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In the Eye of the Beholder:
Robust Prediction with Causal User Modeling

Anonymous Authors1

Abstract
Accurately predicting the relevance of items to
users is crucial to the success of many social plat-
forms. Conventional approaches train models on
logged historical data; but recommendation sys-
tems, media services, and online marketplaces all
exhibit a constant influx of new content—making
relevancy a moving target, to which standard pre-
dictive models are not robust. In this paper, we
propose a learning framework for relevance pre-
diction that is robust to changes in the data distri-
bution. Our key observation is that robustness can
be obtained by accounting for how users causally
perceive the environment. We model users as
boundedly-rational decision makers whose causal
beliefs are encoded by a causal graph, and show
how minimal information regarding the graph can
be used to contend with distributional changes.
Experiments in multiple settings demonstrate the
effectiveness of our approach.

1. Introduction
Across a multitude of domains and applications, machine
learning has become imperative for guiding human users
in many of the decisions they make [41,53,10]. From rec-
ommendation systems and search engines to e-commerce
platforms and online marketplaces, learned models are reg-
ularly used to filter content, rank items, and display select
information—all with the primary intent of helping users
choose items that are relevant to them. The predominant
approach for learning in these tasks is to train models to
accurately predict the relevance of items to users, but since
training is often carried out on logged historical records,
even highly-accurate models remain calibrated to the dis-
tribution of previously observed data on which they were
trained [7,54,51]. Given that in virtually any online platform
the distribution of content naturally varies over time and
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location—due to trends and fashions, innovation, or forces
of supply and demand—models trained on logged data may
fail to correctly predict the choices and preferences of users
on unseen, future distributions [12,1,18,26,33].

In this paper, we present a novel conceptual framework for
learning predictive models of user-item relevance that are
robust to changes in the underlying data distribution. Our
approach is built around two key observations: (i) that rel-
evance to users is determined by the way in which users
perceive value, and (ii) that this process of value attribu-
tion is causal in nature. As an example, consider a video
streaming service in which a user 𝑢 is trying to determine
whether watching a certain movie will be worthwhile. To
make this decision, 𝑦 ∈ {0, 1}, the user has at her disposal a
feature description of the movie, 𝑥, and a system-generated,
personalized relevance score, 𝑟 (e.g., “a 92% match!”). How
will she integrate these two informational sources into a de-
cision? We argue that this crucially hinges on her belief as
to why a particular relevance score is coupled to a particular
movie. For example, if a movie boasts a high relevance
score, then she might suppose this score was given because
the system believes the user would like this movie. Another
user, however, may reason differently, and instead believe
that high relevance scores are given because movies are
sponsored; if she suspects this to be a likely scenario, her
reasoning should have a stark effect on her choices. In both
cases, perceived values stem from how each user causally
interprets the recommendation environment, and the under-
lying causal structure determines how belief regarding value
changes, in response to changes in important variables.

Here, we show how knowledge regarding the causal percep-
tions of users can be leveraged for providing distributional
robustness in learning. A primary concern for robust learn-
ing is the reliance of predictions on spurious correlations
[3]; here we argue that spuriousness can result from causal
perceptions underlying user choice behavior. To see the re-
lation between causal perceptions and spuriousness, assume
that in our movies example above, the training data exhibits
a strong correlation between users’ choices of movies, 𝑦,
and a ‘genre’ feature, 𝑥𝑔 . A predictive model optimized
for accuracy will likely exploit this association, and rely
on 𝑥𝑔 for prediction. Now, further assume that what really
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Robust Prediction with Causal User Modeling

drives user satisfaction is ‘production quality’, 𝑥𝑞; if 𝑥𝑔 and
𝑥𝑞 are spuriously correlated in the training data, then once
the distribution of genres naturally changes over time, the
predictive model can fail: the association between 𝑥𝑔 and 𝑦,
on which predictions rely, may no longer hold.

In essence, our approach casts robust prediction of person-
alized relevance as a problem of out-of-distribution (OOD)
learning, but carefully tailored to settings where data gener-
ation is governed by users’ causal beliefs and corresponding
behavior. There is a growing recognition of how a causal un-
derstanding of the learning environment can improve cross-
domain generalization [3,50]; our key conceptual contribu-
tion is the observation that, in relevance prediction, users’
perceptions are the causal environment. Thus, there is no
‘true’ causal graph—all is in the eye of the beholder. To
cope with this, we model users as reasoning about decisions
through a causal graph [34,43]— allowing our approach to
anticipate how changes in the data translate to user behavior.

𝑥, 𝑟 𝑦𝑒

(a)

𝑥

𝑟

𝑦𝑒

(b)

Figure 1: Simplified graphs describing
users of different: (a) classes: causal
or anti-causal, and (b) sub-classes: be-
liever or skeptic (here shown for a
causal user). Dashed lines indicate pos-
sible spuriousness (e.g., via selection).

Building on
this idea, as
well as on
recent advances
in the use of
causal modeling
for out-of-
distribution
learning
[3, 50, 49],
we show how
various levels
of knowledge
regarding users’
causal beliefs
can be utilized for learning distributionally robust predictive
models. To encourage predictions �̂� to be invariant to
changes in the environment 𝑒, our approach enforces
independence between �̂� and 𝑒. This is achieved with
regularization [21]. In general, different graphs require
different regularization [49]; unfortunately, inferring user
graphs is likely to be costly and challenging. Our key
observation is that, for user graphs, it suffices to know
which of two classes the graph belongs to—causal or
anti-causal— determined by the direction of edges between
𝑥, 𝑟 and 𝑦 (Fig. 1a). The user’s class, which is easier to
infer, determines the regularization scheme.

Nonetheless, more fine-grained information can still be use-
ful. We show the following novel result: if two users gener-
ate the same data, but differ in their underlying graph, they
will have different optimal out-of-distribution models. The
reason for this is that, to achieve robustness, regularizing
for independence will result in the discarding of different
information for each user. Operationally, this means that

learning should include different models for each user-type.
Here again we show that minimal additional information is
useful, and focus on subclasses of graphs that differ only
in the direction of the edges between 𝑥 and 𝑟 (Fig. 1b);
nonetheless, our result applies broadly and may be of gen-
eral interest for causal learning. In Appendix A we present a
thorough empirical evaluation of our approach, where we ex-
plore the benefits of different forms of knowledge regarding
users’ causal beliefs: whether they are casual or anti-causal,
and the directionality of 𝑥⇆𝑟. Importantly, our results also
imply that not accounting for causal aspects of user decision-
making, can result in poor OOD performance.

2. Modelling Approach
2.1. Learning Setting

In our setting, data consists of users, items, and choices.
Users are described by features 𝑢 ∈ ℝ𝑑𝑢 , and items are de-
scribed by two types of features: intrinsic item properties,
𝑥 ∈ ℝ𝑑𝑥 (e.g., movie genre, plot synopsis, cast and crew),
and information provided by the platform, 𝑟 ∈ ℝ𝑑𝑟 (e.g.,
recommendation score, user reviews). We will sometimes
make a distinction between features that are available to
users, and those that are not; in such cases, we denote un-
observed features by �̄�, and with slight abuse of notation,
use 𝑥 for the remaining observed features (we assume 𝑟 is
always observed). Choices 𝑦 ∈ {0, 1} indicate whether a
user 𝑢 chose to interact with a certain item (𝑥, 𝑟).

As we are interested in robustness to distributional change,
we follow the general setup of domain generalization
[6,25,5,50] in which there is a collection of environments,
denoted by a set  , and each environment 𝑒 ∈  defines
a different joint distribution 𝐷𝑒 over (𝑢, 𝑥, 𝑟, 𝑦). We as-
sume there is training data available from a subset of 𝐾
environments, train = {𝑒1,… , 𝑒𝐾} ⊂  , with datasets
𝑆𝑘 = {(𝑢𝑘𝑖, 𝑥𝑘𝑖, 𝑟𝑘𝑖, 𝑦𝑘𝑖)}

𝑚𝑘
𝑖=1 drawn i.i.d from the corre-

sponding 𝐷𝑒𝑘 . We denote the pooled training distribution
by 𝐷train = ∪𝑒∈train𝐷

𝑒 and the pooled training data by
𝑆 = ∪𝑘𝑆𝑘 with 𝑚 =

∑

𝑘 𝑚𝑘. Our goal is to learn a robust
predictive model �̂� = 𝑓 (𝑢, 𝑥, 𝑟; 𝜃) ∶= 𝑓𝑢(𝑥, 𝑟; 𝜃).

Robustness via causal graphs. The type of robustness that
we would like our model to satisfy is counterfactual invari-
ance (CI) [49]. Denoting 𝑥(𝑒), 𝑟(𝑒) as the counterfactual
features that would have been observed had the environment
been set to 𝑒, we define a model 𝑓𝑢 as CI if ∀𝑒, 𝑒′ ∈  it
holds a.e. that 𝑓𝑢(𝑥(𝑒′), 𝑟(𝑒′); 𝜃) = 𝑓𝑢(𝑥(𝑒), 𝑟(𝑒); 𝜃).

The challenge in obtaining CI predictors is that at train time
we only observe a subset of the environments, train ⊂  ,
while CI requires independence to hold for all environments
𝑒 ∈  . To reason formally about the role of 𝑒 in the data
generating process, and hence about the type of distribution
shifts under which our model should remain invariant, it is
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Robust Prediction with Causal User Modeling

common to assume that a causal structure underlies data
generation [22,3]. This is often modeled as a (directed)
causal graph [34]; robustness is then defined as insensitivity
of the predictive model to changes (or ‘interventions’) in
the variable 𝑒, which can trigger changes in other variables
that lie ‘downstream’ in the graph. To encourage robust-
ness, a common approach is to construct a learning objective
that avoids spurious correlations by enforcing certain condi-
tional independence relations to hold, e.g., via regularization
(see §3). The question of which relations are required can
be answered by examining the graph and the conditional
independencies it encodes (between 𝑒, 𝑥, 𝑟, 𝑦, and �̂�). Un-
fortunately, inferring the causal graph is in general hard;
however, determining the ‘correct’ learning objective may
require only partial information regarding the graph.

2.2. Users as decision makers

Rational users. To see how modeling users as causal
decision-makers can be helpful, consider first a conven-
tional ‘correlative’ approach for training 𝑓𝑢, e.g. by mini-
mizing the loss of a corresponding score function 𝑣𝑢(𝑥, 𝑟) =
𝑣(𝑢, 𝑥, 𝑟), and predicting via �̂� = argmax𝑦∈{0,1} 𝑦𝑣𝑢(𝑥, 𝑟) =
1{𝑣𝑢(𝑥, 𝑟) > 0}. From the perspective of user modeling, 𝑣𝑢
can be interpreted as a personalized ‘value function’; this
complies with classic Expected Utility Theory (EUT) [48],
in which users are modeled as rational agents acting to max-
imize (expected) value, and under full information. From
a causal perspective, this approach is equivalent to assum-
ing a graph in which all paths from 𝑒 to 𝑦 are blocked by
𝑥, 𝑟—which is akin to assuming no spurious pathways, and
so handicaps the ability to avoid them.

Boundedly-rational users. We propose to model users as
boundedly-rational decision-makers, under the key assertion
that users’ decisions take place under inherent uncertainty.
Uncertainty plays a key role in how we, as humans, decide:
our actions follow not only from what we know, but also
from how we account for what we don’t know. Nonetheless,
despite being central to most modern theories of decision
making [24], explicit modeling of user-side uncertainty is
currently rare within ML [36,2,37]. Our modeling approach
acknowledges that users know some features are unobserved,
and that this influences their actions. Consider a user shop-
ping online for a vintage coat, and considering whether to
buy a certain coat. The coat’s description includes several
intrinsic properties 𝑥 as well as certain platform-selected
information 𝑟 The user wants to make an informed deci-
sion, but knows some important information, �̄�, is missing
If she is concerned about buying a modern knockoff, how
should she act? A common approach is to extend EUT
to support uncertainty by modelling users as integrating
subjective beliefs about unobserved variables, 𝑝𝑢(�̄�|𝑥, 𝑟, 𝑒),
into a conditional estimate of value, �̃�𝑢(𝑥, 𝑟|𝑒), over which
choices 𝑦 are made: �̃�𝑢(𝑥, 𝑟|𝑒) =

∑

�̄� 𝑣𝑢(𝑥, �̄�, 𝑟)𝑝𝑢(�̄�|𝑥, 𝑟, 𝑒)

(account for user uncertainty of unobserveds)
!𝑦 = 𝑓(𝑥, �̅�, 𝑟)

Model B:

𝑒

�̅�

𝑦

𝑟

condition on ⇒
block info. flow(incorrect)

𝑥

(all system-known features)

unaffected by 𝑒
change model inputs

+𝑣 𝑥, 𝑟|𝑒 = ∑"̅ 𝑣 𝑥, �̅�, 𝑟|𝑒 𝑝#(�̅�|𝑥, 𝑟, 𝑒)

change

User
beliefs:

affected by 𝑒

𝑒

�̅�

&𝑣

𝑟

unobserved
⇒ info. can flow

𝐺!
𝑥 𝑦

value  ↦ choice

observed

!𝑦 = 𝑓(𝑥, 𝑟)

Model A:

𝑒

�̅�

𝑦

𝑟

unaccounted
(incorrect)

𝑥

(all user-observed features)

unaffected by 𝑒
change

model inputs

(account for user uncertainty of unobserveds)

Figure 2: (Left) User causal beliefs. Integration of uncer-
tainty in unobserved �̄� results in a direct link 𝑒→𝑦 (note
𝑦 is deterministic of �̃�). This reveals a source of possible
spuriousness, but also suggests how to treat it. (Center)
A predictive model 𝑓 (𝑥, 𝑟) using only observed features.
Learning results in 𝑥, 𝑟 compensating for 𝑒, and so 𝑓 cannot
account for change. (Right) A predictive model 𝑓 (𝑥, �̄�, 𝑟)
using all available features. Learning results in wrongly us-
ing variation in �̄� to explain 𝑦.

where 𝑦 = 1{�̃�𝑢(𝑥, 𝑟|𝑒) > 0}. Here, 𝑝𝑢(�̄�|𝑥, 𝑟, 𝑒) describes
a user’s (probabilistic) belief regarding the conditional like-
lihood of each �̄� and 𝑣𝑢(𝑥, �̄�, 𝑟) describes the item’s value to
the user given �̄� Importantly, note that uncertainty beliefs
𝑝𝑢(�̄�|𝑥, 𝑟, 𝑒) can be environment-specific In turn, value esti-
mates �̃� and choices 𝑦 can also rely on 𝑒. For clarity, since 𝑦
is a deterministic function of �̃�, we will simply refer to 𝑦 as
a function of 𝑥, 𝑟, and 𝑒.

Causal user graphs. One interpretation of users’ utility
function is that they cope with uncertainty by employing
causal reasoning [43], this aligning with a predominant ap-
proach in the cognitive sciences that views humans as acting
based on ‘mental causal models’ [42]. Here we follow [43]
and think of users as reasoning through personalized user
causal graphs, denoted 𝐺𝑢. The structure of 𝐺𝑢 expresses
𝑢’s causal beliefs—namely which variables causally affect
others—and its factors correspond to the conditional terms
(𝑝𝑢 and 𝑣𝑢) in the utility function. A key modeling point is
that users can vary in their causal perceptions; hence, dif-
ferent users may have different graphs that encode different
conditional independencies, these inducing different sim-
plifications of the conditional terms. For example, a user
that believes movies with a five-star rating (𝑟) are worth-
while regardless of their content (𝑥) would have 𝑣𝑢(𝑥, �̄�, 𝑟)
reduced to 𝑣𝑢(�̄�, 𝑟), since 𝑣 ⫫ 𝑥|𝑟; meanwhile, a user who,
after reading a movie’s description (𝑥), is unaffected by its
rating (𝑟), would have 𝑣𝑢(𝑥, �̄�) instead, since 𝑣 ⫫ 𝑟|𝑥.

2.3. Towards robust learning

Recall that our goal is to learn a predictor 𝑓 that is unaf-
fected by spurious correlations, and that these can materi-
alize through direct edges 𝑒→𝑦. Continuing our illustrative
example, assume that the causal beliefs of our boundedly-
rational user are encoded by the graph in Figure 2. The graph
does not have a direct edge 𝑒→𝑦; however, by accounting
for uncertainty (i.e., choosing via �̃�), the user behaves ‘as
if’ there actually was a direct edge—since integrating over
�̄� ‘removes’ it from the indirect path 𝑒→�̄�→𝑦. This support
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our main argument: by making decisions, users can generate
spurious correlations in the data (Fig. 2 (‘User model’)).

The above has two implications. First, it shows how con-
ventional approaches can fail. For example, since users
observe only 𝑥 and 𝑟, one reasonable approach is to discard
�̄� and train a predictor 𝑓𝑢(𝑥, 𝑟; 𝜃) in hopes of mimicking user
choice behavior (Fig. 2 (‘Model A’)). In graphical terms,
this means learning ‘as if’ there is no edge 𝑒→𝑦. But the
reliance of users on �̄� for producing 𝑦 means that, effectively,
such an edge exists. The result of this is that 𝑓𝑢 can learn
to use 𝑥 and 𝑟 to compensate for the constant effect of 𝑒
on 𝑦. Conversely, the system may choose to learn using
all available information, namely train 𝑓𝑢(𝑥, �̄�, 𝑟; 𝜃) (Fig. 2
(‘Model B’)). This make sense if the goal is in-distribution
generalization; for OOD, this not only creates an illusion
of separation between 𝑒 and 𝑦, but also erroneously allows
to use the variation in �̄� to explain 𝑦. As a result, 𝑓𝑢 will
likely overfit to distributions in train. Second, the aware-
ness to how users account for uncertainty suggests a means
to combat spuriousness. The utility function shows that 𝑦
depends on 𝑥, 𝑟, and 𝑒; hence, since our goal is to discourage
the dependence of �̂� on 𝑒, it follows that (i) functionally, 𝑓𝑢
should depend only on 𝑥 and 𝑟 but (ii) 𝑓𝑢 should be learned
in a way that controls for variation in 𝑒.

3. Learning With Causal User Models
Our approach to robust learning is based on regularized risk
minimization, where regularization acts to discourage varia-
tion in predictions across environments [49,50]. Our learn-
ing objective is: argmin𝑓∈𝐹 𝐿(𝑓 ;𝑆) + 𝜆𝑅(𝑓 ;𝑆1,… , 𝑆𝐾 )
where 𝑅 is a regularization term with coefficient 𝜆. The role
of 𝑅 is to penalize 𝑓 for violating certain statistical inde-
pendencies; the question of which independencies should be
targeted—and hence the precise form that 𝑅 should have—
can be answered by the underlying causal graph [49]. Know-
ing the full user graph can certainly help, but relying on
this is impractical. Luckily, coarse information regarding
the graph can be translated into necessary conditions for
distributional robustness, and in App. A we show that these
can go a long way towards learning robust models. We focus
on two methods for promoting statistical independence of �̂�
and 𝑒 [49]: MMD [21] and CORAL [47] (see App. E).

3.1. User graph classes: causal vs. anti-causal

Following our example in Fig.1a, consider users of two types:
a ‘causal’ user 𝑢→𝑦 that believes value is an effect of an
item’s description (i.e., 𝐷𝑒(𝑥, 𝑟, 𝑦 ∣ 𝑢 = 𝑢→𝑦) is entailed by
the graph 𝑥, 𝑟→𝑦 for each 𝑒 ∈ ), and an ‘anti-causal’ user
𝑢←𝑦 that believes the item’s value causes its description (i.e.,
𝐷𝑒(𝑥, 𝑟, 𝑦 ∣ 𝑢 = 𝑢←𝑦) is entailed by 𝑥, 𝑟←𝑦 respectively).
Our next result shows that: (i) 𝑢→𝑦 and 𝑢←𝑦 require different
regularization schemes; but (ii) that the appropriate scheme

is fully determined by their type—irrespective of any other
properties of their graphs. Thus, from a learning perspective,
it suffices to know which of two classes a user belongs to:
causal, or anti-causal.
Proposition 1. Let 𝑓 be a CI model and assume 𝑦 and 𝑒 are
confounded (e.g., 𝑒→𝑦 exists), then:

(1) 𝑓𝑢→𝑦
must satisfy 𝑃𝐷𝑒

(

𝑓𝑢→𝑦
(𝑥, 𝑟)

)

= 𝑃𝐷𝑒′

(

𝑓𝑢→𝑦
(𝑥, 𝑟)

)

(2) 𝑓𝑢←𝑦
must satisfy

𝑃𝐷𝑒

(

𝑓𝑢←𝑦
(𝑥, 𝑟) ∣ 𝑦

)

= 𝑃𝐷𝑒′

(

𝑓𝑢←𝑦
(𝑥, 𝑟) ∣ 𝑦

)

, 𝑦 ∈ {0, 1}

On the other hand, 𝑓𝑢→𝑦
need not necessarily satisfy (2), and

𝑓𝑢←𝑦
need not necessarily satisfy (1).

If we fail to enforce these constraints during learn-
ing, then we will not learn a CI classifier. On the
other hand, enforcing unnecessary constraints restricts
our hypothesis class and hence limits performance. The
proof follows directly from [49] (see App. B). The
distinction between causal and anti-causal prescribes
the appropriate regularization. For any user 𝑢, to en-
courage 𝑓𝑢(𝑥, 𝑟) to be invariant to changes in 𝑒, set:

𝑅(𝑓 ;𝑆) =

{

∑

𝑘MMD(Φ𝑘,𝑢,Φ−𝑘,𝑢) 𝑢 is causal
∑

𝑦
∑

𝑘MMD(Φ(𝑦)
𝑘,𝑢,Φ

(𝑦)
−𝑘,𝑢) 𝑢 is anti-causal

where Φ𝑘,𝑢,Φ
(𝑦)
𝑘 includes the subset of examples with user

𝑢 and label 𝑦, respectively.

3.2. User graph subclasses: inter-feature relations

Consider now two users that are of the same class (i.e., causal
or anti-causal), but perceive differently the causal relations
between 𝑥 and 𝑟: a believer, 𝑢𝑥→𝑟, who believes recom-
mendations follow from the item’s attributes; and a skeptic,
𝑢𝑥←𝑟, who presumes that the system reveals item attributes
to match a desired recommendation (see Fig.1b). Our main
result shows that even if both users share the same objec-
tive preferences—to be optimally invariant, each user may
require her own, independently-trained model.
Proposition 2. Let 𝑢𝑥→𝑟, 𝑢𝑥←𝑟 be two users of the same class
(i.e., causal or anti-causal) but of a different subclass (i.e.,
believer and skeptic, respectively). Even if there is a single
predictor 𝑓 which is optimal for the pooled distribution
𝐷train, each user can have a different optimal CI predictor.

Proof is in Appendix B. Prop. 2 can be interpreted as fol-
lows: Take some 𝑢, and ‘counterfactually’ invert the edges
between 𝑥 and 𝑟. In some cases, this will have no effect on
𝑢’s behavior under train, and so any 𝑓 that is optimal in one
case will be optimal in the other. Nonetheless, for optimality
to carry over to other environments—different predictors
may be needed. This is since each causal structure implies
a different interventional distribution, and hence a different
set of CI predictors: e.g., in 𝐺𝑥←𝑟, the v-structure 𝑒→𝑥←𝑟
suggests that an invariant predictor may depend on 𝑟, yet in
𝐺𝑥→𝑟 it cannot. In §A.1, we empirically evaluate this.



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Robust Prediction with Causal User Modeling

4. Experiments and Results
4.1. Learning with causal users: text-based beer

recommendation

Data. We use RateBeer, a dataset of beer reviews with over
3M entries and spanning ∼ 10 years [31]. We use the data to
generate beer features 𝑥 (e.g., popularity, average rating) and
𝑟 (e.g., textual review embeddings) and user features 𝑢 (e.g.,
average rating, word counts). Given a sample (𝑢, 𝑥, 𝑟), our
goal is to predict a (binarized) rating 𝑦. Here we focus on
causal users, and so would like labels 𝑦 to expresses causal
user beliefs. The challenge is that our observational data is
not necessarily such. To simulate causal user behavior, we
rely on the observation that 𝑥, 𝑟→𝑦means “changes in 𝑥, 𝑟 af-
fect 𝑦”, and for each 𝑢 create an individualized empirical dis-
tribution of ‘counterfactual’ samples (𝑥′, 𝑟′, 𝑦′) that approx-
imate the entire intervention space (i.e., all counterfactual
outcomes 𝑦′ under possible interventions (𝑥, 𝑟) ↦ (𝑥′, 𝑟′)).
Training data is then generated by sampling from this space.

We consider each year as an environment 𝑒, with each 𝑒
inducing a distribution over (𝑢, 𝑥, 𝑟). We implement spuri-
ousness via selection: Each 𝑒 entails different fashionable
‘tastes’ in beer, expressed as a different weighting over the
possible beer types (e.g., lager, ale, porter). Labels are then
made to correlate with tastes in a certain temporal pattern.
This serves as a mechanism for spurious correlation.

Results. Fig. 3 compares the performance over time of
three training procedures that differ only in the type of reg-
ularization applied: causal, anti-causal, and non-causal.
Our data includes behavior generated by causal-class users;
results demonstrate the clear benefit of using a behaviorally-
consistent regularization scheme (here, causal). Note the
causal approach is not optimal in 2006 and 2008; this is since
correlations in 𝑒↔𝑦 are set to make these years similar to the
training data. However, when tastes shift other approaches
collapse, while the causal approach remains stable.

4.2. Learning with anti-causal users: clothing-style
recommendation

Data. We use the fashion product images dataset, which
includes includes 44.4𝑘 fashion items described by images,
attributes, and text. Here we focus on anti-causal users, and
generate data in a way similar to §4.1, but using an anti-
causal intervention space. In this experiment we let user
choices 𝑦 ∈ {0, 1} depend on an item’s image and color,
which can be either red or green; in this way, 𝑥 is the item’s
grayscale image, and 𝑟 its hue (which we control). Here
we consider environments 𝑒 that induce varying degrees of
spurious correlations between color and user choices, 𝑃 (𝑦 =
1|𝚛𝚎𝚍) = 𝑃 (𝑦 = 0|𝚐𝚛𝚎𝚎𝚗) = 𝑝𝑒. For the test set we use
𝑝𝑒 = 0.8, and experiment with training data that gradually
deviate from this relation, i.e., having 𝑝𝑒′ ∈ [0.1, 0.8].

Figure 3: RecBeer Results. For each year, models are
trained on past data (starting 2002), and predict on the
following year. The causal training scheme, consistent
with the user class, outperforms other methods when
beer-type fashions (𝑒) changes. Periods with substantial
change are highlighted in tan.

Figure 4: RecFashion Results. Environments vary in
the correlation between item colors and user choices.
The anti-causal regularization scheme, consistent with
the user class, outperforms methods when test-time de-
viates from train-time correlation (=0.8). When correla-
tions flip (< 0.5), other methods crash.

Results. Fig. 4 shows that consistent regularization (here,
anti-causal) outperforms other alternatives whenever cor-
relations deviate from those observed in training. Once
correlations flip, both causal and non-causal approaches fail
catastrophically; the anti-causal approach remains robust.

5. Discussion
Humans beings perceive the world causally; our paper argues
that to cope with a world that changes, learning must take
into account how humans believe these changes take effect.
We identify one key reason: in making decisions under
uncertainty, users can cause spurious correlations to appear
in the data. Towards this, we propose to employ tools from
invariant causal learning, but in a way that is tailored to how
humans make decisions, this drawing on economic models of
bounded-rationality. Our approach relies on regularization
for achieving invariance, with our main point being that how
and what to regularize can be derived from users’ causal
graphs.
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A. Additional Experiments and Results
In the main paper we present two experiments targeting user
classes (causal or anti-causal) using real data. Here, we
present an additional experiment targeting user subclasses
(believers and skeptics) using synthetic data. Appendix D
includes further details on model architectures, training pro-
cedures, and data generation.
A.1. Learning with multiple user subclasses

𝑒

𝑟𝑥𝑠𝑝 𝑥𝑎𝑐

𝑦

Figure 5: Data-generating process for the user subclass ex-
periment (synthetic). Here, 𝑥 factorizes into an anti-causal
component 𝑥𝑎𝑐 , and a spurious component 𝑥𝑠𝑝 linked with
𝑟. Spuriousness results from selection bias between 𝑦 and 𝑒.
The system doesn’t know ex-ante how to separate 𝑥𝑎𝑐 , 𝑥𝑠𝑝.

Table 1: Accuracy for the user subclass experiment. Rows
show train conditions: with and without regularization, and
which users are included in the training set. Columns show
test conditions: ID/OOD, and user type. Best results for
each train condition (rows) are highlighted in bold.

Reg. Users@train Accuracy (ID / OOD)
skeptic believer

𝜆 = 0
skeptic 78.0 / 50.0 89.8 / 75.1
believer 78.0 / 50.0 89.8 / 75.1
both 78.0 / 50.0 89.8 / 75.1

𝜆 > 0
skeptic 71.1 / 75.6 74.67 / 75.5
believer 69.8 / 52.5 88.5 / 85.2
both 70.03 / 64.57 78.88 / 78.13

Our final experiment studies learning with users of of the
same-class (here, anti-causal) but different sub-classes:
skeptics or believers. Our analysis in §3.2 suggests that
each user sub-class may have a different optimal predictor;
here we investigate this empirically on synthetic data.

Data. The data-generating process is as follows (see Fig.
??). We use three environments: 𝑒1, 𝑒2 at train, and 𝑒3 at
test, and implement a selection mechanism (dashed line)
that causes differences in 𝑝(𝑦|𝑒𝑖) across 𝑒𝑖. Since we focus
on anti-causal users, features 𝑥, 𝑟 are determined by 𝑒, 𝑦.
We use three binary features: 𝑥𝑠𝑝 (‘spurious’), 𝑥𝑎𝑐 (’anti-
causal’), and 𝑟. These are designed so that an 𝑓 which
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uses 𝑥𝑎𝑐 alone obtains 0.75 accuracy, but using also 𝑥𝑠𝑝
improves in-distribution (ID) accuracy slightly to 0.78, and
so the optimal ID predictor for both user subclasses is of the
form 𝑓 ∗(𝑥𝑎𝑐 , 𝑥𝑠𝑝). However, relying on 𝑥𝑠𝑝 causes out-of-
distribution (OOD) performance to deteriorate considerably;
thus, robust models should not learn to discard 𝑥𝑠𝑝. The
role of 𝑟 is to distinguish between user subclasses: The
skeptic does not need 𝑟 since, for her, it is fully determined
by 𝑥𝑠𝑝; the optimal invariant predictor is hence 𝑓𝑥→𝑟(𝑥𝑎𝑐).
Meanwhile, the believer, due to the v-structure 𝑟→𝑥𝑠𝑝←𝑒,
can benefit in-distribution by using both 𝑟 and 𝑥𝑠𝑝; here, the
optimal invariant predictor is 𝑓𝑥←𝑟(𝑥𝑎𝑐 , 𝑟).

Results. Table 1 shows ID and OOD performance for each
user subclass (columns), for learning with and without reg-
ularization (rows). Since all users are anti-causal, we use
anti-causal (i.e., conditional) regularization. We compare
learning a separate predictor for each user type (rows ‘skep-
tic’ and ‘believer’) and learning a single predictor over all
users jointly (‘both’). Results show that without regular-
ization (𝜆 = 0), ID performance is good, but the learned
predictor fails OOD—drastically for skeptic users (note all
rows are the same since both user types share the same ID-
optimal 𝑓 ∗). In contrast, when regularization is applied
(𝜆 > 0), learning an independent predictor for each user
subclass performs well OOD (for both subclasses), indi-
cating robustness to changing environments; note that ID
performance is also mostly maintained. Meanwhile, learn-
ing on the entire dataset (i.e., including both user types) does
provide some robustness—but is suboptimal both ID and
OOD.

B. Details on Formal Claims
Our claim in Proposition 1 is also based on the setting of
Veitch et al. [49]. Under the assumption that 𝑒 is discrete,
Lemma 3.1 of [49] ensures that there exists a random vari-
able (𝑥, 𝑟)⟂𝑒 such that 𝑓𝑢(𝑥, 𝑟) is CI if and only if it is (𝑥, 𝑟)⟂𝑒 -
measurable. Then we will assume that 𝑥, 𝑟 can be decom-
posed into parts 𝑥, 𝑟𝑦∧𝑒, 𝑥, 𝑟⟂𝑦 , 𝑥, 𝑟

⟂
𝑒 . Note that we do not

assume that we know how to decompose our features in
this manner, nor we assume anything about the semantic
meaning of these components. We only assume that this
decomposition exists, and then the main assumption made
in [49] is that the graph in Fig. 1a conforms to the structures
in Figure 6 for each user type.

We are now ready to state Proposition 1 in a more precise
manner

Proposition 3. Let 𝑓 be a CI model and assume 𝑦 and 𝑒
are confounded (i.e. they are connected by an unobserved
common cause 𝑐 or by a directed path). Further assume that
𝐷𝑒(𝑥, 𝑟, 𝑦 ∣ 𝑢) is entailed by the causal models in Fig. 6 for
𝑢 = 𝑢→𝑦 and 𝑢 = 𝑢←𝑦. Then the following holds:

(𝑥, 𝑟)𝑦∧𝑒

(𝑥, 𝑟)⟂𝑒

(𝑥, 𝑟)⟂𝑦

𝑦𝑒

(a)

(𝑥, 𝑟)𝑦∧𝑒

(𝑥, 𝑟)⟂𝑒

(𝑥, 𝑟)⟂𝑦

𝑦𝑒

(b)

Figure 6: Detailed graphs describing our assumptions on
causal and anti-causal users (a) causal model for data generat-
ing process of causal user, and (b) anti-causal user. Dashed
lines indicate possible confounding.

1. 𝑓𝑢→𝑦
must satisfy 𝐷𝑒(𝑓𝑢→𝑦

(𝑥, 𝑟)) =
𝐷𝑒′ (𝑓𝑢→𝑦

(𝑥, 𝑟)) ∀𝑒, 𝑒′ ∈  .
2. 𝑓𝑢←𝑦

must satisfy 𝐷𝑒(𝑓𝑢←𝑦
(𝑥, 𝑟) ∣ 𝑦) = 𝐷𝑒′ (𝑓𝑢←𝑦

(𝑥, 𝑟) ∣
𝑦) ∀𝑒, 𝑒′ ∈  , 𝑦 ∈ {0, 1}.

On the other hand, 𝑓𝑢←𝑦
and 𝑓𝑢→𝑦

do not necessarily satisfy
conditions 1 and 2, respectively.

Proof. Under the assumptions laid out about the causal
model, the conditional independence relations can be read
off the graph directly, as in Theorem 3.2 of [49]. This proves
that the independence properties stated in the proposition
must hold. To see that 𝑓𝑢←𝑦

, 𝑓𝑢→𝑦
do not necessarily satisfy

properties 1 and 2 respectively, we will prove the existence
of such cases. Consider a causal model where 𝑒 and 𝑦 are
confounded, and assume that the model is faithful [34] (i.e.
all conditional independence statements that are not entailed
by the graph do not hold). Hence for the causal user we
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generally have 𝐷𝑒((𝑥, 𝑟)⟂𝑒 ∣ 𝑦, 𝑢 = 𝑢→𝑦) ≠ 𝐷𝑒′ ((𝑥, 𝑟)⟂𝑒 ∣
𝑦, 𝑢 = 𝑢→𝑦) (at the very least there are values of (𝑥, 𝑟)⟂𝑒 , 𝑦
for which this holds), and hence there exists some (𝑥, 𝑟)⟂𝑒 -
measurable function 𝑓𝑢→𝑦

(𝑥, 𝑟) that satisfies 𝐷𝑒( ̂𝑓 (𝑥, 𝑟) ∣
𝑦, 𝑢 = 𝑢→𝑦) ≠ 𝐷𝑒′ ( ̂𝑓 (𝑥, 𝑟) ∣ 𝑦, 𝑢 = 𝑢→𝑦). The same argu-
ment can be applied for the anti-causal user 𝑢←𝑦 to prove the
existence of an (𝑥, 𝑟)⟂𝑒 -measurable function 𝑓𝑢←𝑦

(𝑥, 𝑟) that
satisfies 𝐷𝑒( ̂𝑓 (𝑥, 𝑟) ∣ 𝑢 = 𝑢←𝑦) ≠ 𝐷𝑒′ ( ̂𝑓 (𝑥, 𝑟) ∣ 𝑢 = 𝑢←𝑦).
The model 𝑓 (𝑥, 𝑟) is CI since the constructed functions are
(𝑥, 𝑟)⟂𝑒 -measurable, but models 𝑓𝑢←𝑦

, 𝑓𝑢→𝑦
do not satisfy con-

ditions 1 and 2 respectively, which concludes our claim.

Next we prove Proposition 2 by constructing a confounded
model for an anti-causal user, similar to the one in the syn-
thetic experiment of Section A.1. Towards this proposition,
we point out that an optimal CI predictor is defined as a
CI predictor with the best possible worst case performance.
Where the worst case is taken over all distributions that are
causally-compatible [49] with the source distribution 𝐷train.
Definition 1. 𝐷train and 𝐷OOD are causally compatible if
they are entailed by the same causal graph, 𝐷train(𝑦) =
𝐷OOD(𝑦), and there is a confounder 𝑐 and/or selection
conditions 𝑠, �̃� such that 𝐷train = ∫ 𝐷train(𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟, 𝑦 ∣
𝑐, 𝑠 = 1)𝑑𝑃 (𝑐) and 𝐷OOD = ∫ 𝐷train(𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟, 𝑦 ∣ 𝑐, �̃� =
1)𝑑�̃�(𝑐) for some 𝑃 (𝑐), �̃�(𝑐).

Let us focus now on distributions where 𝑓 (𝑥𝑠𝑝, 𝑟, 𝑥𝑎𝑐)
is counterfactually invariant if and only if it is (𝑟, 𝑥𝑎𝑐)-
measurable (the expression (𝑟, 𝑥𝑎𝑐) should be read as a bi-
variate random variable). Note again that from Lemma 3.1
of [49] such a variable exists. The following claim will help
us reason about the optimal CI model for users of the skeptic
sub-class.
Lemma 1. If 𝐷train is entailed by the graph in Fig. 7a and
𝐷OOD is causally compatible with it, then𝐷train(𝑦 ∣ 𝑟, 𝑥𝑎𝑐) =
𝐷OOD(𝑦 ∣ 𝑟, 𝑥𝑎𝑐).

Proof. For binary classification, it is enough to show that
𝐷train(𝑦=1∣𝑟,𝑥𝑎𝑐 )
𝐷train(𝑦=0∣𝑟,𝑥𝑎𝑐 )

= 𝐷OOD(𝑦=1∣𝑟,𝑥𝑎𝑐 )
𝐷OOD(𝑦=0∣𝑟,𝑥𝑎𝑐 )

. Let us write this for the
training distribution:

𝐷train(𝑦 = 1 ∣ 𝑟, 𝑥𝑎𝑐)
𝐷train(𝑦 = 0 ∣ 𝑟, 𝑥𝑎𝑐)

=
𝐷train(𝑟, 𝑥𝑎𝑐 ∣ 𝑦 = 1)𝐷train(𝑦 = 1)
𝐷train(𝑟, 𝑥𝑎𝑐 ∣ 𝑦 = 0)𝐷train(𝑦 = 0)

=
𝐷train(𝑟, 𝑥𝑎𝑐 ∣ 𝑦 = 1)𝐷OOD(𝑦 = 1)
𝐷train(𝑟, 𝑥𝑎𝑐 ∣ 𝑦 = 0)𝐷OOD(𝑦 = 0)

.

The second equality stems from the causal-compatibility of
𝐷OOD. It is left to show that 𝐷train(𝑦 ∣ 𝑟, 𝑥𝑎𝑐) = 𝐷OOD(𝑦 ∣
𝑟, 𝑥𝑎𝑐). From causal-compatibility the distributions are en-
tailed by the same graph in Fig. 7a, which imposes the con-
ditional independence 𝑐⊥𝑟, 𝑥𝑎𝑐 ∣ 𝑦. Hence we conclude the

𝑒

𝑟𝑥𝑠𝑝𝑐 𝑥𝑎𝑐

𝑦

(a)
𝑒

𝑟𝑥𝑠𝑝𝑐 𝑥𝑎𝑐

𝑦

(b)

Figure 7: Graphs describing the data-generating processes
for anti-causal believer and skeptic users in the proof of
Proposition 2.

proof by:

𝐷train(𝑥𝑎𝑐 , 𝑟 ∣ 𝑦) = ∫ 𝐷train(𝑥𝑎𝑐 , 𝑟 ∣ 𝑦, 𝑐)𝑑𝑃 (𝑐)

= ∫ 𝐷train(𝑥𝑎𝑐 , 𝑟 ∣ 𝑦, 𝑐)𝑑�̃�(𝑐)

= 𝐷OOD(𝑥𝑎𝑐 , 𝑟 ∣ 𝑦).

From this result we gather that if we only consider the fea-
tures 𝑥𝑎𝑐 , 𝑟, there is a unique Bayes-optimal classifier over all
target distributions that are causally compatible with 𝐷train.
Since a classifier is CI if and only if it is (𝑥𝑎𝑐 , 𝑟)-measurable,
we see that for the skeptic sub-class of users the optimal CI
model is 𝑓 (𝑥𝑠𝑝, 𝑟, 𝑥𝑎𝑐) = 𝐷train(𝑦 ∣ 𝑟, 𝑥𝑎𝑐). The rest of the
proof will simply show that this model may not be CI for a
user of sub-type believer that has the same choice patterns
over observed data pooled from two training environments.

Proof of Proposition 2. Consider a data generating process
as depicted in Figure 7a. All variables 𝑥𝑠𝑝, 𝑟, 𝑥𝑎𝑐 , 𝑦, 𝑐 are
binary, we consider 2 training environments train = {0, 1}.
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We write down the distribution in a factorized form:

𝐷𝑢𝑥←𝑟
(𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟, 𝑦) =
∑

𝑐∈{0,1},𝑒∈{0,1}
𝑝(𝑐)𝑝(𝑦 ∣ 𝑐)𝑝(𝑥𝑎𝑐 ∣ 𝑦)𝑝(𝑒 ∣ 𝑐)𝑝𝑢𝑥←𝑟

(𝑟 ∣ 𝑦)𝑝𝑒𝑢𝑥←𝑟
(𝑥𝑠𝑝 ∣ 𝑟, 𝑦)

= 𝑝(𝑥𝑎𝑐 ∣ 𝑦)𝑝𝑢𝑥←𝑟
(𝑟 ∣ 𝑦)

(

∑

𝑒∈{0,1}
�̃�(𝑒, 𝑦)𝑝𝑒𝑢𝑥←𝑟

(𝑥𝑠𝑝 ∣ 𝑟, 𝑦)

)

.

Here we defined �̃�(𝑒, 𝑦) =
∑

𝑐∈0,1 𝑝(𝑦, 𝑐)𝑝(𝑒 ∣ 𝑐). The sub-
scripts 𝑢𝑥←𝑟 emphasize that in the distribution we will con-
struct for the believer user, 𝐷𝑢𝑥→𝑟

, all factors that are not
subscripted will be equal to those in 𝐷𝑢𝑥←𝑟

. That is, consider
a distribution that factorizes over the graph in Figure 7b as
follows:

𝐷𝑢𝑥→𝑟
(𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟, 𝑦) = (1)

𝑝(𝑥𝑎𝑐 ∣ 𝑦)𝑝𝑢𝑥→𝑟
(𝑟 ∣ 𝑦, 𝑥𝑠𝑝)

(

∑

𝑒∈{0,1}
�̃�(𝑒, 𝑦)𝑝𝑒𝑢𝑥→𝑟

(𝑥𝑠𝑝 ∣ 𝑦)

)

.

We will show that there exists some setting of 𝑝𝑢𝑥→𝑟
(𝑟 ∣

𝑦, 𝑥𝑎𝑐), 𝑝𝑒𝑢𝑥→𝑟
(𝑥𝑠𝑝 ∣ 𝑦) such that:

𝐷𝑢𝑥←𝑟
(𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟, 𝑦) = 𝐷𝑢𝑥→𝑟

(𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟, 𝑦).

But it will also satisfy 𝐷0
𝑢𝑥→𝑟

(𝑦 ∣ 𝑟, 𝑥𝑎𝑐) ≠ 𝐷1
𝑢𝑥→𝑟

(𝑦 ∣
𝑟, 𝑥𝑎𝑐). Then the proof will be concluded, as 𝑓 (𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟) =
𝐷𝑢𝑥←𝑟

(𝑦 ∣ 𝑟, 𝑥𝑎𝑐) = 𝐷𝑢𝑥→𝑟
(𝑦 ∣ 𝑟, 𝑥𝑎𝑐) cannot be CI w.r.t

𝐷𝑢𝑥→𝑟
. This holds since 𝐷𝑒

𝑢𝑥→𝑟
(𝑦 ∣ 𝑟, 𝑥𝑎𝑐) ≠ 𝐷𝑢𝑥→𝑟

(𝑦 ∣
𝑟, 𝑥𝑎𝑐) for 𝑒 ∈ {0, 1}, hence there must be some instance for
which 𝑓 (𝑥𝑎𝑐(0), 𝑥𝑠𝑝(0), 𝑟(0)) ≠ 𝑓 (𝑥𝑎𝑐(1), 𝑥𝑠𝑝(1), 𝑟(1)).

Towards this, consider 𝐷𝑢𝑥←𝑟
(𝑟 ∣ 𝑦, 𝑥𝑠𝑝) which is

obtained by the respective marginalization and con-
ditioning of 𝐷𝑢𝑥←𝑟

(𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟, 𝑦), and also consider
∑

𝑒∈0,1 �̃�(𝑒, 𝑦)𝐷𝑒
𝑢𝑥←𝑟

(𝑥𝑠𝑝 ∣ 𝑦). Let us set:

𝑝𝑢𝑥→𝑟
(𝑟 ∣ 𝑦, 𝑥𝑠𝑝) ∶= 𝐷𝑢𝑥←𝑟

(𝑟 ∣ 𝑦, 𝑥𝑠𝑝).

It is clear that if we set 𝑝𝑒𝑢𝑥→𝑟
(𝑥𝑠𝑝 ∣ 𝑦) such that the following

holds:
∑

𝑒∈{0,1}
�̃�(𝑒, 𝑦)𝑝𝑒𝑢𝑥→𝑟

(𝑥𝑠𝑝 ∣ 𝑦) =
∑

𝑒∈{0,1}
�̃�(𝑒, 𝑦)𝐷𝑒

𝑢𝑥←𝑟
(𝑥𝑠𝑝 ∣ 𝑦),

(2)

then the equality 𝐷𝑢𝑥←𝑟
(𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟, 𝑦) = 𝐷𝑢𝑥→𝑟

(𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟, 𝑦)
also holds. That is because the factorization in (1) is
a factorization of the joint distribution over 𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟, 𝑦
where all factors are equal to the ones obtained from
𝐷𝑢𝑥←𝑟

(𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟, 𝑦). 1

1Note that it is easy to observe that the two sides of (2) are the
marginal distribution over 𝑥𝑠𝑝, 𝑦 of the two distributions 𝐷𝑢𝑥→𝑟

and
𝐷𝑢𝑥←𝑟

respectively.

Finally, we claim that many solutions satisfy (2). For each
value of 𝑦, 𝑥𝑠𝑝 Eq. (2) is a linear equation with two variables
(𝑝0𝑢𝑥→𝑟

(𝑥𝑠𝑝 ∣ 𝑦) and 𝑝1𝑢𝑥→𝑟
(𝑥𝑠𝑝 ∣ 𝑦)), and they should be con-

strained to take values in the range [0, 1]. One solution to
the equation is to set 𝑝𝑒𝑢𝑥→𝑟

(𝑥𝑠𝑝 ∣ 𝑦) ∶= 𝐷𝑒
𝑢𝑥←𝑟

(𝑥𝑠𝑝 ∣ 𝑦), and
unless 𝐷𝑒

𝑢𝑥←𝑟
(𝑥𝑠𝑝 ∣ 𝑦) ∈ {0, 1} for each value of 𝑥𝑠𝑝, 𝑦, and

𝐷0
𝑢𝑥←𝑟

(𝑥𝑠𝑝 ∣ 𝑦) = 𝐷1
𝑢𝑥←𝑟

(𝑥𝑠𝑝 ∣ 𝑦) (i.e. the spurious feature
completely determines 𝑦) the set of solutions to the equa-
tions forms an interval in ℝ2, and has Lebesgue measure
that is non-zero.

Thus let us consider the set of parameterized (by the fac-
tors in (1)) distributions �̃�𝑢𝑥→𝑟

(𝑒, 𝑥𝑠𝑝, 𝑟, 𝑥𝑎𝑐 , 𝑦) that satisfy
∑

𝑒 �̃�𝑢𝑥→𝑟
(𝑒 = 𝑒, 𝑥𝑠𝑝, 𝑟, 𝑥𝑎𝑐 , 𝑦) = 𝐷𝑢𝑥←𝑟

(𝑥𝑠𝑝, 𝑟, 𝑥𝑎𝑐 , 𝑦) for
the fixed distribution 𝐷𝑢𝑥←𝑟

(𝑥𝑠𝑝, 𝑟, 𝑥𝑎𝑐 , 𝑦). This set has a
non-zero Lebesgue measure over the linearly independent
parameters needed to parameterize 𝐷𝑢𝑥→𝑟

. Since the set of
parameters that yield unfaithful distributions w.r.t a graph
has Lebesgue measure zero [44], there must be at least one
distribution �̃�𝑢𝑥→𝑟

(𝑒, 𝑥𝑠𝑝, 𝑟, 𝑥𝑎𝑐 , 𝑦) in the set where the inde-
pendence 𝑟, 𝑥𝑎𝑐⊥𝑒 ∣ 𝑦 does not hold. For such a distribution
we will have 𝐷𝑒

𝑢𝑥→𝑟
(𝑦 ∣ 𝑟, 𝑥𝑎𝑐) ≠ 𝐷𝑢𝑥→𝑟

(𝑦 ∣ 𝑟, 𝑥𝑎𝑐), which is
what was required to conclude the proof.

C. Related Work
Causality and Recommendations. Formal causal inference
techniques have been used extensively in many domains,
but have only recently been applied to recommendations
[28,52,7,54,51]. Liang et al. [29] use causal analysis to
describe a model of user exposure to items. Some work
has also been done to understand the causal impact of these
systems on behavior by finding natural experiments in obser-
vational data [40,45,39], and through simulations [11,38].
Bottou et al. [8] use causally-motivated techniques in the de-
sign of deployed learning systems for ad placement to avoid
confounding. As most of this literature addresses selection
bias and the effect of recommendations on user behavior
[7,54,51], there is no work, as far as we know, that models
boundedly rational agents interacting with a recommender
system. Moreover, we are the first to propose modeling
users’ (mis)perceptions about the recommendation genera-
tion process using causal graphs.

Bounded Rationality and Subjective Beliefs. The bounded
rationality literature focuses on modelling agents that make
decisions under uncertainty, without the ability to fully pro-
cess the state of the world, and therefore hold subjective
beliefs about the data-generating process. Eyster and Ra-
bin [17] defined cursed beliefs, which capture an agent’s
failure to realize that his opponents’ behavior depends on
factors beyond those he is informed of. Building on Esponda
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Table 2: Original RateBeer dataset statistics.

Number of reviews 2, 924, 127
Number of users 40, 213
Number of beers 110, 419
Users with > 50 reviews 4, 798
Median #words per review 54
Timespan 4/2000-11/2011

and Pouzo [16], who modelled equilibrium beliefs under
misspecified subjective models, Spiegler [43] used causal
graphs to analyze agents that impose subjective causal inter-
pretations on observed correlations. This work lays the foun-
dation upon which we model users here, and has sprouted
many interesting extensions [14,15].

Causality and Invariant Learning. Correlational predic-
tive models can be untrustworthy [23], and latch onto spuri-
ous correlations, leading to errors in OOD settings [32,20,19].
This shortcoming can potentially be addressed by a causal
perspective, as knowledge of the causal relationship between
observations and labels can be used to mitigate predictor
reliance on them [9,49]. In our experiments, we learn a rep-
resentation that is invariant to interventions on the ‘environ-
ment’ 𝑒, a special case of an invariant representation [3,27,4].
Learning models which generalize OOD is a fruitful area of
research with many recent developments [30,22,35,46,5,50].
Recently, Veitch et al. [49] showed that the means and impli-
cations of invariant learning depend on the data’s true causal
structure. Specifically, distinct causal structures require dis-
tinct regularization schemes to induce invariance.

D. Experimental Details
Code and data for all experiments can be found in the
following anonymous link:
https://drive.google.com/drive/folders/
1bO57v4PUuUh76F_q0a_xAVx6CKdeDJ5l

D.1. RecBeer (causal users)

Original Dataset description. The original RateBeer
dataset includes textual reviews and numerical ratings of
roughly 3000 unique beers, collected over the span of over
11 years. Each review data-point also includes additional
features describing the beer (e.g., brand, style), the author of
the review (e.g., location), and the review itself (e.g., date).
Figure 8 shows an example of a data point. Table 2 provides
summary statistics.

Data Generation Process. The original RateBeer dataset
includes reviews and rating that were authored and submitted
by users of the platform. For our purposes, focusing learning
and prediction on users as contributors of content has two
limitations: (i) we cannot know what platform-selected infor-

Figure 8: RateBeer example: A textual review and numeri-
cal rating for a beer (with metadata).

Figure 9: RecBeer interventions: An example of a simu-
lated intervention for causal users, for which changing the
review shown to the user (bottom) to another (top) may in-
fluence his behavior (here, from not choosing to choosing).

Figure 10: RecBeer environments: Each year serves as a
different environment, whose affect is expressed through
differing correlations between beer types and user choices.
The plot shows the temporal correlation structure used for
the experiment in §4.1, and underlie the results presented in
Fig. 3. Periods with substantial changes are highlighted in
tan.

https://drive.google.com/drive/folders/1bO57v4PUuUh76F_q0a_xAVx6CKdeDJ5l
https://drive.google.com/drive/folders/1bO57v4PUuUh76F_q0a_xAVx6CKdeDJ5l


660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Robust Prediction with Causal User Modeling

Table 3: Our RecBeer data features.

Variable type Not. Description

Item 𝑥

avg past appearance
avg past aroma
avg past palate
avg past taste
# of active years
alcohol percentage
beer type

User 𝑢
avg past satisfaction
# of past choices
# of active years

Recommendation 𝑟 text review
# of past reviews

Time 𝑒 year

Choice 𝑦 try beer/not

mation (𝑟) was presented to them and how it influenced their
decisions, and (ii) we cannot reason counterfactually about
their potential choices had they been exposed to different
information.

To overcome both issues, we adapt the original dataset to
simulate choice behavior of users as consumers of content,
as they use the platform to make informed decisions about
beer consumption. We emulate the following process: a user
𝑢 logs on to the platforms, and is recommended a certain
beer. The beer is described by intrinsic features 𝑥, and one
platform-selected textual review 𝑟, chosen from a pool of
already-existing reviews for that beer (these being the re-
views for that beer that have already by submitted by other
contributing users). The user then decides weather to try
(i.e., consume) the beer (𝑦 = 1) or not (𝑦 = 0). Our goal is
to predict for new users 𝑢 their choices 𝑦 for recommended
beers given descriptions 𝑥, 𝑟.

To create features for beers 𝑥 and (consuming) users 𝑢, we
aggregate information from all corresponding reviews: for
beers—all reviews of that beer, and for users—all reviews
authored by that user. This includes features such as average
past taste score for beers and average past overall satisfac-
tion for users. Table 3 summarizes our feature space. Since
we model users as causal, the graph edge 𝑟→𝑦 implies that
changes to 𝑟 causally affect 𝑦. To simulate this behavior, we
create for each user an ‘intervention space’ which includes a
collection of possible interventions 𝑟 and their corresponding
counterfactual outcomes 𝑦. For our experiment, we simply
take all pairs of reviews and ratings (𝑟, 𝑠) for a given beer to
be the set of possible interventions and outcomes. Textual
reviews are featurized using a pre-trained BERT model [13],

and numerical ratings 𝑠 ∈ [0, 5] are transformed into bi-
nary choices 𝑦 = {0, 1} by setting 𝑦 = 1 if the user’s rating
for that beer was above the median rating (for that beer),
and 𝑦 = 0 otherwise. Since learning requires observational
data, for each user-beer pair (𝑢, 𝑥) we sample (in a way we
describe shortly) one review-choice pair (𝑟, 𝑦) out of 100
unique reviews for that beer; an example is presented in Fig-
ure 9. This provides a sampled tuple (𝑢, 𝑥, 𝑟, 𝑦) expressing
the behavior of a causal user whose choices are affected
by the review presented to her. Together, 𝑢, 𝑥, and 𝑟 (as an
embedding) include 866 features.

Finally, to model the effects of changing environments, we
consider an environment variable 𝑒 that encodes the year,
expressing the idea that different years may express different
‘trends’ in which beer types2 are more (and less) fashionable.
To implement this, we sample review-choice pairs for users
within each year in a way that introduces a pre-determined
amount of correlation between choices and beer types. The
chosen per-year correlation levels is plotted in Figure 10.
Notice the drastic change in fashions in 2007 and 2011.

Training and testing. We train and evaluate one model
per year. For each year 𝑒 ∈ {2006,… , 2012}, training is
performed on data from years {2002,… , 𝑒 − 1} and tested
on 𝑒. In this way, fashions regarding beer type accumulate
over time.

Models. We learn a linear model that takes as input the
concatenation of 𝑢, 𝑥, 𝑟. The learning objective includes a
binary cross entropy loss, and marginal MMD as regular-
ization [21] (since we model users as causal; see §3). We
trained all models for 700 epochs with 𝑙𝑟 = 0.01 and batches
of size 1024, and set 𝜆 = 100. Results are averaged over
five runs with different random seeds.

D.2. RecFashion (anti-causal users)

Original Dataset Statistics. The Fashion Product Images
dataset includes a large collection of fashion items, described
by an image and additional attributes such as: season, gender,
base color, usage, year, and product display name. Items are
organized by category, sub-category, and type; we focus on
the apparel category. Table 4 provides summary statistics.

Table 4: Original Fashion Product Images dataset statistics.

number of items 44, 447
main categories 7
sub-categories 45
types 142

2We create four beer ‘types’ by aggregating beers of similar
style. For example, the styles Doppelbock, Dortmunder, Dunkel,
Dunkelweizen, and Dunkler were all attributed to the same type.
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Robust Prediction with Causal User Modeling

Figure 11: Fashion items in the RecFashion dataset with
recommended colors. On the left side are green recommen-
dations and on the right side are red recommendations.

Data Generation Process. The original dataset does not
include user choices (or any other form of user behavior).
To simulate user choices, we imagine a setting were the
platform recommends to each user an item by presenting
an image of the item (𝑥) in a certain color (𝑟). We set 𝑥 to
be the item’s grayscale image, and set 𝑟 to be a colorization
of that image into one of two colors: red or green. Users
then choose whether to buy the item or not, 𝑦 ∈ {0, 1}. We
then model users as choosing primarily on the basis of the
‘gender’ attribute of items, 𝑥𝑔 ∈ {0, 1}, and set 𝑦 = 𝑥𝑔 w.p.
0.75 and 𝑦 = 1 − 𝑥𝑔 otherwise.

Since users in this experiments are anti-causal, they act under
the belief that changes in 𝑦 affect 𝑟 (here we do not make use
of the edge 𝑦→𝑥). Note that 𝑒 also affects 𝑟. We implement
this joint influence of 𝑒, 𝑦 on 𝑟 by assigning colors to images
in a way that obtains a certain level of correlation between
the color 𝑟 ∈ {red, green} and choices 𝑦. Technically, we
associate with each environment 𝑒 a parameter 𝑝𝑒 ∈ [0, 1].
Then, using a color variable 𝑐 = 0 for red and 𝑐 = 1 for
green we assign for each item its color as 𝑐 = 𝑦 w.p. 𝑝𝑒,
and 𝑐 = 1 − 𝑦 otherwise. Thus, different environments
entail different conditional distributions 𝑃 (𝑟 = red|𝑦 =
1) = 𝑃 (𝑟 = green|𝑦 = 0) = 𝑝, which reflect an anti-causal
structure. Finally, given the sampled 𝑐, we colorize the
image 𝑥 as follows: if 𝑐 = 1, we set 𝑥𝑅 ← 0.5+0.2𝑥𝑅, 𝑥𝐺 ←
0.7𝑥𝐺, 𝑥𝐵 ← 0.7𝑥𝐵; if 𝑐 = 0, we set 𝑥𝐺 ← 0.5 + 0.2𝑥𝐺,
𝑥𝑅 ← 0.7𝑥𝑅, 𝑥𝐵 ← 0.7𝑥𝐵 (𝑅,𝐺,𝐵 are the color channels).
Note that this means users do not observe 𝑥, 𝑟 independently,
but rather a colored image that is a product of both 𝑥 and 𝑟.

Training and testing. We run eight experiments that differ
in the average degree of correlation in the training sets, for
average correlation values of 𝑝 ∈ {0.1, 0.2,… , 0.8}. Each
experimental condition (𝑝) includes training data from six
environments 𝑒, with correlations 𝑝𝑒𝑛𝑣 ∈ {𝑝 − 0.025, 𝑝 +
0.025, 𝑝 − 0.05, 𝑝 + 0.05, 𝑝 − 0.1, 𝑝 + 0.1} (their average is
𝑝).

Models. For the model We used a feed forward neural
network with three hidden layers and a hidden dimension of
size 256, ReLU activation function and 𝑁𝐿𝐿 as our base
loss function. For computational efficiency, input images
were resized to 14 × 14. The learning objective includes a

binary cross entropy loss, and a conditional DeepCORAL
regularizer [47] (since we model users as anti-causal; see
§3). We set 𝜆 = 5000 in the first 125 epochs and 𝜆 = 1 in the
rest, and trained the model for 1,900 epochs with 𝑙𝑟 = 0.001
and batches of size 1024.

E. Loss Functions.
We train all of our models with either the CORAL or MMD
loss. Empirically, we found that CORAL we more stable
in the RecFashion experiments and. In the RecBeer ex-
periments, models trained with the MMD loss consistently
outperformed those who were not. When conditioning on
the label 𝑦, we compute 𝑙𝑑𝑖𝑠𝑡 (either 𝑙𝐶𝑂𝑅𝐴𝐿 or 𝑙𝑀𝑀𝐷) sep-
arately for cases where 𝑦 = 1 and 𝑦 = 0. We describe here
both loss functions.

CORAL Loss. The CORAL loss is the distance between
the second-order statistics of two feature representations,
corresponding to different 𝑧:

𝑙𝐶𝑂𝑅𝐴𝐿(𝑓 (𝑥, 𝑟), 𝑧) =
1
𝑑2

||𝐶𝑧 − 𝐶𝑧′ ||
2
𝐹

where || ⋅ ||2𝐹 denotes the squared matrix Frobenius norm.
The covariance matrices of the source and target data are
given by:

𝐶𝑧 =
1

𝑛𝑧 − 1
(𝜙(𝑥(𝑧), 𝑟)⊤𝜙(𝑋(𝑧), 𝑟)

− 1
𝑛𝑧

(1⊤𝜙(𝑥(𝑧), 𝑟))⊤(1⊤𝜙(𝑥(𝑧), 𝑟)))

where 1 is a column vector with all elements equal to 1, and
𝜙(⋅) is the feature representation.

MMD. Maximum mean discrepancy (MMD) measures
distances between mean embeddings of features. That is,
when we have distributions 𝑃 and 𝑄 over a set  . The MMD
is defined by a feature map 𝜙 ∶  → , where  is what’s
called a reproducing kernel Hilbert space. In general, the
MMD is

MMD(𝑃 ,𝑄) = ||𝔼𝑋[𝜙(𝑋)] − 𝔼𝑌 [𝜙(𝑌 )]||

For use of the MMD loss for causal representation learning,
see Veitch et al. [49].
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