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Abstract

Despite their considerable potential, concept-based explainability methods have1

received relatively little attention, and explaining what’s driving models’ decisions2

and where it’s located in the input is still an open problem. To tackle this, we revisit3

unsupervised concept extraction techniques for explaining the decisions of deep4

neural networks and present CRAFT – a framework to generate concept-based5

explanations for understanding individual predictions and the model’s high-level6

logic for whole classes. CRAFT takes advantage of a novel method for recursively7

decomposing higher-level concepts into more elementary ones, combined with a8

novel approach for better estimating the importance of identified concepts with9

Sobol indices. Furthermore, we show how implicit differentiation can be used to10

generate concept-wise attribution explanations for individual images. We further11

demonstrate through fidelity metrics that our proposed concept importance estima-12

tion technique is more faithful to the model than previous methods, and, through13

human psychophysic experiments, we confirm that our recursive decomposition14

can generate meaningful and accurate concepts. Finally, we illustrate CRAFT’s15

potential to enable the understanding of predictions of trained models on multiple16

use-cases by producing meaningful concept-based explanations.*17

1 Introduction18

Interpreting the decisions of modern machine learning models such as neural networks remains a19

major challenge. The need for robust and reliable explainability methods has never been more urgent20

as machine learning is being applied to an ever increasing range of domains, including safety critical21

ones. The application of the General Data Protection Regulation law (GDPR) [1] in the European22

Union has drawn the attention of the general public to the rights they should have on their data.23

This kickstarted a race for other needs, with more and more regulation agencies asking for the right24

for AI decisions to be explainable to users – e.g. European AI act [2], EASA concepts for design25

assurance [3].26

In order to try to meet this need, an array of explainability methods have already been proposed. Most27

of these methods aim at explaining what inputs (or pixels in an image) are driving the model’s decision.28

These so-called attribution methods yield heatmaps that indicate the importance of individual pixels.29

Among the most notable ones is LIME [4], which was initially developed to try to locally – that is,30

at an instance level – understand models’ predictions to identify possible biases in vision models.31

Multiple improvements have since been introduced – either by better harnessing the information32

provided by gradients to estimate the importance of individual pixels [5, 6, 7, 8, 9, 10, 11, 12],33

leveraging image perturbations to evaluate the sensitivity of a model’s output [13, 14] or, more34

recently, via the use of formal methods to generate explanations [15].35
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However, all the aforementioned methods focus on one side of explainability – answering the question36

of where – i.e., where in an image are the pixels that are critical to the decision located. They leave37

the question of what – i.e., what visual features are actually driving decisions – entirely open. We38

argue that this limitation is one of the main reasons why these methods fail in some cases to help39

users, for instance, identify the source of a system’s bias or its failure cases as shown in [16]. Feature40

visualization methods [17, 18] characterize the selectivity of individual neurons (or neural channels or41

arbitrary directions in the neural activation space) via the synthesis of input stimuli which maximize42

their responses and can partially answer this question. Still in this vein, [19, 20, 21] proposed to use43

the training dataset to identify the samples that contribute the most to the model’s decision. Finally,44

closer to our work, a new line of research has recently been initiated [22] based on high-level concepts.45

The goal of this branch is to find humanly interpretable concepts in the activation space of a layer in a46

neural network. This approach can give positive results, but in its original formulation, it requires47

prior knowledge on the relevant concepts, and more importantly, the labeling of a dataset for each of48

the concepts we want to extract. Hence, several works have proposed to automate the concept search49

based only on the training dataset and without explicit human supervision. The most prominent50

of these techniques, ACE [23], uses a combination of segmentation and clustering techniques, but51

requires heuristics to remove outliers. This method unlocks the possibility of large scale concept52

extraction without additional labeling or human supervision. Nevertheless, it suffers from several53

problems: each segment can only belong to one cluster, the choice of the layer from which to retrieve54

the concepts is not clear, and the amount of information lost during the outlier rejection phase can55

be a cause of concern. More recently, [24] proposes to leverage matrix decompositions on internal56

feature maps to discover concepts.57

It is important to note that current work does not offer a link between their global and local ex-58

planations, nor do they offer an answer to the question of which layer to choose to perform the59

decomposition. Building up on these conclusions, we revisit these concept extraction techniques by60

using Non-Negative Matrix Factorization (NMF) and propose 3 different ingredients to answer these61

questions simultaneously, thereby introducing CRAFT, a new automatic concept extraction method.62

We can summarize our main contributions as follows:63

• A novel approach for the automated extraction of high-level concepts learned by deep neural64

networks.65

• A recursive procedure to automatically decompose concepts into sub-concepts, starting66

with the last layer of the model and working our way inwards. We validate the benefit of67

this recursivity – i.e. decomposing concepts into sub-concepts – with human psychophysic68

experiments which show that (i) that the decomposition of a concept yields more coherent69

sub-concepts (ii) the groups of points formed by these sub-concepts are more refined and70

appear meaningful to humans (expert or non-expert).71

• A novel technique to quantify the importance of individual concepts on a model’s predictions72

using Sobol indices coming from the field of Sensitivity Analysis.73

• A novel Concept Attribution Map (CAM) method to backpropagate each of the concept74

values independently into the pixel space by leveraging the implicit function theorem,75

allowing us to locate the concept in a given input image. This effectively unlocks the ability76

to apply all the white-box [5, 6, 7, 8, 9, 12, 25] and black-box [4, 26, 13, 14] explainability77

techniques in the literature to obtain concept-wise attribution maps.78

• A demonstration of the approach combining local and global explanations to accurately79

explain predictions and understand complex failure cases.80

2 Related Work81

Explaining where The widespread use of black-box machine learning methods including deep82

convolutional neural networks in myriads of computer vision tasks prompted a need to understand83

where in the input image the model looked to make predictions. These explanatory heatmaps can84

be generated through completely different approaches depending on whether access to gradients is85

provided. If it is indeed the case, there’s a plethora of different methods that harnesses intermediary86

information inside the neural network to create these explanations [5, 8, 7, 28, 6, 29, 9, 12]. However,87

they have been found to induce confirmation bias [30] and to be vulnerable to adversarial attacks [31].88

Somewhat differently, there are other methods [10, 11] that harness gradients to optimize masks89

to maximize the impact on the predictions, and thus determine the most important parts of the90

input for the model. However, if only the input and its corresponding output are available, other91
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Figure 1: CRAFT Results for the prediction ‘Chain Saw’. First, our method uses NMF to extract
from the train set (ILSVRC2012 [27]) the most relevant concepts used by the network (ResNet50V2).
Then, the global influence of these concepts on predictions is measured using Sobol indices (right
panel). Finally, the method provides local explanations through Concept Attribution Maps (heatmap
associated to a concept, and computed using grad-CAM by backpropagating through the NMF
concept values with implicit differentiation). Besides, concepts can be interpreted by looking at crops
that maximize the NMF coefficients. For the class ‘Chain Saw’, the detected concepts seem to be: C0
for the chainsaw engine, C2 for the saw blade, C4 for the human head, C18 for the vegetation, C21 for
the jeans and C22 for the tree trunk.

techniques exist that enable the generation of attribution maps by locally estimating the importance92

of each input pixel: LIME [4], RISE [13], and more recently, an attribution method based on Sobol93

indices [14, 32]. Crucially, they propose to input perturbed versions of the example one wishes to94

explain and either construct a linear model to determine the importance of each region of the input,95

leverage Monte-Carlo methods to this end, or compute the Sobol indices [32] associated to them as a96

measure of their influence on the model. Concretely, we will be exploiting all this literature to locate97

the important parts of images with respect to what we will call “high-level” concepts by generating98

concept-wise attribution maps.99

Explaining «what» There have been studies [33, 34] that indicate that CNNs trained on the100

ImageNet dataset [27] rely heavily on textures to classify, and largely disregard the shapes. For101

this reason, some researchers suggest that attribution maps might not be enough to explain models’102

predictions [17], and that explainability methods revealing the role of the textures are a must. Namely,103

in [18] and [17], explanations are generated as the inputs that would maximize the neural activation of104

a given layer with respect to a given class. However, these explanations may not be easily interpretable105

by humans. Finally, other approaches suggest to modify the structure of the neural network, either by106

constraining the convolutional layers to naturally provide visual explanations [35], or by forcing it to107

generate prototypes for the classes [36], but our main focus are post-hoc methods that can be applied108

to pre-trained neural networks and don’t need further training.109

Concept discovery. In [22], Kim et al. proposed an alternative to explaining the what: they built a110

database with different concepts (such as “stripes”) to extract a concept vector in the latent space of a111

given layer. Then they proposed to estimate the importance of this concept vector using the directional112

derivative of the model’s predictions with respect to this concept vector. However, it is a supervised113

approach, and thus, only applicable when we have prior knowledge of the concepts in play. The114

natural extension of this idea is automatic discovery of concepts in an unsupervised fashion, without115

the need for prior knowledge or labelled concept datasets. As such, in [23], a technique is proposed to116

discover these “high-level” concepts: they perform segmentation at different resolutions on patches117

of images, cluster them and select the most significant based on perception and Testing with Concept118

Activation Vectors (TCAV) [22] scores. However, the quality of the result is highly dependent on the119

segmentation scheme and on the layer used for perception scores. Building up on this technique, [24]120

propose to generate a bank of concepts for each class by performing dimensionality reductions on the121

activation maps flattened over the channel dimension. Once the factorization done, the reconstruction122

of the activation of the image can then be interpreted as a combination of a set of concepts and a123

coefficient associated to these concepts. Not all factorization-based methods are equal though. Their124

large-scale human experiments show an interesting trend: Non-negative Matrix Factorization (NMF)125

is widely preferred over Principal Component Analysis (PCA) or ACE for generating meaningful126
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Figure 2: (1) Neural Collapse (Amalgamation) classifiers need to be able to linearly separate
each class at the last layer, and to do this, the activations of the same class must merge during the
forward pass until they all converge to the one-hot vector of the class in the logits layer. This may
result in activations that are too concentrated to be broken down into meaningful concepts. (2)
Recursive process When a concept is not understood (e.g., C), we propose to decompose it into
multiple sub-concepts (e.g., C1, C2, C3) using the activations from an earlier layer to overcome the
aforementioned neural collapse issue. (3) Example of concept recursive decomposition using
CRAFT on the class ‘Parachute’ of ILSVRC2012 [27].

concepts for humans. Finally, [37] defines the notion of completeness of a concept bank and proposes127

a method to learn a complete set of concepts using Shapley values [26].128

3 Overview of the method129

In this section, we first describe our Concept Activations Factorization method by pointing out130

the differences that set our technique apart from previous work. We then proceed to introduce131

the three new ingredients that make up CRAFT: (1) a method to recursively decompose concepts132

into sub-concepts, (2) a new approach to better estimate the importance of extracted concepts133

and (3) how we unlock any attribution method to create Concept Attribution Maps, using implicit134

differentiation [38, 39, 40].135

Notation In this work, we consider a general supervised learning setting, where (x1, ...,xn) ∈ Xn136

are n points and (y1, ..., yn) ∈ Yn their associated labels. Unless specified, all points are assumed137

to have the same labels. We are given a (machine-learnt) black-box predictor f : X → Y , which at138

some test input x predicts the output f(x). Without loss of generality, we assume that f is a neural139

network composed of k layers, and we denote f(x) = hk ◦ hk−1 ◦ ... ◦ h1(x) with hl(x) ⊆ Rp140

being the intermediate activations for the layer l and hl(x)i an activation for the same layer. Further,141

we require non-negative activations: hl(x)i ≥ 0 : ∀i ∈ {1, ..., p}, which amounts to choosing a layer142

whose activation function σl(x) ≥ 0. In particular, this assumption is verified by any architecture that143

utilizes ReLU, but any non-negative activation function works. Finally, we denote hl,k the function144

going from the layer l to the output of the model f .145

3.1 Concept Activations Factorization146

As illustrated in Fig.3, we propose to use Non-negative matrix factorization activations to find a147

basis of concepts. Inspired by ACE [23], we will use sub-regions of images to attempt to identify148

coherent concepts. Instead of using segmentation – which naturally introduces artifacts due to the149

inpainting required by a baseline value –, we start by taking random crops of each image in our150

dataset (e.g, a set of points that the model predicts as belonging to the same class) to form an auxilary151

dataset X ∈ Rn×d such that Xi = τ (xi) with τ a crop function. Given a layer l, we obtain the152

activations for the random crops A = hl(X) ∈ Rn×p. In the case where f is a convolutional neural153

network, a global average pooling is applied on the activations. We recall that all the elements of A154

are non-negative real numbers.155

We are now ready to apply Non Negative Matrix Factorization (NMF) to decompose the positive156

activations A, into a product of non-negative, low rank matrices U(A) ∈ Rn×r and W ∈ Rp×r,157

with:158

min
U≥0,W≥0

1

2
∥A−UW T ∥2F (1)

Where || · ||F denotes the Frobenius norm. One of the appealing properties of NMF is the low159

rank constraint r ≪ min(n, p). Simply put, NMF can be understood as the joint learning of W ,160

a dictionary of CAVs – “concept bank” in Figure 3 – that maps a Rp basis onto Rr, and U the161

coefficients of vectors A expressed in this new basis. The minimization of the reconstruction error162
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Figure 3: Overview of CRAFT. Starting from a set of crops X containing a concept C (e.g., crops
images of the class Parachute), we send random crops to a layer l to get activations it hl(X). We
then factorize the activation into two lower rank matrices, U and W . W is what we call a concept
bank (a base of concepts), while U corresponds to the coefficients in this new basis. We then extend
the method with 3 new ingredients: (1) the recursivity by proposing to re-decompose a concept (e.g.,
take a new set of point containing C1) at an earlier layer l′ < l, (2) a better importance estimation
using Sobol indices and (3) leveraging implicit differentiation to generate Concept Attribution Maps
allowing to localize concepts in an image.

1
2∥A − UW ∥2F ensures that the new basis contains (mostly) relevant concepts. Intuitively, the163

non-negativity constraints U ≥ 0,W ≥ 0 encourage (i) the sparsity of W (useful for creating164

disentangled concepts), (ii) the sparsity of U (convenient for selecting a minimal set of useful165

concepts) and (iii) the imputation of missing data [41], which corresponds to the sparsity pattern166

of post-ReLU activations A. We shall also note that each original activation Ai coming from the167

input xi can be approximated by its reconstruction hl(τ (xi)) = UiW
T =

∑r
j=1 Ui,jW

T
j . This168

approach is attractive as each activation can be understood as a composition of concepts.169

While other methods in the literature solve a similar problem (such as low rank factorization using170

SVD or ICA), the NMF has stepped up as both fast, effective and is known to yield meaningful171

concepts to humans [42, 43, 24]. Finally, once the concept bank W is precomputed, we can associate172

the concept coefficients U(x) to any new input x (e.g a full image) by solving the underlying173

Non-Negative Least Squares (NNLS) problem minU≥0
1
2∥hl(x) − U(x)W T ∥2F , and therefore174

have its decomposition in the concept base.175

In essence, the core of our method can be summarized as follows: using a set of images, we re-interpret176

their embedding at a given layer l as a composition of concepts that can be easily understood by177

humans. In the next section we show how we can recursively apply concept activation factorizations178

on a layer l′ < l for an image containing a previously computed concept.179

3.2 Ingredient 1: A Recursive Flavor180

One of the most apparent issues in previous works [23, 24] is the choice of the layer at which the181

activation maps are extracted. Depending on this, certain concepts start getting amalgamated [44]182

into one, resulting in incoherent and indecipherable clusters, as illustrated in Fig 2. We posit that183

this can be solved by iteratively applying our decomposition at different layer-depths, and for the184

concepts that remain difficult to understand, look for their sub-concepts at earlier layers by isolating185

the images that contain them. This allows us to build hierarchies of concepts for each class.186

We offer a simple solution consisting of reapplying our method to a concept by performing a second187

step of Concept Activation Factorization on a set of points that contain the concept C in order to188

refine it and create sub-concepts (e.g., decompose C into {C1, C2, C3}) see see Fig.2 for an illustrative189

example. Note that we generalize current methods in the sense that taking points (x1, ...,xn) that190

are clustered in the logits layer (belonging to the same class) and decomposing them in a previous191

layer – as done in [23, 24] – is a valid recursive step. For a more general case, let us assume that192

a set of points that contain a common concept is obtained using a first step of Concept Activation193

Factorization. We then look for a set of points with a high coefficient for the concept of our choice194

to perform the next factorization. Formally, with a factorization for a layer l UW T and a concept195

index i, this set of points is defined as C = {τ (xj) : U(Aj)i ≥ λ} In practice, we assume λ to be196

equal to the 90th percentile of the values of Ui. Given this new set of points, we can then re-apply the197

Concept Matrix Factorization method to a earlier layer l′ – with l′ < l – to obtain the sub-concept’s198

decomposition from the initial concept.199
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3.3 Ingredient 2: Sobol indices for enhanced concept importance estimation200

A common concern with concept extraction methods is that what makes sense to humans is not201

necessarily what is being used by the model to predict. To avoid this kind of confirmation bias during202

our concept analysis phase, we can estimate the global importance of the extracted concepts. To do203

so, [22] proposed an estimator based on directional derivatives: the partial derivative of the model204

output with respect to the concept vector. While this measure is theoretically well founded, it relies205

on the same principle as gradient-based methods, and thus, suffers from the same pitfalls: neural206

network models have noisy gradients [5, 7]. Hence, the farther the chosen layer is from the output,207

the noisier the directional derivative score will be.208

Since we essentially want to know which concept has the greatest effect on the output of the model,209

it is natural to consider the field of Sensitivity Analysis [45, 46, 32, 47]. In this section, we briefly210

recall the classical total Sobol indices and how to apply it to our problem. The complete derivation of211

the Sobol-Hoeffding decomposition is presented in the appendix D.212

Formally, we place ourselves at layer l and perform our Concept Activation Factorization, providing us213

with U , W . A natural way to estimate the importance of a concept Ui is to measure the fluctuation of214

the model’s output hl,k(UW T ) in response to meaningful perturbations of the concept coefficient Ui.215

Concretely, with M = (M1, ...,Mr) ∈ [0, 1]r, here an i.i.d sequence of real-valued random variables,216

we introduce a concept fluctuation to reconstruct a perturbated activation Ã = (U ⊙M)W T (e.g.,217

the masks can be used to put a concept value to zero). We can then propagate this perturbated218

activation to the model output Y = hl,k(Ã). Thus, an important concept will have a large variance219

on the model output while an unused concept will barely change it.220

Finally, we can capture the importance that a concept might have as a main effect – along with its221

interactions with other concepts – on the model’s output by calculating the expected variance that222

would remain if all the indices of the masks except the Mi were to be fixed. This yields the general223

definition of the Total Sobol indices.224

Definition 3.1 (Total Sobol indices). The total Sobol index STi
, which measures the contribution225

of a concept Ui as well as its interactions of any order with any other concepts to the model output226

variance, is given by:227

STi
=

EM∼i
(VMi

(Y |M∼i))

V(Y )
=

EM∼i
(VMi

(hl,k((U ⊙M)W T )|M∼i))

V((U ⊙M)W T )
(2)

In a practical way, this index can be calculated efficiently [48, 49, 50, 51, 52], more details on the228

sampling (Quasi-Monte Carlo) and the estimator used are left in appendix D.229

3.4 Ingredient 3: Unlocking Concept Attribution Map230

Attribution methods are useful for determining the regions deemed important by the model for231

the decision, but they lack the information about what exactly triggered it. We have seen that we232

can already extract this information from the matrices U and W , but as it is, we cannot know to233

which part of the image the model associates each concept, and thus, better comprehend the model’s234

decisions. In this section, we will show how we can unlock the set of attribution methods (forward235

and backward mode) to find where a concept is located in the input image (see Fig.1). Forward236

attribution methods don’t rely on gradients and only use inference information, whereas backward237

methods require to back-propagate through the network’s layers. By application of the chain rule,238

computing ∂U
∂x requires access to ∂U

∂A .239

To do so, it could be tempting to solve the linear system UW T = A. However, this problem is240

ill-posed since W T is low rank. A standard approach is to calculate the Moore-Penrose pseudo-241

inverse (W T )+, which solves rank deficient systems by looking at the minimum norm solution [53].242

In practice (W T )+ is computed with the Singular Value Decomposition (SVD) of W T . Unfor-243

tunately, SVD is also the solution to the unstructured minimization of 1
2∥A − UW T ∥2F by the244

Eckart–Young–Mirsky theorem [54]. Hence, the non negativity constraints – i.e U ≥ 0,W ≥ 0 – of245

the NMF are ignored, which prevents approaches based on solving UTW = AT from succeeding.246

Other issues stem from the fact that the U ,W decomposition is generally not unique.247

Our third contribution consists on tackling this problem to allow the use of attribution methods – i.e.248

Concept Attribution Maps – by proposing a strategy to differentiate through the NMF layer.249

Implicit differentiation of NMF layers The NMF problem 1 is NP-hard [55], and it is not convex250

with respect to the input pair (U ,W ). However, fixing the value of one of the two factors and251
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Figure 4: Qualitative comparison. We compare concepts found by our method (top) to those
extracted with ACE [23] (bottom) for the classes Church, Garbage truck and English springer from
ILSVRC2012 [27].

optimizing the other turns the NMF formulation into a pair of Non Negative Least Squares (NNLS)252

problems (see Equation 3), which are convex. This ensures that alternating minimization (a standard253

approach for NMF) of (U ,W ) factors will eventually reach a local (and global) minimum:254

Ut+1 = argmin
U≥0

1

2
∥A−UW T

t ∥2F Wt+1 = argmin
W≥0

1

2
∥A−UtW

T ∥2F (3)

Each of the NNLS problem fulfills the KKT conditions[56, 57], which can be encoded in the so-called255
optimality function F , see Equation 10 Appendix C.2. The implicit function theorem [39] allows us256

to use implicit differentiation [38, 39, 58] to efficiently compute the Jacobians ∂U
∂A and ∂W

∂A without257

requiring to back-propagate through each of the iterations of the NMF solver:258

∂(U ,W , Ū , W̄ )

∂A
= −(∂1F )−1∂2F (4)

However, this requires the dual variables Ū and W̄ , which are not computed by Scikit-learn’s [59]259

popular implementation†. Consequently, we leverage the work of [62] and we re-implement our own260

solver with Jaxopt [40] based on ADMM [63], a GPU friendly algorithm (see Appendix C.2).261

We start by performing Concept Activations Factorization – i.e we precompute the concept bank W262

by solving the NMF. Concept Attribution Maps of a new input x are calculated by solving the NNLS263

problem minU≥0
1
2∥hl(x)−UW T ∥2F . The implicit differentiation of NMF layer ∂U

∂A is integrated264

into classical back-propagation to obtain ∂U
∂x . Most interestingly, this technical advance unlocks all265

white-box explainability methods [5, 6, 7, 8, 9, 12] to generate concept-wise attribution maps and266

trace the part of the image that triggered the detection of the concept. Additionally, it is even possible267

to employ black-box methods [4, 13, 26, 14] since it only amounts to solving an NNLS problem.268

4 Experimental evaluation269

We used CRAFT to explain a ResNet50V2 trained on the ILSRVC2012 [27] data set (ImageNet). We270

selected a subset of 10 classes, each containing 1000 images (those recommended by ImageNette‡).271

In all of our experiments, r = 25, like in [23] and the cropping function τ consists on randomly272

choosing 10 square 64× 64 patches for each image.We start by qualitatively validating CRAFT by273

showing that: (1) the method yields concepts that are easy to interpret (see Fig. 4), (2) the combination274

of local and global explanations allows to explain complex failure cases otherwise unexplainable275

with only the attribution methods (see Fig. 5). Then, we validate independently the new ingredients276

brought by the method by showing quantitatively that (3) recursivity allows us to refine concepts,277

making them more meaningful to humans with the help of two psychophysics experiments, and (4)278

Sobol indices allow for a better estimation of concept importance. Additional experiments, including279

†Scikit-learn uses a Block coordinate descent algorithm [60, 61], with a randomized SVD initialization.
‡https://github.com/fastai/imagenette
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Figure 5: This is a Shovel. We compare a heatmap generated by RISE [13] (left) with the Concept
Attribution Maps generated with our implicit differentiation pipeline and Grad-CAM (right) on the
explanations of the two most influential concepts that drove the ResNet50’s decision. We found a
first concept that seems to be associated with textures of dirt commonly found in the images of the
class Shovel. The second concept elucidated by CRAFT is located on the astronaut’s pants, which he
confuses with the ski suits of people clearing snow from their driveway with a shovel.

a sanity check and an example of activation maximization (Deep dream) on the concept bank, as well280

as many other examples of local explanations for randomly picked images from ILSVRC2012, are281

included in appendix B.282

We leave a discussion on the limitations of this method and on the broader impact in appendix A.283

4.1 Example of CRAFT concepts284

Figure 4 compares the examples of concepts found by CRAFT against those found by ACE [23] for 3285

classes of Imagenet. For each class the concepts are ordered by importance (the highest being the286

most important). ACE uses a clustering technique and TCAV to estimate importance, while CRAFT287

uses the method introduced in 3 and Sobol to estimate importance. These examples illustrate one288

of the weaknesses of ACE: the segmentation used can introduce biases through the baseline value289

used [64, 10]. The concepts found by CRAFT seem distinct: (vault, cross, stained glass) for the290

Church class, (dumpster, truck door, two-wheeler) for the garbage truck, and (eyes, nose, fluffy ears)291

for the English Springer. More examples can be found in the appendix.292

4.2 Explaining complex failure cases293

Experts (n = 36) Laymen (n = 37)

Intruder

Acc. Concept 70.19% 61.08%
Acc. Sub-Concept 74.81% (p = 0.18) 67.03% (p = 0.043)

Binary choice

Sub-Concept 76.1% (p < 0.001) 74.95% (p < 0.001)
Odds Ratios 3.53 2.99

Table 1: Results from the psychopshysics experiments.

One of the goals of explainability is to294

explain the failure cases of the models295

studied. Figure 5 shows an example296

of an incorrect prediction: the model297

in question – here still a ResNet50 –298

predicts ‘shovel’. Moreover, the at-299

tribution method on the left – here300

RISE [13] – does not tell us much301

except that the evidence for shovel302

seems to be located at the level of the303

ground and the lower torso and legs304

of the astronaut. With CRAFT, we can however study the concepts found by the model at these305

locations. There are two of them: the first concept in green, aims at the lunar ground and refers to the306

rocks often seen next to shovels in the dataset. The second concept in purple is aimed at the legs of307

the astronaut and refers to the legs of a person, often in a ski suit, which he takes for the astronaut’s.308

4.3 Validation of Recursivity309

To evaluate the meaningfulness of the extracted high-level concepts, we performed psychopshysic310

experiments with human subjects, to whom we requested to answer a survey in two phases. Further-311

more, we distinguished two different audiences: on the one hand, experts in machine learning, and on312
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the other hand, people with no particular knowledge in computer vision. Both groups of participants313

were volunteers and didn’t receive any monetary compensation. Some examples of the developed314

interface are available the appendix E.315

Intruder detection experiment, we make users identify the intruder out of a series of five segments316

belonging to a certain class, with the odd one being taken from a different concept but from the same317

class. Now, we compare the results of this intruder detection with a concept (e.g., C1) coming from a318

layer l and one of its sub-concepts (e.g., C12 in Fig.2) extracted using our recursive method. If the319

concept (or sub-concept) is meaningful, then it should be easy for the users to find the intruder. Table 1320

summarizes our results, showing that indeed both concepts and sub-concepts are meaningful, and321

that recursivity can lead to a slightly higher understanding of the generated concepts (significant for322

non-experts, not significant for experts) and might suggest a way to make concepts more interpretable.323

Binary choice experiment, In order to test the improvement of the meaningfulness of the sub-324

concept generated with recursivity with respect to the larger parent concept, we showed participants a325

segment belonging to a subcluster and to the parent cluster (e.g., τ (x) ⊂ C11 ⊂ C1) without specify-326

ing why those images are grouped together. We then we asked which of the two clusters (i.e., C11 or C1)327

seemed to accommodate the image the best. If our hypothesis is correct, then the concept refinement328

brought by recursivity should help form more coherent clusters. The results in Table 1 are satisfying,329

since in both the expert and non-expert groups, the participants chose the sub-cluster by more than 74%330

of the times. We measure the significance of our results by fitting a binomial logistic regression to our331

data, and we find that both groups are more likely to choose the sub-concept cluster (at a p < 0.001).332

Figure 6: (Left) Deletion curve (lower is better).
(Right) Insertion curves (higher is better). Whether
in deletion or insertion, the score – calculated on more
than 100,000 images – shows that using Sobol indices
yield to better estimates of important concepts.

333

4.4 Fidelity analysis334

We propose to simultaneously verify that335

the concepts are faithful to the model and336

that the concept importance estimator per-337

forms better than TCAV [22] by using338

the fidelity metrics introduced in [23, 24].339

These metrics are similar to the one used340

for attribution methods, which consist on341

studying the change of the logit score when342

removing/adding pixels considered impor-343

tant. Nevertheless, we do not make these344

modifications in the pixel space but in the345

concept space: once U ,W are computed,346

we reconstruct the matrix A ≈ UW T us-347

ing only the most important concept (or348

removing the most important concept for deletion), and study the score in output of the model. As349

can be seen from Fig. 6, ranking the extracted concepts using Sobol’s importance score results in350

much steeper curves than when they are sorted by their TCAV scores. We confirm these results with351

other matrix factorization techniques (PCA, ICA, RCA) in the Appendix F.352

5 Conclusion353

In this paper, we introduced a method for automatically extracting human-scrutable concepts from354

Deep Neural Network: CRAFT. Our method allows to explain a pre-trained model both in a per-class355

and per-instance basis by highlighting both what the model saw when predicting the class label356

and where it is located, which, as we have shown, exhibits complementary benefits. The approach357

relies on three novel ingredients: 1) exploiting the recursive nature of the feature extraction chains in358

CNNs to find decompositions where each concept is clearly understandable; 2) measuring concept359

importance through Sobol indices to more accurately identify which concepts influence a model’s360

decision for a given class; and 3) harnessing implicit differentiation to backpropagate through NMF361

blocks, thus enabling the use of any attribution method to create concept-wise local explanations that362

we call Concept Attribution Maps. Human experiments confirmed the validity of the approach and363

that concepts identified by CRAFT are meaningful. We hope that this work will guide further efforts364

in the search for concept-based explainability methods and that further connections between local365

and global explanations will be made.366
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