Markov Decision Processes
(MDPs) (Azar et al., 2017; Jin et al., 2018, 2020).

RL with Function Approximation Function approximation in reinforcement learning has been
extensively studied in recent years. For the single-agent Markov decision process, function approxi-
mation is adopted to achieve a better sample complexity that depends on the complexity of function
approximators rather than the size of the state-action space. For example, (Yang and Wang, 2019; Jin
et al., 2020; Zanette et al., 2020) considered the linear MDP model, where the transition probability
function and reward function are linear in some feature mapping over state-action pairs. Another line
of works (see, e.g., Jiang et al., 2017; Jin et al., 2021a; Du et al., 2021; Foster et al., 2021) studied the
MDPs with general nonlinear function approximations.

When it comes to Markov game, (Chen et al., 2021; Xie et al., 2020; Jia et al., 2019) studied the
Markov games with linear function approximations. Recently, (Huang et al., 2021) and (Jin et al.,
2021c) proposed the first algorithms for two-player zero-sum Markov games with general function
approximation, and provided a sample complexity governed by the minimax Eluder dimension.
However, technical difficulties prevent extending these results to multi-player general-sum Markov
games with nonlinear function approximation. The results for linear function approximation assume a
known state-action feature, and are unable to solve the Markov games with a more general non-linear
approximation where both the feature and function parameters are unknown. For the general function
class works, their approaches rely heavily on the two-player nature, and it’s not clear how to apply
their methods to the general multi-player setting.

Representation Learning in RL Our work is closely related to representation learning in single-
agent RL, where the study mainly focuses on the low-rank MDPs. A low-rank MDP is strictly more
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general than a linear MDP which assumes the representation is known a priori. Several related
works studied low-rank MDPs with provable sample complexities. (Agarwal et al., 2020b; Ren et al.,
2021) and (Uehara et al., 2021) consider the model-based setting, where the algorithm learns the
representation with the model class of the transition probability given. (Modi et al., 2021) provided a
representation learning algorithm under the model-free setting and proved its sample efficiency when
the MDP satisfies the minimal reachability assumption. (Zhang et al., 2022) proposed a model-free
method for the more restricted MDP class called Block MDP, but does not rely on the reachability
assumption, which is also studied in papers including (Du et al., 2019) and (Misra et al., 2020). A
concurrent work (Qiu et al., 2022) studies representation learning in RL with contrastive learning
and extends their algorithm to the Markov game setting. However, their method requires strong data
assumption and does not provide any practical implementation in the Markov game setting.

2 PROBLEM SETTINGS

A general-sum Markov game with M players is defined by a tuple (S, {Ai}Mi=1, P
⋆, {ri}Mi=1, H, d1).

Here S is the state space, Ai is the action space for player i, H is the time horizon of each episode
and d1 is the initial state distribution. We let A = A1 × . . . × AM and use a = (a1, a2, . . . , aM )

to denote the joint actions by all M players. Denote Ã = maxi |Ai| and A = |A|. P ⋆ = {P ⋆h}Hh=1
is a collection of transition probabilities, so that P ⋆h (·|s,a) gives the distribution of the next state if
actions a are taken at state s and step h. And ri = {rh,i}Hh=1 is a collection of reward functions, so
that rh,i(s,a) gives the reward received by player i when actions a are taken at state s and step h.

2.1 SOLUTION CONCEPTS

The policy of player i is denoted as πi := {πh,i : S → ∆Ai
}h∈[H]. We denote the product policy of

all the players as π := π1 × . . .× πM , here “product” means that conditioned on the same state, the
action of each player is sampled independently according to their own policy. We denote the policy of
all the players except the ith player as π−i. We define V πh,i(s) as the expected cumulative reward that
will be received by the ith player if starting at state s at step h and all players follow policy π. For
any strategy π−i, there exists a best response of the ith player, which is a policy µ†(π−i) satisfying

V
µ†(π−i),π−i

h,i (s) = maxπi V
πi,π−i

h,i (s) for any (s, h) ∈ S × [H]. We denote V †,π−i

h,i := V
µ†(π−i),π−i

h,i .

Let v†,π−i

i := Es∼d1
[
V

†,π−i

1,i (s)
]
, vπi := Es∼d1

[
V π1,i(s)

]
.

Definition 2.1 (NE). A product policy π is a Nash equilibrium (NE) if vπi = v
†,π−i

i ,∀i ∈ [M ]. And
we call π an ε-approximate NE if maxi∈[M ]{v

†,π−i

i − vπi } < ε.

The coarse correlated equilibrium (CCE) is a relaxed version of Nash equilibrium in which we
consider general correlated policies instead of product policies.

Definition 2.2 (CCE). A correlated policy π is a CCE if V †,π−i

h,i (s) ≤ V πh,i(s) for all s ∈ S, h ∈
[H], i ∈ [M ]. And we call π an ε-approximate CCE if maxi∈[M ]{v

†,π−i

i − vπi } < ε.

The correlated equilibrium (CE) is another relaxation of the Nash equilibrium. To define CE, we first
introduce the concept of strategy modification: A strategy modification ωi := {ωh,i}h∈[H] for player
i is a set of H functions from S × Ai to Ai. Let Ωi := {Ωh,i}h∈[H] denote the set of all possible
strategy modifications for player i. One can compose a strategy modification ωi with any Markov
policy π and obtain a new policy ωi ◦ π such that when policy π chooses to play a := (a1, . . . , aM )
at state s and step h, policy ωi ◦ π will play (a1, . . . , ai−1, ωh,i(s, ai), ai+1, . . . , aM ) instead.
Definition 2.3 (CE). A correlated policy π is a CE if maxi∈[M ] maxωi∈Ωi V

ωi◦π
h,i (s) ≤ V πh,i(s) for

all (s, h) ∈ S × [H]. And we call π an ε-approximate CE if maxi∈[M ]{maxωi∈Ωi v
ωi◦π
i − vπi } < ε.

Remark 2.1. For general-sum Markov Games, we have {NE} ⊆ {CE} ⊆ {CCE}, so that they
form a nested set of notions of equilibria (Roughgarden, 2010). While there exist algorithms to
approximately compute the Nash equilibrium (Berg and Sandholm, 2017), the computation of NE for
general-sum games in the worst case is still PPAD-hard (Daskalakis, 2013). On the other hand, CCE
and CE can be solved in polynomial time using linear programming (Examples include Papadimitriou
and Roughgarden (2008); Blum et al. (2008)). Therefore, in this paper we study both NE and these
weaker equilibrium concepts that permit more computationally efficient solutions.
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2.2 LOW-RANK MARKOV GAMES

In this paper, we consider the class of low-rank Markov games. A Markov game is called a low-rank
Markov game if the transition probability at any time step h has a latent low-rank structure.
Definition 2.4 (Low-Rank Markov Game). We call a Markov game a low-rank Markov game if
for any s, s′ ∈ S,a ∈ A, h ∈ [H], i ∈ [M ], we have P ⋆h (s

′|s,a) = ϕ⋆h(s,a)
⊤w⋆h(s

′), where
∥ϕ⋆h(s,a)∥2 ≤ 1 and ∥w⋆h(s′)∥2 ≤

√
d for all (s,a, s′).

A special case of low-rank Markov Game is the Block Markov game:
Definition 2.5 (Block Markov Game). Consider any h ∈ [H]. A Block Markov game has an emission
distribution oh(·|z) ∈ ∆S and a latent state space transition Th(z′|z,a), such that for any s ∈
S, oh(s|z) > 0 for a unique latent state z ∈ Z , denoted as ψ⋆h(s). Denote Z = |Z|. Together with the
ground truth decoder ψ⋆h, it defines the transitions P ⋆h (s

′|s, a) =
∑
z′∈Z oh(s

′|z′)Th(z′|ψ⋆h(s), a).

With the definition of the Block Markov game, one can naturally derive a feature vector that in addition
takes the one-hot form: we just need to let the ground truth ϕ⋆h(s,a) at step h be a Z ·A-dimensional
vector e(ψ⋆(s),a) where ei is the i-th basis vector. Correspondingly, for any s ∈ S, w⋆h(s) is a Z ·A
dimensional vector such that the (z,a)-th entry is

∑
z′∈Z oh(s|z′)Th(z′|z,a). Then P ⋆h (s

′|s,a) =
ϕ⋆h(s,a)

⊤w⋆h(s
′), so that the Block Markov game is a low-rank Markov game with rank d = Z ·A.

Learning Objective The goal of multi-agent reinforcement learning is to design algorithms for
Markov games that find an ε-approximate equilibrium (NE, CCE, CE) from a small number of
interactions with the environment. We focus on the low-rank Markov games whose feature vector ϕ⋆
and transition probability P ⋆ are both unknown, and the goal is to identify a ε-approximate equilibrium
policy with a number of interactions scaling polynomially with d,A,H, 1ε and the log-cardinality
of the function class, without depending on the number of raw states which could be infinite.

3 ALGORITHM DESCRIPTION

In this section, we present our algorithm GERL_MG2 (see Alg. 1). The algorithm mainly consists
of two modules: the representation learning module and the planning module. We develop the
representation learning module base on the past works on the single agent MDP (e.g. Agarwal et al.
(2020b); Uehara et al. (2021); Modi et al. (2021)), and but modify them to work with UCB-style
planning module. Here we denote dπP,h as the state distribution under transition probability P and
policy π at step h, and U(A) as the uniform distribution over the joint action space.

3.1 REPRESENTATION LEARNING

In the representation learning module, the main goal is to learn a representation function ϕ̂ to
approximate ϕ⋆, using the data collected so far. In each episode, the algorithm first collects some
new data using the policy derived from the previous episode. Note that in our data collection scheme,
for each time step h, we maintain two buffers D(n)

h and D̃(n)
h of transition tuples (s, a, s′) (line 7 of

Alg. 1) which draw the state s from slightly different distributions. Based on the data collected in
history, the representation learning module estimates the feature ϕ̂(n) and transition probability P̂ (n).
We propose two versions of the representation learning algorithm (model-based, Alg. 2; model-free,
Alg. 3) based on whether we are given the full model classMh of the transition probability, or only
the function class of the state-action features Φh.

Model-based Representation Learning In the model-based setting, we assume the access to
a realizable model class Mh = {(wh, ϕh) : wh ∈ Ψh, ϕh ∈ Φh}, h ∈ [H] such that the true
model is included in this class, i.e., w⋆h ∈ Ψh, ϕ

⋆
h ∈ Φh, ∀h ∈ [H]. Following the norm bounds

on ϕ⋆h, w
⋆
h, we assume that the same norm bounds hold for our function approximator, i.e., for

any ϕh ∈ Φh, wh ∈ Ψh, we have ∥ϕh(s,a)∥2 ≤ 1 and ∥wh(s′)∥2 ≤
√
d for all (s,a, s′), and∫

ϕh(s,a)
⊤wh(s

′)ds′ = 1. Given the datasetD := D(n)
h ∪D̃

(n)
h , MBREPLEARN learns the features

and transition probability using maximum likelihood estimation (MLE):(
ŵ

(n)
h , ϕ̂

(n)
h

)
= argmax

(w,ϕ)∈Mh

ED
[
log
(
ϕ(s,a)⊤w(s′)

)]
, P̂

(n)
h (s′|s,a) = ϕ̂

(n)
h (s,a)⊤ŵ

(n)
h (s′).
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Algorithm 1 General Representation Learning for Multi-player General-sum Low-Rank Markov
Game with UCB-driven Exploration (GERL_MG2)

1: Input: Regularizer λ, iteration N , parameter {α(n)}Nn=1, {ζ(n)}Nn=1.
2: Initialize π(0) to be uniform; set D(0)

h = ∅, D̃(0)
h = ∅, ∀h ∈ [H].

3: for episode n = 1, 2, · · · , N do
4: Set V

(n)

H+1,i ← 0, V
(n)
H+1,i ← 0

5: for step h = H,H − 1 . . . , 1 do
6: Collect two triples (s,a, s′), (s̃′, ã′, s̃′′) with

s ∼ dπ(n−1)

P⋆,h , a ∼ U(A), s′ ∼ P ⋆h (s,a),
s̃ ∼ dπ(n−1)

P⋆,h−1, ã ∼ U(A), s̃′ ∼ P ⋆h−1(s̃, ã), ã
′ ∼ U(A), s̃′′ ∼ P ⋆h (s̃′, ã′).

7: Update datasets: D(n)
h = D(n−1)

h ∪ {(s,a, s′)}, D̃(n)
h = D̃(n−1)

h ∪ {(s̃′, ã′, s̃′′)}.
8: Learn representation via model-based or model-free methods:

ϕ
(n)
h , P̂

(n)
h = MBREPLEARN

(
D(n)
h ∪ D̃(n)

h , h
)

or MFREPLEARN
(
D(n)
h ∪ D̃(n)

h , h, λ
)

9: Compute β̂(n)
h from equation 5, for each (s,a) ∈ S ×A, i ∈ [M ], set

Q
(n)

h,i (s,a)← rh,i(s,a) +
(
P̂

(n)
h V

(n)

h+1,i

)
(s,a) + β̂

(n)
h (s,a)

Q(n)

h,i
(s,a)← rh,i(s,a) +

(
P̂

(n)
h V

(n)
h+1,i

)
(s,a)− β̂(n)

h (s,a).

10: Compute π(n)
h from equation 2 or equation 3 or equation 4. For each s ∈ S, i ∈ [M ], set

V
(n)

h,i (s)←
(
D
π
(n)
h

Q
(n)

h,i

)
(s), V

(n)
h,i (s)←

(
D
π
(n)
h

Q(n)

h,i

)
(s), ∀s ∈ S.

11: end for
12: Let ∆(n) = maxi∈[M ]

{
v
(n)
i − v(n)i

}
+ 2H

√
Aζ(n), where v(n)i =

∫
S V

(n)

1,i (s)d1(s)ds, and

v
(n)
i =

∫
S V

(n)
1,i (s)d1(s)ds.

13: end for
14: Return π̂ = π(n⋆) where n⋆ = argminn∈[N ] ∆

(n).

Model-free Representation Learning In the model-free setting, we are only given the function
class of the feature vectors, Φh, which we assume also includes the true feature ϕ⋆h. Given the dataset
D := D(n)

h ∪ D̃(n)
h , MFREPLEARN aims to learn a feature vector that is able to linearly fit the

Bellman backup of any function f(s) in an appropriately chosen discriminator function class Fh. To
be precise, we aim to optimize the following objective:

min
ϕ∈Φh

max
f∈Fh

[
min
θ

ED

[(
ϕ(s,a)⊤θ − f(s′)

)2]− min
θ̃,ϕ̃∈Φh

E(n)
D

[(
ϕ̃(s,a)⊤θ̃ − f(s′)

)2]]
,

where the first term is the empirical squared loss and the second term is the conditional expectation of
f(s′) given (s, a), subtracted for the purpose of bias reduction. Once we obtain an estimation ϕ̂(n)h ,
we can construct a non-parametric transition model defined as:

P̂
(n)
h (s′|s,a) = ϕ̂

(n)
h (s,a)⊤

 ∑
(s̃,ã)∈D

ϕ̂
(n)
h (s̃, ã)ϕ̂

(n)
h (s̃, ã)⊤ + λId

−1 ∑
(s̃,ã,s̃′)∈D

ϕ̂
(n)
h (s̃, ã)1s̃′=s′ . (1)

We show that doing Least-square Value Iteration (LSVI) is equivalent to doing model-based planning
inside P̂ (n)

h (line 10 of Alg. 1), and thus the model-free algorithm can be analyzed in the same way
as the model-based algorithm. In practice, for applications where the raw observation states are
high-dimensional, e.g. images, estimating the transition is often much harder than estimating the
one-directional feature function. In such cases, we expect the Ψ class to be much larger than the Φ
class and the model-free approach to be more efficient.

3.2 PLANNING

Based on the feature vector and transition probability computed from the representation learning
phase, a new policy π(n+1) is computed using the planning module. The planning phase is conducted
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Algorithm 2 Model-based Representation Learning, MBRepLearn
1: Input: Dataset D, step h.
2: Compute (ŵ, ϕ̂) := argmax(w,ϕ)∈Mh

ED
[
logw(s′)⊤ϕ(s,a)

]
.

3: Return ϕ̂, P̂ : P̂ (s′|s,a) = ŵ(s′)⊤ϕ̂(s,a).

Algorithm 3 Model-free Representation Learning, MFRepLearn
1: Input: Dataset D, step h, regularization λ.
2: Denote least squares loss: Lλ,D(ϕ, θ, f) := ED

[(
ϕ(s,a)⊤θ − f(s′)

)2]
+ λ∥θ∥22.

3: Compute ϕ̂ = argminϕ∈Φh
maxf∈Fh

[minθ Lλ,D(ϕ, θ, f)−minϕ̃∈Φh,θ̃
Lλ,D(ϕ̃, θ̃, f)]

4: Return ϕ̂, P̂ where P̂ is calculated from equation 1.

with a Upper-Confidence-Bound (UCB) style approach, and we maintain both an optimistic and a
pessimistic estimation of the value functions and the Q-value functions V

(n)

h,i , V
(n)
h,i , Q

(n)

h,i , Q
(n)

h,i
, which

are computed recursively through the Bellman’s equation with the bonus function β̂(n)
h (Line 9 and 10

of Alg. 1). Here the operator D is defined by (Dπf)(s) := Ea∼π(s) [f(s,a)] ,∀f : S ×A → R, and
π
(n)
h is the policy computed from M induced Q-value functions Q̃(n)

h,i . For the model-based setting,

we simply let Q̃(n)
h,i be the optimistic estimator Q

(n)

h,i . For the model-free setting, for technical reasons,

we instead let Q̃(n)
h,i be the nearest neighbor of Q

(n)

h,i in Nh with respect to the ∥ · ∥∞ metric, where
Nh ⊆ RS×A is a properly designed set of functions, whose construction is deferred to the appendix.

Depending on the problem settings, the policy π(n)
h takes either one of the following formulations:

• For the NE, we compute π(n)
h =

(
π
(n)
h,1 , π

(n)
h,2 , . . . , π

(n)
h,M

)
such that ∀s ∈ S, i ∈ [M ],

π
(n)
h,i (·|s) = argmax

πh,i

(
D
πh,i,π

(n)
h,−i

Q̃
(n)
h,i

)
(s). (2)

• For the CCE, we compute π(n)
h such that ∀s ∈ S, i ∈ [M ],

max
πh,i

(
D
πh,i,π

(n)
h,−i

Q̃
(n)
h,i

)
(s) ≤

(
Dπ(n)Q̃

(n)
h,i

)
(s). (3)

• For CE, we compute π(n)
h such that ∀s ∈ S, i ∈ [M ],

max
ωh,i∈Ωh,i

(
D
ωh,i◦π(n)

h

Q̃
(n)
h,i

)
(s) ≤

(
Dπ(n)Q̃

(n)
h,i

)
(s). (4)

Without loss of generality we assume the solution to the above formulations is unique, if there are
multiple solutions, one can always adopt a deterministic selection rule such that it always outputs the
same policy given the same inputs.

Note that although the policy is computed using only the optimistic estimations, we still maintain a
pessimistic estimator, which is used to estimate the optimality gap ∆(n) of the current policy. The
algorithm’s output policy π̂ is chosen to be the one with the minimum estimated optimality gap.

The bonus term β̂
(n)
h is a linear bandit style bonus computed using the learned feature ϕ̂:

β̂
(n)
h (s,a) := min{α(n)∥ϕ̂(n)h (s,a)∥(

Σ̂
(n)
h

)−1 , H}. (5)

where Σ̂
(n)
h :=

∑
(s,a)∈D(n)

h

ϕ̂
(n)
h (s,a)ϕ̂

(n)
h (s,a)⊤ + λId is the empirical covariance matrix.

4 THEORETICAL RESULTS

In this section, we provide the theoretical guarantees of the proposed algorithm for both the model-
based and model-free approaches. We denote |M| := maxh∈[H] |Mh| and |Φ| := maxh∈[H] |Φh|.
The first theorem provides a guarantee of the sample complexity for the model-based method.
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Algorithm 4 Model-based Representation Learning for Factored MG (MBREPLEARN_FACTOR)
1: Input: Dataset D, step h.
2: Compute (ŵi, ϕ̂i) := argmax(w,ϕ)∈Mh,i

ED
[
logw(s′i)

⊤ϕ(s[Zi],ai)
]
, for each i ∈ [M ].

3: Return {ϕ̂i}Mi=1, P̂ : P̂ (s′|s,a) =
∏M
i=1

(
ŵi(s

′
i)

⊤ϕ̂i(s[Zi],ai)
)

.

Theorem 4.1 (PAC guarantee of Algorithm 1 (model-based)). When Alg. 1 is applied with model-
based representation learning algorithm Alg. 2, with parameters λ = Θ(d log(NH|Φ|/δ)) , α(n) =

Θ
(
Hd
√
A log(|M|HN/δ)

)
, ζ(n) = Θ

(
n−1 log(|M|HN/δ)

)
, by setting the number of episodes N

to be at most

O
(
H6d4A2ε−2 log2 (HdA|M|/δε)

)
,

with probability 1− δ, the output policy π̂ is an ε-approximate {NE,CCE,CE}.

Theorem 4.1 shows that GERL_MG2 can find an ε-approximate {NE,CCE,CE} by running the
algorithm for at most Õ

(
H6d4A2ε−2

)
episodes, which depends polynomially on the parameters

H, d,A, ε−1 and only has a logarithmic dependency on the cardinality of the model class |M|. In
particular, when reducing the Markov game to the single-agent MDP setting, the sample complexity
of the model-based approach matches the result provided in (Uehara et al., 2021), which is known to
have the best sample complexity among all oracle efficient algorithms for low-rank MDPs.

For model-free representation learning, we have the following guarantee:

Theorem 4.2 (PAC guarantee of Algorithm 1 (model-free)). When Alg. 1 is applied with
model-free representation learning algorithm Alg. 3, and λ = Θ(d log(NH|Φ|/δ)) , α(n) =

Θ
(
HAd

√
M log(dNHAM |Φ|/δ)

)
, ζ(n) = Θ

(
d2An−1 log(dNHAM |Φ|/δ)

)
, and the Markov game

is a Block Markov game. When we set the number of episodes N to be at most

O
(
H6d4A3Mε−2 log2 (HdAM |Φ|/δε)

)
,

for an appropriately designed function class {Nh}Hh=1 and discriminator class {Fh}Hh=1, with
probability 1− δ, the output policy π̂ is an ε-approximate {NE,CCE,CE}.

For the model-free block Markov game setting, the number of episodes required to find an ε-
approximate {NE,CCE,CE} becomes Õ

(
H6d4A3Mε−2

)
. While it has a worse dependency

compared with the model-based approach, the advantage of the model-free approach is it doesn’t
require the full model class of the transition probability but only the model class of the feature vector,
which applies to a wider range of RL problems.

The proofs of Theorem 4.1 and Theorem 4.2 are deferred to Appendix B and C. Theorem 4.1 and
Theorem 4.2 show that GERL_MG2 learns low-rank Markov games in a statistically efficient and
oracle-efficient manner. We also remark that our modular analysis can be of independent theoretical
interest. Unlike prior works that make heavy distinctions between model-based and model-free
approaches, e.g. (Liu et al., 2021), we show that both approaches can be analyzed in a unified manner.

5 FACTORED MARKOV GAMES

The result in Theorem 4.1 is tractable in games with a moderate number of players. However, in
applications with a large number of players, such as the scenario of autonomous traffic control,
the total number of players in the game can be so large that the joint action space size A = ÃM

dominates all other factors in the sample complexity bound. This exponential scaling with the number
of players is sometimes referred to as the curse of multi-player. The only known class of algorithms
that overcomes this challenge in Markov games is V-learning (see, e.g., Bai et al., 2020; Jin et al.,
2021b), a value-based method that fits the V-function rather than the Q-function, thus removing the
dependency on the action space size. However, V-learning only works for tabular Markov games with
finite state and action spaces. Extending V-learning to the function approximation setting is extremely

7
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non-trivial, because even in the single agent setting, no known algorithm can achieve sample efficient
learning in MDPs while only performing function approximation on the V-function.

In this section we take a different approach that relies on the following observation. In a setting where
the number of agents is large, there is often a spatial correlation among the agents, such that each
agent’s local state is only immediately affected by the agent’s own action and the states of agents in
its adjacency. For example, in smart traffic control, a vehicle’s local environment is only immediately
affected by the states of the vehicles around it. On the other hand, it takes time for the course of
actions of a vehicle from afar to propagate its influence on the vehicle of reference. Such spatial
structure motivates the definition of a factored Markov Game.

In a factored Markov Game, each agent i has its local state si, whose transition is affected by agent
i’s action ai and the state of the agents in its neighborhood Zi. We remark that the factored Markov
Game structure still allows an agent to be affected by all other agents in the long run, as long as the
directed graph defined by the neighborhood sets Zi is connected. In particular, we have
Definition 5.1 (Low-Rank Factored Markov Game). We call a Markov game a low-rank factored
Markov game if for any s, s′ ∈ S,a ∈ A, h ∈ [H], i ∈ [M ], we have

P ⋆h (s
′|s,a) =

M∏
i=1

[
ϕ⋆h,i(s[Zi],ai)

⊤w⋆h,i(s
′
i)
]
.

where Zi ⊆ [M ], ϕ⋆h,i(s[Zi],ai), w
⋆
h,i(s

′
i) ∈ Rd, ∥ϕ⋆h,i(s[Zi],ai)∥2 ≤ 1 and ∥w⋆h,i(s′i)∥2 ≤

√
d

for all (s[Zi],ai, s′i). We assume |Zi| ≤ L,∀i ∈ [M ]. And we are given a group of model classes
Mh,i, h ∈ [H], i ∈ [M ] such that (ϕ⋆h,i, w

⋆
h,i) ∈Mh,i.

We are now ready to present our algorithm and result in the low-rank factored Markov Game setting.
Surprisingly, the same algorithm GERL_MG2 works in this setting, with the representation learning
module Alg. 2 replaced by Alg. 4, and a few changes of variables. For simplicity, we focus on
the model-based version. Define ϕ̄(n)h,i (s,a) =

⊗
j∈Zi

ϕ̂
(n)
h,j (s[Zj ],aj) ∈ Rd|Zi| where ⊗ means the

Kronecker product. Let

β̂
(n)
h (s,a) :=

M∑
i=1

min{α(n)∥ϕ̄(n)h,i (s,a)∥(Σ̄(n)
h,i

)−1 , H},∆(n) := max
i∈[M ]

{v(n)i − v(n)i }+ 2HM

√
Ãζ(n)

where Σ̄
(n)
h,i :=

∑
(s,a)∈D(n)

h

ϕ̄h,i(s,a)ϕ̄h,i(s,a)
⊤ + λId|Zi| .Then, GERL_MG2 with ϕ̄ and the

newly defined β̂(n),∆(n) achieves the following guarantee:
Theorem 5.1 (PAC guarantee of GERL_MG2 in Low-Rank Factored Markov Game). When
Alg. 1 is applied with model-based representation learning algorithm Alg. 4, with L = O(1)

and parameters λ = Θ
(
LdL log(NHM |Φ|/δ)

)
, α(n) = Θ

(
HÃdL

√
L log(|M|HNM/δ)

)
, ζ(n) =

Θ
(
n−1 log(|M|HNM/δ)

)
, by setting the number of episodes N to be at most

O
(
M4H6d2(L+1)2Ã2(L+1)ε−2 log2 (HdALM |M|/δε)

)
,

with probability 1− δ, the output policy π̂ is an ε-approximate {NE,CCE,CE}.
Remark 5.1. This sample complexity only scales with exp(L) where L is the degree of the connection
graph, which is assumed to be O(1) in Definition 5.1 and in general much smaller than the total
number of agents in practice. We remark that the factored structure is also previously studied in
single-agent tabular MDPs (examples include Chen et al. (2020); Kearns and Koller (1999); Guestrin
et al. (2002, 2003); Strehl et al. (2007)). Chen et al. (2020) provided a lower-bound showing that the
exponential dependency on L is unimprovable in the worst case. Therefore, our bound here is also
nearly tight, upto polynomial factors.

6 EXPERIMENT

In this section we investigate our algorithm with proof-of-concept empirical studies. We design our
testing bed using rich observation Markov game with arbitrary latent transitions and rewards. To
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Table 1: Top: Short Horizon (H=3) exploitability of the final policy of DQN and GERL_MG2.
Bottom: Long Horizon (H=10) exploitability of the final policy of DQN and GERL_MG2. Note
that lower exploitability implies that the policy is closer to the NE policy.

H=3 Environment 1 H=3 Environment 2 H=3 Environment 3
DQN 0.0851 (0.1152) 0.0877 (0.1961) 0.0090 (0.0200)
GERL_MG2 0.0013 (0.0018) 0.0032 (0.0032) 0.0004 (0.0009)

H=10 Environment 1 H=10 Environment 2 H=10 Environment 3
DQN 0.2730 (0.3270) 0.0340 (0.0760) 0.0320 (0.0170)
GERL_MG2 0.0780 (0.1560) 0.0070 (0.0160) 0.0060 (0.0130)

solve the rich observation Markov game, an algorithm must correctly decode the latent structure (thus
learning the dynamics) as well as solve the latent Markov game to find the NE/CE/CCE strategies
concurrently. Below, we first introduce the setup of the experiments and then make comparisons
with prior baselines in the two-player zero-sum setting. We then follow by showing the efficiency of
GERL_MG2 in the general-sum setting. All further experiment details can be found in Appendix. F.
Here we focus on the model-free version of GERL_MG2. Specifically, we implement Algorithm. 3
with deep learning libraries (Paszke et al., 2017). We defer more details to Appendix. F.2.

Block Markov game Block Markov game is a multi-agent extension of single agent Block MDP,
as defined in Def. 2.5. We design our Block Markov game by first randomly generating a tabular
Markov game with horizon H , 3 states, 2 players each with 3 actions, and random reward matrix
Rh ∈ (0, 1)3×32×H and random transition matrix Th(sh, ah) ∈ ∆Sh+1

. We provide more details
(e.g., generation of rich observation) in Appendix F.1.

Zero-sum Markov game In this section we first show the empirical evaluations under the two-player
zero-sum Markov game setting. For an environment with horizon H , the randomly generated matrix
R denotes the reward for player 1 and −R⊤ denotes the reward for player 2, respectively. For the
zero-sum game setting, we designed two variants of Block Markov games: one with short horizon
(H = 3) and one with long horizon (H = 10). We show in the following that GERL_MG2 works in
both settings where the other baseline could only work in the short horizon setting.

Baseline We adopt one open-sourced implementation of DQN (Silver et al., 2016) with fictitious
self-play (Heinrich et al., 2015).

We keep track of the exploitability of the returned strategy to evaluate the practical performances of
the baselines. In the zero-sum setting, we only need to fix one agent (e.g., agent 2), train the other
single agent (the exploiter) to maximize its corresponding return until convergence, and report the
difference between the returns of the exploiter and the final return of the final policies. We include the
exploitability in Table. 1. We provide training curves in Appendix. F.3 for completeness. We note that
compared with the Deep RL baseline, GERL_MG2 shows a faster and more stable convergence in
both environments, where the baseline is unstable during training and has a much larger exploitability.

General-sum Markov game. In this section we move on to the general-sum setting. To our best
knowledge, our algorithm is the only principled algorithm that can be implemented on scale under
the general-sum setting. For the general sum setting, we can not just compare our returned value
to the oracle NE values, because multiple NE/CCE values may exist. Instead, we keep track of the
exploitability of the policy and plot the training curve on the exploitability in Fig. 2 (deferred to
Appendix. F). Note that in this case we need to test both policies since their reward matrices are
independently sampled.

7 DISCUSSION AND FUTURE WORKS

In this paper, we present the first algorithm that solves general-sum Markov games under function
approximation. We provide both a model-based and a model-free variant of the algorithm and present
a unified analysis. Empirically, we show that our algorithm outperforms existing deep RL baselines
in a general benchmark with rich observation. Future work includes evaluating more challenging
benchmarks and extending beyond the low-rank Markov game structure.
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REPRODUCIBILITY STATEMENT

For theory, we provide proof and additional results in the Appendix. For empirical results, we provide
implementation and environment details and hyperparameters in the Appendix. We also submit
anonymous code in the supplemental materials.
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A ADDITIONAL NOTATIONS

Given a (possibly not normalized) transition probability P : S ×A× S × [H]→ [0, 1] and a policy
π : S × [H]→ ∆A, we define the the density function of the state-action pair (s,a) at step h under
transition P and π by

dπP,1(s,a) := d1(s)π1(a|s), dπP,h+1(s,a) :=
∑

s̃∈S,ã∈A

dπP,h(s̃, ã)Ph(s|s̃, ã)πh+1(a|s),∀h ≥ 1.

We abuse the notations a bit and denote dπP,h(s) as the marginalized state distribution, i.e., dπP,h(s) =∑
a∈A d

π
P,h(s,a). For any n ∈ [N ], h ∈ [H], define

ρ
(n)
h (s,a) =

1

n

n∑
i=1

dπ
(i)

P⋆,h(s)uA(a),

ρ̃
(n)
h (s,a) =

1

n

n∑
i=1

E
s̃∼dπ(i)

P⋆,h−1
,ã∼U(A)

[P ⋆(s|s̃, ã)uA(a)] ,

γ
(n)
h (s,a) =

1

n

n∑
i=1

dπ
(i)

P⋆,h(s,a).

When we use the expectation E(s,a)∼ρ[f(s,a)] (or Es∼ρ[f(s)]) for some (possibly not normalized)
distribution ρ and function f , we simply mean

∑
s∈S,a∈A ρ(s,a)f(s,a) (or

∑
s∈S ρ(s)f(s)) so

that the expectation can be naturally extended to the unnormalized distributions. For an iteration n, a
distribution ρ and a feature ϕ, we denote the expected feature covariance as

Σn,ρ,ϕ = nE(s,a)∼ρ
[
ϕ(s,a)ϕ(s,a)⊤

]
+ λId.

Meanwhile, define the empirical covariance by

Σ̂
(n)
h,ϕ :=

∑
(s,a)∈D(n)

h

ϕ(s,a)ϕ(s,a)⊤ + λId.

B ANALYSIS OF THE MODEL-BASED METHOD

B.1 HIGH PROBABILITY EVENTS

We define the following event

E1 : ∀n ∈ [N ], h ∈ [H], ρ ∈
{
ρ
(n)
h , ρ̃

(n)
h

}
, E(s,a)∼ρ

[∥∥∥P̂ (n)
h (·|s,a)− P ⋆h (·|s,a)

∥∥∥2
1

]
≤ ζ(n),

E2 : ∀n ∈ [N ], h ∈ [H], ϕh ∈ Φh, s ∈ S,a ∈ A, ∥ϕh(s,a)∥(
Σ̂

(n)
h,ϕh

)−1 = Θ

(
∥ϕh(s,a)∥Σ−1

n,ρ
(n)
h

,ϕh

)
E := E1 ∩ E2.

To prove E holds with a high probability, we first introduce the following MLE guarantee, whose
original version can be found in (Agarwal et al., 2020b):
Lemma B.1 (MLE guarantee). For a fixed episode n and any step h, with probability 1− δ,

E
(s,a)∼{0.5ρ(n)

h +0.5ρ̃
(n)
h }

[∥∥∥P̂ (n)
h (·|s,a)− P ⋆h (·|s,a)

∥∥∥2
1

]
≲

1

n
log
|M|
δ
.

As a straightforward corollary, with probability 1− δ,

∀n ∈ N+,∀h ∈ [H], E
(s,a)∼{0.5ρ(n)

h +0.5ρ̃
(n)
h }

[∥∥∥P̂ (n)
h (·|s,a)− P ⋆h (·|s,a)

∥∥∥2
1

]
≲

1

n
log

nH|M|
δ

.

(6)

Proof. See Agarwal et al.(Agarwal et al., 2020b) (Theorem 21).
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Based on Lemma B.1 and Lemma E.1 in Appendix E, we directly get the following guarantee:

Lemma B.2. When P̂ (n)
h is computed using Alg. 2, if we set

λ = Θ

(
d log

NH|Φ|
δ

)
, ζ(n) = Θ

(
1

n
log
|M|HN

δ

)
,

then E holds with probability at least 1− δ.

B.2 STATISTICAL GUARANTEES

Lemma B.3 (One-step back inequality for the learned model). Suppose the event E holds. Consider
a set of functions {gh}Hh=1 that satisfies gh ∈ S ×A → R+, s.t. ∥gh∥∞ ≤ B. For any given policy
π, we have

E(s,a)∼dπ
P̂ (n),h

[gh(s,a)]

≤



√
AE

(s,a)∼ρ(n)
1

[g21(s,a)], h = 1

E(s̃,ã)∼dπ
P̂ (n),h−1

min

∥∥∥ϕ̂(n)h−1(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

√
nAE

(s,a)∼ρ̃(n)
h

[g2h(s,a)] +B2λd+B2nζ(n), B


 , h ≥ 2

Recall Σ
n,ρ

(n)
h ,ϕ̂

(n)
h

= nE
(s,a)∼ρ(n)

h

[
ϕ̂
(n)
h (s,a)ϕ̂

(n)
h (s,a)⊤

]
+ λId.

Proof. For step h = 1, we have

E(s,a)∼dπ
P̂ (n),1

[g1(s,a)] =Es∼d1,a∼π1(s) [g1(s,a)]

≤
√
max
(s,a)

d1(s)π1(a|s)
ρ
(n)
1 (s,a)

E
(s′,a′)∼ρ(n)

1
[g21(s

′,a′)]

=

√
max
(s,a)

d1(s)π1(a|s)
d1(s)uA(a)

E
(s′,a′)∼ρ(n)

1
[g21(s

′,a′)]

≤
√
AE

(s,a)∼ρ(n)
1

[g21(s,a)].

For step h = 2, . . . ,H − 1, we observe the following one-step-back decomposition:

E(s,a)∼dπ
P̂ (n),h

[gh(s,a)]

=E
(s̃,ã)∼dπ

P̂ (n),h−1
,s∼P̂ (n)

h−1(s̃,ã),a∼πh(s)
[gh(s,a)]

=E(s̃,ã)∼dπ
P̂ (n),h−1

[
ϕ̂
(n)
h−1(s̃, ã)

⊤
∫
S

∑
a∈A

ŵ
(n)
h−1(s)πh(a|s)gh(s,a)ds

]

=E(s̃,ã)∼dπ
P̂ (n),h−1

[
min

{
ϕ̂
(n)
h−1(s̃, ã)

⊤
∫
S

∑
a∈A

ŵ
(n)
h−1(s)πh(a|s)gh(s,a)ds,B

}]

≤E(s̃,ã)∼dπ
P̂ (n),h−1

min


∥∥∥ϕ̂(n)h−1(s̃, ã)

∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

∥∥∥∥∥
∫
S

∑
a∈A

ŵ
(n)
h−1(s)πh(a|s)gh(s,a)ds

∥∥∥∥∥
Σ

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

, B


 .

where we use the fact that gh is bounded by B. Then,∥∥∥∥∥
∫
S

∑
a∈A

ŵ
(n)
h−1(s)πh(a|s)gh(s,a)ds

∥∥∥∥∥
2

Σ
n,ρ

(n)
h−1

,ϕ̂
(n)
h−1
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≤

(∫
S

∑
a∈A

ŵ
(n)
h−1(s)πh(a|s)gh(s,a)ds

)⊤(
nE

(s,a)∼ρ
(n)
h−1

[
ϕ̂
(n)
h−1(s,a)ϕ̂

(n)
h−1(s,a)

⊤
]
+ λId

)(∫
S

∑
a∈A

ŵ
(n)
h−1(s)πh(a|s)gh(s,a)ds

)

≤nE
(s̃,ã)∼ρ

(n)
h−1

[(∫
S

∑
a∈A

ŵ
(n)
h−1(s)

⊤ϕ̂
(n)
h−1(s̃, ã)πh(a|s)gh(s,a)ds

)2]
+B2λd

(
∥∥∑

a∈A πh(a|s)gh(s,a)
∥∥
∞ ≤ B and by assumption

∥∥∥ŵ(n)
h−1(s)

∥∥∥
2
≤

√
d.)

=nE
(s̃,ã)∼ρ

(n)
h−1

[(
E
s∼P̂

(n)
h−1

(s̃,ã),a∼πh(s)
[gh(s,a)]

)2
]
+B2λd

≤nE
(s̃,ã)∼ρ

(n)
h−1

[(
Es∼P⋆

h−1
(s̃,ã),a∼πh(s) [gh(s,a)]

)2]
+B2λd+ nB2ξ(n) (Event E)

≤nE
(s̃,ã)∼ρ

(n)
h−1

,s∼P⋆
h−1

(s̃,ã),a∼πh(s)

[
g2h(s,a)

]
+B2λd+B2nξ(n). (Jensen)

≤nAE
(s̃,ã)∼ρ

(n)
h−1

,s∼P⋆
h−1

(s̃,ã),a∼U(A)

[
g2h(s,a)

]
+B2λd+B2nζ(n) (Importance sampling)

≤nAE
(s,a)∼ρ̃

(n)
h

[
g2h(s,a)

]
+B2λd+B2nζ(n). (Definition of ρ̃(n)

h )

Combing the above results together, we get

E(s,a)∼dπ
P̂ (n),h

[gh(s,a)]

≤E(s̃,ã)∼dπ
P̂ (n),h−1

min


∥∥∥ϕ̂(n)h−1(s̃, ã)

∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

∥∥∥∥∥
∫
S

∑
a∈A

ŵ
(n)
h−1(s)πh(a|s)gh(s,a)ds

∥∥∥∥∥
Σ

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

, B




≤E(s̃,ã)∼dπ
P̂ (n),h−1

min

∥∥∥ϕ̂(n)h−1(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

√
nAE

(s,a)∼ρ̃(n)
h

[g2h(s,a)] +B2λd+B2nζ(n), B


 ,

which has finished the proof.

Lemma B.4 (One-step back inequality for the true model). Consider a set of functions {gh}Hh=1 that
satisfies gh ∈ S ×A → R+, s.t. ∥gh∥∞ ≤ B. Then for any given policy π, we have

E(s,a)∼dπ
P⋆,h

[gh(s,a)]

≤


√
AE

(s,a)∼ρ(n)
1

[g21(s,a)], h = 1

E(s̃,ã)∼dπ
P⋆,h−1

[∥∥ϕ⋆h−1(s̃, ã)
∥∥
Σ−1

n,γ
(n)
h−1

,ϕ⋆
h−1

]√
nAE

(s,a)∼ρ(n)
h

[g2h(s,a)] +B2λd, h ≥ 2

Recall Σ
n,γ

(n)
h ,ϕ⋆

h

= nE
(s,a)∼γ(n)

h

[
ϕ⋆h(s,a)ϕ

⋆
h(s,a)

⊤]+ λId.

Proof. For step h = 1, we have

E(s,a)∼dπ
P⋆,1

[g1(s,a)] =Es∼d1,a∼π1(s) [g1(s,a)]

≤
√
max
(s,a)

d1(s)π1(a|s)
ρ
(n)
1 (s,a)

E
(s′,a′)∼ρ(n)

1
[g21(s

′,a′)]

=

√
max
(s,a)

d1(s)π1(a|s)
d1(s)uA(a)

E
(s′,a′)∼ρ(n)

1
[g21(s

′,a′)]

≤
√
AE

(s,a)∼ρ(n)
1

[g21(s,a)].

For step h = 2, . . . ,H − 1, we observe the following one-step-back decomposition:

E(s,a)∼dπ
P⋆,h

[gh(s,a)]
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=E(s̃,ã)∼dπ
P⋆,h−1

,s∼P⋆
h−1(s̃,ã),a∼πh(s) [gh(s,a)]

=E(s̃,ã)∼dπ
P⋆,h−1

[
ϕ⋆h−1(s̃, ã)

⊤
∫
S

∑
a∈A

w⋆h−1(s)πh(a|s)gh(s,a)ds

]

≤E(s̃,ã)∼dπ
P⋆,h−1

[∥∥ϕ⋆h−1(s̃, ã)
∥∥
Σ−1

n,γ
(n)
h−1

,ϕ⋆
h−1

]∥∥∥∥∥
∫
S

∑
a∈A

w⋆h−1(s)πh(a|s)gh(s,a)ds

∥∥∥∥∥
Σ

n,γ
(n)
h−1

,ϕ⋆
h−1

.

Then,∥∥∥∥∥
∫
S

∑
a∈A

w⋆
h−1(s)πh(a|s)gh(s,a)ds

∥∥∥∥∥
2

Σ
n,γ

(n)
h−1

,ϕ⋆
h−1

≤

(∫
S

∑
a∈A

w⋆
h−1(s)πh(a|s)gh(s,a)ds

)⊤(
nE

(s,a)∼γ
(n)
h−1

[
ϕ⋆
h−1(s,a)ϕ

⋆
h−1(s,a)

⊤
]
+ λId

)(∫
S

∑
a∈A

w⋆
h−1(s)πh(a|s)gh(s,a)ds

)

≤nE
(s̃,ã)∼γ

(n)
h−1

[(∫
S

∑
a∈A

w⋆
h−1(s)

⊤ϕ⋆
h−1(s̃, ã)πh(a|s)gh(s,a)ds

)2]
+B2λd

(Use the assumption
∥∥∑

a∈A πh(a|s)gh(s,a)
∥∥
∞ ≤ B and ∥w⋆

h−1(s)∥2 ≤
√
d.)

=nE
(s̃,ã)∼γ

(n)
h−1

[(
Es∼P⋆

h−1
(s̃,ã),a∼πh(s) [gh(s,a)]

)2]
+B2λd

≤nE
(s̃,ã)∼γ

(n)
h−1

,s∼P⋆
h−1

(s̃,ã),a∼πh(s)

[
g2h(s,a)

]
+B2λd (Jensen)

≤nAE
(s̃,ã)∼γ

(n)
h−1

,s∼P⋆
h−1

(s̃,ã),a∼U(A)

[
g2h(s,a)

]
+B2λd (Importance sampling)

≤nAE
(s,a)∼ρ

(n)
h

[
g2h(s,a)

]
+B2λd, (Definition of ρ(n)

h )

Combing the above results together, we get

E(s,a)∼dπ
P⋆,h

[gh(s,a)]

=E(s̃,ã)∼dπ
P⋆,h−1

,s∼P⋆
h−1(s̃,ã),a∼πh(s) [gh(s,a)]

≤E(s̃,ã)∼dπ
P⋆,h−1

[∥∥ϕ⋆h−1(s̃, ã)
∥∥
Σ−1

n,γ
(n)
h−1

,ϕ⋆
h−1

]∥∥∥∥∥
∫
S

∑
a∈A

w⋆h−1(s)πh(a|s)gh(s,a)ds

∥∥∥∥∥
Σ

n,γ
(n)
h−1

,ϕ⋆
h−1

≤E(s̃,ã)∼dπ
P⋆,h−1

[∥∥ϕ⋆h−1(s̃, ã)
∥∥
Σ−1

n,γ
(n)
h−1

,ϕ⋆
h−1

]√
nAE

(s,a)∼ρ(n)
h

[g2h(s,a)] +B2λd,

which has finished the proof.

Lemma B.5 (Optimism for NE and CCE). Consider an episode n ∈ [N ] and set α(n) =

Θ
(
H
√
nAζ(n) + dλ

)
. When the event E holds and the policy π(n) is computed by solving NE or

CCE, we have

v
(n)
i (s)− v†,π

(n)
−i

i (s) ≥ −H
√
Aζ(n), ∀n ∈ [N ], i ∈ [M ].

Proof. Define µ̃(n)
h,i (·|s) := argmaxµ

(
D
µ,π

(n)
h,−i

Q
†,π(n)

−i

h,i

)
(s) as the best response policy for player

i at step h, and let π̃(n)
h = µ̃

(n)
h,i × π

(n)
h,−i. Let f (n)h (s,a) =

∥∥∥P̂ (n)
h (·|s,a)− P ⋆h (·|s,a)

∥∥∥
1
, then

according to the event E , we have

E
(s,a)∼ρ(n)

h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n), E

(s,a)∼ρ̃(n)
h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n), ∀n ∈ [N ], h ∈ [H],

17
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∥ϕh(s,a)∥(
Σ̂

(n)
h,ϕh

)−1 = Θ

(
∥ϕh(s,a)∥Σ−1

n,ρ
(n)
h

,ϕh

)
, ∀n ∈ [N ], h ∈ [H], ϕh ∈ Φh.

A direct conclusion of the event E is we can find an absolute constant c, such that

β
(n)
h (s,a) =min

α(n)
∥∥∥ϕ̂(n)h (s̃, ã)

∥∥∥(
Σ

(n)

h,ϕ̂
(n)
h

)−1 , H


≥min

cα(n)
∥∥∥ϕ̂(n)h (s̃, ã)

∥∥∥
Σ−1

n,ρ
(n)
h

,ϕ̂
(n)
h

, H

 , ∀n ∈ [N ], h ∈ [H].

Next, we prove by induction that

E
s∼dπ̃(n)

P̂ (n),h

[
V

(n)

h,i (s)− V
†,π(n)

−i

h,i (s)

]
≥

H∑
h′=h

E
(s,a)∼dπ̃(n)

P̂ (n),h′

[
β̂
(n)
h′ (s,a)−Hmin{f (n)h′ (s,a), 1}

]
, ∀h ∈ [H].

(7)

First, notice that ∀h ∈ [H],

E
s∼dπ̃(n)

P̂ (n),h

[
V

(n)

h,i (s)− V
†,π(n)

−i

h,i (s)

]
=E

s∼dπ̃(n)

P̂ (n),h

[(
D
π
(n)
h

Q
(n)

h,i

)
(s)−

(
D
π̃
(n)
h

Q
†,π(n)

−i

h,i

)
(s)

]
≥E

s∼dπ̃(n)

P̂ (n),h

[(
D
π̃
(n)
h

Q
(n)

h,i

)
(s)−

(
D
π̃
(n)
h

Q
†,π(n)

−i

h,i

)
(s)

]
=E

(s,a)∼dπ̃(n)

P̂ (n),h

[
Q

(n)

h,i (s,a)−Q
†,π(n)

−i

h,i (s,a)

]
,

where the inequality uses the fact that π(n)
h is the NE (or CCE) solution for

{
Q

(n)

h,i

}M
i=1

. Now we are
ready to prove equation 7:

• When h = H , we have

E
s∼dπ̃(n)

P̂ (n),H

[
V

(n)

H,i(s)− V
†,π(n)

−i

H,i (s)

]
≥E

(s,a)∼dπ̃(n)

P̂ (n),H

[
Q

(n)

H,i(s,a)−Q
†,π(n)

−i

H,i (s,a)

]
=E

(s,a)∼dπ̃(n)

P̂ (n),H

[
β̂
(n)
h (s,a)

]
≥E

(s,a)∼dπ̃(n)

P̂ (n),H

[
β̂
(n)
h (s,a)−Hmin

{
f
(n)
H (s,a), 1

}]
.

• Suppose the statement is true for step h+ 1, then for step h, we have

E
s∼dπ̃(n)

P̂ (n),h

[
V

(n)

h,i (s)− V
†,π(n)

−i

h,i (s)

]
≥E

(s,a)∼dπ̃(n)

P̂ (n),h

[
Q

(n)

h,i (s,a)−Q
†,π(n)

−i

h,i (s,a)

]
=E

(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a) +

(
P̂

(n)
h V

(n)

h+1,i

)
(s,a)−

(
P ⋆hV

†,π(n)
−i

h+1,i

)
(s,a)

]
=E

(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a) +

(
P̂

(n)
h

(
V

(n)

h+1,i − V
†,π(n)

−i

h+1,i

))
(s,a) +

((
P̂

(n)
h − P ⋆h

)
V

†,π(n)
−i

h+1,i

)
(s,a)

]
=E

(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a) +

((
P̂

(n)
h − P ⋆h

)
V

†,π(n)
−i

h+1,i

)
(s,a)

]
+ E

s∼dπ̃(n)

P̂ (n),h+1

[
V

(n)

h+1,i(s)− V
†,π(n)

−i

h+1,i (s)

]
≥E

(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a)−Hmin

{
f
(n)
h (s,a), 1

}]
+ E

s∼dπ̃(n)

P̂ (n),h+1

[
V

(n)

h+1,i(s)− V
†,π(n)

−i

h+1,i (s)

]

18
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≥
H∑

h′=h

E
(s,a)∼dπ̃(n)

P̂ (n),h′

[
β̂
(n)
h′ (s,a)−Hmin

{
f
(n)
h′ (s,a), 1

}]
,

where we use the fact∣∣∣∣(P̂ (n)
h − P ⋆h

)
V

†,π(n)
−i

h+1,i

∣∣∣∣ (s,a) ≤min

{
H,
∥∥∥P̂ (n)

h (·|s,a)− P ⋆h (·|s,a)
∥∥∥
1

∥∥∥∥V †,π(n)
−i

h+1,i

∥∥∥∥
∞

}
≤Hmin

{
1,
∥∥∥P̂ (n)

h (·|s,a)− P ⋆h (·|s,a)
∥∥∥
1

}
=Hmin

{
1, f

(n)
h′ (s,a)

}
and the last row uses the induction assumption.

Therefore, we have proved equation 7. We then apply h = 1 to equation 7, and get

Es∼d1
[
V

(n)

1,i (s)− V
†,π(n)

−i

1,i (s)

]
=E

s∼dπ̃(n)

P̂ (n),1

[
V

(n)

1,i (s)− V
†,π(n)

−i

1,i (s)

]
≥

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a)−Hmin

{
f
(n)
h (s,a), 1

}]
=

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a)

]
−H

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
min

{
f
(n)
h (s,a), 1

}]
.

Next we are going to bound the second term, let gh(s,a) = min{f (n)h (s,a), 1} and apply Lemma
B.3 to gh, we have for h = 1,

E
(s,a)∼dπ̃(n)

P̂ (n),1

[
min

{
f
(n)
1 (s,a), 1

}]
≤

√
AE

(s,a)∼ρ(n)
1

[(
f
(n)
1 (s,a)

)2]
≤
√
Aζ(n).

And ∀h ≥ 2, we have

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
min

{
f
(n)
h (s,a), 1

}]
≤E

(s̃,ã)∼dπ̃(n)

P̂ (n),h−1

min

∥∥∥ϕ̂(n)h−1(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

√
nAE

(s,a)∼ρ̃(n)
h

[(
f
(n)
h (s,a)

)2]
+ dλ+ nζ(n), 1




≲E
(s̃,ã)∼dπ̃(n)

P̂ (n),h−1

min

∥∥∥ϕ̂(n)h−1(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

√
nAζ(n) + dλ+ nζ(n), 1


 .

Note that we here use the fact min{f (n)h (s,a), 1} ≤ 1, E
(s,a)∼ρ(n)

h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n) and

E
(s,a)∼ρ̃(n)

h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n). Then according to our choice of α(n), we get

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
min

{
f
(n)
h (s,a), 1

}]
≤ E

(s̃,ã)∼dπ̃(n)

P̂ (n),h−1

min

cα(n)

H

∥∥∥ϕ̂(n)h−1(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

, 1


 .

Combining all things together,

v
(n)
i − v†,π

(n)
−i

i =Es∼d1
[
V

(n)

1,i (s)− V
†,π(n)

−i

1,i (s)

]
≥

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a)

]
−H

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
min

{
f
(n)
h (s,a), 1

}]
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≥
H−1∑
h=1

E
(s̃,ã)∼dπ̃(n)

P̂ (n),h

β̂(n)
h (s,a)−min

cα(n)
∥∥∥ϕ̂(n)h (s̃, ã)

∥∥∥
Σ−1

n,ρ
(n)
h

,ϕ̂
(n)
h

, H


−H√Aζ(n)

≥−H
√
Aζ(n),

which proves the inequality.

Lemma B.6 (Optimism for CE). Consider an episode n ∈ [N ] and set α(n) =

Θ
(
H
√
nAζ(n) + dλ

)
. When the event E holds, we have

v
(n)
i (s)− max

ω∈Ωi

vω◦π
(n)

i (s) ≥ −H
√
Aζ(n), ∀n ∈ [N ], i ∈ [M ].

Proof. Denote ω̃(n)
h,i = argmaxωh∈Ωh,i

(
D
ωh◦π(n)

h

maxω∈Ωi
Qω◦π

(n)

h,i

)
(s) and let π̃(n)

h = ω̃h,i◦π(n)
h .

Let f (n)h (s,a) =
∥∥∥P̂ (n)

h (·|s,a)− P ⋆h (·|s,a)
∥∥∥
1
, then according to the event E , we have

E
(s,a)∼ρ(n)

h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n), E

(s,a)∼ρ̃(n)
h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n), ∀n ∈ [N ], h ∈ [H],

∥ϕh(s,a)∥(
Σ̂

(n)
h,ϕh

)−1 = Θ

(
∥ϕh(s,a)∥Σ−1

n,ρ
(n)
h

,ϕh

)
, ∀n ∈ [N ], h ∈ [H], ϕh ∈ Φh.

A direct conclusion of the event E is we can find an absolute constant c, such that

β
(n)
h (s,a) =min

α(n)
∥∥∥ϕ̂(n)h (s̃, ã)

∥∥∥(
Σ

(n)

h,ϕ̂
(n)
h

)−1 , H


≥min

cα(n)
∥∥∥ϕ̂(n)h (s̃, ã)

∥∥∥
Σ−1

n,ρ
(n)
h

,ϕ̂
(n)
h

, H

 , ∀n ∈ [N ], h ∈ [H].

Next, we prove by induction that

E
s∼dπ̃(n)

P̂ (n),h

[
V

(n)

h,i (s)− max
ω∈Ωi

V ω◦π
(n)

h,i (s)

]
≥

H∑
h′=h

E
(s,a)∼dπ̃(n)

P̂ (n),h′

[
β̂
(n)
h′ (s,a)−Hmin

{
f
(n)
h′ (s,a), 1

}]
, ∀h ∈ [H].

(8)

First, notice that ∀h ∈ [H],

E
s∼dπ̃(n)

P̂ (n),h

[
V

(n)

h,i (s)− max
ω∈Ωi

V ω◦π
(n)

h,i (s)

]
=E

s∼dπ̃(n)

P̂ (n),h

[(
D
π
(n)
h

Q
(n)

h,i

)
(s)−

(
D
π̃
(n)
h

max
ω∈Ωi

Qω◦π
(n)

h,i

)
(s)

]
≥E

s∼dπ̃(n)

P̂ (n),h

[(
D
π̃
(n)
h

Q
(n)

h,i

)
(s)−

(
D
π̃
(n)
h

max
ω∈Ωi

Qω◦π
(n)

h,i

)
(s)

]
=E

(s,a)∼dπ̃(n)

P̂ (n),h

[
Q

(n)

h,i (s,a)− max
ω∈Ωi

Qω◦π
(n)

h,i (s,a)

]
.

where the inequality uses the fact that π(n)
h is the CE solution for

{
Q

(n)

h,i

}M
i=1

. Now we are ready to
prove equation 8:

• When h = H , we have

E
s∼dπ̃(n)

P̂ (n),H

[
V

(n)

H,i(s)− max
ω∈Ωi

V ω◦π
(n)

H,i (s)

]
≥E

(s,a)∼dπ̃(n)

P̂ (n),H

[
Q

(n)

H,i(s,a)− max
ω∈Ωi

Qω◦π
(n)

H,i (s,a)

]
=E

(s,a)∼dπ̃(n)

P̂ (n),H

[
β̂
(n)
h (s,a)

]
≥E

(s,a)∼dπ̃(n)

P̂ (n),H

[
β̂
(n)
h (s,a)−Hmin

{
f
(n)
H (s,a), 1

}]
.

20



Published as a conference paper at ICLR 2023

• Suppose the statement is true for h+ 1, then for step h, we have

E
s∼dπ̃(n)

P̂ (n),h

[
V

(n)

h,i (s)− max
ω∈Ωi

V ω◦π
(n)

h,i (s)

]
≥E

(s,a)∼dπ̃(n)

P̂ (n),h

[
Q

(n)

h,i (s,a)− max
ω∈Ωi

Qω◦π
(n)

h,i (s,a)

]
=E

(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a) +

(
P̂

(n)
h V

(n)

h+1,i

)
(s,a)−

(
P ⋆h max

ω∈Ωi

V ω◦π
(n)

h+1,i

)
(s,a)

]
=E

(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a) +

(
P̂

(n)
h

(
V

(n)

h+1,i − max
ω∈Ωi

V ω◦π
(n)

h+1,i

))
(s,a) +

((
P̂

(n)
h − P ⋆h

)
max
ω∈Ωi

V ω◦π
(n)

h+1,i

)
(s,a)

]
=E

(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a) +

((
P̂

(n)
h − P ⋆h

)
max
ω∈Ωi

V ω◦π
(n)

h+1,i

)
(s,a)

]
+ E

s∼dπ̃(n)

P̂ (n),h+1

[
V

(n)

h+1,i(s)− max
ω∈Ωi

V ω◦π
(n)

h+1,i (s)

]
≥E

(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a)−Hmin

{
f
(n)
h (s,a), 1

}]
+ E

s∼dπ̃(n)

P̂ (n),h+1

[
V

(n)

h+1,i(s)− max
ω∈Ωi

V ω◦π
(n)

h+1,i (s)

]
≥

H∑
h′=h

E
(s,a)∼dπ̃(n)

P̂ (n),h′

[
β̂
(n)
h′ (s,a)−Hmin

{
f
(n)
h′ (s,a), 1

}]
,

where we use the fact∣∣∣∣(P̂ (n)
h − P ⋆h

)
max
ω∈Ωi

V ω◦π
(n)

h+1,i

∣∣∣∣ (s,a) ≤min

{
H,
∥∥∥P̂ (n)

h (·|s,a)− P ⋆h (·|s,a)
∥∥∥
1

∥∥∥∥max
ω∈Ωi

V ω◦π
(n)

h+1,i

∥∥∥∥
∞

}
≤Hmin

{
1,
∥∥∥P̂ (n)

h (·|s,a)− P ⋆h (·|s,a)
∥∥∥
1

}
=Hmin

{
1, f

(n)
h′ (s,a)

}
and the last row uses the induction assumption.

Therefore, we have proved equation 8. We then apply h = 1 to equation 8, and get

Es∼d1
[
V

(n)

1,i (s)− max
ω∈Ωi

V ω◦π
(n)

1,i (s)

]
=E

s∼dπ̃(n)

P̂ (n),1

[
V

(n)

1,i (s)− max
ω∈Ωi

V ω◦π
(n)

1,i (s)

]
≥

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a)−Hmin

{
f
(n)
h (s,a), 1

}]
=

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a)

]
−H

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
min

{
f
(n)
h (s,a), 1

}]
.

Next we are going to bound the second term, let gh(s,a) = min{f (n)h (s,a), 1} and apply Lemma
B.3 to gh, we have for h = 1,

E
(s,a)∼dπ̃(n)

P̂ (n),1

[
min

{
f
(n)
1 (s,a), 1

}]
≤

√
AE

(s,a)∼ρ(n)
1

[(
f
(n)
1 (s,a)

)2]
≤
√
Aζ(n).

And ∀h ≥ 2, we have

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
min

{
f
(n)
h (s,a), 1

}]
≤E

(s̃,ã)∼dπ̃(n)

P̂ (n),h−1

min

∥∥∥ϕ̂(n)h−1(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

√
nAE

(s,a)∼ρ̃(n)
h

[(
f
(n)
h (s,a)

)2]
+ dλ+ nζ(n), 1



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≲E
(s̃,ã)∼dπ̃(n)

P̂ (n),h−1

min

∥∥∥ϕ̂(n)h−1(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

√
nAζ(n) + dλ+ nζ(n), 1


 .

Note that we here use the fact min{f (n)h (s,a), 1} ≤ 1, E
(s,a)∼ρ(n)

h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n) and

E
(s,a)∼ρ̃(n)

h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n). Then according to our choice of α(n), we get

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
f
(n)
h (s,a)

]
≤ E

(s̃,ã)∼dπ̃(n)

P̂ (n),h−1

min

cα(n)

H

∥∥∥ϕ̂(n)h−1(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

, 1


 .

Combining all things together,

v
(n)
i − max

ω∈Ωi

vω◦π
(n)

i =Es∼d1
[
V

(n)

1,i (s)− max
ω∈Ωi

V ω◦π
(n)

1,i (s)

]
≥

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a)

]
−H

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
min

{
f
(n)
h (s,a), 1

}]

≥
H−1∑
h=1

E
(s̃,ã)∼dπ̃(n)

P̂ (n),h

β̂(n)
h (s,a)−min

cα(n)
∥∥∥ϕ̂(n)h (s̃, ã)

∥∥∥
Σ−1

n,ρ
(n)
h

,ϕ̂
(n)
h

, H


−H√Aζ(n)

≥−H
√
Aζ(n),

which proves the inequality.

Lemma B.7 (Pessimism). Consider an episode n ∈ [N ] and set α(n) = Θ
(
H
√
nAζ(n) + dλ

)
.

When the event E holds, we have

v
(n)
i (s)− vπ

(n)

i (s) ≤ H
√
Aζ(n), ∀n ∈ [N ], i ∈ [M ].

Proof. Let f (n)h (s,a) =
∥∥∥P̂ (n)

h (·|s,a)− P ⋆h (·|s,a)
∥∥∥
1
, then according to the event E , we have

E
(s,a)∼ρ(n)

h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n), E

(s,a)∼ρ̃(n)
h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n), ∀n ∈ [N ], h ∈ [H],

∥ϕh(s,a)∥(
Σ̂

(n)
h,ϕh

)−1 = Θ

(
∥ϕh(s,a)∥Σ−1

n,ρ
(n)
h

,ϕh

)
, ∀n ∈ [N ], h ∈ [H], ϕh ∈ Φh.

A direct conclusion of the event E is we can find an absolute constant c, such that

β
(n)
h (s,a) =min

α(n)
∥∥∥ϕ̂(n)h (s̃, ã)

∥∥∥(
Σ

(n)

h,ϕ̂
(n)
h

)−1 , H


≥min

cα(n)
∥∥∥ϕ̂(n)h (s̃, ã)

∥∥∥
Σ−1

n,ρ
(n)
h

,ϕ̂
(n)
h

, H

 , ∀n ∈ [N ], h ∈ [H].

Again, we prove the following inequality by induction:

E
s∼dπ(n)

P̂ (n),h

[
V

(n)
h,i (s)− V

π(n)

h,i (s)
]
≤

H∑
h′=h

E
(s,a)∼dπ(n)

P̂ (n),h′

[
−β̂(n)

h′ (s,a) +Hmin
{
f
(n)
h′ (s,a), 1

}]
, ∀h ∈ [H].

(9)
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• When h = H , we have

E
s∼dπ(n)

P̂ (n),H

[
V

(n)
H,i(s)− V

π(n)

H,i (s)
]
=E

(s,a)∼dπ(n)

P̂ (n),H

[
Q(n)

H,i
(s,a)−Qπ

(n)

H,i (s,a)
]

=E
(s,a)∼dπ(n)

P̂ (n),H

[
−β̂(n)

H (s,a)
]

≤E
(s,a)∼dπ(n)

P̂ (n),H

[
−β̂(n)

H (s,a) +Hmin
{
f
(n)
H (s,a), 1

}]
• Suppose the statement is true for h+ 1, then for step h, we have

E
s∼dπ(n)

P̂ (n),h

[
V

(n)
h,i (s)− V

π(n)

h,i (s)
]

=E
(s,a)∼dπ(n)

P̂ (n),h

[
Q(n)

h,i
(s,a)−Qπ

(n)

h,i (s,a)
]

=E
(s,a)∼dπ(n)

P̂ (n),h

[
−β̂(n)

h (s,a) +
(
P̂

(n)
h V

(n)
h+1,i

)
(s,a)−

(
P ⋆hV

π(n)

h+1,i

)
(s,a)

]
=E

(s,a)∼dπ(n)

P̂ (n),h

[
−β̂(n)

h (s,a) +
(
P̂

(n)
h

(
V

(n)
h+1,i − V

π(n)

h+1,i

))
(s,a) +

((
P̂

(n)
h − P ⋆h

)
V π

(n)

h+1,i

)
(s,a)

]
=E

(s,a)∼dπ(n)

P̂ (n),h

[
−β̂(n)

h (s,a) +
((
P̂

(n)
h − P ⋆h

)
V π

(n)

h+1,i

)
(s,a)

]
+ E

s∼dπ(n)

P̂ (n),h+1

[(
V

(n)
h+1,i − V

π(n)

h+1,i

)
(s)
]

≤E
(s,a)∼dπ(n)

P̂ (n),h

[
−β̂(n)

h (s,a) +Hmin
{
f
(n)
h (s,a), 1

}]
+ E

s∼dπ(n)

P̂ (n),h+1

[(
V

(n)
h+1,i − V

π(n)

h+1,i

)
(s)
]

≤
H∑

h′=h

E
(s,a)∼dπ(n)

P̂ (n),h′

[
−β̂(n)

h′ (s,a) +Hmin
{
f
(n)
h′ (s,a), 1

}]
.

where we use the fact∣∣∣(P̂ (n)
h − P ⋆h

)
V π

(n)

h+1,i

∣∣∣ (s,a) ≤min
{
H,
∥∥∥P̂ (n)

h (·|s,a)− P ⋆h (·|s,a)
∥∥∥
1

∥∥∥V π(n)

h+1,i

∥∥∥
∞

}
≤Hmin

{
1,
∥∥∥P̂ (n)

h (·|s,a)− P ⋆h (·|s,a)
∥∥∥
1

}
=Hmin

{
1, f

(n)
h′ (s,a)

}
and the last row uses the induction assumption.

The remaining steps are exactly the same as the proof in Lemma B.5 or Lemma B.6, we may prove

E
(s,a)∼dπ(n)

P̂ (n),1

[
min

{
f
(n)
1 (s,a), 1

}]
≤
√
Aζ(n),

and

E
(s,a)∼dπ(n)

P̂ (n),h

[
f
(n)
h (s,a)

]
≤ E

(s̃,ã)∼dπ(n)

P̂ (n),h−1

min

cα(n)

H

∥∥∥ϕ̂(n)h−1(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

, 1


 , ∀h ≥ 2.

Combining all things together, we get

v
(n)
i − vπ

(n)

i =Es∼d1
[
V

(n)
1,i (s)− V

π(n)

1,i (s)
]

≤
H∑
h=1

E
(s,a)∼dπ(n)

P̂ (n),h

[
−β̂(n)

h (s,a) +Hmin
{
f
(n)
h (s,a), 1

}]

≤
H−1∑
h=1

E
(s,a)∼dπ(n)

P̂ (n),h

−β̂(n)
h (s,a) + min

cα(n)
∥∥∥ϕ̂(n)h (s̃, ã)

∥∥∥
Σ−1

n,ρ
(n)
h

,ϕ̂
(n)
h

, H


+H

√
Aζ(n)

≤H
√
Aζ(n),

which has finished the proof.
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Lemma B.8. For the model-based algorithm, when we pick λ = Θ
(
d log NH|Φ|

δ

)
, ζ(n) =

Θ
(

1
n log |M|HN

δ

)
and α(n) = Θ

(
H
√
nAζ(n) + dλ

)
, with probability 1− δ, we have

N∑
n=1

∆(n) ≲ H3d2AN
1
2 log

|M|HN
δ

.

Proof. With our choice of λ and ζ(n), according to Lemma B.2, we know E holds with probability
1− δ. Furthermore, we have

α(n) = Θ

(
H

√
A log

|M|HN
δ

+ d2 log
NH|Φ|

δ

)
= O

(
dH

√
A log

|M|HN
δ

)

Let f (n)h (s,a) =
∥∥∥P̂ (n)

h (·|s,a)− P ⋆h (·|s,a)
∥∥∥
1
. According to the definition of the event E , we have

E
s∼ρ(n)

h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n), ∥ϕh(s,a)∥(

Σ̂
(n)
h,ϕh

)−1 = Θ

(
∥ϕh(s,a)∥Σ−1

n,ρ
(n)
h

,ϕh

)
, ∀n ∈ [N ], h ∈ [H], ϕh ∈ Φh.

(10)

By definition, we have

∆(n) = max
i∈[M ]

{
v
(n)
i − v(n)i

}
+ 2H

√
Aζ(n).

For each fixed i ∈ [M ], h ∈ [H] and n ∈ [N ], we have

E
s∼dπ(n)

P⋆,h

[
V

(n)

h,i (s)− V
(n)
h,i (s)

]
=E

s∼dπ(n)

P⋆,h

[(
D
π
(n)
h

Q
(n)

h,i

)
(s)−

(
D
π
(n)
h

Q(n)

h,i

)
(s)
]

=E
(s,a)∼dπ(n)

P⋆,h

[
Q

(n)

h,i (s,a)−Q
(n)

h,i
(s,a)

]
=E

(s,a)∼dπ(n)

P⋆,h

[
2β̂

(n)
h (s,a) +

(
P̂

(n)
h

(
V

(n)

h+1,i − V
(n)
h+1,i

))
(s,a)

]
=E

(s,a)∼dπ(n)

P⋆,h

[
2β̂

(n)
h (s,a) +

((
P̂

(n)
h − P ⋆h

)(
V

(n)

h+1,i − V
(n)
h+1,i

))
(s,a)

]
+ E

s∼dπ(n)

P⋆,h+1

[
V

(n)

h+1,i(s)− V
(n)
h+1,i(s)

]
≤E

(s,a)∼dπ(n)

P⋆,h

[
2β̂

(n)
h (s,a) + 2H2f

(n)
h (s,a)

]
+ E

s∼dπ(n)

P⋆,h+1

[
V

(n)

h+1,i(s)− V
(n)
h+1,i(s)

]
.

Note that we use the fact V
(n)

h+1,i(s) − V
(n)
h+1,i(s) is upper bounded by 2H2, which can be proved

easily using induction using the fact that β̂(n)
h (s,a) ≤ H . Applying the above formula recursively

to E
s∼dπ(n)

P⋆,h+1

[
V

(n)

h+1,i(s)− V
(n)
h+1,i(s)

]
, one gets the following result (or more formally, one can

prove by induction, just like what we did in Lemma B.5, Lemma B.6 and Lemma B.7):

E
s∼dπ(n)

P⋆,1

[
V

(n)

1,i (s)− V
(n)
1,i (s)

]
≤ 2

H∑
h=1

E
(s,a)∼dπ(n)

P⋆,h

[
β̂
(n)
h (s,a)

]
︸ ︷︷ ︸

(a)

+2H2
H∑
h=1

E
(s,a)∼dπ(n)

P⋆,h

[
f
(n)
h (s,a)

]
︸ ︷︷ ︸

(b)

.

(11)

First, we calculate the first term (a) in Inequality equation 11. Following Lemma B.4 and noting the
bonus β̂(n)

h is O(H), we have

H∑
h=1

E
(s,a)∼dπ(n)

P⋆,h

[
β̂
(n)
h (s,a)

]
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≲
H∑
h=1

E
(s,a)∼dπ(n)

P⋆,h

min

α(n)
∥∥∥ϕ̂(n)h (s,a)

∥∥∥
Σ−1

n,ρ
(n)
h

,ϕ̂
(n)
h

, H


 (From equation 10)

≲
H−1∑
h=1

E
(s̃,ã)∼dπ(n)

P⋆,h

[
∥ϕ⋆h(s̃, ã)∥Σ−1

n,γ
(n)
h

,ϕ⋆
h

]√√√√√nA
(
α(n)

)2E
(s,a)∼ρ(n)

h

∥∥∥ϕ̂(n)h (s,a)
∥∥∥2
Σ−1

n,ρ
(n)
h

,ϕ̂
(n)
h

+H2dλ

+

√√√√√A
(
α(n)

)2 E
(s,a)∼ρ(n)

1

∥∥∥ϕ̂(n)1 (s,a)
∥∥∥2
Σ−1

n,ρ
(n)
1 ,ϕ̂

(n)
1

.
Note that we use the fact that B = H when applying Lemma B.4. In addition, we have

nE
(s,a)∼ρ(n)

h

∥∥∥ϕ̂(n)h (s,a)
∥∥∥2
Σ−1

n,ρ
(n)
h

,ϕ̂
(n)
h


=nTr

(
E
(s,a)∼ρ(n)

h

[
ϕ̂
(n)
h (s,a)ϕ̂

(n)
h (s,a)⊤

] (
nE

(s,a)∼ρ(n)
h

[
ϕ̂
(n)
h (s,a)ϕ̂

(n)
h (s,a)⊤

]
+ λId

)−1
)

≤d.
Then,
H∑
h=1

E
(s,a)∼dπ(n)

P⋆,h

[
β̂
(n)
h (s,a)

]
≤ E

(s̃,ã)∼dπ(n)

P⋆,h

[
∥ϕ⋆h(s̃, ã)∥Σ−1

n,γ
(n)
h

,ϕ⋆
h

]√
dA
(
α(n)

)2
+H2dλ+

√
dA
(
α(n)

)2
/n.

Second, we calculate the term (b) in inequality equation 11. Following Lemma B.4 and noting that
f
(n)
h (s,a is upper-bounded by 2 (i.e., B = 2 in Lemma B.4), we have
H∑
h=1

E
(s,a)∼dπ(n)

P⋆,h

[f
(n)
h (s,a)]

≤
H−1∑
h=1

E
(s̃,ã)∼dπ(n)

P⋆,h

[
∥ϕ⋆h(s̃, ã)∥Σ−1

n,γ
(n)
h

,ϕ⋆
h

]√
nAE

(s,a)∼ρ(n)
h

[(
f
(n)
h (s,a)

)2]
+ dλ+

√
AE

(s,a)∼ρ(n)
h

[(
f
(n)
1 (s,a)

)2]

≤
H−1∑
h=1

E
(s̃,ã)∼dπ(n)

P⋆,h

[
∥ϕ⋆h(s̃, ã)∥Σ−1

n,γ
(n)
h

,ϕ⋆
h

]√
nAζ(n) + dλ+

√
Aζ(n)

≲
α(n)

H

H−1∑
h=1

E(s̃,ã)∼dπn
P⋆,h

[
∥ϕ⋆h(s̃, ã)∥Σ−1

n,γ
(n)
h

,ϕ⋆
h

]
+
√
Aζ(n),

where in the second inequality, we use E
(s,a)∼ρ(n)

h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n), and in the last line,

recall
√
nAζ(n) + dλ ≲ α(n)/H . Then, by combining the above calculation of the term (a) and

term (b) in inequality equation 11, we have:

v
(n)
i − v(n)i =E

s∼dπ(n)

P⋆,1

[
V

(n)

1,i (s)− V
(n)
1,i (s)

]
≲
H−1∑
h=1

E
(s̃,ã)∼dπ(n)

P⋆,h

[
∥ϕ⋆h(s̃, ã)∥Σ−1

n,γ
(n)
h

,ϕ⋆
h

]√
dA
(
α(n)

)2
+H2dλ+

√
dA
(
α(n)

)2
n


+H2

H−1∑
h=1

(
α(n)

H
E
(s̃,ã)∼dπ(n)

P⋆,h

[
∥ϕ⋆h(s̃, ã)∥Σ−1

n,γ
(n)
h

,ϕ⋆
h

]
+
√
Aζ(n)

)
.

Taking maximum over i on both sides and using the definition of ∆(n), we get

∆(n) = max
i∈[M ]

{
v
(n)
i − v(n)i

}
+ 2H

√
Aζ(n)
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≲
H−1∑
h=1

E
(s̃,ã)∼dπ(n)

P⋆,h

[
∥ϕ⋆h(s̃, ã)∥Σ−1

n,γ
(n)
h

,ϕ⋆
h

]√
dA
(
α(n)

)2
+H2dλ+

√
dA
(
α(n)

)2
n


+H2

H−1∑
h=1

(
α(n)

H
E
(s̃,ã)∼dπ(n)

P⋆,h

[
∥ϕ⋆h(s̃, ã)∥Σ−1

n,γ
(n)
h

,ϕ⋆
h

]
+
√
Aζ(n)

)
.

Hereafter, we take the dominating term out. Note that

N∑
n=1

E
(s̃,ã)∼dπ(n)

P⋆,h

[
∥ϕ⋆h(s̃, ã)∥Σ−1

n,γ
(n)
h

,ϕ⋆
h

]
≤

√√√√N

N∑
n=1

E
(s̃,ã)∼dπ(n)

P⋆,h

[
ϕ⋆h(s̃, ã)

⊤Σ−1

n,γ
(n)
h ,ϕ⋆

h

ϕ⋆h(s̃, ã)

]
(CS inequality)

≲

√√√√N

(
log det

(
N∑
n=1

E
(s̃,ã)∼dπ(n)

P⋆,h

[ϕ⋆h(s̃, ã)ϕ
⋆
h(s̃, ã)

⊤]

)
− log det(λId)

)
(Lemma E.2)

≤

√
dN log

(
1 +

N

dλ

)
.

(Potential function bound, Lemma E.3 noting ∥ϕ⋆h(s,a)∥2 ≤ 1 for any (s,a).)

Finally,

N∑
n=1

∆(n) ≲H

√dN log

(
1 +

N

d

)√
dA
(
α(N)

)2
+H2dλ+

N∑
n=1

√
dA
(
α(n)

)2
n


+H3

(
1

H

√
dN log

(
1 +

N

dλ

)
α(N) +

N∑
n=1

√
Aζ(n)

)

≲H2d

√
NA log

(
1 +

N

dλ

)
α(N)

(Some algebra. We take the dominating term out. Note that α(n) is increasing in n)

≲H3d2AN
1
2 log

|M|HN
δ

.

This concludes the proof.

Proof of Theorem 4.1

Proof. For any fixed episode n and agent i, by Lemma B.5, Lemma B.6 and Lemma B.7, we have

v
†,π(n)

−i

i − vπ
(n)

i

(
or max

ω∈Ωi

vω◦π
(n)

i − vπ
(n)

i

)
≤ v(n)i − v(n)i + 2H

√
Aζ(n) ≤ ∆(n).

Taking maximum over i on both sides, we have

max
i∈[M ]

{
v
†,π(n)

−i

i − vπ
(n)

i

}(
or max

i∈[M ]

{
max
ω∈Ωi

vω◦π
(n)

i − vπ
(n)

i

})
≤ ∆(n). (12)

From Lemma B.8, with probability 1− δ, we can ensure

N∑
n=1

∆(n) ≲ H3d2AN
1
2 log

|M|HN
δ

.

Therefore, according to Lemma E.4, when we pick N to be

O

(
H6d4A2

ε2
log2

(
HdA|M|

δε

))
,
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we have

1

N

N∑
n=1

∆(n) ≤ ε.

On the other hand, from equation 12, we have

max
i∈[M ]

{
v
†,π̂−i

i − vπ̂i
}(

or max
i∈[M ]

{
max
ω∈Ωi

vω◦π̂i − vπ̂i
})

= max
i∈[M ]

{
v
†,π(n⋆)

−i

i − vπ
(n⋆)

i

}(
or max

i∈[M ]

{
max
ω∈Ωi

vω◦π
(n⋆)

i − vπ
(n⋆)

i

})
≤∆(n⋆) = min

n∈[N ]
∆(n) ≤ 1

N

N∑
n=1

∆(n) ≤ ε,

which has finished the proof.

C ANALYSIS OF THE MODEL-FREE METHOD

For the model-free method, throughout this section we assume the Markov game is a block Markov
game.

C.1 CONSTRUCTION OF Nh AND Fh

Let Ch = {Σh : Σh = λId +
∑l
k=1 ϕh(sk,ak)ϕh(sk,ak)

⊤|ϕh ∈ Φh, l ∈ [N ], sk ∈ S,ak ∈
A,∀k ∈ [l]}. Fix a variable L, for each h ∈ [H], define a function class F̃h ∈ RS×A by

F̃h = { f(s,a) := rh,i(s,a) + ϕh(s,a)
⊤θ +min

(
c∥ϕh(s,a)∥Σ−1

h
, H
)∣∣∣

i ∈ [M ], ϕh ∈ Φh, ∥θ∥2 ≤ 2H2
√
d, c ∈ [0, L],Σh ∈ Ch}

For a given parameter ε̃, let Nh be a ε̃-net of F̃h under the ∥ · ∥∞ metric. Define Πh as the set of
all possible policies produced by equation 2 (or equation 3 or equation 4, according to the problem
setting). We then define the discriminator function class Fh as followings:

F1,h :=
{
f(s) := Ea∼U(A)

[∣∣ϕh(s,a)⊤θ − ϕ′h(s,a)⊤θ′∣∣]∣∣ϕh, ϕ′h ∈ Φh,max{∥θ∥2, ∥θ′∥2} ≤
√
d
}
,

F2,h :=

{
f(s) := Ea∼πh+1(s)

[
rh+1,i(s,a)

H
+ ϕh+1(s,a)

⊤θ

]∣∣∣∣ i ∈ [M ], πh+1 ∈ Πh+1, ϕh+1 ∈ Φh+1, ∥θ∥2 ≤
√
d

}
,

F3,h :=

{
f(s) := max

µ̃h+1,i

Ea∼(µ̃h+1,i×πh+1,−i)(s)

[
rh+1,i(s,a)

H
+ ϕh+1(s,a)

⊤θ

]∣∣∣∣
i ∈ [M ], πh+1 ∈ Πh+1, ϕh+1 ∈ Φh+1, ∥θ∥2 ≤

√
d

}
, (For NE and CCE)

F3,h :=

{
f(s) := max

ωh+1,i∈Ωh+1,i

Ea∼(ωh+1,i◦πh+1)(s)

[
rh+1,i(s,a)

H
+ ϕh+1(s,a)

⊤θ

]∣∣∣∣
i ∈ [M ], πh+1 ∈ Πh+1, ϕh+1 ∈ Φh+1, ∥θ∥2 ≤

√
d

}
, (For CE)

F4,h :=

{
f(s) := Ea∼πh+1(s)

min
{
c∥ϕh+1(s,a)∥Σ−1

h+1
, H
}

H2
+ ϕh+1(s,a)

⊤θ

∣∣∣∣∣∣
c ∈ [0, L], πh+1 ∈ Πh+1,Σh+1 ∈ Ch+1, ϕh+1 ∈ Φh+1, ∥θ∥2 ≤

√
d

}
,

G := {f : S → [0, 1]},
Fh := (F1,h ∪ F2,h ∪ F3,h ∪ F4,h) ∩ G.
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C.2 HIGH PROBABILITY EVENTS

We define the following event

E1 : ∀n ∈ [N ], h ∈ [H], ρ ∈
{
ρ
(n)
h , ρ̃

(n)
h

}
, f ∈ Fh, Eρ

[(((
P̂

(n)
h − P ⋆h

)
f
)
(s,a)

)2]
≤ ζ(n),

E2 : ∀n ∈ [N ], h ∈ [H], ϕh ∈ Φh, ∥ϕh(s,a)∥(
Σ̂

(n)
h,ϕh

)−1 = Θ

(
∥ϕh(s,a)∥Σ−1

n,ρ
(n)
h

,ϕh

)
E := E1 ∩ E2.

Similar to the procedure of the model-based case, we first prove a few lemmas which lead to the
conclusion that E holds with a high probability.

Lemma C.1. For any n ∈ [N ], h ∈ [H], we have P̂ (n)
h (s′|s,a) = ϕ̂

(n)
h (s,a)⊤ŵ

(n)
h (s′) for

some ŵ
(n)
h : S → Rd. For any function f : S → [0, 1] and n ∈ [N ], h ∈ [H], we

have
∥∥∥∫S ŵ(n)

h (s′)f(s′)ds′
∥∥∥
2
≤
√
d, and there exist θ, θ̃ ∈ Rd such that (P ⋆hf) (s,a) =

ϕ⋆h(s,a)
⊤θ,

(
P̂

(n)
h f

)
(s,a) = ϕ̂

(n)
h (s,a)⊤θ̃ and max{∥θ∥2, ∥θ̃∥2} ≤

√
d. Furthermore, we have

∥θ̃∥∞ ≤ 1.

Proof. By definition, we have

(P ⋆hf) (s,a) =

∫
S
P ⋆h (s

′|s,a)f(s′)ds′

=ϕ⋆h(s,a)
⊤
∫
S
w⋆h(s

′)f(s′)ds′

=ϕ⋆h(s,a)
⊤θ,

where θ =
∫
S w

⋆
h(s

′)f(s′)ds′. Furthermore, note that ∥f∥∞ ≤ 1, according to the assumption on
w⋆h, we have ∥∥∥∥∫

S
w⋆h(s

′)f(s′)ds′
∥∥∥∥
2

≤
√
d,

which implies ∥θ∥2 ≤
√
d. For

(
P̂

(n)
h f

)
(s,a), let

ŵ
(n)
h (s′) :=

 ∑
(s̃,ã)∈D(n)

h ∪D̃(n)
h

ϕ
(n)
h (s̃, ã)ϕ

(n)
h (s̃, ã)⊤ + λId


−1 ∑

(s̃,ã,s̃′)∈D(n)
h ∪D̃(n)

h

ϕ
(n)
h (s̃, ã)1s̃′=s′ .

Since ϕ
(n)
h (s,a) is an one-hot vector, one has

∥∥∥ŵ(n)
h (s′)

∥∥∥
∞
≤ 1,∀s′ ∈ S. It follows that∥∥∥∫S ŵ(n)

h (s′)f(s′)ds′
∥∥∥
∞
≤ 1, and therefore,

∥∥∥∫S ŵ(n)
h (s′)f(s′)ds′

∥∥∥
2
≤
√
d. By definition, we

have (
P̂

(n)
h f

)
(s,a) =

∫
S
P̂

(n)
h (s′|s,a)f(s′)ds′

=ϕ
(n)
h (s,a)⊤

∫
S
ŵ

(n)
h (s′)f(s′)ds′

=ϕ
(n)
h (s,a)⊤θ̃,

where θ̃ =
∫
S ŵ

(n)
h (s′)f(s′)ds′. Due to the property we just derived for ŵ(n)

h , similar to the proof of
the true model, we also have ∥θ∥2 ≤

√
d. Meanwhile, one can easily see that ∥θ∥∞ ≤ 1, using the

fact
∥∥∥∫S ŵ(n)

h (s′)f(s′)ds′
∥∥∥
∞
≤ 1.
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Lemma C.2 (Covering Number of F̃h). When Φh is the set of one-hot vectors and λ ≥ 1, it’s

possible to construct the ε̃-net Nh such that |Nh| ≤ M
(

12H2L2d
ε̃

)3d
|Φ|,∀h ∈ [H]. Furthermore,

we have |Πh| ≤ |Nh|M ≤MM
(

12H2L2d
ε̃

)3Md

|Φ|M .

Proof. Recall that

F̃h = { f(s,a) := rh,i(s,a) + ϕh(s,a)
⊤θ +min{c∥ϕh(s,a)∥Σ−1

h
, H}

∣∣∣
i ∈ [M ], ϕh ∈ Φh, ∥θ∥2 ≤ 2H2

√
d, c ∈ [0, L],Σ ∈ Ch}.

Note that when Φh is the set of one-hot vectors, Σh will be a diagonal matrix. In this case, F̃h is the
subset of the following function class:

F̃ ′
h := { f(s,a) := rh,i(s,a) + min{cϕh(s,a)⊤θ′, H}+ ϕh(s,a)

⊤θ
∣∣

i ∈ [M ], ϕh ∈ Φh, 0 ≤ c ≤ L,max{∥θ∥2, ∥θ′∥2} ≤ 2H2
√
d}.

Let Θ be an ℓ2-cover of the set {θ ∈ Rd : ∥θ∥2 ≤ 2H2
√
d} at scale ε̃. Then we know |Θ| ≤(

4H2
√
d

ε̃

)d
. LetW be an ℓ∞-cover of the set [0, L] at scale ε̃′ := ε̃

2H2
√
d

, we have |W| ≤ 2H2L
√
d

ε̃ .
Define the covering set by

F̄h :=
{
f̄(s,a) := rh,i(s,a) + min{c̃ϕh(s,a)⊤θ̃′, H}+ ϕh(s,a)

⊤θ̃
∣∣∣ i ∈ [M ], ϕh ∈ Φh, c̃ ∈ W, θ̃, θ̃′ ∈ Θ

}
.

Then, for any f ∈ F̃h, by definition, suppose f takes the following form:

f(s,a) := rh,i(s,a) + min{cϕh(s,a)⊤θ′, H}+ ϕh(s,a)
⊤θ, 0 ≤ c ≤ L,max{∥θ∥2, ∥θ̃∥2} ≤ 2H2

√
d.

Then we can find θ̃, θ̃′ ∈ Θ, c̃ ∈ W such that ∥θ − θ̃∥2 ≤ ε̃, ∥θ′ − θ̃′∥2 ≤ ε̃ and |c− c̃| ≤ ε̃′. Let

f̄(s,a) := rh,i(s,a) + min{c̃ϕh(s,a)⊤θ̃′, H}+ ϕh(s,a)
⊤θ̃,

then we have

|f(s,a)− f̄(s,a)|

≤∥ϕh(s,a)∥2
∥∥∥θ − θ̃∥∥∥

2
+ ∥ϕh(s,a)∥2

∥∥∥c̃θ̃′ − cθ′∥∥∥
2

≤ε̃+ |c̃− c|
∥∥∥θ̃′∥∥∥

2
+ c

∥∥∥θ′ − θ̃′∥∥∥
2

≤ε̃+ 2H2
√
dε̃′ + Lε̃

≤3Lε̃,

which implies F̄h is a 3Lε̃-covering of F̃ ′
h (therefore, is a 3Lε̃-covering of F̃h), and we have∣∣F̄h∣∣ ≤M (

4H2Ld

ε̃

)3d

|Φ|.

Replacing ε̃ by ε̃
3L , we get an ε̃-covering of F̃h whose size is no larger than M

(
12H2L2d

ε̃

)3d
|Φ|.

For Πh, since each policy is determined by M members from Nh, we have |Πh| ≤ |Nh|M , which
has finished the proof.

Lemma C.3 (Covering Number of Fh). When Φh is the set of one-hot vectors and λ ≥ 1. The

γ-covering number of Fh is at most 4M |Πh+1|
(

6L2d
γ

)3d
|Φ|2.

Proof. We cover F1,h,F2,h,F3,h,F4,h separately. For F1,h, let Θ be an ℓ2-cover of the set {θ ∈

Rd : ∥θ∥2 ≤
√
d} at scale γ. Then we know |Θ| ≤

(
2
√
d

γ

)d
. Define the covering set of F1,h as

F̃1,h :=
{
f̃(s) := Ea∼U(A)

[∣∣∣ϕh(s,a)⊤θ̃ − ϕ′h(s,a)⊤θ̃′∣∣∣]∣∣∣ϕh, ϕ′h ∈ Φh, θ̃, θ̃
′ ∈ Θ

}
.
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For any f ∈ F1,h, suppose

f(s) = Ea∼U(A)

[∣∣ϕh(s,a)⊤θ − ϕ′h(s,a)⊤θ′∣∣] , ϕh, ϕ
′
h ∈ Φh,max{∥θ∥2, ∥θ′∥2} ≤

√
d,

Then we can find θ̃, θ̃′ ∈ Θ such that ∥θ − θ̃∥2 ≤ γ, ∥θ′ − θ̃′∥2 ≤ γ. Let

f̃(s) := Ea∼U(A)

[∣∣∣ϕh(s,a)⊤θ̃ − ϕ′h(s,a)⊤θ̃′∣∣∣] .
Then we have

|f(s)− f̃(s)| ≤ 1

A

∑
a∈A
∥ϕh(s,a)∥2

∥∥∥θ − θ̃∥∥∥
2
+

1

A

∑
a∈A
∥ϕ′h(s,a)∥2

∥∥∥θ′ − θ̃′∥∥∥
2

≤2γ,

which implies F̃1,h is a 2γ covering of F1,h. Furthermore, we have

|F̃1,h| ≤
(
2d

γ

)2d

|Φ|2.

For F2,h and F3,h, we construct

F̃2,h :=

{
f̃(s) := Ea∼πh+1(s)

[
rh+1,i(s,a)

H
+ ϕh+1(s,a)

⊤θ̃

]∣∣∣∣ i ∈ [M ], ϕh+1 ∈ Φh+1, θ̃ ∈ Θ, πh+1 ∈ Πh+1

}
.

Similar to the proof of F1,h, we may verify F̃2,h is a γ-covering of F2,h, and

|F̃2,h| ≤M |Πh+1|
(
2d

γ

)d
|Φ|.

For F3,h, we only prove the case of NE or CCE, the case of CE can be proved in a similar manner.
We construct

F̃3,h :=

{
f̃(s) := max

µ̃h+1,i

Ea∼(µ̃h+1,i×πh+1,−i)(s)

[
rh+1,i(s,a)

H
+ ϕh+1(s,a)

⊤θ̃

]∣∣∣∣
i ∈ [M ], ϕh+1 ∈ Φh+1, θ̃ ∈ Θ, πh+1 ∈ Πh+1

}
.

For any f ∈ F3,h, suppose

f(s) = max
µ̃h+1,i

Ea∼(µ̃h+1,i×πh+1,−i)(s)

[
rh+1,i(s,a)

H
+ ϕh+1(s,a)

⊤θ

]
, i ∈ [M ], πh+1 ∈ Πh+1, ϕh+1 ∈ Φh+1, ∥θ∥2 ≤

√
d.

Then we can find θ̃ ∈ Θ such that ∥θ − θ̃∥2 ≤ γ. Let

f̃(s) = max
µ̃h+1,i

Ea∼(µ̃h+1,i×πh+1,−i)(s)

[
rh+1,i(s,a)

H
+ ϕh+1(s,a)

⊤θ̃

]
,

we have

f(s)− f̃(s) = max
µ̃h+1,i

Ea∼(µ̃h+1,i×πh+1,−i)(s)

[
rh+1,i(s,a)

H
+ ϕh+1(s,a)

⊤θ

]
− max
µ̃h+1,i

Ea∼(µ̃h+1,i×πh+1,−i)(s)

[
rh+1,i(s,a)

H
+ ϕh+1(s,a)

⊤θ̃

]
≤ max
µ̃h+1,i

(
Ea∼(µ̃h+1,i×πh+1,−i)(s)

[
rh+1,i(s,a)

H
+ ϕh+1(s,a)

⊤θ

]
− Ea∼(µ̃h+1,i×πh+1,−i)(s)

[
rh+1,i(s,a)

H
+ ϕh+1(s,a)

⊤θ̃

])
= max
µ̃h+1,i

(
Ea∼(µ̃h+1,i×πh+1,−i)(s)

[
ϕh+1(s,a)

⊤θ − ϕh+1(s,a)
⊤θ̃
])

≤∥θ − θ̃∥2
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≤γ,

and

f̃(s)− f(s) = max
µ̃h+1,i

Ea∼(µ̃h+1,i×πh+1,−i)(s)

[
rh+1,i(s,a)

H
+ ϕh+1(s,a)

⊤θ̃

]
− max
µ̃h+1,i

Ea∼(µ̃h+1,i×πh+1,−i)(s)

[
rh+1,i(s,a)

H
+ ϕh+1(s,a)

⊤θ

]
≤ max
µ̃h+1,i

(
Ea∼(µ̃h+1,i×πh+1,−i)(s)

[
rh+1,i(s,a)

H
+ ϕh+1(s,a)

⊤θ̃

]
− Ea∼(µ̃h+1,i×πh+1,−i)(s)

[
rh+1,i(s,a)

H
+ ϕh+1(s,a)

⊤θ

])
= max
µ̃h+1,i

(
Ea∼(µ̃h+1,i×πh+1,−i)(s)

[
ϕh+1(s,a)

⊤θ̃ − ϕh+1(s,a)
⊤θ
])

≤∥θ − θ̃∥2
≤γ,

which implies ∣∣∣f̃(s)− f(s)∣∣∣ ≤ γ.
Therefore, we conclude F̃3,h is a γ-covering of F3,h, and

|F̃3,h| ≤M |Πh+1|
(
2d

γ

)d
|Φ|.

For F4,h, note that when Φh is the set of one-hot vectors, Σh will be a diagonal matrix. In this case,
F4,h is the subset of the following function class:

F ′
4,h :=

{
f(s) := Ea∼πh+1(s)

[
min{cϕh+1(s,a)

⊤θ′, H}
H2

+ ϕh+1(s,a)
⊤θ

]∣∣∣∣
0 ≤ c ≤ L, πh+1 ∈ Πh+1,max{∥θ∥2, ∥θ′∥2} ≤

√
d, ϕh+1 ∈ Φh+1

}
.

In this case, letW be an ℓ∞ cover of the set [0, L] at scale γ̃ := γ√
d

, we have |W| ≤ L
√
d

γ . Let

F̃4,h :=

{
f̃(s) := Ea∼πh+1(s)

[
min{c̃ϕh+1(s,a)

⊤θ̃′, H}
H2

+ ϕh+1(s,a)
⊤θ̃

]∣∣∣∣∣
c̃ ∈ W, πh+1 ∈ Πh+1, θ̃, θ̃

′ ∈ Θ, ϕh+1 ∈ Φh+1

}
.

Then, for any f ∈ F4,h, suppose

f(s) := Ea∼πh+1(s)

[
min{cϕh+1(s,a)

⊤θ′, H}
H2

+ ϕh+1(s,a)
⊤θ

]
,

0 ≤ c ≤ L, πh+1 ∈ Πh+1,max{∥θ∥2, ∥θ′∥2} ≤
√
d, ϕh+1 ∈ Φh+1.

Then we can find θ̃, θ̃′ ∈ Θ, c̃ ∈ W such that ∥θ − θ̃∥2 ≤ γ, ∥θ′ − θ̃′∥2 ≤ γ and |c− c̃| ≤ γ̃. Let

f̃(s) := Ea∼πh+1(s)

[
min{c̃ϕh+1(s,a)

⊤θ̃′, H}
H2

+ ϕh+1(s,a)
⊤θ̃

]
,

then we have

|f(s)− f̃(s)|

≤Ea∼πh+1(s)

[
∥ϕh+1(s,a)∥2

∥∥∥θ − θ̃∥∥∥
2

]
+

1

H2
Ea∼πh+1(s)

[
∥ϕh+1(s,a)∥2

∥∥∥c̃θ̃′ − cθ′∥∥∥
2

]
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≤γ +
1

H2

(
|c̃− c|

∥∥∥θ̃′∥∥∥
2
+ c

∥∥∥θ′ − θ̃′∥∥∥
2

)
≤γ +

√
d

H2
γ̃ +

L

H2
γ

≤3Lγ,

which implies F̃4,h is a 3Lγ-covering of F4,h, and we have∣∣∣F̃4,h

∣∣∣ ≤ |Πh+1|
(
2Ld

γ

)3d

|Φ|.

In summary, we know F̃h := F̃1,h ∪ F̃2,h ∪ F̃3,h ∪ F̃4,h is a 3Lγ-covering of Fh. And

|Fh| ≤ 4M |Πh+1|
(
2Ld

γ

)3d

|Φ|2.

Replacing γ by γ
3L , we get an γ-covering of Fh whose size is no larger than

4M |Πh+1|
(

6L2d
γ

)3d
|Φ|2, which has finished the proof.

Below we omit the superscript n and subscript h when clear from the context. Denote

Lλ,D(ϕ, θ, f) =
1

|D|
∑

(s,a,s′)∈D

(
ϕ(s,a)⊤θ − f(s′)

)2
+

λ

|D|
∥θ∥22 (13)

LD(ϕ, θ, f) =
1

|D|
∑

(s,a,s′)∈D

(
ϕ(s,a)⊤θ − f(s′)

)2
(14)

Lρ(ϕ, θ, f) = E(s,a)∼ρ,s′∼P⋆(s,a)

[(
ϕ(s,a)⊤θ − f(s′)

)2]
. (15)

Lemma C.4 (Uniform Convergence for Square Loss). Let there be a dataset D := {(si,ai, s′i)}ni=1
collected in n episodes. Denote that the data generating distribution in iteration i by di, and
ρ = 1

n

∑n
i=1 di. Note that di can depend on the randomness in episodes 1, . . . , i − 1. For a finite

feature class Φ and a discriminator class F : S → [0, 1] with γ-covering number ∥F∥γ , we will
show that, with probability at least 1− δ:∣∣[Lρ(ϕ, θ, f)− Lρ(ϕ⋆, θ⋆f , f)]− [LD(ϕ, θ, f)− LD(ϕ

⋆, θ⋆f , f)
]∣∣

≤1

2

[
Lρ(ϕ, θ, f)− Lρ(ϕ⋆, θ⋆f , f)

]
+

64 log(
2(4n)d·|Φ|·∥F∥1/2n

δ )

n

for all ϕ ∈ Φ, ∥θ∥∞ ≤ 1 and f ∈ F , where recall that ϕ⋆ is the true feature and θ⋆f is defined as
Es′∼P⋆(s,a)[f(s

′)] = ⟨ϕ⋆(s,a), θ⋆f ⟩.

Proof. To start, we focus on a given f ∈ F . We first give a high probability bound on the following
deviation term: ∣∣Lρ(ϕ, θ, f)− Lρ(ϕ∗, θ∗f , f)− (LD(ϕ, θ, f)− LD(ϕ

∗, θ∗f , f)
)∣∣ .

Denote g(si,ai) = ϕ(si,ai)
⊤θ and g⋆(si,ai) = ϕ⋆(si,ai)

⊤θ⋆f . At episode i, let Fi−1 be the
σ-field generated by all the random variables over the first i− 1 episodes, for the random variable
Yi := (g(si,ai)− f(s′i))

2 − (g⋆(si,ai)− f(s′i))
2, we have

E[Yi|Fi−1] =E
[
(g(si,ai)− f(s′i))

2 − (g⋆(si,ai)− f(s′i))
2
]

=E [(g(si,ai) + g⋆(si,ai)− 2f(s′i)) (g(si,ai)− g⋆(si,ai))]

=E
[
(g(si,ai)− g⋆(si,ai))2

]
.

Here the conditional expectation is taken according to the distribution di|Fi−1. The last equality is
due to the fact that

E [(g⋆(si,ai)− f(s′i)) (g(si,ai)− g⋆(si,ai))]

32



Published as a conference paper at ICLR 2023

=Esi,ai

[
Es′i [(g

⋆(si,ai)− f(s′i)) (g(si,ai)− g⋆(si,ai)) |si,ai]
]

=0.

Next, for the conditional variance of the random variable, we have:

V[Yi|Fi−1] ≤E
[
Y 2
i |Fi−1

]
= E

[
(g(si,ai) + g⋆(si,ai)− 2f(s′i))

2
(g(si,ai)− g⋆(si,ai))2 |Fi−1

]
≤16E

[
(g(si,ai)− g⋆(si,ai))2 |Fi−1

]
≤16E[Yi|Fi−1].

Noticing Yi ∈ [−4, 4]. Applying Lemma 1 in (Foster and Rakhlin, 2020), we get with probability at
least 1− δ′, we can bound the deviation term above as:∣∣Lρ(ϕ, θ, f)− Lρ(ϕ⋆, θ⋆f , f)− (LD(ϕ, θ, f)− LD(ϕ

⋆, θ⋆f , f)
)∣∣

≤

√
2
∑n
i=1 V[Yi|Fi−1] log

2
δ′

n2
+

16 log 2
δ′

3n

≤

√
32
∑n
i=1 E[Yi|Fi−1] log

2
δ′

n2
+

16 log 2
δ′

3n
,

Further, consider a finite point-wise cover of the function class G := {g(s,a) = ϕ(s,a)⊤θ : ϕ ∈
Φ, ∥θ∥∞ ≤ 1}. Note that, with a ℓ∞-cover W of W = {∥θ∥∞ ≤ 1} at scale γ, we have for all

(s,a) and ϕ ∈ Φ, there exists θ̄ ∈ W , |⟨ϕ(s,a), θ − θ̄⟩| ≤ γ, and we have |W| =
(

2
γ

)d
. Let F̃ be a

γ-covering set of F . For any f ∈ F , there exists f̄ ∈ F̃ such that ∥f − f̄∥∞ ≤ γ. Then, applying a
union bound over elements in Φ×W × F̃ , with probability 1− |Φ||W||F̃ |δ′, for all θ ∈ W , f ∈ F ,
we have: ∣∣Lρ(ϕ, θ, f)− Lρ(ϕ⋆, θ⋆f , f)− (LD(ϕ, θ, f)− LD(ϕ

⋆, θ⋆f , f)
)∣∣

≤
∣∣∣Lρ(ϕ, θ̄, f̄)− Lρ(ϕ⋆, θ⋆f̄ , f̄)− (LD(ϕ, θ̄, f̄)− LD(ϕ

⋆, θ⋆f̄ , f̄)
)∣∣∣+ 16γ

≤

√
32
∑n
i=1 E[Ȳi|Fi−1] log

2
δ′

n2
+

16 log 2
δ′

3n
+ 16γ

≤ 1

2n

n∑
i=1

E[Ȳi|Fi−1] +
16 log 2

δ′

n
+

16 log 2
δ′

3n
+ 16γ

≤ 1

2n

n∑
i=1

E[Yi|Fi−1] +
16 log 2

δ′

n
+

16 log 2
δ′

3n
+ 32γ

≤1

2

(
Lρ(ϕ, θ, f)− Lρ(ϕ⋆, θ⋆f , f)

)
+

32 log 2
δ′

n
+ 32γ

≤1

2

(
Lρ(ϕ, θ, f)− Lρ(ϕ⋆, θ⋆f , f)

)
+

64 log 2
δ′

n
(setting γ = 1/n)

where Ȳi :=
(
ϕ(si,ai)

⊤θ̄ − f̄(s′)
)2 − (

ϕ(si,ai)
⊤θ⋆

f̄
− f̄(s′)

)2
. Finally, setting δ =

δ′/
(
|Φ||W||F̃ |

)
, we get log 2

δ′ ≤ log 2(4n)d|Φ||F̃|
δ . This completes the proof.

Lemma C.5 (Deviation Bounds for Alg. 3). Let ε′ = 128 log(
2(4n)d·|Φ|·∥F∥1/2n

δ )

n . If Alg. 3 is called
with a dataset D of size n, then with probability at least 1− δ, for any f ∈ F ⊂ [0, 1]S , we have

Eρ
[(
ϕ̂(s,a)⊤θ̂f − ϕ⋆(s,a)⊤θ⋆f

)2]
≤ ε′ + 2λd

n
.

Proof. We begin by using the result in Lemma C.4 such that, with probability at least 1− δ, for all
∥θ∥∞ ≤ 1, ϕ ∈ Φ and f ∈ F , we have∣∣[Lρ(ϕ, θ, f)− Lρ(ϕ⋆, θ⋆f , f)]− [LD(ϕ, θ, f)− LD(ϕ

⋆, θ⋆f , f)
]∣∣ ≤ 1

2

[
Lρ(ϕ, θ, f)− Lρ(ϕ⋆, θ⋆f , f)

]
+ ε′/2.
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Thus, with probability at least 1− δ we have:

Eρ
[(
ϕ̂(s,a)⊤θ̂f − ϕ⋆(s,a)⊤θ⋆f

)2]
=Lρ(ϕ̂, θ̂f , f)− Lρ(ϕ⋆, θ⋆f , f) (since Es′∼P⋆(s,a) [f(s

′)] = ϕ⋆(s,a)⊤θ⋆f )

≤2
(
LD(ϕ̂, θ̂f , f)− LD(ϕ

⋆, θ⋆f , f)
)
+ ε′

(Lemma C.4, and ∥θ̂f∥∞ ≤ 1 according to the proof in Lemma C.1)

≤2
(
Lλ,D(ϕ̂, θ̂f , f)− Lλ,D(ϕ⋆, θ⋆f , f) +

λ

n
∥θ⋆f∥22

)
+ ε′

≤ε′ + 2λd

n
, (by the optimality of ϕ̂, θ̂f under Lλ,D(·, ·, f))

which means the inequality in the lemma statement holds. Here, we use ∥θ⋆f∥22 ≤ d.

Lemma C.6. When P̂ (n)
h is computed using Alg. 3 and the Markov games is a block Markov game,

if we set

λ = Θ

(
d log

NH|Φ|
δ

)
, ζ(n) = Θ

(
d2M log dNHML|Φ|

δε̃

n

)
.

then E holds with probability at least 1− δ.

Proof. Combining Lemma C.5 and Lemma C.3, we have that

max
f∈Fh

Eρ
[
(ϕ̂(s,a)⊤θ̂f − ϕ⋆(s,a)⊤θ⋆f )2

]
≤ ε′ + 2λd

n
≤ ζ(n) := Θ

d2M log
(
dNHML|Φ|

δε̃

)
n

 ,

which shows E1 holds with a high probability. Combining this result with Lemma E.1, we have
proved Lemma C.6.

C.3 STATISTICAL GUARANTEES

To ensure the algorithm is well-defined, we first prove the following lemma which implies the
optimistic Q-value estimators always belong to the function class F̃h.

Lemma C.7. When α(n) ≤ L, we have Q
(n)

h,i ∈ F̃h,∀h ∈ [H], i ∈ [M ], n ∈ [N ].

Proof. Because β̂(n)
h is upper bounded by H , by induction one can easily get V

(n)

h+1,i ≤ 2H2.

Then according to the result of Lemma C.1, we know (P̂
(n)
h V

(n)

h+1,i)(s, a) = ϕ
(n)
h (s,a)⊤θ with

∥θ∥2 ≤ 2H2
√
d. We conclude Q

(n)

h,i ∈ F̃h.

We will show later that our choice of α(n) and L always satisfies the condition α(n) ≤ L.
Lemma C.8. We have

• For NE and CCE,

max
πh,i

(
D
πh,i,π

(n)
h,−i

Q
(n)

h,i

)
(s) ≤

(
D
π
(n)
h

Q
(n)

h,i

)
(s) + 2ε̃;

• For CE,

max
ωh,i∈Ωh,i

(
D
ωh,i◦π(n)

h

Q
(n)

h,i

)
(s) ≤

(
D
π
(n)
h

Q
(n)

h,i

)
(s) + 2ε̃.
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Proof. We only prove the case of NE and CCE, the case of CE can be proved similarly. Let Q̃(n)
h,i be

the nearest neighbour of Q
(n)

h,i in Nh, we have

max
πh,i

(
D
πh,i,π

(n)
h,−i

Q
(n)

h,i

)
(s) ≤max

πh,i

(
D
πh,i,π

(n)
h,−i

Q̃
(n)
h,i

)
(s) + ε̃

≤
(
D
π
(n)
h

Q̃
(n)
h,i

)
(s) + ε̃ (Definition of π(n)

h )

≤
(
D
π
(n)
h

Q
(n)

h,i

)
(s) + 2ε̃,

which has finished the proof.

Lemma C.9 (One-step back inequality for the learned model). Suppose the event E holds. Consider
a set of functions {gh}Hh=1 that satisfies gh ∈ S ×A → R+, s.t. ∥gh∥∞ ≤ B. For a given policy π,
suppose Ea∼U(A) [gh(·,a)] ∈ F1,h, then we have∣∣∣E(s,a)∼dπ

P̂ (n),h

[gh(s,a)]
∣∣∣

≤



√
AE

(s,a)∼ρ(n)
1

[g21(s,a)], h = 1

E(s̃,ã)∼dπ
P̂ (n),h−1

min

∥∥∥ϕ̂(n)h−1(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

√
nA2E

(s,a)∼ρ̃(n)
h

[g2h(s,a)] +B2λd+ nA2ζ(n), B


 , h ≥ 2

Recall Σ
n,ρ

(n)
h ,ϕ̂

(n)
h

= nE
(s,a)∼ρ(n)

h

[
ϕ̂
(n)
h (s,a)ϕ̂

(n)
h (s,a)⊤

]
+ λId.

Proof. For step h = 1, we have

E(s,a)∼dπ
P̂ (n),1

[g1(s,a)] =Es∼d1,a∼π1(s) [g1(s,a)]

≤
√
max
(s,a)

d1(s)π1(a|s)
ρ
(n)
1 (s,a)

E
(s′,a′)∼ρ(n)

1
[g21(s

′,a′)]

=

√
max
(s,a)

d1(s)π1(a|s)
d1(s)uA(a)

E
(s′,a′)∼ρ(n)

1
[g21(s

′,a′)]

≤
√
AE

(s,a)∼ρ(n)
1

[g21(s,a)].

For step h = 2, . . . ,H − 1, we observe the following one-step-back decomposition:

E(s,a)∼dπ
P̂ (n),h

[gh(s,a)]

=E
(s̃,ã)∼dπ

P̂ (n),h−1
,s∼P̂ (n)

h−1(s̃,ã),a∼πh(s)
[gh(s,a)]

=E(s̃,ã)∼dπ
P̂ (n),h−1

[
ϕ̂
(n)
h−1(s̃, ã)

⊤
∫
S

∑
a∈A

ŵ
(n)
h−1(s)πh(a|s)gh(s,a)ds

]

=E(s̃,ã)∼dπ
P̂ (n),h−1

[
min

{
ϕ̂
(n)
h−1(s̃, ã)

⊤
∫
S

∑
a∈A

ŵ
(n)
h−1(s)πh(a|s)gh(s,a)ds,B

}]

≤E(s̃,ã)∼dπ
P̂ (n),h−1

min


∥∥∥ϕ̂(n)h−1(s̃, ã)

∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

∥∥∥∥∥
∫
S

∑
a∈A

ŵ
(n)
h−1(s)πh(a|s)gh(s,a)ds

∥∥∥∥∥
Σ

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

, B


 .

where we use the fact that gh is bounded by B. Then,∥∥∥∥∥
∫
S

∑
a∈A

ŵ
(n)
h−1(s)πh(a|s)gh(s,a)ds

∥∥∥∥∥
2

Σ
n,ρ

(n)
h−1

,ϕ̂
(n)
h−1
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≤

(∫
S

∑
a∈A

ŵ
(n)
h−1(s)πh(a|s)gh(s,a)ds

)⊤(
nE

(s,a)∼ρ
(n)
h−1

[
ϕ̂
(n)
h−1(s,a)ϕ̂

(n)
h−1(s,a)

⊤
]
+ λId

)(∫
S

∑
a∈A

ŵ
(n)
h−1(s)πh(a|s)gh(s,a)ds

)

≤nE
(s̃,ã)∼ρ

(n)
h−1

[(∫
S

∑
a∈A

ŵ
(n)
h−1(s)

⊤ϕ̂
(n)
h−1(s̃, ã)πh(a|s)gh(s,a)ds

)2]
+B2λd

(
∥∥∑

a∈A πh(a|s)gh(s,a)
∥∥
∞ ≤ B and by Lemma C.1

∥∥∥∫S ŵ
(n)
h−1(s)l(s)ds

∥∥∥
2
≤

√
d for any l : S → [0, 1].)

=nE
(s̃,ã)∼ρ

(n)
h−1

[(
E
s∼P̂

(n)
h−1

(s̃,ã),a∼πh(s)
[gh(s,a)]

)2
]
+B2λd

≤nA2E
(s̃,ã)∼ρ

(n)
h−1

[(
E
s∼P̂

(n)
h−1

(s̃,ã),a∼U(A)
[gh(s,a)]

)2
]
+B2λd (Importance sampling)

≤nA2E
(s̃,ã)∼ρ

(n)
h−1

[(
Es∼P⋆

h−1
(s̃,ã),a∼U(A) [gh(s,a)]

)2]
+B2λd+ nA2ξ(n) (Assumption on gh)

≤nA2E
(s̃,ã)∼ρ

(n)
h−1

,s∼P⋆
h−1

(s̃,ã),a∼U(A)

[
g2h(s,a)

]
+B2λd+ nA2ξ(n). (Jensen)

≤nA2E
(s,a)∼ρ̃

(n)
h

[
g2h(s,a)

]
+B2λd+ nA2ζ(n). (Definition of ρ̃(n)

h )

Combing the above results together, we get

E(s,a)∼dπ
P̂ (n),h

[gh(s,a)]

≤E(s̃,ã)∼dπ
P̂ (n),h−1

min


∥∥∥ϕ̂(n)h−1(s̃, ã)

∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

∥∥∥∥∥
∫
S

∑
a∈A

ŵ
(n)
h−1(s)πh(a|s)gh(s,a)ds

∥∥∥∥∥
Σ

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

, B




≤E(s̃,ã)∼dπ
P̂ (n),h−1

min

∥∥∥ϕ̂(n)h−1(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

√
nA2E

(s,a)∼ρ̃(n)
h

[g2h(s,a)] +B2λd+ nA2ζ(n), B


 ,

which has finished the proof.

The following lemma is an exact copy of Lemma B.4, and here we state it again just for completeness.
Lemma C.10 (One-step back inequality for the true model). Consider a set of functions {gh}Hh=1
that satisfies gh ∈ S ×A → R+, s.t. ∥gh∥∞ ≤ B. Then for any given policy π, we have∣∣∣E(s,a)∼dπ

P⋆,h
[gh(s,a)]

∣∣∣
≤


√
AE

(s,a)∼ρ(n)
1

[g21(s,a)], h = 1

E(s̃,ã)∼dπ
P⋆,h−1

[∥∥ϕ⋆h−1(s̃, ã)
∥∥
Σ−1

n,γ
(n)
h−1

,ϕ⋆
h−1

]√
nAE

(s,a)∼ρ̃(n)
h

[g2h(s,a)] +B2λd, h ≥ 2

Recall Σ
n,γ

(n)
h ,ϕ⋆

h

= nE
(s,a)∼γ(n)

h

[
ϕ⋆h(s,a)ϕ

⋆
h(s,a)

⊤]+ λId.

Lemma C.11 (Optimism for NE and CCE). Consider an episode n ∈ [N ] and set α(n) =

Θ
(
H
√
nA2ζ(n) + dλ

)
. When the event E holds and the policy π(n) is computed by solving NE or

CCE, we have

v
(n)
i (s)− v†,π

(n)
−i

i (s) ≥ −H
√
Aζ(n) − 2Hε̃, ∀n ∈ [N ], i ∈ [M ].

Proof. Denote µ̃(n)
h,i (·|s) := argmaxµ

(
D
µ,π

(n)
h,−i

Q
†,π(n)

−i

h,i

)
(s) and let π̃(n)

h = µ̃
(n)
h,i × π

(n)
h,−i. Let

f
(n)
h (s,a) =

∣∣∣∣ 1H (P̂ (n)
h − P ⋆h

)
V

†,π(n)
−i

h+1,i

∣∣∣∣ (s,a), note that by definition, we have 1
HV

†,π(n)
−i

h+1,i (s) is

36



Published as a conference paper at ICLR 2023

bounded by 1, and

1

H
V

†,π(n)
−i

h+1,i (s) =E
a∼π̃(n)

h (s)

[
rh+1,i(s,a)

H
+

1

H

(
P ⋆h+1V

†,π(n)
−i

h+2,i

)
(s,a)

]
= max
µh+1,i

E
a∼(µh+1,i×π(n)

h+1,−i)(s)

[
rh+1,i(s,a)

H
+

1

H

(
P ⋆h+1V

†,π(n)
−i

h+2,i

)
(s,a)

]
∈ F3,h.

where we use the result of Lemma C.1 and get 1
H

(
P ⋆h+1V

†,π(n)
−i

h+2,i

)
(s,a) is a linear function in ϕ⋆h+1

and the 2-norm of the weight is upper bounded by
√
d. Then according to the event E , we have

E
(s,a)∼ρ(n)

h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n), E

(s,a)∼ρ̃(n)
h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n), ∀n ∈ [N ], h ∈ [H]

∥ϕh(s,a)∥(
Σ̂

(n)
h,ϕh

)−1 = Θ

(
∥ϕh(s,a)∥Σ−1

n,ρ
(n)
h

,ϕh

)
, ∀n ∈ [N ], h ∈ [H], ϕh ∈ Φh.

A direct conclusion of the event E is we can find an absolute constant c, such that

β
(n)
h (s,a) =min

α(n)
∥∥∥ϕ̂(n)h (s̃, ã)

∥∥∥(
Σ

(n)

h,ϕ̂
(n)
h

)−1 , H


≥min

cα(n)
∥∥∥ϕ̂(n)h (s̃, ã)

∥∥∥
Σ−1

n,ρ
(n)
h

,ϕ̂
(n)
h

, H

 , ∀n ∈ [N ], h ∈ [H].

Next, we prove by induction that

E
s∼dπ̃(n)

P̂ (n),h

[
V

(n)

h,i (s)− V
†,π(n)

−i

h,i (s)

]
≥

H∑
h′=h

E
(s,a)∼dπ̃(n)

P̂ (n),h′

[
β̂
(n)
h′ (s,a)−Hf (n)h′ (s,a)

]
− 2(H − h+ 1)ε̃, ∀h ∈ [H]. (16)

First, notice that ∀h ∈ [H],

E
s∼dπ̃(n)

P̂ (n),h

[
V

(n)

h,i (s)− V
†,π(n)

−i

h,i (s)

]
=E

s∼dπ̃(n)

P̂ (n),h

[(
D
π
(n)
h

Q
(n)

h,i

)
(s)−

(
D
π̃
(n)
h

Q
†,π(n)

−i

h,i

)
(s)

]
≥E

s∼dπ̃(n)

P̂ (n),h

[(
D
π̃
(n)
h

Q
(n)

h,i

)
(s)−

(
D
π̃
(n)
h

Q
†,π(n)

−i

h,i

)
(s)

]
− 2ε̃

=E
(s,a)∼dπ̃(n)

P̂ (n),h

[
Q

(n)

h,i (s,a)−Q
†,π(n)

−i

h,i (s,a)

]
− 2ε̃,

where the inequality uses the result of Lemma C.8. Now we are ready to prove equation 16,

• When h = H , we have

E
s∼dπ̃(n)

P̂ (n),H

[
V

(n)

H,i(s)− V
†,π(n)

−i

H,i (s)

]
≥E

(s,a)∼dπ̃(n)

P̂ (n),H

[
Q

(n)

H,i(s,a)−Q
†,π(n)

−i

H,i (s,a)

]
− 2ε̃

=E
(s,a)∼dπ̃(n)

P̂ (n),H

[
β̂
(n)
h (s,a)

]
− 2ε̃

≥E
(s,a)∼dπ̃(n)

P̂ (n),H

[
β̂
(n)
h (s,a)−Hf (n)H (s,a)

]
− 2ε̃.

• Suppose the statement is true for h+ 1, then for step h, we have

E
s∼dπ̃(n)

P̂ (n),h

[
V

(n)

h,i (s)− V
†,π(n)

−i

h,i (s)

]
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≥E
(s,a)∼dπ̃(n)

P̂ (n),h

[
Q

(n)

h,i (s,a)−Q
†,π(n)

−i

h,i (s,a)

]
− 2ε̃

=E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a) +

(
P̂

(n)
h V

(n)

h+1,i

)
(s,a)−

(
P ⋆hV

†,π(n)
−i

h+1,i

)
(s,a)

]
− 2ε̃

=E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a) +

(
P̂

(n)
h

(
V

(n)

h+1,i − V
†,π(n)

−i

h+1,i

))
(s,a) +

((
P̂

(n)
h − P ⋆h

)
V

†,π(n)
−i

h+1,i

)
(s,a)

]
− 2ε̃

=E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a) +

((
P̂

(n)
h − P ⋆h

)
V

†,π(n)
−i

h+1,i

)
(s,a)

]
+ E

s∼dπ̃(n)

P̂ (n),h+1

[
V

(n)

h+1,i(s)− V
†,π(n)

−i

h+1,i (s)

]
− 2ε̃

≥E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a)−Hf (n)h (s,a)

]
+ E

s∼dπ̃(n)

P̂ (n),h+1

[
V

(n)

h+1,i(s)− V
†,π(n)

−i

h+1,i (s)

]
− 2ε̃

≥
H∑

h′=h

E
(s,a)∼dπ̃(n)

P̂ (n),h′

[
β̂
(n)
h′ (s,a)−Hf (n)h′ (s,a)

]
− 2(H − h+ 1)ε̃,

where the last row uses the induction assumption.

Therefore, we have proved equation 16. We then apply h = 1 to equation 16, and get

Es∼d1
[
V

(n)

1,i (s)− V
†,π(n)

−i

1,i (s)

]
=E

s∼dπ̃(n)

P̂ (n),1

[
V

(n)

1,i (s)− V
†,π(n)

−i

1,i (s)

]
≥

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a)−Hf (n)h (s,a)

]
− 2Hε̃

=

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a)

]
−H

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
f
(n)
h (s,a)

]
− 2Hε̃.

For the second term, since 1
H P̂

(n)
h V

†,π(n)
−i

h+1,i is linear in ϕ̂(n)h and 1
HP

⋆
hV

†,π(n)
−i

h+1,i is linear in ϕ⋆h, and
according to the result of Lemma C.1, the 2-norm of their weights are both upper bounded by

√
d.

Therefore, we have Ea∼U(A)

[
f
(n)
h (·,a)

]
∈ F1,h. By Lemma C.9, we have for h = 1,

E
(s,a)∼dπ̃(n)

P̂ (n),1

[
f
(n)
1 (s,a)

]
≤

√
AE

(s,a)∼ρ(n)
1

[(
f
(n)
1 (s,a)

)2]
≤
√
Aζ(n).

And ∀h ≥ 2, we have

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
f
(n)
h (s,a)

]
≤E

(s̃,ã)∼dπ̃(n)

P̂ (n),h−1

min

∥∥∥ϕ̂(n)h−1(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

√
nA2E

(s,a)∼ρ̃(n)
h

[(
f
(n)
h (s,a)

)2]
+ dλ+ nA2ζ(n), 1




≲E
(s̃,ã)∼dπ̃(n)

P̂ (n),h−1

min

∥∥∥ϕ̂(n)h−1(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

√
nA2ζ(n) + dλ, 1


 .

Note that we here use f
(n)
h (s,a) ≤ 1, E

(s,a)∼ρ(n)
h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n) and

E
(s,a)∼ρ̃(n)

h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n). Then according to our choice of α(n), we get

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
f
(n)
h (s,a)

]
≤ E

(s̃,ã)∼dπ̃(n)

P̂ (n),h−1

min

cα(n)

H

∥∥∥ϕ̂(n)h−1(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

, 1


 .
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Combining all things together,

v
(n)
i − v†,π

(n)
−i

i =Es∼d1
[
V

(n)

1,i (s)− V
†,π(n)

−i

1,i (s)

]
≥

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a)

]
−H

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
f
(n)
h (s,a)

]
− 2Hε̃

≥
H−1∑
h=1

E
(s̃,ã)∼dπ̃(n)

P̂ (n),h

β̂(n)
h (s,a)−min

cα(n)
∥∥∥ϕ̂(n)h (s̃, ã)

∥∥∥
Σ−1

n,ρ
(n)
h

,ϕ̂
(n)
h

, H


−H√Aζ(n) − 2Hε̃

=−H
√
Aζ(n) − 2Hε̃,

which proves the inequality.

Lemma C.12 (Optimism for CE). Consider an episode n ∈ [N ] and set α(n) =

Θ
(
H
√
nA2ζ(n) + dλ

)
. When the event E holds, we have

v
(n)
i (s)− max

ω∈Ωi

vω◦π
(n)

i (s) ≥ −H
√
Aζ(n) − 2Hε̃, ∀n ∈ [N ], i ∈ [M ].

Proof. Denote ω̃(n)
h,i = argmaxωh∈Ωh,i

(
D
ωh◦π(n)

h

maxω∈Ωi
Qω◦π

(n)

h,i

)
(s) and let π̃(n)

h = ω̃h,i ◦

π
(n)
h . Let f (n)h (s,a) =

∣∣∣ 1H (P̂ (n)
h − P ⋆h

)
maxω∈Ωi V

ω◦π(n)

h+1,i

∣∣∣ (s,a), note that by definition, we have
1
H maxω∈Ωi V

ω◦π(n)

h+1,i (s) is bounded by 1, and

1

H
max
ω∈Ωi

V ω◦π
(n)

h+1,i (s) = max
ωh+1,i∈Ωh+1,i

Ea∼(ωh+1,i◦πh)(s)

[
rh+1,i(s,a)

H
+

1

H

(
P ⋆h+1 max

ω∈Ωi

V ω◦π
(n)

h+2,i

)
(s,a)

]
∈ F3,h.

where we use the result of Lemma C.1 and get 1
H

(
P ⋆h+1 maxω∈Ωi

V ω◦π
(n)

h+2,i

)
(s,a) is a linear function

in ϕ⋆h and the 2-norm of the weight is upper bounded by
√
d. Then according to the event E , we have

E
(s,a)∼ρ(n)

h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n), E

(s,a)∼ρ̃(n)
h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n), ∀n ∈ [N ], h ∈ [H]

∥ϕh(s,a)∥(
Σ̂

(n)
h,ϕh

)−1 = Θ

(
∥ϕh(s,a)∥Σ−1

n,ρ
(n)
h

,ϕh

)
, ∀n ∈ [N ], h ∈ [H], ϕh ∈ Φh.

A direct conclusion of the event E is we can find an absolute constant c, such that

β
(n)
h (s,a) =min

α(n)
∥∥∥ϕ̂(n)h (s̃, ã)

∥∥∥(
Σ

(n)

h,ϕ̂
(n)
h

)−1 , H


≥min

cα(n)
∥∥∥ϕ̂(n)h (s̃, ã)

∥∥∥
Σ−1

n,ρ
(n)
h

,ϕ̂
(n)
h

, H

 , ∀n ∈ [N ], h ∈ [H].

Next, we prove by induction that

E
s∼dπ̃(n)

P̂ (n),h

[
V

(n)

h,i (s)− max
ω∈Ωi

V ω◦π
(n)

h,i (s)

]
≥

H∑
h′=h

E
(s,a)∼dπ̃(n)

P̂ (n),h′

[
β̂
(n)
h′ (s,a)−Hf (n)h′ (s,a)

]
− 2(H − h+ 1)ε̃, ∀h ∈ [H]. (17)

First, notice that ∀h ∈ [H],

E
s∼dπ̃(n)

P̂ (n),h

[
V

(n)

h,i (s)− max
ω∈Ωi

V ω◦π
(n)

h,i (s)

]
=E

s∼dπ̃(n)

P̂ (n),h

[(
D
π
(n)
h

Q
(n)

h,i

)
(s)−

(
D
π̃
(n)
h

max
ω∈Ωi

Qω◦π
(n)

h,i

)
(s)

]
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≥E
s∼dπ̃(n)

P̂ (n),h

[(
D
π̃
(n)
h

Q
(n)

h,i

)
(s)−

(
D
π̃
(n)
h

max
ω∈Ωi

Qω◦π
(n)

h,i

)
(s)

]
− 2ε̃

=E
(s,a)∼dπ̃(n)

P̂ (n),h

[
Q

(n)

h,i (s,a)− max
ω∈Ωi

Qω◦π
(n)

h,i (s,a)

]
− 2ε̃.

where the inequality uses the result of Lemma C.8. Now we are ready to prove equation 17,

• When h = H , we have

E
s∼dπ̃(n)

P̂ (n),H

[
V

(n)

H,i(s)− max
ω∈Ωi

V ω◦π
(n)

H,i (s)

]
≥E

(s,a)∼dπ̃(n)

P̂ (n),H

[
Q

(n)

H,i(s,a)− max
ω∈Ωi

Qω◦π
(n)

H,i (s,a)

]
=E

(s,a)∼dπ̃(n)

P̂ (n),H

[
β̂
(n)
h (s,a)

]
≥E

(s,a)∼dπ̃(n)

P̂ (n),H

[
β̂
(n)
h (s,a)−Hf (n)H (s,a)

]
− 2ε̃.

• Suppose the statement is true for h+ 1, then for step h, we have

E
s∼dπ̃(n)

P̂ (n),h

[
V

(n)

h,i (s)− max
ω∈Ωi

V ω◦π
(n)

h,i (s)

]
≥E

(s,a)∼dπ̃(n)

P̂ (n),h

[
Q

(n)

h,i (s,a)− max
ω∈Ωi

Qω◦π
(n)

h,i (s,a)

]
− 2ε̃

=E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a) +

(
P̂

(n)
h V

(n)

h+1,i

)
(s,a)−

(
P ⋆h max

ω∈Ωi

V
ω◦π(n)

−i

h+1,i

)
(s,a)

]
− 2ε̃

=E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a) +

(
P̂

(n)
h

(
V

(n)

h+1,i − max
ω∈Ωi

V ω◦π
(n)

h+1,i

))
(s,a)−

((
P̂

(n)
h − P ⋆h

)
max
ω∈Ωi

V ω◦π
(n)

h+1,i

)
(s,a)

]
− 2ε̃

=E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a)−

((
P̂

(n)
h − P ⋆h

)
max
ω∈Ωi

V
ω◦π(n)

−i

h+1,i

)
(s,a)

]
+ E

s∼dπ̃(n)

P̂ (n),h+1

[
V

(n)

h+1,i(s)− max
ω∈Ωi

V ω◦π
(n)

h+1,i (s)

]
− 2ε̃

≥E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a)−Hf (n)h (s,a)

]
+ E

s∼dπ̃(n)

P̂ (n),h+1

[
V

(n)

h+1,i(s)− max
ω∈Ωi

V ω◦π
(n)

h+1,i (s)

]
− 2ε̃

≥
H∑

h′=h

E
(s,a)∼dπ̃(n)

P̂ (n),h′

[
β̂
(n)
h′ (s,a)−Hf (n)h′ (s,a)

]
− 2(H − h+ 1)ε̃,

where the last row uses the induction assumption.

Therefore, we have proved equation 17. We then apply h = 1 to equation 17, and get

Es∼d1
[
V

(n)

1,i (s)− max
ω∈Ωi

V ω◦π
(n)

1,i (s)

]
=E

s∼dπ̃(n)

P̂ (n),1

[
V

(n)

1,i (s)− max
ω∈Ωi

V ω◦π
(n)

1,i (s)

]
≥

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a)−Hf (n)h (s,a)

]
− 2Hε̃

=

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a)

]
−H

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
f
(n)
h (s,a)

]
− 2Hε̃.

For the second term, since 1
H P̂

(n)
h maxω∈Ωi

V ω◦π
(n)

h+1,i is linear in ϕ̂(n)h and 1
HP

⋆
h maxω∈Ωi

V ω◦π
(n)

h+1,i

is linear in ϕ⋆h, and according to the result of Lemma C.1, the 2-norm of their weights are both upper
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bounded by
√
d. Therefore, we have Ea∼U(A)

[
f
(n)
h (·,a)

]
∈ F1,h. By Lemma C.9, we have for

h = 1,

E
(s,a)∼dπ̃(n)

P̂ (n),1

[
f
(n)
1 (s,a)

]
≤

√
AE

(s,a)∼ρ(n)
1

[(
f
(n)
1 (s,a)

)2]
≤
√
Aζ(n).

And ∀h ≥ 2, we have

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
f
(n)
h (s,a)

]
≤E

(s̃,ã)∼dπ̃(n)

P̂ (n),h−1

min

∥∥∥ϕ̂(n)h−1(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

√
nA2E

(s,a)∼ρ̃(n)
h

[(
f
(n)
h (s,a)

)2]
+ dλ+ nA2ζ(n), 1




≲E
(s̃,ã)∼dπ̃(n)

P̂ (n),h−1

min

∥∥∥ϕ̂(n)h−1(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

√
nA2ζ(n) + dλ, 1


 .

Note that we here use f
(n)
h (s,a) ≤ 1, E

(s,a)∼ρ(n)
h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n) and

E
(s,a)∼ρ̃(n)

h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n). Then according to our choice of α(n), we get

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
f
(n)
h (s,a)

]
≤ E

(s̃,ã)∼dπ̃(n)

P̂ (n),h−1

min

cα(n)

H

∥∥∥ϕ̂(n)h−1(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

, 1


 .

Combining all things together,

v
(n)
i − max

ω∈Ωi

vω◦π
(n)

i

=Es∼d1
[
V

(n)

1,i (s)− max
ω∈Ωi

V ω◦π
(n)

1,i (s)

]
≥

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a)

]
−H

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
f
(n)
h (s,a)

]
− 2Hε̃

≥
H−1∑
h=1

E
(s̃,ã)∼dπ̃(n)

P̂ (n),h

β̂(n)
h (s,a)−min

cα(n)
∥∥∥ϕ̂(n)h (s̃, ã)

∥∥∥
Σ−1

n,ρ
(n)
h

,ϕ̂
(n)
h

, H


−H√Aζ(n) − 2Hε̃

=−H
√
Aζ(n) − 2Hε̃,

which proves the inequality.

Lemma C.13 (pessimism). Consider an episode n ∈ [N ] and set α(n) = Θ
(
H
√
nA2ζ(n) + dλ

)
.

When the event E holds, we have

v
(n)
i (s)− vπ

(n)

i (s) ≤ H
√
Aζ(n), ∀n ∈ [N ], i ∈ [M ].

Proof. Let f̃ (n)h (s,a) =
∣∣∣ 1H (P̂ (n)

h − P ⋆h
)
V π

(n)

h+1,i

∣∣∣ (s,a), note that by definition, we have
1
HV

π(n)

h+1,i(s) is bounded by 1, and

1

H
V π

(n)

h+1,i(s) =E
a∼π(n)

h (s)

[
rh+1,i(s,a)

H
+

1

H

(
P ⋆h+1V

π(n)

h+2,i

)
(s,a)

]
∈ F2,h.

where we use the result of Lemma C.1 and get 1
H

(
P ⋆h+1V

π(n)

h+2,i

)
(s,a) is a linear function in ϕ⋆h+1

and the 2-norm of the weight is upper bounded by
√
d. Then according to the event E , we have

E
(s,a)∼ρ(n)

h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n), E

(s,a)∼ρ̃(n)
h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n), ∀n ∈ [N ], h ∈ [H]
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∥ϕh(s,a)∥(
Σ̂

(n)
h,ϕh

)−1 = Θ

(
∥ϕh(s,a)∥Σ−1

n,ρ
(n)
h

,ϕh

)
, ∀n ∈ [N ], h ∈ [H], ϕh ∈ Φh.

A direct conclusion of the event E is we can find an absolute constant c, such that

β
(n)
h (s,a) =min

α(n)
∥∥∥ϕ̂(n)h (s̃, ã)

∥∥∥(
Σ

(n)

h,ϕ̂
(n)
h

)−1 , H


≥min

cα(n)
∥∥∥ϕ̂(n)h (s̃, ã)

∥∥∥
Σ−1

n,ρ
(n)
h

,ϕ̂
(n)
h

, H

 , ∀n ∈ [N ], h ∈ [H].

Again, we prove the following inequality by induction:

E
s∼dπ(n)

P̂ (n),h

[
V

(n)
h,i (s)− V

π(n)

h,i (s)
]
≤

H∑
h′=h

E
(s,a)∼dπ(n)

P̂ (n),h′

[
−β̂(n)

h′ (s,a) +Hf
(n)
h′ (s,a)

]
, ∀h ∈ [H].

(18)

• When h = H , we have

E
s∼dπ(n)

P̂ (n),H

[
V

(n)
H,i(s)− V

π(n)

H,i (s)
]
=E

(s,a)∼dπ(n)

P̂ (n),H

[
Q(n)

H,i
(s,a)−Qπ

(n)

H,i (s,a)
]

=E
(s,a)∼dπ(n)

P̂ (n),H

[
−β̂(n)

H (s,a)
]

≤E
(s,a)∼dπ(n)

P̂ (n),H

[
−β̂(n)

H (s,a) +Hf
(n)
H (s,a)

]
• Suppose the statement is true for h+ 1, then for step h, we have

E
s∼dπ(n)

P̂ (n),h

[
V

(n)
h,i (s)− V

π(n)

h,i (s)
]

=E
(s,a)∼dπ(n)

P̂ (n),h

[
Q(n)

h,i
(s,a)−Qπ

(n)

h,i (s,a)
]

=E
(s,a)∼dπ(n)

P̂ (n),h

[
−β̂(n)

h (s,a) +
(
P̂

(n)
h V

(n)
h+1,i

)
(s,a)−

(
P ⋆hV

π(n)

h+1,i

)
(s,a)

]
=E

(s,a)∼dπ(n)

P̂ (n),h

[
−β̂(n)

h (s,a) +
(
P̂

(n)
h

(
V

(n)
h+1,i − V

π(n)

h+1,i

))
(s,a) +

((
P̂

(n)
h − P ⋆h

)
V π

(n)

h+1,i

)
(s,a)

]
=E

(s,a)∼dπ(n)

P̂ (n),h

[
−β̂(n)

h (s,a) +
((
P̂

(n)
h − P ⋆h

)
V π

(n)

h+1,i

)
(s,a)

]
+ E

s∼dπ(n)

P̂ (n),h+1

[(
V

(n)
h+1,i − V

π(n)

h+1,i

)
(s)
]

≤E
(s,a)∼dπ(n)

P̂ (n),h

[
−β̂(n)

h (s,a) +Hf
(n)
h (s,a)

]
+ E

s∼dπ(n)

P̂ (n),h+1

[(
V

(n)
h+1,i − V

π(n)

h+1,i

)
(s)
]

≤
H∑

h′=h

E
(s,a)∼dπ(n)

P̂ (n),h′

[
−β̂(n)

h′ (s,a) +Hf
(n)
h′ (s,a)

]
.

where the last row uses the induction assumption.

The remaining steps are exactly the same as the proof in Lemma C.11 or Lemma C.12, we may prove

E
(s,a)∼dπ(n)

P̂ (n),1

[
min

{
f
(n)
1 (s,a), 1

}]
≤
√
Aζ(n),

and

E
(s,a)∼dπ(n)

P̂ (n),h

[
f
(n)
h (s,a)

]
≤ E

(s̃,ã)∼dπ(n)

P̂ (n),h−1

min

cα(n)

H

∥∥∥ϕ̂(n)h−1(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̂
(n)
h−1

, 1


 , ∀h ≥ 2.
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Combining all things together, we get

v
(n)
i − vπ

(n)

i =Es∼d1
[
V

(n)
1,i (s)− V

π(n)

1,i (s)
]

≤
H∑
h=1

E
(s,a)∼dπ(n)

P̂ (n),h

[
−β̂(n)

h (s,a) +Hf
(n)
h (s,a)

]

≤
H−1∑
h=1

E
(s,a)∼dπ(n)

P̂ (n),h

−β̂(n)
h (s,a) + min

cα(n)
∥∥∥ϕ̂(n)h (s̃, ã)

∥∥∥
Σ−1

n,ρ
(n)
h

,ϕ̂
(n)
h

, H


+H

√
Aζ(n)

≤H
√
Aζ(n),

which has finished the proof.

Lemma C.14. For the model-free algorithm, suppose N is large enough, when we pick λ =

Θ
(
d log NH|Φ|

δ

)
, ζ(n) = Θ

(
d2M
n log dNHML|Φ|

ε̃δ

)
, L = Θ(NHAMd), ε̃ = 1

2HN and α(n) =

Θ
(
H
√
nA2ζ(n) + dλ

)
, with probability 1− δ, we have

N∑
n=1

∆(n) ≲ H3d2A
3
2N

1
2M

1
2 log

dNHAM |Φ|
δ

.

Proof. With our choice of λ and ζ(n), according to Lemma C.6, we know E holds with probability
1− δ. Furthermore, with a proper choice of the absolute constants, we have

α(n) =Θ

(
H

√
d2A2M log

dNHML|Φ|
δ

+ d2 log
NH|Φ|

δ

)

≤O

(
HdA

√
M log

dNHMA|Φ|
δ

)
≤O (NHAMd) ≤ L.

Let f
(n)
h (s,a) = 1

2H2

∣∣∣(P̂ (n)
h − P ⋆h

)(
V

(n)

h+1,i − V
(n)
h+1,i

)∣∣∣ (s,a). We first verify

1
2H2

(
V

(n)

h+1,i − V
(n)
h+1,i

)
∈ F4,h. By definition, we have

1

2H2

(
V

(n)

h+1,i − V
(n)
h+1,i

)
= E

a∼π(n)
h (s)

[
1

H2
β̂
(n)
h+1(s,a) +

1

2H2
P ⋆h+1

(
V

(n)

h+2,i − V
(n)
h+2,i

)
(s,a)

]

The first term is equal to 1
H2 min

(
α(n)

√
ϕ̂
(n)
h (s,a)⊤

(
Σ̂

(n)
h

)−1

ϕ̂
(n)
h (s,a), H

)
, which is exactly

the same as that in the definition of F4,h (note that we use the property α(n) ≤ L,∀n ∈ [N ]). For

the second term, note that we have 0 ≤ 1
2H2

(
V

(n)

h,i − V
(n)
h,i

)
≤ 1,∀h. Therefore, by Lemma C.1,

1
2H2P

⋆
h+1

(
V

(n)

h+2,i − V
(n)
h+2,i

)
(s,a) is a linear function in ϕ⋆h+1 whose weight’s 2-norm is upper

bounded by
√
d. Combing the above arguments, we conclude 1

2H2

(
V

(n)

h+1,i − V
(n)
h+1,i

)
∈ F4,h.

According to the definition of the event E , we have

E
s∼ρ(n)

h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n), ∥ϕh(s,a)∥(

Σ̂
(n)
h,ϕh

)−1 = Θ

(
∥ϕh(s,a)∥Σ−1

n,ρ
(n)
h

,ϕh

)
, ∀n ∈ [N ], ϕh ∈ Φh, h ∈ [H].

(19)

By definition, we have

∆(n) = max
i∈[M ]

{
v
(n)
i − v(n)i

}
+ 2H

√
Aζ(n).
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For each fixed i ∈ [M ], h ∈ [H] and n ∈ [N ], we have

E
s∼dπ(n)

P⋆,h

[
V

(n)

h,i (s)− V
(n)
h,i (s)

]
=E

s∼dπ(n)

P⋆,h

[(
D
π
(n)
h

Q
(n)

h,i

)
(s)−

(
D
π
(n)
h

Q(n)

h,i

)
(s)
]

=E
(s,a)∼dπ(n)

P⋆,h

[
Q

(n)

h,i (s,a)−Q
(n)

h,i
(s,a)

]
=E

(s,a)∼dπ(n)

P⋆,h

[
2β̂

(n)
h +

(
P̂

(n)
h

(
V

(n)

h+1,i − V
(n)
h+1,i

))
(s,a)

]
=E

(s,a)∼dπ(n)

P⋆,h

[
2β̂

(n)
h +

((
P̂

(n)
h − P ⋆h

)(
V

(n)

h+1,i − V
(n)
h+1,i

))
(s,a)

]
+ E

s∼dπ(n)

P⋆,h+1

[
V

(n)

h+1,i(s)− V
(n)
h+1,i(s)

]
≤E

(s,a)∼dπ(n)

P⋆,h

[
2β̂

(n)
h (s,a) + 2H2f

(n)
h (s,a)

]
+ E

s∼dπ(n)

P⋆,h+1

[
V

(n)

h+1,i(s)− V
(n)
h+1,i(s)

]
≤ . . .

≤2
H∑

h′=h

E
(s,a)∼dπ(n)

P⋆,h′

[
β̂
(n)
h′ (s,a) +H2f

(n)
h′ (s,a)

]
,

where the last inequality is calculated using induction. In particular,

E
s∼dπ(n)

P⋆,1

[
V

(n)

1,i (s)− V
(n)
1,i (s)

]
≤ 2

H∑
h=1

E
(s,a)∼dπ(n)

P⋆,h

[
β̂
(n)
h (s,a)

]
︸ ︷︷ ︸

(a)

+2H2
H∑
h=1

E
(s,a)∼dπ(n)

P⋆,h

[
f
(n)
h (s,a)

]
︸ ︷︷ ︸

(b)

.

(20)

First, we calculate the first term (a) in Inequality equation 20. Following Lemma C.10 and noting the
bonus β̂(n)

h is O(H), we have

H∑
h=1

E
(s,a)∼dπ(n)

P⋆,h

[
β̂
(n)
h (s,a)

]

≲
H∑
h=1

E
(s,a)∼dπ(n)

P⋆,h

min

α(n)
∥∥∥ϕ̂(n)h (s,a)

∥∥∥
Σ−1

n,ρ
(n)
h

,ϕ̂
(n)
h

, H

 (From equation 19)

≲
H−1∑
h=1

E
(s̃,ã)∼dπ(n)

P⋆,h

[
∥ϕ⋆h(s̃, ã)∥Σ−1

n,γ
(n)
h

,ϕ⋆
h

]√√√√√nA
(
α(n)

)2E
(s,a)∼ρ(n)

h

∥∥∥ϕ̂(n)h (s,a)
∥∥∥2
Σ−1

n,ρ
(n)
h

,ϕ̂
(n)
h

+H2dλ

+

√√√√√A
(
α(n)

)2 E
(s,a)∼ρ(n)

1

∥∥∥ϕ̂(n)1 (s,a)
∥∥∥2
Σ−1

n,ρ
(n)
1 ,ϕ̂

(n)
1

.
Note that we use the fact that B = H when applying Lemma D.3. In addition, we have

nE
(s,a)∼ρ(n)

h

∥∥∥ϕ̂(n)h (s,a)
∥∥∥2
Σ−1

n,ρ
(n)
h

,ϕ̂
(n)
h


=nTr

(
E
(s,a)∼ρ(n)

h

[
ϕ̂
(n)
h (s,a)ϕ̂

(n)
h (s,a)⊤

] (
nE

(s,a)∼ρ(n)
h

[
ϕ̂
(n)
h (s,a)ϕ̂

(n)
h (s,a)⊤

]
+ λId

)−1
)

≤d.

Then,
H∑
h=1

E
(s,a)∼dπ(n)

P⋆,h

[
β̂
(n)
h (s,a)

]
≤ E

(s̃,ã)∼dπ(n)

P⋆,h

[
∥ϕ⋆h(s̃, ã)∥Σ−1

n,γ
(n)
h

,ϕ⋆
h

]√
dA
(
α(n)

)2
+H2dλ+

√
dA
(
α(n)

)2
/n.
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Second, we calculate the term (b) in inequality equation 23. Following Lemma D.3 and noting(
f
(n)
h (s,a)

)2
is upper-bounded by 1 (i.e., B = 1 in Lemma D.3), we have

H∑
h=1

E
(s,a)∼dπ(n)

P⋆,h

[f
(n)
h (s,a)]

≤
H−1∑
h=1

E
(s̃,ã)∼dπ(n)

P⋆,h

[
∥ϕ⋆h(s̃, ã)∥Σ−1

n,γ
(n)
h

,ϕ⋆
h

]√
nAE

(s,a)∼ρ(n)
h

[(
f
(n)
h (s,a)

)2]
+ dλ+

√
AE

(s,a)∼ρ(n)
h

[(
f
(n)
1 (s,a)

)2]

≤
H−1∑
h=1

E
(s̃,ã)∼dπ(n)

P⋆,h

[
∥ϕ⋆h(s̃, ã)∥Σ−1

n,γ
(n)
h

,ϕ⋆
h

]√
nAζ(n) + dλ+

√
Aζ(n)

≲
α(n)

H

H−1∑
h=1

E(s̃,ã)∼dπn
P⋆,h

[
∥ϕ⋆h(s̃, ã)∥Σ−1

n,γ
(n)
h

,ϕ⋆
h

]
+
√
Aζ(n),

where in the second inequality, we use E
(s,a)∼ρ(n)

h

[(
f
(n)
h (s,a)

)2]
≤ ζ(n), and in the last line,

recall
√
nAζ(n) + dλ ≲ α(n)/H . Then, by combining the above calculation of the term (a) and

term (b) in inequality equation 23, we have:

v
(n)
i − v(n)i =E

s∼dπ(n)

P⋆,1

[
V

(n)

1,i (s)− V
(n)
1,i (s)

]
≲
H−1∑
h=1

E
(s̃,ã)∼dπ(n)

P⋆,h

[
∥ϕ⋆h(s̃, ã)∥Σ−1

n,γ
(n)
h

,ϕ⋆
h

]√
dA
(
α(n)

)2
+H2dλ+

√
dA
(
α(n)

)2
n


+H2

H−1∑
h=1

(
α(n)

H
E
(s̃,ã)∼dπ(n)

P⋆,h

[
∥ϕ⋆h(s̃, ã)∥Σ−1

n,γ
(n)
h

,ϕ⋆
h

]
+
√
Aζ(n)

)
.

Taking maximum over i on both sides and use the definition of ∆(n), we get

∆(n) = max
i∈[M ]

{
v
(n)
i − v(n)i

}
+ 2H

√
Aζ(n)

≲
H−1∑
h=1

E
(s̃,ã)∼dπ(n)

P⋆,h

[
∥ϕ⋆h(s̃, ã)∥Σ−1

n,γ
(n)
h

,ϕ⋆
h

]√
dA
(
α(n)

)2
+H2dλ+

√
dA
(
α(n)

)2
n


+H2

H−1∑
h=1

(
α(n)

H
E
(s̃,ã)∼dπ(n)

P⋆,h

[
∥ϕ⋆h(s̃, ã)∥Σ−1

n,γ
(n)
h

,ϕ⋆
h

]
+
√
Aζ(n)

)
.

Hereafter, we take the dominating term out. Note that

N∑
n=1

E
(s̃,ã)∼dπ(n)

P⋆,h

[
∥ϕ⋆h(s̃, ã)∥Σ−1

n,γ
(n)
h

,ϕ⋆
h

]
≤

√√√√N

N∑
n=1

E
(s̃,ã)∼dπ(n)

P⋆,h

[
ϕ⋆h(s̃, ã)

⊤Σ−1

n,γ
(n)
h ,ϕ⋆

h

ϕ⋆h(s̃, ã)

]
(CS inequality)

≲

√√√√N

(
log det

(
N∑
n=1

E
(s̃,ã)∼dπ(n)

P⋆,h

[ϕ⋆h(s̃, ã)ϕ
⋆
h(s̃, ã)

⊤]

)
− log det(λId)

)
(Lemma E.2)

≤

√
dN log

(
1 +

N

dλ

)
.

(Potential function bound, Lemma E.3 noting ∥ϕ⋆h(s,a)∥2 ≤ 1 for any (s,a).)
Finally,

N∑
n=1

∆(n) ≲H

√dN log

(
1 +

N

d

)√
dA
(
α(N)

)2
+H2dλ+

N∑
n=1

√
dA
(
α(n)

)2
n


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+H3

(
1

H

√
dN log

(
1 +

N

dλ

)
α(N) +

N∑
n=1

√
Aζ(n)

)
+ 2HNε̃

≲H2d

√
NA log

(
1 +

N

dλ

)
α(N)

(Some algebra. We take the dominating term out. Note that α(n) is increasing in n)

≲H3d2A
3
2N

1
2M

1
2 log

dNHAM |Φ|
δ

.

This concludes the proof.

Proof of Theorem 4.2

Proof. For any fixed episode n and agent i, by Lemma C.11, Lemma C.12 and Lemma C.13, we
have

v
†,π(n)

−i

i − vπ
(n)

i

(
or max

ω∈Ωi

vω◦π
(n)

i − vπ
(n)

i

)
≤ v(n)i − v(n)i + 2

√
Aζ(n) + 2Hε̃ ≤ ∆(n) + 2Hε̃.

Taking maximum over i on both sides, we have

max
i∈[M ]

{
v
†,π(n)

−i

i − vπ
(n)

i

}(
or max

i∈[M ]

{
max
ω∈Ωi

vω◦π
(n)

i − vπ
(n)

i

})
≤ ∆(n) + 2Hε̃. (21)

From Lemma C.14, with probability 1− δ, we can ensure

N∑
n=1

(∆(n) + 2Hε̃) ≲ H3d2A
3
2N

1
2M

1
2 log

dNHAM |Φ|
δ

.

Therefore, according to Lemma E.4, when we pick N to be

O

(
H6d4A3M

ε2
log2

(
HdAM |Φ|

δε

))
,

we have

1

N

N∑
n=1

(∆(n) + 2Hε̃) ≤ ε.

On the other hand, from equation 21, we have

max
i∈[M ]

{
v
†,π̂−i

i − vπ̂i
}(

or max
i∈[M ]

{
max
ω∈Ωi

vω◦π̂i − vπ̂i
})

= max
i∈[M ]

{
v
†,π(n⋆)

−i

i − vπ
(n⋆)

i

}(
or max

i∈[M ]

{
max
ω∈Ωi

vω◦π
(n⋆)

i − vπ
(n⋆)

i

})
≤∆(n⋆) + 2Hε̃ = min

n∈[N ]
∆(n) + 2Hε̃ ≤ 1

N

N∑
n=1

(∆(n) + 2Hε̃) ≤ ε,

which has finished the proof.

D ANALYSIS OF THE FACTORED MARKOV GAMES

D.1 HIGH PROBABILITY EVENTS

Define the set Φ̄h,i = {ϕ̄h,i(s,a) :=
⊗

j∈Zi
ϕh,j(s[Zj ],aj)|ϕh,j ∈ Φh,j}. Let |Φ| = maxh,j |Φh,j |

and |Φ̄| = maxh,i |Φ̄h,i|. Clearly, we have |Φ̄| ≤ |Φ|L. Define the following event

E1 : ∀n ∈ [N ], h ∈ [H], i ∈ [M ], ρ ∈
{
ρ
(n)
h , ρ̃

(n)
h

}
, Eρ

[∥∥∥P̂ (n)
h,i (·|s[Zi],ai)− P

⋆
h,i(·|s[Zi],ai)

∥∥∥2
1

]
≤ ζ(n),
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E2 : ∀n ∈ [N ], h ∈ [H], i ∈ [M ], ϕ̄h,i ∈ Φ̄h,i, ∥ϕ̄h,i(s,a)∥(
Σ̂

(n)

h,ϕ̄h,i

)−1 = Θ

(
∥ϕ̄h,i(s,a)∥Σ−1

n,ρ
(n)
h

,ϕ̄h,i

)
E := E1 ∩ E2.

The following lemma shows that the event E holds with a high probability with proper choices of the
parameters.

Lemma D.1. When P̂ (n)
h is computed using Alg. 2, if we set

λ = Θ

(
LdL log

NHM |Φ|
δ

)
, ζ(n) = Θ

(
1

n
log
|M|HNM

δ

)
,

then E holds with probability at least 1− δ.

The proof of Lemma D.1 is follows a similar procedure as that of Lemma B.2, with minor changes
on the notations as well as some modifications on the union bound.

D.2 STATISTICAL GUARANTEES

Lemma D.2 (One-step back inequality for the learned model). Suppose the event E holds. Consider
a set of functions {gh}Hh=1 that satisfies gh ∈ S[Zi] × Ai → R+, s.t. ∥gh∥∞ ≤ B. For a given
policy π, we have∣∣∣∣E(s,a)∼dπ

P̂ (n),h
[gh(s[Zi],ai)]

∣∣∣∣

≤



√
ÃE

(s,a)∼ρ
(n)
1

[g21(s[Zi],ai)], h = 1

E(s̃,ã)∼dπ
P̂ (n),h−1

min

Ã
∥∥∥ϕ̄(n)

h−1,i(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̄
(n)
h−1,i

√
nE

(s,a)∼ρ̃
(n)
h

[g2h(s[Zi],ai)] +B2λdL + nB2ζ(n), B


 , h ≥ 2

where ϕ̄
(n)
h,i (s,a) :=

⊗
j∈Zi

ϕ̂
(n)
h−1,j(s[Zj ],aj), and Σ

n,ρ
(n)
h ,ϕ̄

(n)
h,i

=

nE
(s,a)∼ρ(n)

h

[
ϕ̄
(n)
h,i (s,a)ϕ̄

(n)
h,i (s,a)

⊤
]
+ λId|Zi| .

Proof. For step h = 1, we have

E(s,ai)∼dπ
P̂ (n),1

[g1(s[Zi],ai)] =Es∼d1,ai∼π1(s) [g1(s[Zi],ai)]

≤
√

max
(s,ai)

d1(s)π1(ai|s)
ρ
(n)
1 (s,ai)

E
(s′,a′

i)∼ρ
(n)
1

[g21(s
′[Zi],a′

i)]

=

√
max
(s,ai)

d1(s)π1(ai|s)
d1(s)uA(ai)

E
(s′,a′

i)∼ρ
(n)
1

[g21(s
′[Zi],a′

i)]

≤
√
ÃE

(s,ai)∼ρ(n)
1

[g21(s[Zi],ai)].

For h ≥ 2, we observe the following one-step-back decomposition:

E(s̃,ãi)∼dπ
P̂ (n),h

[gh(s[Zi],ai)]

=E
(s̃,ã)∼dπ

P̂ (n),h−1
,s∼P̂

(n)
h−1

(s̃,ã),ai∼πh(s)
[gh(s[Zi],ai)]

=E(s̃,ã)∼dπ
P̂ (n),h−1

∫
S

M∏
j=1

[
ϕ̂
(n)
h−1,j(s̃[Zj ], ãj)

⊤ŵ
(n)
h−1,j(sj)

] ∑
ai∈Ai

πh(ai|s)gh(s[Zi],ai)ds


=E(s̃,ã)∼dπ

P̂ (n),h−1

min


∫
S

M∏
j=1

[
ϕ̂
(n)
h−1,j(s̃[Zj ], ãj)

⊤ŵ
(n)
h−1,j(sj)

] ∑
ai∈Ai

πh(ai|s)gh(s[Zi],ai)ds,B



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≤E(s̃,ã)∼dπ
P̂ (n),h−1

min

Ã

∫
S

M∏
j=1

[
ϕ̂
(n)
h−1,j(s̃[Zj ], ãj)

⊤ŵ
(n)
h−1,j(sj)

] 1

|Ai|
∑

ai∈Ai

gh(s[Zi],ai)ds,B




=E(s̃,ã)∼dπ
P̂ (n),h−1

min

Ã

∫
S[Zi]

∏
j∈Zi

[
ϕ̂
(n)
h−1,j(s̃[Zj ], ãj)

⊤ŵ
(n)
h−1,j(sj)

] 1

|Ai|
∑

ai∈Ai

gh(s[Zi],ai)ds[Zi], B




=E(s̃,ã)∼dπ
P̂ (n),h−1

min

Ã

∫
S[Zi]

⊗
j∈Zi

ϕ̂
(n)
h−1,j(s̃[Zj ], ãj)

⊤ ⊗
j∈Zi

ŵ
(n)
h−1,j(sj)

 1

|Ai|
∑

ai∈Ai

gh(s[Zi],ai)ds[Zi], B




=E(s̃,ã)∼dπ
P̂ (n),h−1

min

Ã

∫
S[Zi]

ϕ̄
(n)
h−1,i(s̃, ã)

⊤

⊗
j∈Zi

ŵ
(n)
h−1,j(sj)

 1

|Ai|
∑

ai∈Ai

gh(s[Zi],ai)ds[Zi], B




≤E(s̃,ã)∼dπ
P̂ (n),h−1

[
min

{
Ã
∥∥∥ϕ̄(n)

h−1,i(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̄
(n)
h−1,i

∥∥∥∥∥∥
∫
S[Zi]

1

|Ai|
∑

ai∈Ai

⊗
j∈Zi

ŵ
(n)
h−1,j(sj)

 gh(s[Zi],ai)ds[Zi]

∥∥∥∥∥∥
Σ

n,ρ
(n)
h−1

,ϕ̄
(n)
h−1,i

, B

}]
.

Then,∥∥∥∥∥∥
∫
S[Zi]

1

|Ai|
∑
ai∈A

⊗
j∈Zi

ŵ
(n)
h−1,j(sj)

 gh(s[Zi],ai)ds[Zi]

∥∥∥∥∥∥
2

Σ
n,ρ

(n)
h−1

,ϕ̂
(n)
h−1

,i

≤nE
(s̃,ã)∼ρ(n)

h−1


∫

S[Zi]

1

|Ai|
∑
ai∈A

∏
j∈Zi

(
ŵ

(n)
h−1,j(sj)

⊤ϕ̂
(n)
h−1,j(s̃, ãj)

)
gh(s[Zi],ai)ds[Zi]

2
+B2λdL

(
∥∥∥ 1
|Ai|

∑
ai∈Ai

gh(s[Zi],ai)
∥∥∥
∞
≤ B and

∥∥∥ŵ(n)
h−1,i(si)

∥∥∥
2
≤
√
d.)

=nE
(s̃,ã)∼ρ(n)

h−1

[(
E
s∼P̂ (n)

h−1(s̃,ã),ai∼U(Ai)
[gh(s[Zi],ai)]

)2]
+B2λdL

≤nE
(s̃,ã)∼ρ(n)

h−1

[(
Es∼P⋆

h−1(s̃,ã),ai∼U(Ai) [gh(s[Zi],ai)]
)2]

+B2λdL + nB2ξ(n) (Event E)

≤nE
(s̃,ã)∼ρ(n)

h−1,s∼P
⋆
h−1(s̃,ã),ai∼U(Ai)

[
g2h(s[Zi],ai)

]
+B2λdL +B2nξ(n). (Jensen)

=nE
(s,ai)∼ρ̃(n)

h

[
g2h(s[Zi],ai)

]
+B2λdL +B2nζ(n). (Definition of ρ̃(n)h )

Combing the above results together, we get
E(s̃,ãi)∼dπ

P̂ (n),h
[gh(s[Zi],ai)]

≤E(s̃,ã)∼dπ
P̂ (n),h−1

[
min

{
Ã
∥∥∥ϕ̄(n)

h−1,i(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̄
(n)
h−1,i

∥∥∥∥∥∥
∫
S[Zi]

1

|Ai|
∑

ai∈Ai

⊗
j∈Zi

ŵ
(n)
h−1,j(sj)

 gh(s[Zi],ai)ds[Zi]

∥∥∥∥∥∥
Σ

n,ρ
(n)
h−1

,ϕ̄
(n)
h−1,i

, B

}]

≤E(s̃,ã)∼dπ
P̂ (n),h−1

min

Ã
∥∥∥ϕ̄(n)

h−1,i(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̄
(n)
h−1,i

√
nE

(s,ai)∼ρ̃
(n)
h

[g2h(s[Zi],ai)] +B2λdL +B2nζ(n), B


 ,

which has finished the proof.

Lemma D.3 (One-step back inequality for the true model). Consider a set of functions {gh}Hh=1 that
satisfies gh ∈ S[Zi]×Ai → R+, s.t. ∥gh∥∞ ≤ B. Then for any policy π, we have∣∣∣E(s,ai)∼dπP⋆,h

[gh(s[Zi],ai)]
∣∣∣
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≤


√
ÃE

(s,ai)∼ρ(n)
1

[g21(s[Zi],ai)], h = 1,

ÃE(s̃,ã)∼dπ
P⋆,h−1

[∥∥ϕ̄⋆h−1,i(s̃, ã)
∥∥
Σ−1

n,γ
(n)
h−1

,ϕ̄⋆
h−1,i

]√
nE

(s,a)∼ρ(n)
h

[g2h(s[Zi],ai)] +B2λdL, h ≥ 2,

where ϕ̄⋆h,i(s,a) :=
⊗

j∈Zi
ϕ⋆h−1,j(s[Zj ],aj), and Σ

n,γ
(n)
h ,ϕ̄⋆

h,i

=

nE
(s,a)∼γ(n)

h

[
ϕ̄⋆h,i(s,a)ϕ̄

⋆
h,i(s,a)

⊤
]
+ λId|Zi| .

Proof. For step h = 1, we have

E(s,a)∼dπ
P⋆,1

[g1(s[Zi],ai)] =Es∼d1,ai∼π1(s) [g1(s[Zi],ai)]

≤
√

max
(s,ai)

d1(s)π1(ai|s)
ρ
(n)
1 (s,ai)

E
(s′,a′

i)∼ρ
(n)
1

[g21(s
′[Zi],a′

i)]

=

√
max
(s,ai)

d1(s)π1(ai|s)
d1(s)uAi

(ai)
E
(s′,a′

i)∼ρ
(n)
1

[g21(s
′[Zi],a′

i)]

≤
√
ÃE

(s,ai)∼ρ(n)
1

[g21(s[Zi],ai)].

For step h = 2, . . . ,H − 1, we observe the following one-step-back decomposition:

E(s̃,ãi)∼dπP⋆,h
[gh(s[Zi],ai)]

=E(s̃,ã)∼dπ
P⋆,h−1

,s∼P⋆
h−1(s̃,ã),ai∼πh(s) [gh(s[Zi],ai)]

=E(s̃,ã)∼dπ
P⋆,h−1


⊗
j∈Zi

ϕ⋆h−1,j(s̃[Zj ], ãj)

⊤ ∫
S

∑
ai∈Ai

⊗
j∈Zi

w⋆h−1,j(sj)

πh(ai|s)gh(s[Zi],ai)ds


≤ÃE(s̃,ã)∼dπ

P⋆,h−1


⊗
j∈Zi

ϕ⋆h−1,j(s̃[Zj ], ãj)

⊤ ∫
S

∑
ai∈Ai

1

|Ai|

⊗
j∈Zi

w⋆h−1,j(sj)

 gh(s[Zi],ai)ds[Zi]



≤ÃE(s̃,ã)∼dπ
P⋆,h−1


∥∥∥∥∥∥
⊗
j∈Zi

ϕ⋆h−1,j(s̃[Zj ], ãj)

∥∥∥∥∥∥
Σ−1

n,γ
(n)
h−1

,ϕ̄⋆
h−1,i


·

∥∥∥∥∥∥
∫
S

∑
ai∈Ai

1

|Ai|

⊗
j∈Zi

w⋆h−1,j(sj)

 gh(s[Zi],ai)ds[Zi]

∥∥∥∥∥∥
Σ

n,γ
(n)
h−1

,ϕ̄⋆
h−1

,i

.

Then,∥∥∥∥∥∥
∫
S

∑
ai∈Ai

1

|Ai|

⊗
j∈Zi

w⋆
h−1,j(sj)

 gh(s[Zi],ai)ds[Zi]

∥∥∥∥∥∥
2

Σ
n,γ

(n)
h−1

,ϕ̄⋆
h−1,i

≤nE
(s̃,ã)∼γ

(n)
h−1


∫

S

∑
ai∈Ai

1

|Ai|

⊗
j∈Zi

w⋆
h−1,j(sj)

⊤⊗
j∈Zi

ϕ⋆
h−1,j(s̃[Zj ], ãj)

 gh(s[Zi],ai)ds[Zi]

2
+B2λdL

(Use the assumption
∥∥∥∑ai∈Ai

1
|Ai|

gh(s[Zi],ai)
∥∥∥
∞

≤ B and
∥∥w⋆

h−1,i(si)
∥∥
2
≤

√
d.)

=nE
(s̃,ã)∼γ

(n)
h−1

[(
Es∼P⋆

h−1
(s̃,ã),ai∼U(Ai) [gh(s[Zi],ai)]

)2]
+B2λdL

≤nE
(s̃,ã)∼γ

(n)
h−1

,s∼P⋆
h−1

(s̃,ã),ai∼U(Ai)

[
g2h(s[Zi],ai)

]
+B2λdL (Jensen)
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≤nE
(s,ai)∼ρ

(n)
h

[
g2h(s[Zi],ai)

]
+B2λdL, (Definition of ρ(n)

h )

which has finished the proof.

Lemma D.4 (One-step back inequality for the true model). Consider a set of functions {gh}Hh=1 that
satisfies gh ∈ S[∪j∈Zi

Zj ]×A[Zi]→ R, s.t. ∥gh∥∞ ≤ B. Then for any policy π, we have∣∣∣E(s,a)∼dπ
P⋆,h

[gh(s[∪j∈ZiZj ],a[Zi])]
∣∣∣

≤



√
ÃLE

(s,a)∼ρ(n)
1

[g21(s[∪j∈Zi
Zj ],a[Zi])], h = 1,

ÃLE(s̃,ã)∼dπ
P⋆,h−1

∥∥∥ϕ̃⋆h−1,i(s̃, ã)
∥∥∥
Σ−1

n,γ
(n)
h−1

,ϕ̃⋆
h−1,i

√nE
(s,a)∼ρ(n)

h

[g2h(s[∪j∈Zi
Zj ],a[Zi])] +B2λdL2 , h ≥ 2,

where ϕ̃⋆h,i(s,a) :=
⊗

k∈∪j∈Zi
Zj
ϕ⋆h−1,j(s[Zk],ak), and Σ

n,γ
(n)
h ,ϕ̃⋆

h,i

=

nE
(s,a)∼γ(n)

h

[
ϕ̃⋆h,i(s,a)ϕ̃

⋆
h,i(s,a)

⊤
]
+ λI

d
|∪j∈Zi

Zj | .

Proof. This Lemma can be proved using similar steps as those in the proof of Lemma D.3, noting
that in this case the dimension of ϕ̃⋆h,i is at most L2.

Lemma D.5 (Optimism for NE and CCE). Consider an episode n ∈ [N ] and set α(n) =

Θ
(
HÃ

√
nζ(n) + dLλ

)
. When the event E holds and the policy π(n) is computed by solving

NE or CCE, we have

v
(n)
i (s)− v†,π

(n)
−i

i (s) ≥ −HM
√
Ãζ(n), ∀n ∈ [N ], i ∈ [M ].

Proof. Denote µ̃
(n)
h,i (·|s) := argmaxµ

(
D
µ,π

(n)
h,−i

Q
†,π(n)

−i

h,i

)
(s) and let π̃

(n)
h =

µ̃
(n)
h,i × π

(n)
h,−i. Let f

(n)
h (s,a) =

∥∥∥P̂ (n)
h (·|s,a)− P ⋆h (·|s,a)

∥∥∥
1

and f
(n)
h,i (s[Zi],ai) =∥∥∥P̂ (n)

h,i (·|s[Zi],ai)− P ⋆h,i(·|s[Zi],ai)
∥∥∥
1
. Then according to the event E , we have

E
(s,a)∼ρ(n)

h

[(
f
(n)
h,i (s[Zi],ai)

)2]
≤ ζ(n), E

(s,a)∼ρ̃(n)
h

[(
f
(n)
h,i (s[Zi],ai)

)2]
≤ ζ(n), ∀n ∈ [N ], h ∈ [H], i ∈ [M ]

∥∥ϕ̄h,i(s,a)∥∥(
Σ̂

(n)

h,ϕ̄h,i

)−1 = Θ

(∥∥ϕ̄h,i(s,a)∥∥Σ−1

n,ρ
(n)
h

,ϕ̄h,i

)
, ∀n ∈ [N ], h ∈ [H], ϕ̄h,i ∈ Φ̄h,i, i ∈ [M ].

A direct conclusion of the event E is we can find an absolute constant c, such that

β
(n)
h (s,a) =

M∑
i=1

min

α(n)
∥∥∥ϕ̄(n)h,i (s̃, ã)

∥∥∥(
Σ

(n)

h,ϕ̄
(n)
h,i

)−1 , H


≥

M∑
i=1

min

cα(n)
∥∥∥ϕ̄(n)h,i (s̃, ã)

∥∥∥
Σ−1

n,ρ
(n)
h

,ϕ̄
(n)
h,i

, H

 , ∀n ∈ [N ], h ∈ [H].

Next, similar to the proof in Lemma B.5, we may prove

Es∼d1
[
V

(n)

1,i (s)− V
†,π(n)

−i

1,i (s)

]
≥

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a)

]
−H

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
min

{
f
(n)
h (s,a), 1

}]
.

For the second term, note that we have the relation min{f (n)h (s,a), 1} ≤∑M
i=1 min{f (n)h,i (s[Zi],ai), 1}. By Lemma D.2, we have for h = 1,

E
(s,a)∼dπ̃(n)

P̂ (n),1

[
min

{
f
(n)
1,i (s[Zi],ai), 1

}]
≤

√
AE

(s,a)∼ρ(n)
1

[(
f
(n)
1,i (s[Zi],ai)

)2]
≤
√
Ãζ(n).

50



Published as a conference paper at ICLR 2023

And ∀h ≥ 2, we have

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
min

{
f
(n)
h,i (s[Zi],ai), 1

}]
≲E

(s̃,ã)∼dπ̃(n)

P̂ (n),h−1

min

Ã ∥∥∥ϕ̄(n)h−1,i(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̄
(n)
h−1,i

√
nE

(s,a)∼ρ̃(n)
h

[(
f
(n)
h,i (s[Zi],ai)

)2]
+ dLλ+ nζ(n), 1




≲E
(s̃,ã)∼dπ̃(n)

P̂ (n),h−1

min

Ã ∥∥∥ϕ̄(n)h−1,i(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̄
(n)
h−1,i

√
nζ(n) + dLλ, 1




Note that we here use min{f (n)h,i (s[Zi],ai), 1} ≤ 1, E
(s,a)∼ρ(n)

h

[(
f
(n)
h,i (s[Zi],ai)

)2]
≤ ζ(n) and

E
(s,a)∼ρ̃(n)

h

[(
f
(n)
h,i (s[Zi],ai)

)2]
≤ ζ(n). Then according to our choice of α(n), we get

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
min

{
f
(n)
h,i (s[Zi],ai), 1

}]
≤ E

(s̃,ã)∼dπ̃(n)

P̂ (n),h−1

min

cα(n)

H

∥∥∥ϕ̄(n)h−1,i(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̄
(n)
h−1,i

, 1


 .

Combining all things together,

v
(n)
i − v†,π

(n)
−i

i =Es∼d1
[
V

(n)

1,i (s)− V
†,π(n)

−i

1,i (s)

]
≥

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a)

]
−H

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
min

{
f
(n)
h (s,a), 1

}]

≥
H−1∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

β̂(n)
h (s,a)−

M∑
j=1

min

cα(n)
∥∥∥ϕ̄(n)h,j (s,a)

∥∥∥
Σ−1

ρ
(n)
h

,ϕ̄
(n)
h,j

, H


−HM√Ãζ(n)

≥−HM
√
Ãζ(n),

which proves the inequality.

Lemma D.6 (Optimism for CE). Consider an episode n ∈ [N ] and set α(n) =

Θ
(
HÃ

√
nζ(n) + dLλ

)
. When the event E holds, we have

v
(n)
i (s)− max

ω∈Ωi

vω◦π
(n)

i (s) ≥ −HM
√
Aζ(n), ∀n ∈ [N ], i ∈ [M ].

Proof. Denote ω̃
(n)
h,i = argmaxωh∈Ωh,i

(
D
ωh◦π(n)

h

maxω∈Ωi Q
ω◦π(n)

h,i

)
(s) and let π̃

(n)
h =

ω̃h,i ◦ π
(n)
h . Let f

(n)
h (s,a) =

∥∥∥P̂ (n)
h (·|s,a)− P ⋆h (·|s,a)

∥∥∥
1

and f
(n)
h,i (s[Zi],ai) =∥∥∥P̂ (n)

h,i (·|s[Zi],ai)− P ⋆h,i(·|s[Zi],ai)
∥∥∥
1
. Then according to the event E , we have

E
(s,a)∼ρ(n)

h

[(
f
(n)
h,i (s[Zi],ai)

)2]
≤ ζ(n), E

(s,a)∼ρ̃(n)
h

[(
f
(n)
h,i (s[Zi],ai)

)2]
≤ ζ(n), ∀n ∈ [N ], h ∈ [H], i ∈ [M ]

∥∥ϕ̄h,i(s,a)∥∥(
Σ̂

(n)

h,ϕ̄h,i

)−1 = Θ

(∥∥ϕ̄h,i(s,a)∥∥Σ−1

n,ρ
(n)
h

,ϕ̄h,i

)
, ∀n ∈ [N ], h ∈ [H], ϕ̄h,i ∈ Φ̄h,i, i ∈ [M ].

A direct conclusion of the event E is we can find an absolute constant c, such that

β
(n)
h (s,a) =min

α(n)
M∑
i=1

∥∥∥ϕ̄(n)h,i (s̃, ã)
∥∥∥(

Σ
(n)

h,ϕ̄
(n)
h,i

)−1 , H


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≥cmin

α(n)
M∑
i=1

∥∥∥ϕ̄(n)h,i (s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h

,ϕ̄
(n)
h,i

, H

 , ∀n ∈ [N ], h ∈ [H].

Next, similar to the proof in Lemma B.6, we may prove

Es∼d1
[
V

(n)

1,i (s)− max
ω∈Ωi

V ω◦π
(n)

1,i (s)

]
≥

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a)

]
−H

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
min

{
f
(n)
h (s,a), 1

}]
.

Note that we can use exactly the same steps in the proof of Lemma D.5 to bound the second term,
and we get for h = 1,

E
(s,a)∼dπ̃(n)

P̂ (n),1

[
min

{
f
(n)
1,i (s[Zi],ai), 1

}]
≤
√
Ãζ(n).

And ∀h ≥ 2,

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
min

{
f
(n)
h,i (s[Zi],ai), 1

}]
≤ cα(n)

H
E
(s̃,ã)∼dπ̃(n)

P̂ (n),h−1

∥∥∥ϕ̄(n)h−1,i(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̄
(n)
h−1,i

 .
Combining all things together,

v
(n)
i − max

ω∈Ωi

vω◦π
(n)

i

=Es∼d1
[
V

(n)

1,i (s)− max
ω∈Ωi

V ω◦π
(n)

1,i (s)

]
≥

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
β̂
(n)
h (s,a)

]
−H

H∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
min

{
f
(n)
h (s,a), 1

}]

≥
H−1∑
h=1

E
(s,a)∼dπ̃(n)

P̂ (n),h

β̂(n)
h (s,a)−

M∑
j=1

min

cα(n)
∥∥∥ϕ̄(n)h,j (s,a)

∥∥∥
Σ−1

ρ
(n)
h

,ϕ̄
(n)
h,j

, H

−HM√Ãζ(n)
≥−HM

√
Ãζ(n),

which proves the inequality.

Lemma D.7 (pessimism). Consider an episode n ∈ [N ] and set α(n) = Θ
(
HÃ

√
nζ(n) + dLλ

)
.

When the event E holds, we have

v
(n)
i (s)− vπ

(n)

i (s) ≤ HM
√
Ãζ(n), ∀n ∈ [N ], i ∈ [M ].

Proof. Let f
(n)
h (s,a) =

∥∥∥P̂ (n)
h (·|s,a)− P ⋆h (·|s,a)

∥∥∥
1

and f
(n)
h,i (s[Zi],ai) =∥∥∥P̂ (n)

h,i (·|s[Zi],ai)− P ⋆h,i(·|s[Zi],ai)
∥∥∥
1
. Then according to the event E , we have

E
(s,a)∼ρ(n)

h

[(
f
(n)
h,i (s[Zi],ai)

)2]
≤ ζ(n), E

(s,a)∼ρ̃(n)
h

[(
f
(n)
h,i (s[Zi],ai)

)2]
≤ ζ(n), ∀n ∈ [N ], h ∈ [H], i ∈ [M ]

∥∥ϕ̄h,i(s,a)∥∥(
Σ̂

(n)

h,ϕ̄h,i

)−1 = Θ

(∥∥ϕ̄h,i(s,a)∥∥Σ−1

n,ρ
(n)
h

,ϕ̄h,i

)
, ∀n ∈ [N ], h ∈ [H], ϕ̄h,i ∈ Φ̄h,i, i ∈ [M ].

A direct conclusion of the event E is we can find an absolute constant c, such that

β
(n)
h (s,a) =

M∑
i=1

min

α(n)
∥∥∥ϕ̄(n)h,i (s̃, ã)

∥∥∥(
Σ

(n)

h,ϕ̄
(n)
h,i

)−1 , H


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≥
M∑
i=1

min

cα(n)
∥∥∥ϕ̄(n)h,i (s̃, ã)

∥∥∥
Σ−1

n,ρ
(n)
h

,ϕ̄
(n)
h,i

, H

 , ∀n ∈ [N ], h ∈ [H].

Next, similar to the proof in Lemma B.7, we may prove

E
s∼dπ(n)

P̂ (n),h

[
V

(n)
h,i (s)− V

π(n)

h,i (s)
]
≤

H∑
h′=h

E
(s,a)∼dπ(n)

P̂ (n),h′

[
−β̂(n)

h′ (s,a) +Hmin
{
f
(n)
h′ (s,a), 1

}]
, ∀h ∈ [H].

(22)

and we get for h = 1,

E
(s,a)∼dπ̃(n)

P̂ (n),1

[
min

{
f
(n)
1,i (s[Zi],ai), 1

}]
≤
√
Ãζ(n).

And ∀h ≥ 2,

E
(s,a)∼dπ̃(n)

P̂ (n),h

[
min

{
f
(n)
h,i (s[Zi],ai), 1

}]
≤ cα(n)

H
E
(s̃,ã)∼dπ̃(n)

P̂ (n),h−1

∥∥∥ϕ̄(n)h−1,i(s̃, ã)
∥∥∥
Σ−1

n,ρ
(n)
h−1

,ϕ̄
(n)
h−1,i

 .
Finally, we get

v
(n)
i − vπ

(n)

i =Es∼d1
[
V

(n)
1,i (s)− V

π(n)

1,i (s)
]

≤
H−1∑
h=1

E
(s,a)∼dπ(n)

P̂ (n),h

−β̂(n)
h (s,a) +

M∑
j=1

min

cα(n)
∥∥∥ϕ̄(n)h,j (s,a)

∥∥∥
Σ−1

ρ
(n)
h

,ϕ̄
(n)
h,j

, H

+HM

√
Ãζ(n)

≤HM
√
Ãζ(n),

which has finished the proof.

Lemma D.8. When the event E holds and α(n) = Θ
(
HÃ

√
nζ(n) + dLλ

)
satisfies α(1) ≤ α(2) ≤

. . . ≤ α(N), we have
N∑
n=1

∆(n) ≲ H2MdL
2

AL

√
N log

(
1 +

N

dλ

)
α(N).

Proof. Let f
(n)
h (s,a) =

∥∥∥P̂ (n)
h (·|s,a)− P ⋆h (·|s,a)

∥∥∥
1

and f
(n)
h,i (s[Zi],ai) =∥∥∥P̂ (n)

h,i (·|s[Zi],ai)− P ⋆h,i(·|s[Zi],ai)
∥∥∥
1
. Then according to the event E , we have

E
(s,a)∼ρ(n)

h

[(
f
(n)
h,i (s[Zi],ai)

)2]
≤ ζ(n), E

(s,a)∼ρ̃(n)
h

[(
f
(n)
h,i (s[Zi],ai)

)2]
≤ ζ(n), ∀n ∈ [N ], h ∈ [H], i ∈ [M ]

∥∥ϕ̄h,i(s,a)∥∥(
Σ̂

(n)

h,ϕ̄h,i

)−1 = Θ

(∥∥ϕ̄h,i(s,a)∥∥Σ−1

n,ρ
(n)
h

,ϕ̄h,i

)
, ∀n ∈ [N ], h ∈ [H], ϕ̄h,i ∈ Φ̄h,i, i ∈ [M ].

By definition, we have

∆(n) = max
i∈[M ]

{
v
(n)
i − v(n)i

}
+ 2HM

√
Ãζ(n).

With similar steps as those in the proof of Lemma B.8 (note that V
(n)

h,i (s)−V
(n)
h,i (s) is upper bounded

by 2H2M ), we have

E
s∼dπ(n)

P⋆,1

[
V

(n)

1,i (s)− V
(n)
1,i (s)

]
≤ 2

H∑
h=1

E
(s,a)∼dπ(n)

P⋆,h

[
β̂
(n)
h (s,a)

]
︸ ︷︷ ︸

(a)

+2H2M

H∑
h=1

E
(s,a)∼dπ(n)

P⋆,h

[
f
(n)
h (s,a)

]
︸ ︷︷ ︸

(b)

.

(23)
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First, we calculate the first term (a) in Inequality equation 23. Following Lemma D.4, we have

H∑
h=1

E
(s,a)∼dπ(n)

P⋆,h

[
β̂
(n)
h (s,a)

]

≲
H∑
h=1

M∑
i=1

E
(s,a)∼dπ(n)

P⋆,h

min

α(n)
∥∥∥ϕ̄(n)h,i (s,a)

∥∥∥
Σ−1

n,ρ
(n)
h

,ϕ̄
(n)
h,i

, H


≲
H−1∑
h=1

M∑
i=1

ÃLE
(s̃,ã)∼dπ(n)

P⋆,h

∥∥∥ϕ̃⋆h,i(s̃, ã)∥∥∥
Σ−1

n,γ
(n)
h

,ϕ̃⋆
h,i



·

√√√√√n
(
α(n)

)2E
(s,a)∼ρ(n)

h

∥∥∥ϕ̄(n)h,i (s,a)
∥∥∥2
Σ−1

n,ρ
(n)
h

,ϕ̄
(n)
h,i

+H2dL2λ

+

√√√√√ÃL
(
α(n)

)2 E
(s,a)∼ρ(n)

1

∥∥∥ϕ̄(n)1,i (s,a)
∥∥∥2
Σ−1

n,ρ
(n)
1 ,ϕ̄

(n)
1,i

.
Note that we use the fact that B = H when applying Lemma D.3. In addition, we have

nE
(s,a)∼ρ(n)

h

∥∥∥ϕ̄(n)h,i (s,a)
∥∥∥2
Σ−1

n,ρ
(n)
h

,ϕ̄
(n)
h,i


=nTr

(
E
(s,a)∼ρ(n)

h

[
ϕ̄
(n)
h,i (s,a)ϕ̄

(n)
h,i (s,a)

⊤
] (
nE

(s,a)∼ρ(n)
h

[
ϕ̄
(n)
h,i (s,a)ϕ̄

(n)
h,i (s,a)

⊤
]
+ λId|Zi|

)−1
)

≤dL.

Then,

H∑
h=1

E
(s,a)∼dπ(n)

P⋆,h

[
β̂
(n)
h (s,a)

]

≤
H−1∑
h=1

M∑
i=1

ÃLE
(s̃,ã)∼dπ(n)

P⋆,h

∥∥∥ϕ̃⋆h,i(s̃, ã)∥∥∥
Σ̃−1

n,γ
(n)
h

,ϕ̃⋆
h,i

√dL (α(n)
)2

+H2dL2λ

+

√
dLÃL

(
α(n)

)2
/n.

Second, we calculate the term (b) in inequality equation 23. Following Lemma D.3 and noting
f
(n)
h,i (s[Zi],ai) is upper-bounded by 2 (i.e., B = 2 in Lemma D.3), we have

H∑
h=1

E
(s,a)∼dπ(n)

P⋆,h

[
f
(n)
h (s,a)

]
≤

M∑
i=1

H∑
h=1

E
(s,a)∼dπ(n)

P⋆,h

[
f
(n)
h,i (s[Zi],ai)

]

≤
M∑
i=1

H−1∑
h=1

ÃE
(s̃,ã)∼dπ(n)

P⋆,h

[∥∥ϕ̄⋆h,i(s̃, ã)∥∥Σ−1

n,γ
(n)
h

,ϕ̄⋆
h,i

]√
nE

(s,a)∼ρ(n)
h

[(
f
(n)
h,i (s[Zi],ai)

)2]
+ dLλ

+

√
ÃE

(s,a)∼ρ(n)
h

[(
f
(n)
1 (s[Zj ],aj)

)2]
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≤
M∑
i=1

H−1∑
h=1

ÃE
(s̃,ã)∼dπ(n)

P⋆,h

[∥∥ϕ̄⋆h,i(s̃, ã)∥∥Σ−1

n,γ
(n)
h

,ϕ̄⋆
h,i

]√
nζ(n) + dLλ+

√
Ãζ(n)

≲
α(n)

H

M∑
i=1

H−1∑
h=1

E
(s̃,ã)∼dπ(n)

P⋆,h

[∥∥ϕ̄⋆h,i(s̃, ã)∥∥Σ−1

n,γ
(n)
h

,ϕ̄⋆
h,i

]
+

√
Ãζ(n),

where in the second inequality, we use E
(s,a)∼ρ(n)

h

[(
f
(n)
h,i (s[Zi],ai)

)2]
≤ ζ(n), and in the last line,

recall Ã
√
nζ(n) + dLλ ≲ α(n)/H . Then, by combining the above calculation of the term (a) and

term (b) in inequality equation 23, we have:

v
(n)
i − v(n)i

=E
s∼dπ(n)

P⋆,1

[
V

(n)

1,i (s)− V
(n)
1,i (s)

]
≲

M∑
i=1

H−1∑
h=1

ÃLE
(s̃,ã)∼dπ(n)

P⋆,h

∥∥∥ϕ̃⋆h,i(s̃, ã)∥∥∥
Σ−1

n,γ
(n)
h

,ϕ̃⋆
h,i

√dL (α(n)
)2

+H2dL2λ+

√
dLÃL

(
α(n)

)2
n


+H2M

M∑
i=1

H−1∑
h=1

(
α(n)

H
E
(s̃,ã)∼dπ(n)

P⋆,h

[∥∥ϕ̄⋆h,i(s̃, ã)∥∥Σ−1

n,γ
(n)
h

,ϕ̄⋆
h,i

]
+

√
Ãζ(n)

)
.

Taking maximum over i on both sides and use the definition of ∆(n), we get

∆(n) = max
i∈[M ]

{
v
(n)
i − v(n)i

}
+ 2HM

√
Ãζ(n)

≲
M∑
i=1

H−1∑
h=1

ÃLE
(s̃,ã)∼dπ(n)

P⋆,h

∥∥∥ϕ̃⋆h,i(s̃, ã)∥∥∥
Σ̃−1

n,γ
(n)
h

,ϕ̃⋆
h,i

√dL (α(n)
)2

+H2dL2λ+

√
dLÃL

(
α(n)

)2
n


+H2M

M∑
i=1

H−1∑
h=1

(
α(n)

H
E
(s̃,ã)∼dπ(n)

P⋆,h

[∥∥ϕ̄⋆h,i(s̃, ã)∥∥Σ−1

n,γ
(n)
h

,ϕ̄⋆
h,i

]
+

√
Ãζ(n)

)
.

Hereafter, we take the dominating term out. Note that
N∑
n=1

E
(s̃,ã)∼dπ(n)

P⋆,h

∥∥∥ϕ̃⋆h,i(s̃, ã)∥∥∥
Σ−1

n,γ
(n)
h

,ϕ̃⋆
h,i


≤

√√√√N

N∑
n=1

E
(s̃,ã)∼dπ(n)

P⋆,h

[
ϕ̃⋆h,i(s̃, ã)

⊤Σ−1

n,γ
(n)
h ,ϕ̃⋆

h,i

ϕ̃⋆h,i(s̃, ã)

]
(CS inequality)

≲

√√√√N

(
log det

(
λI
d
|∪j∈Zi

Zj | +

N∑
n=1

E
(s̃,ã)∼dπ(n)

P⋆,h

[
ϕ̃⋆h,i(s̃, ã)ϕ̃

⋆
h,i(s̃, ã)

⊤
])
− log det(λI

d
|∪j∈Zi

Zj |)

)
(Lemma E.2)

≤

√
dL2N log

(
1 +

N

dλ

)
.

(Potential function bound, Lemma E.3 noting ∥ϕ⋆h,i(s[Zi],ai)∥2 ≤ 1 for any (s,a).)
Similarly, we have

N∑
n=1

E
(s̃,ã)∼dπ(n)

P⋆,h

[∥∥ϕ̄⋆h,i(s̃, ã)∥∥Σ−1

n,γ
(n)
h

,ϕ̄⋆
h,i

]
≤

√
dLN log

(
1 +

N

dλ

)
.

Finally,

N∑
n=1

∆(n) ≲HM

√dL2N log

(
1 +

N

dλ

)
ÃL
√
dL
(
α(N)

)2
+H2dL2λ+

N∑
n=1

√
dLÃL

(
α(n)

)2
n


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+H3M2

(
1

H

√
dLN log

(
1 +

N

dλ

)
α(N) +

N∑
n=1

√
Ãζ(n)

)

≲H2M2dL
2

ÃL

√
N log

(
1 +

N

dλ

)
α(N).

(Some algebra. We take the dominating term out. Note that α(n) is increasing in n)

This concludes the proof.

D.3 PROOF OF THE MAIN THEOREMS

Lemma D.9. For the model-based algorithm, when we pick λ = Θ
(
LdL log NHM |Φ|

δ

)
, α(n) =

Θ
(
HÃ

√
nζ(n) + dLλ

)
and ζ(n) = Θ

(
1
n log |M|HNM

δ

)
, with probability 1− δ, we have

N∑
n=1

∆(n) ≲ H3M2d(L+1)2A
L+1
2 N

1
2 log

|M|HNM
δ

.

Proof. The result of Lemma D.1 implies with our choice of λ and ζ(n), the event E holds with
probability at least 1− δ. In this case, we have

α(n) = Θ

(
HÃ

√
log
|M|HNM

δ
+ Ld2L log

NHM |Φ|
δ

)
, (24)

which is a constant unrelated with n. Therefore, using the result of Lemma D.8, we get

N∑
n=1

∆(n) ≲ H2dL
2

ÃLM2

√
N log

(
1 +

N

dλ

)
α(N) ≲ H3M2d(L+1)2AL+1L

1
2N

1
2 log

|M|HNM
δ

,

which has finished the proof.

Proof of Theorem 4.1

Proof. For any fixed episode n and agent i, by Lemma D.5, Lemma D.6 and Lemma D.7, we have

v
†,π(n)

−i

i − vπ
(n)

i

(
or max

ω∈Ωi

vω◦π
(n)

i − vπ
(n)

i

)
≤ v(n)i − v(n)i + 2HM

√
Ãζ(n) ≤ ∆(n).

Taking maximum over i on both sides, we have

max
i∈[M ]

{
v
†,π(n)

−i

i − vπ
(n)

i

}(
or max

i∈[M ]

{
max
ω∈Ωi

vω◦π
(n)

i − vπ
(n)

i

})
≤ ∆(n). (25)

From Lemma B.8, with probability 1− δ, we can ensure

N∑
n=1

∆(n) ≲ H3M2d(L+1)2AL+1L
1
2N

1
2 log

|M|HNM
δ

.

Therefore, according to Lemma E.4, when we pick N to be

O

(
L5M4H6d2(L+1)2Ã2(L+1)

ε2
log2

(
HdALM |M|

δε

))
,

we have

1

N

N∑
n=1

∆(n) ≤ ε.
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On the other hand, from equation 25, we have

max
i∈[M ]

{
v
†,π̂−i

i − vπ̂i
}(

or max
i∈[M ]

{
max
ω∈Ωi

vω◦π̂i − vπ̂i
})

= max
i∈[M ]

{
v
†,π(n⋆)

−i

i − vπ
(n⋆)

i

}(
or max

i∈[M ]

{
max
ω∈Ωi

vω◦π
(n⋆)

i − vπ
(n⋆)

i

})
≤∆(n⋆) = min

n∈[N ]
∆(n) ≤ 1

N

N∑
n=1

∆(n) ≤ ε,

which has finished the proof, noting our assumption that L = O(1).

E AUXILIARY LEMMAS

Lemma E.1 (Concentration of the bonus term (Zanette et al. (2021), Lemma 39)). Set λ(n) ≥
Θ(d log(nH|Φ|/δ)) for any n. Define

Σ
n,ρ

(n)
h ,ϕ

= nE
(s,a)∼ρ(n)

h

[ϕ(s,a)ϕ⊤(s,a)] + λ(n)Id, Σ̂
(n)
h,ϕ =

n∑
i=1

ϕ(s
(i)
h ,a

(i)
h )ϕ⊤(s

(i)
h ,a

(i)
h ) + λ(n)Id.

With probability 1− δ, we have

∀n ∈ N+,∀h ∈ [H],∀ϕ ∈ Φ, c1∥ϕ(s,a)∥Σ−1

ρ
(n)
h

,ϕ

≤ ∥ϕ(s,a)∥(
Σ̂

(n)
h,ϕ

)−1 ≤ c2∥ϕ(s,a)∥Σ−1

ρ
(n)
h

,ϕ

.

Lemma E.2 (Agarwal et al. (2020a), Lemma G.2). Consider the following process. For n = 1, . . . , N ,
Mn = Mn−1 +Gn with M0 = λ0I and Gn being a positive semidefinite matrix with eigenvalues
upper bounded by 1. We have

2 log det(MN )− 2 log det(λ0I) ≥
N∑
n=1

Tr(GnM
−1
n−1).

Lemma E.3 (Potential function lemma). Suppose Tr(Gn) ≤ B2.

2 log det(MN )− 2 log det(λ0I) ≤ d log
(
1 +

NB2

dλ0

)
Proof. Let σ1, · · · , σd be the set of singular values of MN recalling MN is a positive semidefinite
matrix. Then, by the AM-GM inequality,

log det(MN )/det(λ0I) = log

d∏
i=1

(σi/λ0) ≤ log d

(
1

d

d∑
i=1

(σi/λ0))

)
Since we have

∑
i σi = Tr(MN ) ≤ dλ0 +NB2, the statement is concluded.

Lemma E.4. For parameters A,B, ε such that A
2B
ε2 is larger than some absolute constant, when we

pick N = A2

ε2 log2 A
4B2

ε4 = O
(
A2

ε2 log2 ABε

)
, we have

A√
N

log(BN) ≤ ε.

Proof. We have

A√
N

log(BN) = ε
log
(
A2B
ε2 log2 A

4B2

ε4

)
log A4B2

ε4

Note that

A2B

ε2
log2

A4B2

ε4
≤ A4B2

ε4
⇔ log2

A4B2

ε4
≤ A2B

ε2
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where the right hand side is always true whenever A
2B
ε2 is larger than some given constant. Therefore,

we get
A√
N

log(BN) ≤ ε.

F EXPERIMENT DETAILS

F.1 DETAILED ENVIRONMENT SETUP

In this section we introduce the details of the environment construction of the Block Markov games.
For completeness we repeat certain details already introduced in the main text. We design our Block
Markov game by first randomly generating a tabular Markov game with horizon H , 3 states, 2
players each with 3 actions, and random reward matrix Rh ∈ (0, 1)3×32×H and random transition
matrix Th(sh, ah) ∈ ∆(Sh+1). For the reward generalization, for each r(s, a, s′) entry in the reward
matrix, we assign it with a random number sampled from a uniform distribution from -1 to 1. For
the probability matrix generation, for each conditional distribution T (·|s, a), we randomly sample 3
numbers from a uniform distribution from -1 to 1 and form the probability simplex by normalization.
For the generation of rich observation (emission distribution), we follow the experiment design of
(Misra et al., 2020): the dimension of the observation is 2⌈log(H+|S|+1)⌉. For an observation o that
emitted from state s and time step h, we concatenate the one-hot vector of s and h, adding i.i.d.
Gaussian noise N (0, 0.1) on each entry, pend zero at the end if necessary, and finally multiply with a
Hadamard matrix. In our setting, we have variants with different horizons H .

F.2 IMPLEMENTATION DETAILS

For the implementation of GERL_MG2, we break down the introduction into two parts: the
implementation of Alg. 3 and the implementation of game solving algorithm with current features
(line. 10 and line. 11 of Algorithm. 1). For the implementation of Algorithm. 3, we follow the same
function approximation as (Zhang et al. (2022)) and adapt their open-sourced code at https://
github.com/yudasong/briee. We include an overview of the function class for completeness:
we adopt a two layer neural network with tanh non-linearity as the function class as the discriminator
class. For the decoder, we let ψ(o) = softmax(A⊤o), where A ∈ R|O|×3, and we let ϕ(o, a) =
ψ(o)⊗ a. Here a denotes the one-hot encoding in the joint action space.

Different from Zhang et al. (2022), we solve the optimization problem by directly solving the min-
max-min problem instead of using an iterative method. We show the implementation in Algorithm. 5.
We first perform minibatch stochastic gradient descent aggressively on the discriminator selection
step (line. 5, on ϕ̂ and f ) and the feature selection step (line. 6, on ϕ), where in each step we first
compute the linear weight w and ŵ closed-formly and then perform gradient descent/ascend on the
features and discriminators. Note that here the number of iteration T is very small.

For solving the Markov games, in addition to following Algorithm. 1, to solve line.10 (i.e., solving
equation 2 or equation 3 or equation 4), we implement the NE/CCE solvers based on the public repos-
itory: https://github.com/quantumiracle/MARS. Note that the essential difference lies
in that (Xie et al., 2020) assumes that the algorithm has the access to the ground-truth feature but our
algorithm needs to utilize the different features we learn for each iteration. We also adopt the Deep
RL baseline from the same public repository.

F.3 ZERO-SUM EXPERIMENT TRAINING CURVES

In this section we provide the training curves of GERL_MG2 and Deep RL baseline in the zero-sum
setting in Figure. 1.

F.4 GENERAL-SUM EXPERIMENT DETAILS

In this section we complete the remaining details for the general-sum experiment. We include the
training curve in Fig. 2.
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Figure 1: Training curve in the zero-sum setting. We evaluate each method over 5 random seeds
and report the mean and standard deviation of the moving average of evaluation returns, wherein for
each evaluation we perform 1000 runs. We use “Oracle” to denote the ground truth NE values of the
Markov game. The x-axis denotes the number of episodes and the y-axis denotes the value of returns.
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Figure 2: Training curve of GERL_MG2 in the general sum setting. In this setting, the y-axis denotes
exploitability instead of raw returns.

F.5 HYPERPARAMETERS

In this section, we include the hyperparameter for GERL_MG2 in Table. 2, and the hyperparameter
for DQN in Table. 3 and Table. 4.

Table 2: Hyperparameters for GERL_MG2.
Value Considered Final Value

Decoder ϕ learning rate {1e-2} 1e-2
Discriminator f learning rate {1e-} 1e-2

Discriminator f hidden layer size {128,256,512} 256
RepLearn Iteration T {10,20,30,50} 10

Decoder ϕ number of gradient steps {64,128,256} 256
Discriminator f number of gradient steps {64,128,256} 256

Decoder ϕ batch size {128,256,512} 512
Discriminator f batch size {128,256,512} 512

RepLearn regularization coefficient λ {0.01} 0.01
Decoder ϕ softmax temperature {1,0.5,0.1} 1

LSVI bonus coefficient β {0.1,0.5,1} 0.1
LSVI regularization coefficient λ {1} 1

Warm up samples {0,200} 0
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Algorithm 5 Model-free Representation Learning in Practice
1: Input: Dataset D, step h, regularization λ, iterations T .
2: Denote least squares loss: Lλ,D(ϕ, θ, f) := ED

[(
ϕ(s,a)⊤θ − f(s)

)2]
+ λ∥θ∥22.

3: Initialize ϕ0 ∈ Φh arbitrarily;
4: for t = 0, 1, . . . , T do
5: Discriminator selection: ft = argmaxf∈Fh

[minθ Lλ,D(ϕt, θ, f)−minϕ̃∈Φ,θ̃ Lλ,D(ϕ̃, θ̃, f)]
6: Feature selection: ϕt+1 = argminϕ∈Φh

∑t
i=1 minθi Lλ,D(ϕ, θi, fi), ϕ̂← ϕt+1

7: end for
8: Return ϕ̂, P̂ where P̂ is calculated from equation 1.

Table 3: Hyperparameters for DQN in short horizon environment.
Value considered Final Value

Target update interval {1000} 1000
ϵ0 {1} 1
ϵN {0.01} 0.01

ϵ decay frequency {8000} 8000
Batch size {8000} 8000
Optimizer {Adam} Adam

Learning Rate {0.0001} 0.0001
Hidden layer {[32,32,32]} [32,32,32]
Self-play δ {1.5} 1.5

Table 4: Hyperparameters for DQN in long horizon environment.
Value considered Final Value

Target update interval {1000} 1000
ϵ0 {1} 1
ϵN {0.01} 0.01

ϵ decay frequency {8000} 8000
Batch size {8000} 8000
Optimizer {Adam} Adam

Learning Rate {0.0001} 0.0001
Hidden layer {[32,32,32]} [32,32,32]
Self-play δ {1.5,2} 2
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