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ABSTRACT

Continual learning (CL) aims to train a model on a sequence of tasks (i.e., a CL
scenario) while balancing the trade-off between plasticity (learning new tasks) and
stability (retaining prior knowledge). The dominantly adopted conventional evalua-
tion protocol for CL algorithms selects the best hyperparameters within a given
scenario and then evaluates the algorithms using these hyperparameters in the same
scenario. However, this protocol has significant shortcomings: it overestimates
the CL capacity of algorithms and relies on unrealistic hyperparameter tuning,
which is not feasible for real-world applications. From the fundamental principles
of evaluation in machine learning, we argue that the evaluation of CL algorithms
should focus on assessing the generalizability of their CL capacity to unseen scenar-
ios. Based on this, we propose the Generalizable Two-phase Evaluation Protocol
consisting of a hyperparameter tuning phase and an evaluation phase. Both phases
share the same scenario configuration (e.g., number of tasks) but are generated from
different datasets. Hyperparameters of CL algorithms are tuned in the first phase
and applied in the second phase to evaluate the algorithms. We apply this protocol
to class-incremental learning, both with and without pretrained models. Across
more than 8,000 experiments, our results show that most state-of-the-art algorithms
fail to replicate their reported performance, highlighting that their CL capacity has
been significantly overestimated in the conventional evaluation protocol.

1 INTRODUCTION

In recent years, extensive research has been conducted on continual learning (CL) with the goal
of effectively learning knowledge from a sequence of tasks (Wang et al., 2023). A neural network
model in such CL scenarios faces a crucial trade-off between learning new knowledge from novel
tasks (plasticity) and maintaining knowledge on previous tasks (stability) (Mermillod et al., 2013).
To address this inherent trade-off, numerous algorithms have been proposed for successful CL
in various domains (Wang et al., 2023). In these domains, many CL studies have focused on
classification, primarily concentrating on class-incremental learning (class-IL) (Masana et al.,
2020) without or with pretrained models (Zhou et al., 2024a). However, deploying CL algorithms
requires careful hyperparameter tuning. Figure 1 illustrates the conventional evaluation protocol
(including hyperparameter tuning) dominantly employed in both offline and online class-incremental
learning (Zhou et al., 2022; Boschini et al., 2022; Zhou et al., 2024b; Smith et al., 2023; Seo et al.,
2024). Additionally, similar evaluation protocols are also widely applied across other CL domains
for semantic segmentation (Cha et al., 2021b; Yuan & Zhao, 2024), test-time adaptation (Yoo et al.,
2024; Lee et al., 2024), federated learning (Piao et al., 2024), self-supervised learning (Fini et al.,
2022; Cha et al., 2024) and large language models (Ke et al., 2023; Wu et al., 2024).

Many algorithms have been considered state-of-the-art based on performance validated through the
conventional evaluation protocol. However, this raises two issues: First, the hyperparameter tuning
method used in this protocol is not applicable to real-world CL scenarios. Second, it results in
evaluation overfitting to a given scenario and dataset, which in turn leads to an overestimation of their
CL capacity. In other words, this protocol only assesses performance in a seen scenario but fails to
evaluate generalizability to new, unseen ones—an essential aspect for real-world applications. While
several alternative evaluation protocols and hyperparameter tuning methods have been proposed, they
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Figure 1: This figure illustrates the conventional evaluation protocol. First, a CL scenario is con-
structed using a benchmark dataset, where each task has its own training, validation, and test sets.
Second, to find the best hyperparameters H∗, a model is sequentially trained up to the final task
using the sampled hyperparameters. After training for each task t, the model θt is evaluated using the
validation dataset. This process is repeated for various hyperparameters, and the best hyperparameters
are selected based on performance. Finally, the model is trained using the CL algorithm with the best
hyperparametersH∗ in the same CL scenario, and report the evaluation result on the test dataset. Note
that in many studies, the results are reported using only Dval without separating Dte (i.e., Dte = Dval).

also have limitations: 1) they require to tune additional hyperparameters for their methods (Delange
et al., 2021; Liu et al., 2023), or 2) they are only applied to a few old algorithms, and have not gained
widespread acceptance (Chaudhry et al., 2018b; Chen et al., 2023; Bornschein et al., 2023). As a
result, the issues with the conventional evaluation protocol have been largely ignored, and it remains
the dominant evaluation protocol for evaluating CL algorithms until now.

In this paper, we aim to reveal the limitation of the conventional evaluation proto-
col by revisiting the fundamental principles of evaluation in machine learning. From
this perspective, we argue that the evaluation of CL algorithms should prioritize as-
sessing the generalizability of each algorithm’s CL capacity across unseen scenarios.

Figure 2: Results on both phases.

To achieve this goal, we propose a revised evalua-
tion protocol, the Generalizable Two-phase Evalua-
tion Protocol (GTEP), which consists of two phases:
the hyperparameter tuning phase and the evaluation
phase. Both phases share the same CL scenario con-
figuration (e.g., the number of tasks and classes per
task) yet leverage distinct datasets. In the hyperpa-
rameter tuning phase, a model is trained using various
hyperparameters of an algorithm, and the best hyper-
parameters are selected based on performance. These
best hyperparameters are then applied directly to train
the model using the algorithm in the evaluation phase,
where the measured performance serves as a reliable
benchmark for the algorithm’s CL capacity in unseen
scenarios. As an initial application of this protocol, we focus on the most actively researched domain
of CL—class-incremental learning (class-IL)—both with and without pretrained models (Wang et al.,
2023). From approximately 8,000 experiments, we derive the following key findings:

• First, as shown in Figure 2, most state-of-the-art class-IL algorithms achieve superior perfor-
mance in the hyperparameter tuning (HT) phase, which is almost identical the conventional
evaluation protocol. However, they reveal limited generalizability in their CL capacity in the
evaluation (Eval) phase. This tendency is particularly pronounced in the recently proposed
algorithms.

• Second, further analysis shows that these algorithms are limited by long training times, a
large number of required parameters, or significant performance variance, suggesting they
are less efficient than expected.

Based on extensive experimental results with the proposed evaluation protocol, we highlight major
shortcomings of the conventional approach, which consistently overestimates the CL capacity of
algorithms. In conclusion, we advocate for a fundamental reconsideration of the evaluation protocol
across all domains to drive meaningful progress in CL research.
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2 RELATED WORK

Continual learning Continual learning (CL) research has been conducted in various domains (Wang
et al., 2023; Parisi et al., 2019; Delange et al., 2021; Masana et al., 2020). In the beginning, the
CL research focus on task-incremental learning (Parisi et al., 2019; Delange et al., 2021), exploring
diverse approaches (Li & Hoiem, 2017; Aljundi et al., 2018; Chaudhry et al., 2018a; Cha et al.,
2021a; Yoon et al., 2017). As the field progressed, attention shifted to the more challenging scenario,
class-incremental learning (class-IL) (Masana et al., 2020). This shift leads to the investigation of
exemplar-based methods, involving the effective utilization of exemplar memory storing a subset
of the dataset from previous tasks (Rebuffi et al., 2017; Zhao et al., 2020; Cha et al., 2023a). Since
then, using the exemplar memory has become standard, with several methods building on this
foundation. Regularization-based methods, which overcome catastrophic forgetting by introducing a
novel regularization (Wu et al., 2019; Douillard et al., 2020), and model expansion-based methods,
which dynamically expand model capacity to balance the trade-off between stability and plasticity,
have become the most powerful approach, achieving state-of-the-art performance (Wang et al., 2022b;
Yan et al., 2021; Zhou et al., 2022; Wang et al., 2022a).

Class-IL using pretrained models has recently gained considerable attention for achieving strong
performance without relying on the exemplar memory (Zhou et al., 2024a). Prompt-based meth-
ods enable class-IL through prompt learning while keeping the pretrained model frozen. These
approaches have evolved over time, incorporating techniques such as using prompt pool (Wang
et al., 2022d), prompt combination (Wang et al., 2022c), decomposed prompt (Smith et al., 2023),
and prompt generation (Jung et al., 2023). Additionally, representation-based methods derive class
prototypes from the pretrained model and use them for classification (Zhou et al., 2023b). To enhance
the separability of these prototypes, several recent methods have focused on reducing class-wise
correlation (McDonnell et al., 2024; Zhou et al., 2024b).

Evaluation and hyperparameter tuning of CL Several papers have proposed new evaluation
metrics and protocols for the proper assessment of CL algorithms in classification. Traditionally,
accuracy-based metrics (e.g., final and average accuracy) have been used as the primary metrics
of evaluating performance of CL algorithms (Parisi et al., 2019; Masana et al., 2020; Chaudhry
et al., 2018a). However, recent studies have highlighted limitations of these metrics, particularly
regarding computational costs (Prabhu et al., 2023) and learned representations (Cha et al., 2023b).
Delange et al. (2021) introduced a hyperparameter tuning method for task-incremental learning, which
involves first conducting a maximum plasticity search and then selecting the best hyperparameters
using stability decay. Similarly, Liu et al. (2023) proposed a hyperparameter selection method for
class-IL based on a bandit algorithm. However, both approaches entail additional training costs and
the need to tune extra hyperparameters. Other studies have proposed evaluation protocols similar to
ours (Chaudhry et al., 2018b; Chen et al., 2023; Bornschein et al., 2023). However, these protocols
have only been applied to a limited number of older algorithms in specific domains, which fails to
fully uncover the limitations of the conventional evaluation protocol. In addition to these efforts,
despite discussions on proper CL evaluation (Mundt et al., 2022), the conventional evaluation protocol
has continued to dominate the assessment of state-of-the-art CL algorithms across various domains.

3 TOWARDS EVALUATING THE GENERALIZABILITY OF THE CL CAPACITY

3.1 MOTIVATION: IMPROPER HYPERPARAMETER TUNING

As shown in Figure 1, the primary flaw of the conventional evaluation protocol is that it optimizes an
algorithm’s hyperparameters in a given CL scenario and then evaluates the algorithm using those
same hyperparameters. Surprisingly, many studies have reported their results by directly tuning
hyperparameters on test data without considering separate validation sets (i.e., set DHT

te = DHT
val ), as

seen in studies such as Wu et al. (2019); Douillard et al. (2020); Zhao et al. (2020); Yan et al. (2021);
Wang et al. (2022b); Zhou et al. (2022); Wang et al. (2022a;d); Zhou et al. (2023b; 2024b), and
others. Note that this approach is only feasible in experimental scenarios where all task data is always
available. Consequently, this hyperparameter tuning method fails to capture the real challenges of CL
and is not applicable to real-world situations. While many studies partially address this limitation
by reporting robust performance across various experiments with some fixed or minimally adjusted
hyperparameters (Wang et al., 2022a;d; Zhou et al., 2024b), these evaluations are still based on given
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Figure 3: Illustration of the proposed evaluation protocol. Both phases share the same CL scenario
configuration (e.g., the number of tasks and number of classes in each task) but they are generated
from distinct datasets (DHT and DE). Best hyperparameters are selected in the hyperparameter
tuning phase. Then, the evaluation phase access a CL algorithm by training a model using them.
Note that evaluating an algorithm solely based on the results from the hyperparameter tuning phase is
identical to the conventional evaluation protocol without using Dte.

scenarios (i.e., seen scenarios), making it challenging to assess whether the algorithms would perform
equally well in unseen scenarios. Nevertheless, this conventional protocol remains the predominant
evaluation protocol for assessing algorithms across most CL domains.

Algorithm 1: The Generalizable Two-phase Evaluation Protocol

Input : A CL algorithm A, a model θ, the dataset for the hyperparameter tuning phase DHT , the
dataset for the evaluation phase DE , the number of random samplings R, the number of trials S,
and the number of hyperparameters K.

Output : Final evaluation result (PE) for a CL algorithm A in the evaluation phase
1. {(Hi, P

HT
i )}Ri=1← HyperparameterTuning(θ,A, DHT , R, S,K)

2. H∗ ← SelectBestHyperparameter({(Hi, P
HT
i )}Ri=1)

3. PE ← Evaluation(θ,A, DE ,H∗, S)

3.2 GENERALIZABLE TWO-PHASE EVALUATION PROTOCOL (GTEP) FOR CL

Given the previously discussed issues with the conventional evaluation protocol, the key question
becomes: What hyperparameter tuning and evaluation protocol should be used to properly assess CL
algorithms? Note that effective evaluation in machine learning should prioritize realistic methods
tailored to each learning scenario, rather than rigidly adhering to assumptions (e.g., i.i.d.) for
theoretical convenience. In this regards, we argue that evaluating the generalizability of each
algorithm’s CL capacity is essential. For example, consider a real-world CL scenario where an
algorithm is applied to a CL scenario consisting of a sequence of tasks. Since the entire task data
would not be fully accessible at once, the conventional hyperparameter tuning method cannot be
applied. In such cases, a reasonable approach is to construct a simulated CL scenario, reflecting the
expected actual CL scenario, using a benchmark or available dataset. This involves identifying the
best hyperparameters in the simulated scenario and then applying them to the actual CL scenario.
In other words, one of the basic evaluation protocols—consistent with the fundamental principles
of evaluation in machine learning—is to tune hyperparameters in seen scenarios (e.g., simulated
scenarios) and test them in unseen scenarios (e.g., actual scenarios).

Building on the above concept, we propose a revised evaluation protocol consisting of two phases,
the Generalizable Two-phase Evaluation Protocol (GTEP): hyperparameter tuning and evaluation.
Figure 3 and Algorithm 1 outlines the overall process. The key idea is that CL scenarios for the
hyperparameter tuning and evaluation phases are generated from different datasets (i.e., DHT ̸= DE)
but share the same scenario configuration (e.g., the number of tasks and classes per task), based
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on expectations on the actual scenario. In the hyperparameter tuning phase, the goal is to identify
the best hyperparameters for the CL algorithm. In the evaluation phase, these hyperparameters are
applied to assess the algorithm’s CL capacity in unseen scenarios, providing a more realistic measure
of its generalizability.

The pseudo algorithm of the hyperparameter tuning phase is outlined in Algorithm 2 of the Appendix.
First, we randomly sample hyperparameters hk from a predefined set hSet

k and build a list of selected
hyperparametersHr. Next, we generate a predefined CL scenario using the function F with shuffled
class orderings. Afterward, the model θ is trained using the selected hyperparameters Hr, the
CL algorithm A, and the training dataset DHT

tr . Performance (PHT ) is then measured on the
validation dataset DHT

val . This phase returns multiple sets of hyperparameters and their corresponding
performance. Next, using the SelectBestHyperparameter function in Algorithm 1, we select
the best hyperparameters, denoted asH∗. Note that the hyperparameter tuning phase is identical to
the conventional evaluation protocol. However, we only use the results from this phase to select the
best hyperparameters.

In the evaluation phase (shown in Algorithm 3 of the Appendix), we train a model θ using the CL
algorithm with the best hyperparameters H∗. The trained model is then tested on the validation
dataset DE

val. The final performance metric is the averaged performance (PE) of the trained model
across multiple class orderings, which serves as the evaluation criterion for the CL algorithm.

To find the best hyperparameters for each algorithm, we optimize both algorithm-specific hyperpa-
rameters (e.g., regularization strength) and general hyperparameters (e.g., learning rate and batch
size). During the hyperparameter tuning phase, we train the model with R sets of randomly selected
hyperparameters and account for S task orderings per set. In the evaluation phase, we assess the
performance across S task orderings as well. In this paper, we set R = 30 and S = 5 for all experi-
ments. We also take into account various similarity scenarios between the hyperparameter tuning
dataset (DHT ) and the evaluation dataset (DE). High similarity indicates that the characteristics of
the dataset used in the actual scenario are somewhat predictable, allowing us to generate a scenario
for the hyperparameter tuning phase using a similar dataset. Conversely, low similarity suggests
unpredictability, indicating that the datasets used to generate scenarios in both phases differ signifi-
cantly. Evaluating each algorithm under both similarity cases offers a comprehensive understanding
of the generalizability of its CL capacity. Furthermore, these efforts towards accurate evaluation
highlight the methodological differences from previously proposed evaluation protocols (Chaudhry
et al., 2018b; Chen et al., 2023; Bornschein et al., 2023; Mundt et al., 2022), as the revised evaluation
protocol. Additionally, note that the high-level concept of the proposed protocol can be applied to
various CL domains by considering the specific characteristics of these domains (e.g., imbalanced
classes per task, blurred task boundaries, or entirely different domains such as semantic segmentation)
in the CL scenario generation process (denoted as F in Algorithms 2 and 3) for both phases.

4 EXPERIMENTAL RESULTS

In this section, we present extensive experimental results using our proposed protocol in the most
actively researched domain of continual learning (CL) (Wang et al., 2023), class-incremental learning
(class-IL) both without and with pretrained models (Masana et al., 2020; Zhou et al., 2024a; 2023a).

4.1 CLASS-INCREMENTAL LEARNING WITHOUT PRETRAINED MODELS

Experimental settings We conduct the hyperparameter tuning and evaluation phases
Table 1: Scenarios and datasets.

Scenario DHT DE

10 Tasks
(C10×T10) ImageNet-100-1 ImageNet-100-2

6 Tasks
(C50×T1 + C10×T5)

10 Tasks
(C5×T10) ImageNet-50-1,

CIFAR-50-1
ImageNet-50-2,

CIFAR-50-26 Tasks
(C25×T1 + C5×T5)

using benchmark datasets, as shown in Table 1. From
ImageNet-1k (Deng et al., 2009), we derive two
subsets, ImageNet-100-1 and ImageNet-100-2, each
containing 100 randomly selected non-overlapping
classes. To account for varying dataset similari-
ties, we further divide CIFAR-100 (Krizhevsky et al.,
2009) and ImageNet-100-1 into disjoint classes, gen-
erating CIFAR-50-1, CIFAR-50-2, ImageNet-50-1,
and ImageNet-50-2. We focus on two primary class-incremental learning (class-IL) scenarios (Masana
et al., 2020): 10 Tasks, where the model learns an equal number of classes from each task, and 6
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Tasks, where the model learns half of the total classes in the first task then evenly distributes the
remaining classes evenly across subsequent tasks. Note that evaluating using both scenarios has
been widely considered the proper assessment of each algorithm (Masana et al., 2020; Zhou et al.,
2023a) The table presents the configuration of the number classes (C) and tasks (T) for each scenario.
We conduct experiments using ResNet (He et al., 2016). We employ two key performance metrics
commonly used for evaluating class-IL algorithms (Masana et al., 2020): Acc is final classification
accuracy for the entire validation dataset after training the final task, and AvgAcc = 1

T

∑T
t=1 Acct,

where Acct denotes accuracy on the validation data up to task t. The hyperparameters that yield the
highest harmonic mean of Acc and AvgAcc are selected during the hyperparameter tuning phase.

Baselines We evaluate nine major class-IL algorithms, including replay-based methods (Replay,
iCaRL (Rebuffi et al., 2017), and WA (Zhao et al., 2020)) and regularization-based methods (BiC (Wu
et al., 2019) and PODNet (Douillard et al., 2020)) and expansion-based methods (DER (Yan et al.,
2021), FOSTER (Wang et al., 2022b), and BEEF (Wang et al., 2022a)). Note that we use the partially
implemented DER, as neither PyCIL nor the official DER code includes the implementation details
for masking and pruning. Replay serves as a naive baseline, where a model is fine-tuned using both
the exemplar memory and the current task’s dataset. Note that these algorithms have demonstrated
progressively improved performance in the order of their publication. Among them, FOSTER,
BEEF, and MEMO are recognized as the current state-of-the-art, reporting superior performance that
surpasses DER by a small margin. We conduct experiments using the implementation code proposed
in PyCIL (Zhou et al., 2023a). The size of the exemplar memory is set to 2000 for ImageNet-100, and
1000 for ImageNet-50 and CIFAR-50 variants. More details on settings, predefined hyperparameter
sets and selected hyperparameters are presented in Section B.1 of the Appendix.

(a) Results on DHT = ImageNet-100-1 (b) Comparing results on DHT and DE

Figure 4: Experimental results (AvgAcc) on the 10 Tasks scenario using ImageNet-100-1 for DHT

and ImageNet-100-2 for DE (high similarity). The term ’Original’ andH∗ refer to the use of reported
hyperparameters and hyperparameters selected from our protocol, respectively. BEEF constantly
returns NaN in training loss at specific seeds so we could not report its performance.

Experiments using original and selected hyperparameters To demonstrate whether the hyperpa-
rameters identified during the hyperparameter tuning phase achieve better performance than those
previously reported, we conduct experiments with both sets of hyperparameters. Figure 4(a) presents
results on DHT = ImageNet-100-1, showing that using the best hyperparameters (H∗) generally out-
performs the original ones across all algorithms except BEEF. Note that the performance differences
among DER, FOSTER, and MEMO are within their respective standard deviations. Considering the
hyperparameter tuning phase aligns with the conventional evaluation protocol, this graph indicates
that each algorithm reflects the performance trends observed in their respective papers, gradually
improving over time in accordance with the order of publication. On the other hand, we confirm that
BEEF is significantly sensitive to hyperparameters, as it occasionally results in NaN (Not a Number)
in training loss for specific seeds, even when using the original hyperparameters.

In the evaluation phase, we apply the best hyperparameters to assess the CL capacity in unseen
scenarios generated by DE . Note that, due to differences in the datasets between these phases, the
final performance may vary across phases, even when using identical hyperparameters for each
algorithm. Figure 4(b) presents experimental results. The graph shows that the CL capacity of the
state-of-the-art algorithms (i.e., FOSTER, BEEF, and MEMO) is significantly inferior to that of older
algorithms, such as WA, BiC and PODNet. Additionally, BEEF again produces NaN values for
certain seeds. In contrast, DER demonstrates superior generalizability of its CL capacity, consistently
maintaining strong performance in both phases.
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Figure 5: Bar graphs depict the experimental results from the evaluation phase. The Y-axis represents
final classification accuracy (Acc). The parentheses next to each algorithm indicate the publication
year. The bar graphs in the first row show the experimental results using the best hyerparameters
selected in the hyperparameter tuning phase with DHT = CIFAR-50-1 , while the graphs in the
second row show the results using DHT = ImageNet-50-1 . In cases of using ImageNet-50-1 or
ImageNet-50-2, we encountered challenges in obtaining results for BEEF due to NaN issues.
Experiments across diverse similarity cases To broadly assess the generalizability of each al-
gorithm’s CL capacity, we conduct experiments across various similarity cases. The bar graphs
in the first row of Figure 5 display results for both high and low similarity cases, using the best
hyperparameters selected during the hyperparameter tuning phase using DHT = CIFAR-50-1. In
most cases, iCaRL performs worse than Replay, and BiC also struggles in some cases (e.g., 6 tasks
in both high and low similarity settings). Additionally, both WA and PODNet outperform other
regularization-based methods, with PODNet particularly excelling in the 6 Tasks. Lastly, the current
state-of-the-art methods—FOSTER, BEEF, and MEMO—exhibit lower performance compared to
DER, with BEEF again showing significant sensitivity, especially on ImageNet-50-2.

The second row of Figure 5 presents results using the best hyperparameters selected based on
DHT = ImageNet-50-1. The trends are consistent with previous experiments: DER maintains
superior performance in most cases, although FOSTER surpasses DER in the low similarity case (6
tasks). Additionally, BEEF suffers from NaN issues in training loss for certain seeds.

(a) Performance graph (b) Number of parameters (c) Total training time

Figure 6: Experimental analysis in the evaluation phase. All experimental results are obtained by
first identifying the best hyperparameters using CIFAR-50-1 (10 Tasks) in the hyperparameter tuning
phase, then evaluating each algorithm using CIFAR-50-2 (10 Tasks) in the evaluation phase. (b) and
(c) show results after training up to the final task.
Additional analysis Figure 6(a) shows the evaluation results for each task t in the evaluation phase,
with shaded areas representing the standard deviation across 5 trials. From these graphs, it is evident
that DER consistently outperforms current state-of-the-art algorithms (i.e., FOSTER, BEEF and
MEMO). Considering the standard deviation, the performances of FOSTER and MEMO are nearly
indistinguishable. Among the remaining algorithms, WA demonstrates relatively better performance
while BEEF performs similarly to the order algorithms.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Recent studies have increasingly focused on evaluating CL algorithms based on their training costs,
particularly in terms of GPU usage and energy consumption (Prabhu et al., 2023; Chavan et al.,
2023). However, these evaluations were often conducted by either limiting the number of training
iterations or comparing costs under a fixed number of training epochs. Building on this, we extend
the analysis by examining the final model size and total training time for each algorithm, using their
best hyperparameters to ensure a fair and comprehensive comparison of efficiency. Figures 6(b) and
6(c) present scatter plots showing achieved accuracy, total parameter counts, and training times. DER
performs the best and requires relatively less training time. Nevertheless, it exhibits considerable
inefficiency in the total number of parameters, which increases linearly with the number of tasks,
raising concerns about its actual cost-efficiency as a CL algorithm. On the other hand, BiC, BEEF,
and MEMO fail to demonstrate superior performance while requiring similar or longer training times
compared to DER, highlighting their serious inefficiency.

4.2 CLASS-INCREMENTAL LEARNING WITH PRETRAINED MODELS

Experimental details We conduct both the hyperparameter tuning and evaluation phases
Table 2: Scenarios and datasets.

Scenario DHT DE

20 Tasks
(C10×T20) CUB-200,

ImageNet-R
ImageNet-R,
ImageNet-A10 Tasks

(C20×T10)
20 Tasks

(C5×T20) CUB-100-1,
ImageNet-R-1

CUB-100-2,
ImageNet-R-2,
ImageNet-A-210 Tasks

(C10×T10)

using widely used datasets in class-incremental
learning (class-IL) with pretrained models, in-
cluding CUB-200 (Wah et al., 2011), ImageNet-
R (Hendrycks et al., 2021a), and ImageNet-
A (Hendrycks et al., 2021b), all of which contain
200 classes. To explore diverse similarity cases, we
divide these datasets into two disjoint subsets, as out-
lined in Table 2. Following Sun et al. (2023), we
consider two major class-IL scenarios: 20 Tasks and
10 Tasks, where the model learns an equal number of
classes in each task. Note that the 20 Tasks scenario has been commonly regarded as the standard for
better evaluating algorithm performance due to the need to handle more tasks. For all experiments,
we employ the ViT B16 model, which is pretrained on ImageNet (Dosovitskiy et al., 2020). The best
hyperparameters are selected based on the same metrics: the harmonic mean of Acc and AvgAcc.

Baselines We select six major algorithms: prompt-based methods (L2P (Wang et al., 2022d),
DualPrompt (Wang et al., 2022c) and CODA-Prompt (Smith et al., 2023)) and representation-based
methods (Adam-Adapter (Zhou et al., 2023b), Ranpac (McDonnell et al., 2024) and EASE (Zhou
et al., 2024b)). Within each category, CODA-Prompt and EASE represent current state-of-the-art
algorithms. Although DAP (Jung et al., 2023) reports better performance within the prompt-based
method category, we exclude it due to fairness issues in comparison, as mentioned in Zhou et al.
(2024a). All experiments are conducted using code implemented in PILOT (Sun et al., 2023). Details
on experimental settings, predefined hyperparameter sets the best hyperparameters are proposed in
Section B.2 of the Appendix.

(a) Results on DHT = CUB-200 (b) Comparing results on DHT and DE

Figure 7: Experimental results (AvgAcc) for 10 Tasks scenario using CUB-200 for DHT , ImageNet-
R, and ImageNet-A for DE (low similarity). The term ’Original’ andH∗ refer to the use of original
hyperparameters and the hyperparameters selected from our protocol, respectively.
Experiments using original and selected hyperparameters To verify best hyperparameters
selected in the hyperparameter tuning phase, we conduct experiments on DHT = CUB-200 using
both the reported and selected hyperparameters of each algorithm. Figure 7(a) demonstrates that
using the selected hyperparameters leads to better performance across all algorithms. Additionally,
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Figure 8: Bar graphs depict the experimental results from the evaluation phase. The Y-axis represents
final accuracy (Acc). In the legend, the parentheses next to each algorithm indicate the publication
year. The bar graphs in the first row show the experimental results using the best hyerparameters
selected in the hyperparameter tuning phase with DHT = CUB100-1 , while the graphs in the second
row display the results using DHT = ImageNet-R-1 .

we observe that the performance of each algorithm gradually improves in accordance with their
publication order, as reported in the respective papers. Note that Ranpac and EASE demonstrate
similar performance, with differences falling within their standard deviations.

Following our evaluation protocol, we apply the best hyperparameters for each algorithm in the
evaluation phase. We conduct experiments for two evaluation phases using ImageNet-R and ImageNet-
A as DE and Figure 7(b) shows experimental results. From these results, we can confirm the following
observations: First, among the prompt-based algorithms (solid lines), DualPrompt exhibits degraded
performance compared to L2P in both evaluation phases. Additionally, CODA-Prompt demonstrates
superior performance in all cases, although it shows nearly identical performance to L2P in the
ImageNet-R. In the case of the representation-based algorithms (dashed lines), Ranpac consistently
maintains its superiority across all datasets. However, EASE, recognized as the current state-of-the-art,
shows significantly poorer performance in both evaluation phases.

Experiments across diverse similarity cases Figure 8 presents the experimental results evaluated
in the evaluation phase. Similar to trends reported in Zhou et al. (2024a), representation-based
methods generally outperform prompt-based methods. However, significant differences are observed
under the proposed evaluation protocol: First, the prompt-based methods have reported substantial
performance improvements over previous algorithms (e.g., 7-10% increases on the CUB200 dataset
for each algorithm (Zhou et al., 2024a)). However, the proposed evaluation protocol reveals either no
significant performance difference between them (e.g., low similarity (20 tasks) using ImageNet-R-2
in the first row of the graph) or cases where an order algorithm outperforms a newer one (e.g., high
similarity (20 tasks) using CUB100-2 in the first row of the graph). Second, the current state-of-the-art
representation-based method, EASE, often underperforms compared to Ranpac, especially in low
similarity cases (e.g., low similarity (10 tasks) using ImageNet-R-2 in the first row of the graph).
Lastly, while Ranpac achieves the best performance in most cases, it exhibits significantly degraded
performance in several low similarity cases (e.g., low similarity (20 tasks) using ImageNet-A-2 in
the first row of the graph). This degradation is attributed to considerable performance instability in
certain tasks.

Additional analysis As we already confirmed in the previous experiments, Figure 9(a) illustrates
that Ranpac suffers from significant instability in certain tasks, resulting in a substantial increase
in standard deviation (shaded area). Furthermore, we observe that the state-of-the-art algorithms,
EASE and CODA-Prompt in their respective categories, do not consistently outperform baseline
algorithms like ADAM and DualPrompt in many cases, highlighting a lack of generalizability in their
CL capacity.

9
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(a) Performance graph (b) # of trainable params (c) Training time

Figure 9: Experimental analyses in the evaluation phase. All experimental results are obtained by first
identifying the best hyperparameters using ImageNet-R-1 (20 Tasks) in the hyperparameter tuning
phase, then evaluating each algorithm using ImageNet-A-2 (20 Tasks) in the evaluation phase. (b)
and (c) show the results after training up to the final task.

Figures 9(b) and 9(c) display the number of trainable parameters and training times with the best hy-
perparameters. For prompt-based algorithms, training times are comparable; however, CODA-Prompt
requires more parameters while delivering lower performance compared to DualPrompt. Among
representation-based methods, the oldest algorithm (i.e., ADAM) achieves the best performance with
minimal costs in terms of trainable parameters and training time.

In Section C of the Appendix, we present additional experimental results, including training graphs
and numerical data related to the results discussed in the manuscript.

5 CONCLUDING REMARKS
Problems with the conventional evaluation protocol The conventional evaluation protocol, which
is predominantly used to assess continual learning (CL) algorithms, has significant flaws because it
fails to consider real-world situations. In particular, the hyperparameter tuning method, which relies
on repeated training in a given scenario is not only inapplicable to real-world CL scenarios but also
tends to overestimate the CL capacity of each algorithm. According to the fundamental evaluation
principles of machine learning, the evaluation of CL algorithms should prioritize assessing the
generalizability of their CL capacity to unseen scenarios. In this regard, we propose the Generalizable
Two-phase Evaluation Protocol (GTEP), which involves tuning hyperparameters in seen scenarios
and then applying them to unseen scenarios, considering various similarity cases.

Summary of experimental findings Our experiments across various similarity cases provide several
key insights: First, the CL capacity of many algorithms, especially recent ones, has been significantly
overestimated. Although most state-of-the-art algorithms perform well in seen scenarios, their CL
capacity to unseen scenarios is often lacking. Second, we found that some of these algorithms are
highly sensitive to hyperparameters, resulting in instances where they fail to learn specific task orders
or exhibit significant performance variance on certain tasks. These two findings indicate that they
have reported overfitted results to the seen scenarios under the conventional evaluation protocol,
raising serious questions about their real-world applicability. Finally, even algorithms that perform
relatively well in the proposed protocol often incur excessive costs (e.g., training time and number of
parameters), undermining one of the key objectives of continual learning: cost-efficiency. Although
we reported the experimental results in class-incremental learning, we argue that these issues can
naturally be inferred to occur in other CL domains that use the same conventional evaluation protocol.

How should we evaluate going forward? – Key Takeaways We believe that the proposed
evaluation protocol provides a fundamental approach to assess the generalizability of each algorithm’s
CL capacity, taking into account both the fundamental evaluation principles in machine learning and
its real-world applications. Therefore, to make meaningful progress in CL research, we suggest that
future evaluations across all CL domains should at least check the following:

• Does the proposed algorithm outperform baseline algorithms when the best hyperparameters
selected from the hyperparameter tuning phase are applied to the evaluation phase?

• In the evaluation phase, is the proposed algorithm more efficient in terms of training costs
(e.g., total parameters and training time) compared to baseline algorithms? Additionally,
does it avoid significant instability?

There are several limitations to our work and we discuss both limitations and future work in Section
D of the Appendix.
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A ALGORITHM TABLES

Algorithm 2: Pseudo algorithm of the hyperparameter tuning phase

Input : A CL algorithm A, a model θ, the dataset for the hyperparameter tuning phase DHT , the
number of random samplings R, the number of trials S, the number of hyperparameters K, and
the function that generates a CL scenario F .

Output : {(Hi, P
HT
i )}Ri=1

1. Result← {}
2. for r ← 1 to R do
3. for k ← 1 to K do
4. hk ← RandomSample(hSet

k )

5. Hr ← (h0, h1, · · · , hK)

6. for s← 1 to S do
7. Initialize θ

8. DHT
tr , DHT

val ← F(Shuffle(DHT ))

9. PHT
s ← TrainCL(A, DHT

tr , DHT
val , θ,Hr)

10. PHT
r ← 1

S

∑S
s=1 P

HT
s

11. Add (Hr, P
HT
r ) to Result

Algorithm 3: Pseudo algorithm of the evaluation phase

Input : A CL Algorithm A, a model θ, the dataset for the Eval phase DE , the best
hyperparameter valueH∗, the number of trials S, the number of hyperparameters K, and the
function that generates a CL scenario F .

Output : Final evaluation result (PE) for A
1. for s← 1 to S do
2. Initialize θ

3. DE
tr, D

E
val ← F(Shuffle(DE))

4. PE
s ← TrainCL(A, DE

tr, D
E
val, θ,H∗)

5. PE ← 1
S

∑S
s=1 P

E
s
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B ADDITIONAL DETAILS ON EXPERIMENTAL SETTINGS

B.1 CLASS-INCREMENTAL LEARNING WITHOUT A PRETRAINED MODEL

Experimental details We conduct all experiments using PyCIL (Zhou et al., 2023a) in the following
environment: Python 3.8, PyTorch 1.13.1, and CUDA 11.7. We use ResNet-18 and ResNet-32
architectures for our experiments. For class-incremental learning without a pretrained model, we
employ the SGD optimizer with a momentum of 0.9 across all methods, consistent with their
respective implementations. Other hyperparameters, however, are sampled during the hyperparameter
tuning phase.

Table 3: Hyperparameters for training the first task.

Hyperparameters Values
Init epochs 200

Init learning rate 0.1

Init milestones [60, 120, 170]
(Only applied when ’StepLR’ is selected)

Init learning rate decay 0.1
Init weight decay 0.0005

Predefiend hyperparameters Recent studies have demonstrated that newer algorithms perform
better when trained for more epochs on the first task and fewer epochs on subsequent tasks (Masana
et al., 2020). Additionally, it is known that performance on the first task significantly impacts overall
performance (Cha et al., 2023b). To apply this approach consistently across all algorithms, we train a
model on the first task using the hyperparameters listed in Table 3. Subsequently, we train that model
with randomly sampled hyperparameters starting from the second task.

Figure 10: # of hyperparameters.

Figure 10 shows the number of hyperparameters for each algorithm. We consider both algorithm-
specific and general hyperparameters in the hyperparameter tuning phase. Table 4 presents the sets of
predefined hyperparameters considered for each algorithm. Note that ’Epoch’, ’Num milestones’, ’LR
decay’, ’Batch size’, ’Weight decay’, and ’LR scheduler’ are commonly considered hyperparameters
for all algorithms. Additionally, both ’Num milestones’ and ’Lr decay’ are applicable only when
’StepLR’ is selected as a scheduler. The others are specific hyperparameters of each algorithm. We
consider all the hyperparameters necessary for implementing each algorithm. For instance, even if a
specific algorithm uses the same value for a particular hyperparameter across all experiments (e.g.,
fixing the strength of an additional regularization to 1), we aimed to find the best hyperparameter for
it (e.g., setting the strength as α and finding the best value of it in the hyperparameter tuning phase).
We determine the range of values for the predefined hyperparameters based on the following criteria.
First, for general hyperparameters, we establish the range to include all optimal values reported by
each algorithm. For specific hyperparameters related to each algorithm, we not only include the
optimal values report in the papers but also considered the full range of values that were explored
during their hyperparameter searches.

When the LR scheduler is set to StepLR, the milestones must be determined. To achieve this, we
generalize the process of random sampling based on the milestones used in existing algorithms. First,
we randomly sample num_milestones. Based on this sampling, the milestones for the StepLR are
set according to the following rule: For example, if Num_milestones is set to 2, the milestones are
defined as [epoch*(2/5), epoch*(4/5)]. If set to 3, the milestones become [epoch*(2/7), epoch*(4/7),
epoch*(6/7)]. Similarly, for 4 milestones, the values are [epoch*(2/9), epoch*(4/9), epoch*(6/9),
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epoch*(8/9)]. However, note that the num_milestones is ignored when another LR schduler is
selected.

Table 4: The predefined set of hyperparametes for class-IL without a pretrained model.

Algorithm Hyperparameter Name hSet

All algorithms

Epoch [30, 70, 120, 160, 200]
LR [0.05, 0.1, 0.15, 0.2, 0.3]

Num
milestones [2, 3, 4]

LR
decay [0.1, 0.3, 0.5]

Batch
size [32, 64, 128, 256, 512]

Weigh
decay [0.0001, 0.0005, 0.001, 0.005]

LR
Scheduler [’StepLR’, ’Cosine’]

iCaRL, BiC, WA and FOSTER T
(KD) [0.5, 1, 1.5, 2, 2.5]

BiC, WA and FOSTER λ
(KD) [0.5, 1, 1.5, 2, 3]

BiC Split
ratio [0.05, 0.1, 0.15, 0.2, 0.3]

iCaRL, PODNet, DER and MEMO λ
(Aux) [0.5, 1, 1.5, 2, 3]

FOSTER λ
(FE) [0.5, 1, 1.5, 2, 3]

FOSTER β1 [0.93, 0.95, 0.97, 0.99]
FOSTER β2 [0.93, 0.95, 0.97, 0.99]

PODNet Num
proxy [10, 20, 30, 50, 100]

PODNet, FOSTER and BEEF Post FT
epochs

[5, 10, 20, 30, 50]
/ [30, 70, 120, 160, 200] (FOSTER and BEEF)

PODNet Post FT
LR [0.001, 0.003, 0.005, 0.007, 0.01]

PODNet Adaptive factor [True, False]

BEEF Energy
weight [0.001, 0.005, 0.01, 0.02, 0.05]

BEEF Logit
alignment [1.1, 1.4, 1.7, 2.0, 2.3]

MEMO Exemplar
batch size [16, 32, 64, 128, 256]
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Original hyperparameters The following shows the original hyperparameters of each algorithm
reported in PyCIL.

• Replay: ep_70_lr_0.1_lr_decay_0.1_batch_128_w_decay_0.0002_scheduler_steplr
• BiC: ep_170_lr_0.1_lr_decay_0.1_batch_128_w_decay_0.0002_scheduler_steplr

T_2_lambda_kd_0_split_ratio_0.1
• PODNet: ep_160_milestone_2_lr_0.1_lr_decay_0.1_batch_128_w_decay_0.0005_scheduler_cosine

lambda_c_5_lambda_f_1.0_nb_proxy_10_ft_epochs_20_ft_lrate_0.005_adaptive_factor_True
• FOSTER: ep_170_lr_0.1_lr_decay_0.1_batch_128_w_decay_0.0005_scheduler_cosine

T_2_lambda_kd_1_fe_1_beta_0.96_0.97_comp_ep_130
• MEMO: ep_170_milestone_3_lr_0.1_lr_decay_0.1_batch_128_w_decay_0.0002_scheduler_steplr

lambda_aux_1_examplar_bs_64
• iCaRL: ep_170_lr_0.1_lr_decay_0.1_batch_128_w_decay_0.0002_scheduler_steplr

T_2_lambda_aux_1
• WA: ep_170_milestone_3_lr_0.1_lr_decay_0.1_batch_128_w_decay_0.0002_scheduler_steplr

T_2.0_lambda_kd_0
• DER: ep_170_lr_0.1_lr_decay_0.1_batch_128_w_decay_0.0002_scheduler_steplr

lambda_aux_1
• BEEF: ep_170_milestone_4_lr_0.1_lr_decay_0.1_batch_128_w_decay_0.0005_scheduler_cosine

fusion_ep_60_energy_w_0.01_logits_align_1.7

Note that setting ’lambda_kd = 0’ for both BiC and WA indicates the use of their adaptive rule.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Best hyperparameters (ImageNet-100, 10 Tasks) The following represents the best hyperpa-
rameters of each algorithm selected in the hyperparameter tuning phase using ImageNet-100 (10
Tasks).

• Replay: ep_70_milestone_3_lr_0.2_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_steplr
• BiC: ep_120_milestone_3_lr_0.1_lr_decay_0.1_batch_32_w_decay_0.0001_scheduler_steplr

T_1_lambda_kd_3.0_split_ratio_0.1
• PODNet: ep_30_milestone_4_lr_0.05_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_steplr

lambda_c_3_lambda_f_1.5_nb_proxy_20_ft_epochs_5_ft_lrate_0.005_adaptive_factor_False
• FOSTER: ep_30_milestone_4_lr_0.05_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_steplr

T_1_lambda_kd_1.5_fe_1_beta_0.93_0.97_comp_ep_160
• MEMO: ep_120_milestone_3_lr_0.15_lr_decay_0.1_batch_512_w_decay_0.001_scheduler_steplr

ambda_aux_0.5_examplar_bs_32
• iCaRL: ep_200_milestone_3_lr_0.15_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_cosine

T_2.5_lambda_aux_2
• WA: ep_120_milestone_3_lr_0.1_lr_decay_0.1_batch_32_w_decay_0.0001_scheduler_steplr

T_1_lambda_kd_3.0_split_ratio_0.1
• DER: ep_200_milestone_3_lr_0.15_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_cosine

lambda_aux_3
• BEEF: ep_120_milestone_2_lr_0.2_lr_decay_0.3_batch_128_w_decay_0.0001_scheduler_steplr

fusion_ep_30_energy_w_0.02_logits_align_2.3

Best hyperparameters (ImageNet-100, 6 Tasks) The following represents the best hyperparameters
of each algorithm selected in the hyperparameter tuning phase using ImageNet-100 (6 Tasks).

• Replay: ep_70_milestone_3_lr_0.2_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_steplr
• BiC: ep_30_milestone_4_lr_0.05_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_steplr

T_1_lambda_kd_1.5_split_ratio_0.1
• PODNet: ep_30_milestone_2_lr_0.15_lr_decay_0.1_batch_128_w_decay_0.001_scheduler_steplr

lambda_c_9_lambda_f_0.5_nb_proxy_100_ft_epochs_10_ft_lrate_0.007_adaptive_factor_False
• FOSTER: ep_70_milestone_3_lr_0.05_lr_decay_0.1_batch_512_w_decay_0.0001_scheduler_cosine

T_2.5_lambda_kd_0.5_fe_3_beta_0.95_0.93_comp_ep_30
• MEMO: ep_120_milestone_3_lr_0.15_lr_decay_0.1_batch_512_w_decay_0.001_scheduler_steplr

lambda_aux_0.5_examplar_bs_32
• iCaRL: ep_200_milestone_3_lr_0.15_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_cosine

T_2.5_lambda_aux_2
• WA: ep_170_lr_0.1_lr_decay_0.1_batch_128_w_decay_0.0002_scheduler_steplr

T_2_lambda_kd_1
• DER: ep_200_milestone_3_lr_0.15_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_cosine

lambda_aux_3
• BEEF: ep_30_milestone_4_lr_0.05_lr_decay_0.1_batch_128_w_decay_0.0001_scheduler_steplr

fusion_ep_70_energy_w_0.01_logits_align_1.4

Best hyperparameters (CIFAR-50, 10 Tasks) The following represents the best hyperparameters
of each algorithm selected in the hyperparameter tuning phase using CIFAR-50 (10 Tasks).

• Replay: ep_160_milestone_3_lr_0.15_lr_decay_0.3_batch_32_w_decay_0.0001_scheduler_cosine
• BiC: ep_200_milestone_2_lr_0.1_lr_decay_0.1_batch_32_w_decay_0.0001_scheduler_cosine

T_0.5_lambda_kd_0.5_split_ratio_0.2
• PODNet: ep_70_milestone_2_lr_0.1_lr_decay_0.1_batch_32_w_decay_0.0001_scheduler_steplr

lambda_c_1_lambda_f_1_nb_proxy_10_ft_epochs_30_ft_lrate_0.007_adaptive_factor_False
• FOSTER: ep_120_milestone_3_lr_0.1_lr_decay_0.5_batch_32_w_decay_0.0001_scheduler_steplr

T_2_lambda_kd_1.5_fe_0.5_beta_0.97_0.93_comp_ep_160
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• MEMO: ep_120_milestone_4_lr_0.05_lr_decay_0.3_batch_32_w_decay_0.0005_scheduler_steplr
lambda_aux_0.5_examplar_bs_16

• iCaRL: ep_70_milestone_3_lr_0.05_lr_decay_0.3_batch_32_w_decay_0.001_scheduler_cosine
T_2.5_lambda_aux_1

• WA: ep_160_milestone_4_lr_0.05_lr_decay_0.1_batch_64_w_decay_0.001_scheduler_cosine
T_2_lambda_kd_3

• DER: ep_200_milestone_3_lr_0.2_lr_decay_0.1_batch_256_w_decay_0.001_scheduler_cosine
lambda_aux_2

• BEEF: ep_200_milestone_3_lr_0.15_lr_decay_0.1_batch_128_w_decay_0.0001_scheduler_cosine
fusion_ep_200_energy_w_0.02_logits_align_2.3

Best hyperparameters (CIFAR-50, 6 Tasks) The following represents the best hyperparameters of
each algorithm selected in the hyperparameter tuning phase using CIFAR-50 (6 Tasks).

• Replay: ep_70_milestone_2_lr_0.05_lr_decay_0.1_batch_32_w_decay_0.0001_scheduler_cosine

• BiC: ep_120_milestone_2_lr_0.05_lr_decay_0.3_batch_32_w_decay_0.0001_scheduler_cosine
T_2.5_lambda_kd_1.5_split_ratio_0.3

• PODNet: ep_30_milestone_3_lr_0.05_lr_decay_0.5_batch_64_w_decay_0.0005_scheduler_cosine
lambda_c_1_lambda_f_3_nb_proxy_30_ft_epochs_50_ft_lrate_0.003_adaptive_factor_False

• FOSTER: ep_70_milestone_2_lr_0.05_lr_decay_0.1_batch_64_w_decay_0.0005_scheduler_steplr
T_1.5_lambda_kd_1_fe_3_beta_0.97_0.93_comp_ep_200

• MEMO: ep_160_milestone_4_lr_0.05_lr_decay_0.1_batch_32_w_decay_0.001_scheduler_cosine
lambda_aux_0.5_examplar_bs_256

• iCaRL: ep_120_milestone_2_lr_0.05_lr_decay_0.1_batch_32_w_decay_0.0005_scheduler_steplr
T_1_lambda_aux_1

• WA: ep_160_milestone_3_lr_0.05_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_cosine
T_2_lambda_kd_1.5

• DER: ep_120_milestone_3_lr_0.05_lr_decay_0.5_batch_64_w_decay_0.001_scheduler_cosine
lambda_aux_1.5

• BEEF: ep_30_milestone_4_lr_0.05_lr_decay_0.1_batch_128_w_decay_0.0001_scheduler_steplr
fusion_ep_70_energy_w_0.01_logits_align_1.4

Best hyperparameters (ImageNet-50, 10 Tasks) The following represents the best hyperparameters
of each algorithm selected in the hyperparameter tuning phase using ImageNet-50 (10 Tasks).

• Replay: ep_70_milestone_3_lr_0.2_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_steplr

• BiC: ep_120_milestone_3_lr_0.1_lr_decay_0.1_batch_32_w_decay_0.0001_scheduler_steplr
T_1_lambda_kd_3_split_ratio_0.1

• PODNet: ep_30_milestone_4_lr_0.2_lr_decay_0.3_batch_64_w_decay_0.0005_scheduler_cosine
lambda_c_7_lambda_f_1_nb_proxy_50_ft_epochs_20_ft_lrate_0.007_adaptive_factor_True

• FOSTER: ep_120_milestone_3_lr_0.1_lr_decay_0.1_batch_32_w_decay_0.0001_scheduler_steplr
T_1_lambda_kd_3_fe_1_beta_0.99_0.93_comp_ep_160

• MEMO: ep_120_milestone_3_lr_0.1_lr_decay_0.1_batch_32_w_decay_0.0001_scheduler_steplr
lambda_aux_1_examplar_bs_256

• iCaRL: ep_200_milestone_3_lr_0.15_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_cosine
T_2.5_lambda_aux_2

• WA: ep_200_milestone_3_lr_0.15_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_cosine
T_2.5_lambda_kd_2

• DER: ep_200_milestone_3_lr_0.15_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_cosine
lambda_aux_3

• BEEF NaN
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Best hyperparameters (ImageNet-50, 6 Tasks) The following represents the best hyperparameters
of each algorithm selected in the hyperparameter tuning phase using ImageNet-50 (6 Tasks).

• Replay: ep_200_milestone_2_lr_0.2_lr_decay_0.3_batch_32_w_decay_0.0001_scheduler_steplr
• BiC: ep_120_milestone_3_lr_0.1_lr_decay_0.1_batch_32_w_decay_0.0001_scheduler_steplr

T_1_lambda_kd_3_split_ratio_0.1
• PODNet: ep_30_milestone_4_lr_0.2_lr_decay_0.3_batch_64_w_decay_0.0005_scheduler_cosine

lambda_c_7_lambda_f_1_nb_proxy_50_ft_epochs_20_ft_lrate_0.007_adaptive_factor_True
• FOSTER: ep_30_milestone_4_lr_0.2_lr_decay_0.3_batch_64_w_decay_0.0005_scheduler_cosine

T_2_lambda_kd_1_fe_2_beta_0.97_0.99_comp_ep_120
• MEMO: ep_120_milestone_3_lr_0.15_lr_decay_0.1_batch_512_w_decay_0.001_scheduler_steplr

lambda_aux_0.5_examplar_bs_32
• iCaRL: ep_200_milestone_3_lr_0.15_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_cosine

T_2.5_lambda_aux_2
• WA: ep_120_milestone_4_lr_0.1_lr_decay_0.5_batch_64_w_decay_0.0005_scheduler_steplr

T_1_lambda_kd_1
• DER: ep_120_milestone_4_lr_0.3_lr_decay_0.5_batch_128_w_decay_0.0005_scheduler_cosine

lambda_aux_0.5
• BEEF: NaN
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B.2 EXPERIMENTAL SETTINGS FOR CLASS-INCREMENTAL LEARNING WITH A PRETRAINED
MODEL

Experimental details For experiments using the proposed evaluation protocol on class-incremental
learning algorithms with a pretrained model, we employ the PILOT (Sun et al., 2023) code for each
algorithm. The experimental setup closely followed PILOT’s environment, using Python 3.8, PyTorch
2.0.1, and CUDA 11.7.

Figure 11: # of hyperparameters.

Pretrained hyperparameters The process of selecting hyperparameters for algorithms using
a pretrained model is similar to the previous experiments. We comprehensively consider both
general hyperparameters and algorithm-specific ones, finding the best hyperparameters during the
tuning phase. Figure 11 shows the number of hyperparameters for each algorithm. The predefined
hyperparameters used for this process are listed in Table 5. Using the selected hyperparameters,
we train each algorithm across the entire CL scenario. The range of each hyperparameter is set
based on values reported in previous work for each type of algorithm. Unlike the algorithms without
pretrained models, which use the same optimizer (i.e., SGD), different optimizers have been used
across algorithms in this case, so we also perform sampling for the optimizer. For hyperparameters of
the optimizer that were not sampled, we use the default values provided in PyTorch.
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Table 5: The predefined set of hyperparametes for class-IL with a pretrained model.

Algorithm Hyperparameter Name hSet

All algorithms

Epoch

[3, 5, 10, 15, 20, 25]
(for L2P, DualPrompt. CODA-Pormpt)

/ [5, 10, 15, 20, 25, 30]
(for Adam-Adapter, Ranpac, EASE)

LR

[0.000875, 0.001375, 0.001875, 0.002375, 0.0025]
(for L2P, DualPrompt. CODA-Pormpt)

/ [0.01, 0.02, 0.03, 0.04, 0.05]
(for Adam-Adapter, Ranpac, EASE)

Num
milestones [2, 3, 4]

LR
decay [0.1, 0.3, 0.5]

Batch
size

[8, 16, 24, 48, 64, 128]
(for L2P, DualPrompt, CODA-Prompt, Adam-Adapter

Weigh
decay

[0, 0.0001, 0.0005]
(for L2P, DualPrompt, CODA-Prompt)

/ [0.0001, 0.0005, 0.001, 0.005]
(for Adam-Adapter, Ranpac, EASE)

LR
Scheduler [’steplr’, ’cosine’, ’constant’]

Optimizer [’sgd’, ’adam’, ’adamw’]
L2P, DualPrompt M Size [10, 15, 20, 25, 30]

L2P Length (Lp) [2, 4, 6, 8, 10]
L2P Top k [2, 4, 6, 8, 10]

L2P, DualPrompt λ [0.1, 0.3, 0.5]
DualPrompt Prompt length of g (Lg) [5, 10, 15, 20, 30]
DualPrompt Length (Le) [5, 10, 15, 20, 30]

CODA-Prompt Pool size [30, 50, 100, 200, 300]
CODA-Prompt Prompt length [4, 8, 16, 24, 32]
CODA-Prompt Orthogonality Mu [0.2, 0.1, 0.01, 0.001, 0]

Adam-Adapter, Ranpac, EASE FFN num [4,8,16,32,64]
Ranpac M [5000, 10000, 15000, 20000]
Ranpac Prompt token num [3, 5, 10, 20, 30, 50]
EASE α [0.01, 0.05, 0.1, 0.15, 0.2]

Original hyperparameters The following shows the original hyperparameters of each algorithm
reported in PILOT.

• L2P_ep_10_milestone_3_lr_0.001875_lr_decay_0_batch_32_w_decay_0
scheduler_constant_optimizer_adam_size_10_length_5_top_k_5_lamb_0.1

• DualPrompt_ep_10_milestone_4_lr_0.001_lr_decay_0.0_batch_24_w_decay_0.0
scheduler_constant_optimizer_adam_size_10_L_e_5_L_g_5_top_k_1_lamb_0.1

• CODA-Prompt_ep_50_milestone_2_lr_0.001_lr_decay_0.0_batch_128_w_decay_0.0
scheduler_cosine_optimizer_adam_e_pool_size_100_e_p_length_8_ortho_mu_0.0

• Adam_ep_10_milestone_3_lr_0.05_lr_decay_0.0_batch_16_w_decay_0.005
scheduler_constant_optimizer_sgd_ffn_num_100

• Ranpac_ep_10_milestone_2_lr_0.05_lr_decay_0.0_batch_16_w_decay_0.005
scheduler_constant_optimizer_sgd_ffn_num_64_M_10000_pt_num_30

• EASE_ep_20_milestone_4_lr_0.05_lr_decay_0.0_batch_16_w_decay_0.005
scheduler_cosine_optimizer_sgd_ffn_num_64_alpha_0.1

Best hyperparameters (CUB-200, 20 Tasks) The following represents the best hyperparameters of
each algorithm selected in the hyperparameter tuning phase using CUB-200 (20 Tasks).

• L2P: ep_20_milestone_2_lr_0.002375_lr_decay_0.5_batch_64_w_decay_0.0001
scheduler_constant_optimizer_adamw_size_15_length_6_top_k_4_lamb_0.1

• DualPrompt: ep_25_milestone_3_lr_0.000875_lr_decay_0.1_batch_48_w_decay_0.0005
scheduler_constant_optimizer_adamw_size_20_L_e_5_L_g_30_top_k_1_lamb_0.3
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• CODA-Prompt: ep_25_milestone_2_lr_0.000875_lr_decay_0.3_batch_24_w_decay_0.0005
scheduler_steplr_optimizer_sgd_e_pool_size_30_e_p_length_4_ortho_mu_0.01

• Adam: ep_15_milestone_4_lr_0.05_lr_decay_0.5_batch_48_w_decay_0.0005
scheduler_cosine_optimizer_sgd_ffn_num_8

• Ranpac: ep_30_milestone_4_lr_0.01_lr_decay_0.1_batch_8_w_decay_0.0005
scheduler_cosine_optimizer_sgd_ffn_num_32_M_20000_pt_num_5

• EASE: ep_15_milestone_4_lr_0.02_lr_decay_0.5_batch_128_w_decay_0.001
scheduler_cosine_optimizer_sgd_ffn_num_8_alpha_0.01

Best hyperparameters (CUB-200, 10 Tasks) The following represents the best hyperparameters of
each algorithm selected in the hyperparameter tuning phase using CUB-200 (10 Tasks).

• L2P: ep_25_milestone_2_lr_0.001875_lr_decay_0.3_batch_64_w_decay_0.0005
scheduler_cosine_optimizer_adamw_size_10_length_6_top_k_6_lamb_0.5

• DualPrompt: ep_25_milestone_3_lr_0.0025_lr_decay_0.5_batch_128_w_decay_0.0005
scheduler_steplr_optimizer_sgd_size_20_L_e_10_L_g_10_top_k_1_lamb_0.5

• CODA-Prompt: ep_25_milestone_3_lr_0.0025_lr_decay_0.3_batch_64_w_decay_0
scheduler_cosine_optimizer_adamw_e_pool_size_100_e_p_length_8_ortho_mu_0

• Adam: ep_20_milestone_3_lr_0.04_lr_decay_0.3_batch_8_w_decay_0.0005
scheduler_steplr_optimizer_sgd_ffn_num_32

• Ranpac: ep_30_milestone_4_lr_0.02_lr_decay_0.3_batch_16_w_decay_0.0001
scheduler_steplr_optimizer_sgd_ffn_num_64_M_10000_pt_num_3

• EASE: ep_15_milestone_4_lr_0.01_lr_decay_0.3_batch_64_w_decay_0.0005
scheduler_steplr_optimizer_sgd_ffn_num_8_alpha_0.05

Best hyperparameters (ImageNet-R, 20 Tasks) The following represents the best hyperparameters
of each algorithm selected in the hyperparameter tuning phase using ImageNet-R (20 Tasks).

• L2P_ep_25_milestone_3_lr_0.000875_lr_decay_0.5_batch_64_w_decay_0
scheduler_steplr_optimizer_adam_size_10_length_10_top_k_4_lamb_0.5

• DualPrompt: ep_15_milestone_4_lr_0.001875_lr_decay_0.5_batch_128_w_decay_0
scheduler_steplr_optimizer_adam_size_20_L_e_30_L_g_5_top_k_1_lamb_0.5

• CODA-Prompt: ep_15_milestone_2_lr_0.002375_lr_decay_0.1_batch_48_w_decay_0.0001
scheduler_cosine_optimizer_adamw_e_pool_size_300_e_p_length_32_ortho_mu_0.001

• Adam: ep_25_milestone_3_lr_0.05_lr_decay_0.5_batch_64_w_decay_0.001
scheduler_constant_optimizer_sgd_ffn_num_64

• Ranpac: ep_20_milestone_2_lr_0.05_lr_decay_0.3_batch_24_w_decay_0.0005
scheduler_constant_optimizer_sgd_ffn_num_16_M_15000_pt_num_20

• EASE: ep_15_milestone_4_lr_0.04_lr_decay_0.1_batch_24_w_decay_0.0001
scheduler_constant_optimizer_sgd_ffn_num_16_alpha_0.15

Best hyperparameters (ImageNet-R, 10 Tasks) The following represents the best hyperparameters
of each algorithm selected in the hyperparameter tuning phase using ImageNet-R (10 Tasks).

• L2P: ep_25_milestone_3_lr_0.001375_lr_decay_0.5_batch_128_w_decay_0
scheduler_constant_optimizer_adamw_size_20_length_6_top_k_10_lamb_0.3

• DualPrompt: ep_25_milestone_2_lr_0.001375_lr_decay_0.3_batch_128_w_decay_0.0005
scheduler_constant_optimizer_adamw_size_30_L_e_20_L_g_20_top_k_1_lamb_0.3

• CODA-Prompt: ep_20_milestone_2_lr_0.001375_lr_decay_0.1_batch_48_w_decay_0
scheduler_steplr_optimizer_adam_e_pool_size_300_e_p_length_8_ortho_mu_0

• Adam: ep_30_milestone_2_lr_0.05_lr_decay_0.1_batch_64_w_decay_0.001
scheduler_cosine_optimizer_sgd_ffn_num_32

• Ranpac: ep_20_milestone_3_lr_0.03_lr_decay_0.1_batch_24_w_decay_0.0001
scheduler_steplr_optimizer_sgd_ffn_num_64_M_20000_pt_num_20
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• EASE: ep_30_milestone_4_lr_0.05_lr_decay_0.3_batch_128_w_decay_0.001
scheduler_cosine_optimizer_adam_ffn_num_16

Best hyperparameters (CUB-100-1, 20 Tasks) The following represents the best hyperparameters
of each algorithm selected in the hyperparameter tuning phase using CUB-100-1 (20 Tasks).

• L2P: ep_20_milestone_3_lr_0.002375_lr_decay_0.3_batch_128_w_decay_0.0005
scheduler_constant_optimizer_adamw_size_20_length_8_top_k_4_lamb_0.5

• DualPrompt: ep_25_milestone_4_lr_0.001375_lr_decay_0.1_batch_128_w_decay_0
scheduler_constant_optimizer_adam_size_15_L_e_15_L_g_20_top_k_1_lamb_0.5

• CODA-Prompt: ep_10_milestone_4_lr_0.0025_lr_decay_0.3_batch_64_w_decay_0
scheduler_constant_optimizer_adam_e_pool_size_200_e_p_length_4_ortho_mu_0.001

• Adam: ep_5_milestone_2_lr_0.05_lr_decay_0.5_batch_16_w_decay_0.0005
scheduler_constant_optimizer_sgd_ffn_num_4

• Ranpac: ep_15_milestone_4_lr_0.04_lr_decay_0.1_batch_128_w_decay_0.0001
scheduler_cosine_optimizer_sgd_ffn_num_4_M_15000_pt_num_30

• EASE: ep_10_milestone_4_lr_0.01_lr_decay_0.1_batch_16_w_decay_0.001
scheduler_constant_optimizer_sgd_ffn_num_32_alpha_0.05

Best hyperparameters (CUB-100-1, 10 Tasks) The following represents the best hyperparameters
of each algorithm selected in the hyperparameter tuning phase using CUB-100-1 (10 Tasks).

• L2P: ep_25_milestone_2_lr_0.0025_lr_decay_0.3_batch_128_w_decay_0
scheduler_cosine_optimizer_adam_size_20_length_4_top_k_6_lamb_0.5

• DualPrompt: ep_25_milestone_4_lr_0.002375_lr_decay_0.3_batch_128_w_decay_0.0005
scheduler_cosine_optimizer_adamw_size_15_L_e_30_L_g_15_top_k_1_lamb_0.5

• CODA-Prompt: ep_25_milestone_3_lr_0.001375_lr_decay_0.1_batch_64_w_decay_0.0001
scheduler_cosine_optimizer_adamw_e_pool_size_50_e_p_length_4_ortho_mu_0

• Adam: ep_25_milestone_2_lr_0.05_lr_decay_0.3_batch_24_w_decay_0.0001
scheduler_steplr_optimizer_sgd_ffn_num_32

• Ranpac: ep_25_milestone_3_lr_0.02_lr_decay_0.3_batch_16_w_decay_0.0005
scheduler_constant_optimizer_sgd_ffn_num_16_M_10000_pt_num_20

• EASE: ep_15_milestone_3_lr_0.03_lr_decay_0.5_batch_128_w_decay_0.0001
scheduler_constant_optimizer_sgd_ffn_num_64_alpha_0.05

Best hyperparameters (ImageNet-R-1, 20 Tasks) The following represents the best hyperpa-
rameters of each algorithm selected in the hyperparameter tuning phase using ImageNet-R-1 (20
Tasks).

• L2P: ep_15_milestone_2_lr_0.002375_lr_decay_0.5_batch_48_w_decay_0
scheduler_cosine_optimizer_adamw_size_25_length_6_top_k_10_lamb_0.3

• DualPrompt: ep_20_milestone_3_lr_0.001875_lr_decay_0.1_batch_128_w_decay_0
scheduler_steplr_optimizer_adam_size_10_L_e_30_L_g_30_top_k_1_lamb_0.1

• CODA-Prompt: ep_15_milestone_2_lr_0.002375_lr_decay_0.5_batch_64_w_decay_0.0001
scheduler_cosine_optimizer_adamw_e_pool_size_100_e_p_length_4_ortho_mu_0.01

• Adam: ep_25_milestone_3_lr_0.04_lr_decay_0.3_batch_24_w_decay_0.001
scheduler_constant_optimizer_sgd_ffn_num_16

• Ranpac: ep_10_milestone_2_lr_0.02_lr_decay_0.3_batch_8_w_decay_0.0001
scheduler_cosine_optimizer_sgd_ffn_num_8_M_20000_pt_num_10

• EASE: ep_15_milestone_4_lr_0.03_lr_decay_0.5_batch_16_w_decay_0.0005
scheduler_constant_optimizer_sgd_ffn_num_64_alpha_0.05

Best hyperparameters (ImageNet-R-1, 10 Tasks) The following represents the best hyperpa-
rameters of each algorithm selected in the hyperparameter tuning phase using ImageNet-R-1 (10
Tasks).
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• L2P: ep_20_milestone_3_lr_0.000875_lr_decay_0.1_batch_24_w_decay_0.0001
scheduler_cosine_optimizer_adamw_size_20_length_8_top_k_10_lamb_0.5

• DualPrompt: ep_25_milestone_4_lr_0.000875_lr_decay_0.3_batch_64_w_decay_0
scheduler_cosine_optimizer_adam_size_15_L_e_30_L_g_20_top_k_1_lamb_0.1

• CODA-Prompt: ep_15_milestone_3_lr_0.001375_lr_decay_0.5_batch_64_w_decay_0.0005
scheduler_constant_optimizer_adamw_e_pool_size_300_e_p_length_4_ortho_mu_0.01

• Adam: ep_25_milestone_3_lr_0.04_lr_decay_0.3_batch_24_w_decay_0.001
scheduler_constant_optimizer_sgd_ffn_num_16

• Ranpac: ep_25_milestone_4_lr_0.05_lr_decay_0.1_batch_24_w_decay_0.0001
scheduler_constant_optimizer_sgd_ffn_num_64_M_20000_pt_num_10

• EASE: ep_10_milestone_4_lr_0.04_lr_decay_0.1_batch_24_w_decay_0.001
scheduler_constant_optimizer_sgd_ffn_num_64_alpha_0.2
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C ADDITIONAL EXPERIMENTAL RESULTS ON THE EVALUATION PHASE

C.1 RESULT TABLES

Class-IL without a pretrained model (DHT = ImageNet-100-1)

Table 6: The experimental results of class-IL without a pretrained model (using original hyperparam-
eters) The values in parentheses represent the standard deviation.

10 Tasks
(Acc / AvgAcc) DHT = ImageNet-100

Replay 41.21(1.06) / 59.82(1.48)
iCaRL 40.50(1.19) / 60.12(1.41)

BiC 39.61(2.39) / 64.27(1.59)
WA 53.34(1.39) / 68.92(1.54)

PODNet 46.66(1.11) / 64.13(1.20)
DER 61.96(1.04) / 72.10(1.41)

FOSTER 60.68(0.71) / 69.97(1.70)
BEEF NaN

MEMO 59.59(1.29) / 70.04(1.62)

Table 7: The experimental results of class-IL without a pretrained model (using DHT =
ImageNet-100-1) in the hyperparameter tuning phase. The values in parentheses represent the
standard deviation.

10 Tasks
(Acc / AvgAcc) DHT = ImageNet-100-1 DE = ImageNet-100-2

Replay 44.78(1.19) / 59.85(0.95) 44.27(1.05) / 61.49(0.87)
iCaRL 42.58(1.06) / 61.27(1.26) 42.44(1.50) / 63.39(1.18)

BiC 54.22(1.27) / 67.31(0.74) 58.77(0.96) / 71.81(1.42)
WA 54.67(0.60) / 69.54(1.41) 59.89(1.18) / 72.93(1.94)

PODNet 55.35(0.93) / 68.74(1.52) 57.48(0.94) / 71.76(1.62)
DER 63.31(0.42) / 72.93(0.87) 70.23(0.46) / 77.12(1.20)

FOSTER 58.36(0.85) / 71.99(0.98) 61.46(0.98) / 68.41(1.23)
BEEF NaN NaN

MEMO 57.91(0.54) / 71.25(1.41) 61.94(0.78) / 71.35(2.17)

Table 8: The experimental results of class-IL without a pretrained model (using DHT =
ImageNet-100-1) in the hyperparameter tuning phase. The values in parentheses represent the
standard deviation.

6 Tasks
(Acc / AvgAcc) DHT = ImageNet-100 DE = ImageNet-200

Replay 42.93(2.41) / 53.81(1.72) 43.26(1.38) / 49.28(0.53)
iCaRL 46.62(1.54) / 57.27(0.73) 45.64(1.49) / 59.18(0.54)

BiC 37.14(1.62) / 36.42(1.89) 38.43(2.53) / 40.89(3.07)
WA 58.72(1.02) / 65.58(1.55) 60.58(1.35) / 69.47(1.71)

PODNet 67.22(0.67) / 75.05(1.16) 65.51(1.83) / 75.82(1.03)
DER 72.20(0.51) / 77.68(1.08) 75.83(0.64) / 81.19(0.70)

FOSTER 69.48(0.50) / 74.59(1.18) 71.62(1.08) / 78.29(1.14)
BEEF 74.67(0.14) / 78.92(0.54) 75.09(0.29) / 81.31(0.50)

MEMO 59.91(0.87) / 67.22(1.63) 62.80(3.16) / 68.77(6.26)
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Class-IL without a pretrained model (DHT = CIFAR-50-1)

Table 9: The experimental results of class-IL without a pretrained model (using DHT = CIFAR-50-1)
in the hyperparameter tuning phase.) The values in parentheses represent the standard deviation.

10 Tasks
(Acc / AvgAcc) DE = CIFAR-50-2 DE = ImageNet-50-2

Replay 45.42(2.19) / 65.88(1.97) 42.51(0.47) / 60.72(1.58)
iCaRL 47.12(2.80) / 66.71(2.07) 42.44(1.00) / 61.55(1.64)

BiC 52.83(2.83) / 69.16(2.30) 49.52(1.16) / 67.09(1.74)
WA 54.89(2.13) / 69.85(2.32) 53.64(1.47) / 67.75(1.90)

PODNet 51.20(1.76) / 69.47(0.13) 51.70(1.19) / 67.86(1.67)
DER 63.51(1.98) / 75.04(1.24) 63.40(1.02) / 72.67(1.62)

FOSTER 60.00(2.72) / 72.29(2.09) 62.09(1.83) / 70.24(1.50)
BEEF 57.24(1.48) / 72.26(2.05) NaN

MEMO 60.72(2.41) / 73.78(1.99) 54.91(1.59) / 68.06(2.10)

Table 10: The experimental results of class-IL without a pretrained model (using DHT = CIFAR-50-1)
in the hyperparameter tuning phase.) The values in parentheses represent the standard deviation.

6 Tasks
(Acc / AvgAcc) DE = CIFAR-50-2 DE = ImageNet-50-2

Replay 48.00(1.98) / 59.86(1.03) 46.30(1.31) / 55.67(0.64)
iCaRL 46.09(1.51) / 59.14(1.39) 46.21(1.72) / 57.79(1.06)

BiC 58.22(1.20) / 68.16(1.96) 46.26(3.26) / 59.07(3.87)
WA 61.37(1.02) / 70.56(0.51) 61.47(0.72) / 69.67(0.63)

PODNet 62.62(0.39) / 72.62(0.75) 64.30(0.78) / 73.56(1.01)
DER 67.98(1.34) / 75.88(0.78) 70.68(0.75) / 76.56(0.95)

FOSTER 66.45(0.55) / 73.93(0.77) 69.86(0.45) / 75.27(0.83)
BEEF 65.51(1.29) / 72.98(0.50) NaN

MEMO 64.64(1.54) / 73.50(0.83) 51.40(3.39) / 62.11(3.33)

Class-IL without a pretrained model (DHT = ImageNet-50-1)

Table 11: The experimental results of class-IL without a pretrained model (using DHT =
ImageNet-50-1) in the hyperparameter tuning phase.) The values in parentheses represent the
standard deviation.

10 Tasks
(Acc / AvgAcc) DE = ImageNet-50-2 DE = CIFAR-50-2

Replay 43.71(0.81) / 58.75(1.60) 44.19(2.17) / 63.57(1.50)
iCaRL 39.41(1.46) / 59.51(1.70) 41.59(3.10) / 62.42(2.85)

BiC 51.26(1.39) / 65.33(2.48) 51.22(3.67) / 66.41(2.92)
WA 51.85(0.79) / 67.23(1.79) 57.72(1.92) / 71.39(2.00)

PODNet 51.31(1.24) / 67.28(1.53) 48.19(1.17) / 65.77(1.29)
DER 64.89(1.16) / 74.15(1.56) 63.64(1.32) / 75.32(1.21)

FOSTER 61.57(0.70) / 72.38(1.20) 58.64(2.15) / 72.89(1.81)
BEEF NaN NaN

MEMO 57.56(1.24) / 68.36(2.27) 58.99(1.01) / 72.43(1.81)
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Table 12: The experimental results of class-IL without a pretrained model (using DHT =
ImageNet-50-1) in the hyperparameter tuning phase.) The values in parentheses represent the
standard deviation.

6 Tasks
(Acc / AvgAcc) DE = ImageNet-50-2 DE = CIFAR-50-2

Replay 42.82(1.43) / 53.50(1.54) 42.28(0.71) / 52.18(1.31)
iCaRL 42.47(1.73) / 54.65(1.85) 40.24(2.64) / 52.89(2.14)

BiC 44.68(2.81) / 54.19(2.93) 39.65(1.32) / 49.49(1.46)
WA 55.68(0.07) / 64.69(0.72) 56.14(1.99) / 64.08(1.60)

PODNet 64.10(0.80) / 72.50(0.81) 61.33(0.54) / 71.27(1.07)
DER 70.28(0.98) / 76.14(1.00) 64.76(1.06) / 72.89(1.28)

FOSTER 68.40(1.08) / 75.02(0.94) 65.31(0.26) / 73.80(0.68)
BEEF NaN NaN

MEMO 50.92(1.25) / 60.93(1.67) 50.58(2.62) / 60.66(2.65)

Class-IL with a pretrained model (DHT = CUB-200)

Table 13: The experimental results of class-IL with a pretrained model (using original hyperparame-
ters) The values in parentheses represent the standard deviation.

10 Tasks
(Acc / AvgAcc) DHT = CUB-200

L2P 72.32(0.62) / 76.82(0.30)
DualPrompt 68.74(0.54) / 74.39(0.68)

CODA-Prompt 75.19(0.33) / 80.27(0.93)
Adam 71.21(1.06) / 77.52(1.24)

Ranpac 78.27(0.57) / 83.24(0.44)
EASE 77.07(0.19) / 82.65(0.68)

Table 14: The experimental results of class-IL with a pretrained model (using DHT = CUB-200) in
the hyperparameter tuning phase. The values in parentheses represent the standard deviation.

20 Tasks
(Acc / AvgAcc) DE = ImageNet-R DE = ImageNet-A

L2P 69.93(0.39) / 75.90(0.23) 40.92(1.53) / 51.24(1.39)
DualPrompt 67.20(0.78) / 73.79(0.64) 44.00(1.07) / 54.12(0.96)

CODA-Prompt 68.63(0.64) / 74.61(0.84) 48.20(1.05) / 57.94(0.87)
Adam 67.70(1.38) / 74.45(1.35) 49.61(0.29) / 59.67(0.80)

Ranpac 78.72(0.40) / 83.71(0.56) 62.95(1.41) / 68.64(2.58)
EASE 61.94(0.06) / 68.36(0.63) 49.37(0.12) / 59.48(0.75)
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Table 15: The experimental results of class-IL with a pretrained model (using DHT = CUB-200) in
the hyperparameter tuning phase. The values in parentheses represent the standard deviation.

10 Tasks
(Acc / AvgAcc) DE = ImageNet-R DE = ImageNet-A

L2P 71.86(0.66) / 77.42(0.92) 45.13(1.25) / 53.57(0.92)
DualPrompt 66.33(0.42) / 73.03(0.60) 39.97(2.32) / 52.58(0.70)

CODA-Prompt 72.86(0.44) / 78.49(0.99) 51.63(0.50) / 61.00(0.47)
Adam 72.68(0.77) / 79.09(0.89) 57.03(0.47) / 66.50(1.22)

Ranpac 79.59(0.29) / 84.46(0.41) 66.14(0.40) / 73.63(1.05)
EASE 61.96(0.06) / 67.74(0.67) 49.32(0.48) / 58.30(0.86)

Class-IL with a pretrained model (DHT = ImageNet-R)

Table 16: The experimental results of class-IL with a pretrained model (using DHT = ImageNet-R)
in the hyperparameter tuning phase. The values in parentheses represent the standard deviation.

20 Tasks
(Acc / AvgAcc) DE = CUB-200 DE = ImageNet-A

L2P 63.76(1.81) / 76.59(1.48) 36.97(1.31) / 46.78(0.71)
DualPrompt 68.78(0.78) / 79.67(1.04) 47.54(0.79) / 55.91(0.84)

CODA-Prompt 67.92(2.11) / 79.65(1.93) 50.07(0.29) / 59.76(0.58)
Adam 85.38(0.19) / 90.87(0.90) 53.86(1.44) / 63.99(2.61)

Ranpac 89.86(0.22) / 93.44(0.78) 38.53(31.11) / 67.65(3.37)
EASE 79.89(1.22) / 87.58(1.19) 53.99(1.05) / 64.11(0.78)

Table 17: The experimental results of class-IL with a pretrained model (using DHT = ImageNet-R)
in the hyperparameter tuning phase. The values in parentheses represent the standard deviation.

10 Tasks
(Acc / AvgAcc) DE = CUB-200 DE = ImageNet-A

L2P 69.75(1.79) / 79.92(1.24) 43.50(0.99) / 50.06(1.18)
DualPrompt 71.74(1.01) / 82.22(1.10) 39.47(0.79) / 50.63(0.94)

CODA-Prompt 72.30(1.11) / 83.00(1.35) 52.39(0.38) / 61.87(1.01)
Adam 85.90(0.17) / 90.93(0.89) 56.63(0.78) / 65.94(1.45)

Ranpac 89.99(0.29) / 93.36(0.83) 63.78(1.52) / 71.70(1.88)
EASE 74.00(0.78) / 83.69(0.74) 54.76(1.36) / 66.14(1.65)
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Class-IL with a pretrained model (DHT = CUB-100-1)

Table 18: The experimental results of class-IL with a pretrained model (using DHT = CUB-100-1)
in the hyperparameter tuning phase. The values in parentheses represent the standard deviation.

20 Tasks
(Acc / AvgAcc) DE = CUB-100-2 DE = ImageNet-R-2 ImageNet-A-2

L2P 54.12(3.59) / 68.33(3.73) 66.01(0.74) / 72.17(1.04) 28.08(2.38) / 39.18(2.75)
DualPrompt 59.83(1.63) / 73.54(2.68) 65.51(0.32) / 71.58(0.68) 33.90(2.26) / 44.84(2.25)

CODA-Prompt 58.16(1.88) / 71.05(2.68) 66.73(0.61) / 73.06(0.46) 30.62(0.82) / 41.70(1.70)
Adam 85.95(0.08) / 90.56(0.24) 67.77(0.84) / 74.53(1.74) 43.93(0.09) / 55.63(2.69)

Ranpac 89.52(0.35) / 90.52(2.96) 74.53(0.28) / 79.80(0.81) 30.30(22.41) / 45.87(4.57)
EASE 85.19(0.49) / 89.91(0.74) 67.17(0.29) / 73.61(0.75) 44.11(0.29) / 55.42(2.83)

Table 19: The experimental results of class-IL with a pretrained model (using DHT = CUB-100-1)
in the hyperparameter tuning phase. The values in parentheses represent the standard deviation.

10 Tasks
(Acc / AvgAcc) DE = CUB-100-2 DE = ImageNet-R-2 ImageNet-A-2

L2P 66.15(1.41) / 76.68(1.49) 70.11(0.53) / 75.61(0.87) 34.96(0.92) / 44.98(2.26)
DualPrompt 67.20(2.59) / 78.28(1.68) 68.29(0.49) / 74.32(0.89) 38.43(1.52) / 49.15(2.43)

CODA-Prompt 68.37(2.71) / 78.93(2.57) 70.35(0.81) / 75.59(0.90) 37.23(1.87) / 47.48(1.85)
Adam 86.76(0.21) / 90.75(0.46) 72.73(0.27) / 79.42(0.59) 44.81(0.85) / 55.08(2.22)

Ranpac 90.60(0.36) / 93.08(0.65) 80.40(0.3) / 85.00(0.47) 49.56(2.52) / 57.60(1.96)
EASE 85.86(0.10) / 90.11(0.26) 63.36(0.03) / 69.36(0.95) 43.88(0.15) / 54.49(2.64)

Class-IL with a pretrained model (DHT = ImageNet-R-1)

Table 20: The experimental results of class-IL with a pretrained model (using DHT = ImageNet-R-1)
in the hyperparameter tuning phase. The values in parentheses represent the standard deviation.

20 Tasks
(Acc / AvgAcc) DE = ImageNet-R-2 DE = CUB-100-2 ImageNet-A-2

L2P 66.15(0.85) / 71.93(1.13) 51.04(1.45) / 66.04(1.71) 25.13(2.27) / 34.21(2.51)
DualPrompt 65.77(0.78) / 71.83(1.17) 57.13(3.40) / 71.15(2.25) 31.96(2.49) / 41.71(1.76)

CODA-Prompt 66.44(0.66) / 72.62(0.36) 57.24(1.90) / 71.27(1.95) 30.48(1.62) / 41.30(2.56)
Adam 70.69(0.73) / 77.86(0.51) 86.35(0.14) / 90.83(0.56) 44.25(0.86) / 55.84(2.75)

Ranpac 76.15(0.93) / 81.68(0.94) 73.73(31.52) / 89.58(2.03) 35.06(15.86) / 47.04(6.07)
EASE 75.16(0.68) / 81.68(0.71) 76.36(2.61) / 84.35(2.55) 42.49(1.76) / 54.40(3.21)

Table 21: The experimental results of class-IL with a pretrained model (using DHT = ImageNet-R-1)
in the hyperparameter tuning phase. The values in parentheses represent the standard deviation.

10 Tasks
(Acc / AvgAcc) DE = ImageNet-R-2 DE = CUB-100-2 ImageNet-A-2

L2P 70.35(0.64) / 75.66(0.30) 63.71(2.33) / 74.62(1.61) 29.10(1.24) / 38.80(1.44)
DualPrompt 69.97(0.25) / 75.93(0.62) 66.66(1.12) / 78.11(1.43) 32.42(0.68) / 42.31(2.02)

CODA-Prompt 72.17(0.46) / 77.80(0.50) 66.98(1.3) / 78.70(0.98) 37.04(1.49) / 46.47(2.45)
Adam 72.84(0.67) / 79.69(0.86) 85.26(0.41) / 89.77(0.45) 37.36(2.72) / 48.62(4.07)

Ranpac 80.70(0.50) / 85.28(0.46) 91.09(0.51) / 91.63(3.51) 41.98(19.61) / 58.79(4.70)
EASE 78.33(0.41) / 83.82(0.71) 79.70(1.47) / 86.23(1.59) 42.49(0.69) / 53.69(2.61)
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C.2 TRAINING GRAPHS

Class-IL without a pretrained model (DHT = CIFAR50-1, DE = CUB50-2)

(a) 10 tasks (b) 6 tasks

Figure 12: Experimental results on the evaluation phase.

Class-IL without a pretrained model (DHT = CIFAR50-1, DE = ImageNet50-2)

(a) 10 tasks (b) 6 tasks

Figure 13: Experimental results on the evaluation phase.

Class-IL without a pretrained model (DHT = ImageNet50-1, DE = ImageNet50-2)

(a) 10 tasks (b) 6 tasks

Figure 14: Experimental results on the evaluation phase.
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Class-IL without a pretrained model (DHT = ImageNet50-1, DE = CIFAR50-2)

(a) 10 tasks (b) 6 tasks

Figure 15: Experimental results on the evaluation phase.

Class-IL with a pretrained model (DHT = CUB100-1, DE = CUB100-2)

(a) 20 tasks (b) 10 tasks

Figure 16: Experimental results on the evaluation phase.

Class-IL with a pretrained model (DHT = CUB100-1, DE = ImageNet-R-2)

(a) 20 tasks (b) 10 tasks

Figure 17: Experimental results on the evaluation phase.
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Class-IL with a pretrained model (DHT = ImageNet-R-1, DE = ImageNet-R-2)

(a) 20 tasks (b) 10 tasks

Figure 18: Experimental results on the evaluation phase.

Class-IL with a pretrained model (DHT = ImageNet-R-1, DE = CUB100-2)

(a) 20 tasks (b) 10 tasks

Figure 19: Experimental results on the evaluation phase.

Class-IL with a pretrained model (DHT = ImageNet-R-1, DE = ImageNet-A-2)

(a) 20 tasks (b) 10 tasks

Figure 20: Experimental results on the evaluation phase.
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D LIMITATIONS AND FUTURE WORK

Our study has limitations. First, evaluating each algorithm using the proposed evaluation protocol
requires a substantial number of training trials. Although we believe that our protocol serves as a
basic method for more accurately assessing CL algorithms, it is not a perfect evaluation protocol.
Consequently, developing more efficient protocols for accurately evaluating CL algorithms remains a
significant and interesting research direction.

Second, we did not account for unpredictable CL scenarios, such as varying task numbers or class
distributions. Our study assumes CL scenarios are predictable, but each phase’s dataset differs. This
is because, in real-world situations, some level of predictability is possible, and evaluating algorithms
in completely unpredictable scenarios would be too harsh. Nevertheless, we believe that it is essential
to explore evaluation methods for unpredictable scenarios in broader CL research, potentially through
adaptive algorithms that can adjust hyperparameters for each task.

Finally, our evaluation focused solely on offline class-incremental learning algorithms. We think that
similar challenges associated with the conventional evaluation protocol also exist in other CL domains,
such as online class-incremental learning, class-incremental semantic segmentation, continual self-
supervised learning, and continual reinforcement learning. As part of our future work, we intend
to first apply the proposed protocol to online class-incremental learning algorithms, followed by its
implementation in other domains.
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