
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HYPERPARAMETERS IN CONTINUAL LEARNING
: A REALITY CHECK WITH CLASS-INCREMENTAL
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual learning (CL) aims to train a model on a sequence of tasks (i.e., a CL
scenario) while balancing the trade-off between plasticity (learning new tasks) and
stability (retaining prior knowledge). The dominantly adopted conventional evalua-
tion protocol for CL algorithms selects the best hyperparameters within a given
scenario and then evaluates the algorithms using these hyperparameters in the same
scenario. However, this protocol has significant shortcomings: it overestimates
the CL capacity of algorithms and relies on unrealistic hyperparameter tuning,
which is not feasible for real-world applications. From the fundamental principles
of evaluation in machine learning, we argue that the evaluation of CL algorithms
should focus on assessing the generalizability of their CL capacity to unseen scenar-
ios. Based on this, we propose the Generalizable Two-phase Evaluation Protocol
consisting of a hyperparameter tuning phase and an evaluation phase. Both phases
share the same scenario configuration (e.g., number of tasks) but are generated from
different datasets. Hyperparameters of CL algorithms are tuned in the first phase
and applied in the second phase to evaluate the algorithms. We apply this protocol
to class-incremental learning, both with and without pretrained models. Across
more than 8,000 experiments, our results show that most state-of-the-art algorithms
fail to replicate their reported performance, highlighting that their CL capacity has
been significantly overestimated in the conventional evaluation protocol.

1 INTRODUCTION

In recent years, extensive research has been conducted on continual learning (CL) with the goal
of effectively learning knowledge from a sequence of tasks (Wang et al., 2023). A neural network
model in such CL scenarios faces a crucial trade-off between learning new knowledge from novel
tasks (plasticity) and maintaining knowledge on previous tasks (stability) (Mermillod et al., 2013).
To address this inherent trade-off, numerous algorithms have been proposed for successful CL
in various domains (Wang et al., 2023). In these domains, many CL studies have focused on
classification, primarily concentrating on class-incremental learning (class-IL) (Masana et al.,
2020) without or with pretrained models (Zhou et al., 2024a). However, deploying CL algorithms
requires careful hyperparameter tuning. Figure 1 illustrates the conventional evaluation protocol
(including hyperparameter tuning) dominantly employed in both offline and online class-incremental
learning (Zhou et al., 2022; Boschini et al., 2022; Zhou et al., 2024b; Smith et al., 2023; Seo et al.,
2024). Additionally, similar evaluation protocols are also widely applied across other CL domains
for semantic segmentation (Cha et al., 2021b; Yuan & Zhao, 2024), test-time adaptation (Yoo et al.,
2024; Lee et al., 2024), federated learning (Piao et al., 2024), self-supervised learning (Fini et al.,
2022; Cha et al., 2024) and large language models (Ke et al., 2023; Wu et al., 2024).

Many algorithms have been considered state-of-the-art based on performance validated through the
conventional evaluation protocol. However, this raises two issues: First, the hyperparameter tuning
method used in this protocol is not applicable to real-world CL scenarios. Second, it results in
evaluation overfitting to a given scenario and dataset, which in turn leads to an overestimation of their
CL capacity. In other words, this protocol only assesses performance in a seen scenario but fails to
evaluate generalizability to new, unseen ones—an essential aspect for real-world applications. While
several alternative evaluation protocols and hyperparameter tuning methods have been proposed, they

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Generate 
a CL scenario

Task 0 Task 1 Task #

…

Dataset

CL Alg.(! )

Train "!:#

Eval.

Sample ℋ

(%$%!:#, %&'(!:#)

Reinit "

!!"#

!$%&#

!!'#

!!"(

!$%&(

!!'(

!!")

!$%&)

!!')

CL Scenario Hyper Parameter Tuning

!∗

Select 
best ℋ

CL Alg.(!∗ )

Train "!:#

Eval.

(%$%!:#, %$*!:#)

Evaluation using !∗

Report Evaluation Result

Conventional Evaluation Protocol for CL

Figure 1: This figure illustrates the conventional evaluation protocol. First, a CL scenario is con-
structed using a benchmark dataset, where each task has its own training, validation, and test sets.
Second, to find the best hyperparameters H∗, a model is sequentially trained up to the final task
using the sampled hyperparameters. After training for each task t, the model θt is evaluated using the
validation dataset. This process is repeated for various hyperparameters, and the best hyperparameters
are selected based on performance. Finally, the model is trained using the CL algorithm with the best
hyperparametersH∗ in the same CL scenario, and report the evaluation result on the test dataset. Note
that in many studies, the results are reported using only Dval without separating Dte (i.e., Dte = Dval).

also have limitations: 1) they require to tune additional hyperparameters for their methods (Delange
et al., 2021; Liu et al., 2023), or 2) they are only applied to a few old algorithms, and have not gained
widespread acceptance (Chaudhry et al., 2018b; Chen et al., 2023; Bornschein et al., 2023). As a
result, the issues with the conventional evaluation protocol have been largely ignored, and it remains
the dominant evaluation protocol for evaluating CL algorithms until now.

In this paper, we aim to reveal the limitation of the conventional evaluation proto-
col by revisiting the fundamental principles of evaluation in machine learning. From
this perspective, we argue that the evaluation of CL algorithms should prioritize as-
sessing the generalizability of each algorithm’s CL capacity across unseen scenarios.

Figure 2: Results on both phases.

To achieve this goal, we propose a revised evalua-
tion protocol, the Generalizable Two-phase Evalua-
tion Protocol (GTEP), which consists of two phases:
the hyperparameter tuning phase and the evaluation
phase. Both phases share the same CL scenario con-
figuration (e.g., the number of tasks and classes per
task) yet leverage distinct datasets. In the hyperpa-
rameter tuning phase, a model is trained using various
hyperparameters of an algorithm, and the best hyper-
parameters are selected based on performance. These
best hyperparameters are then applied directly to train
the model using the algorithm in the evaluation phase,
where the measured performance serves as a reliable
benchmark for the algorithm’s CL capacity in unseen
scenarios. As an initial application of this protocol, we focus on the most actively researched domain
of CL—class-incremental learning (class-IL)—both with and without pretrained models (Wang et al.,
2023). From approximately 8,000 experiments, we derive the following key findings:

• First, as shown in Figure 2, most state-of-the-art class-IL algorithms achieve superior perfor-
mance in the hyperparameter tuning (HT) phase, which is almost identical the conventional
evaluation protocol. However, they reveal limited generalizability in their CL capacity in the
evaluation (Eval) phase. This tendency is particularly pronounced in the recently proposed
algorithms.

• Second, further analysis shows that these algorithms are limited by long training times, a
large number of required parameters, or significant performance variance, suggesting they
are less efficient than expected.

Based on extensive experimental results with the proposed evaluation protocol, we highlight major
shortcomings of the conventional approach, which consistently overestimates the CL capacity of
algorithms. In conclusion, we advocate for a fundamental reconsideration of the evaluation protocol
across all domains to drive meaningful progress in CL research.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Continual learning Continual learning (CL) research has been conducted in various domains (Wang
et al., 2023; Parisi et al., 2019; Delange et al., 2021; Masana et al., 2020). In the beginning, the
CL research focus on task-incremental learning (Parisi et al., 2019; Delange et al., 2021), exploring
diverse approaches (Li & Hoiem, 2017; Aljundi et al., 2018; Chaudhry et al., 2018a; Cha et al.,
2021a; Yoon et al., 2017). As the field progressed, attention shifted to the more challenging scenario,
class-incremental learning (class-IL) (Masana et al., 2020). This shift leads to the investigation of
exemplar-based methods, involving the effective utilization of exemplar memory storing a subset
of the dataset from previous tasks (Rebuffi et al., 2017; Zhao et al., 2020; Cha et al., 2023a). Since
then, using the exemplar memory has become standard, with several methods building on this
foundation. Regularization-based methods, which overcome catastrophic forgetting by introducing a
novel regularization (Wu et al., 2019; Douillard et al., 2020), and model expansion-based methods,
which dynamically expand model capacity to balance the trade-off between stability and plasticity,
have become the most powerful approach, achieving state-of-the-art performance (Wang et al., 2022b;
Yan et al., 2021; Zhou et al., 2022; Wang et al., 2022a).

Class-IL using pretrained models has recently gained considerable attention for achieving strong
performance without relying on the exemplar memory (Zhou et al., 2024a). Prompt-based meth-
ods enable class-IL through prompt learning while keeping the pretrained model frozen. These
approaches have evolved over time, incorporating techniques such as using prompt pool (Wang
et al., 2022d), prompt combination (Wang et al., 2022c), decomposed prompt (Smith et al., 2023),
and prompt generation (Jung et al., 2023). Additionally, representation-based methods derive class
prototypes from the pretrained model and use them for classification (Zhou et al., 2023b). To enhance
the separability of these prototypes, several recent methods have focused on reducing class-wise
correlation (McDonnell et al., 2024; Zhou et al., 2024b).

Evaluation and hyperparameter tuning of CL Several papers have proposed new evaluation
metrics and protocols for the proper assessment of CL algorithms in classification. Traditionally,
accuracy-based metrics (e.g., final and average accuracy) have been used as the primary metrics
of evaluating performance of CL algorithms (Parisi et al., 2019; Masana et al., 2020; Chaudhry
et al., 2018a). However, recent studies have highlighted limitations of these metrics, particularly
regarding computational costs (Prabhu et al., 2023) and learned representations (Cha et al., 2023b).
Delange et al. (2021) introduced a hyperparameter tuning method for task-incremental learning, which
involves first conducting a maximum plasticity search and then selecting the best hyperparameters
using stability decay. Similarly, Liu et al. (2023) proposed a hyperparameter selection method for
class-IL based on a bandit algorithm. However, both approaches entail additional training costs and
the need to tune extra hyperparameters. Other studies have proposed evaluation protocols similar to
ours (Chaudhry et al., 2018b; Chen et al., 2023; Bornschein et al., 2023). However, these protocols
have only been applied to a limited number of older algorithms in specific domains, which fails to
fully uncover the limitations of the conventional evaluation protocol. In addition to these efforts,
despite discussions on proper CL evaluation (Mundt et al., 2022), the conventional evaluation protocol
has continued to dominate the assessment of state-of-the-art CL algorithms across various domains.

3 TOWARDS EVALUATING THE GENERALIZABILITY OF THE CL CAPACITY

3.1 MOTIVATION: IMPROPER HYPERPARAMETER TUNING

As shown in Figure 1, the primary flaw of the conventional evaluation protocol is that it optimizes an
algorithm’s hyperparameters in a given CL scenario and then evaluates the algorithm using those
same hyperparameters. Surprisingly, many studies have reported their results by directly tuning
hyperparameters on test data without considering separate validation sets (i.e., set DHT

te = DHT
val ), as

seen in studies such as Wu et al. (2019); Douillard et al. (2020); Zhao et al. (2020); Yan et al. (2021);
Wang et al. (2022b); Zhou et al. (2022); Wang et al. (2022a;d); Zhou et al. (2023b; 2024b), and
others. Note that this approach is only feasible in experimental scenarios where all task data is always
available. Consequently, this hyperparameter tuning method fails to capture the real challenges of CL
and is not applicable to real-world situations. While many studies partially address this limitation
by reporting robust performance across various experiments with some fixed or minimally adjusted
hyperparameters (Wang et al., 2022a;d; Zhou et al., 2024b), these evaluations are still based on given

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Generate 
a CL scenario

Task 0 Task 1 Task #

…

Dataset
(!$%)

CL Alg.(! )

Train "!:#

Eval.

Sample ℋ

(%$%!:#, %&'(!:#)

Reinit "

!!"#

!$%&#

!!"'

!$%&'

!!"(

!$%&(

CL Scenario Hyperparameter Tuning Phase

(!
64ℋ)
78ℋ*
84!+
……

54ℋ,

Add (ℋ, , ),)

Result

Generate 
a CL scenario

Task 0 Task 1 Task #

…

Dataset
(!&)

CL Alg.(!∗)

Train "!:#

Eval.

(%$%!:#, %&'(!:#)
!!"#

!$%&#

!!"'

!$%&'

!!"(

!$%&(

CL Scenario Evaluation Phase

!∗ = !+

Report 
Evaluation 

Result

Figure 3: Illustration of the proposed evaluation protocol. Both phases share the same CL scenario
configuration (e.g., the number of tasks and number of classes in each task) but they are generated
from distinct datasets (DHT and DE). Best hyperparameters are selected in the hyperparameter
tuning phase. Then, the evaluation phase access a CL algorithm by training a model using them.
Note that evaluating an algorithm solely based on the results from the hyperparameter tuning phase is
identical to the conventional evaluation protocol without using Dte.

scenarios (i.e., seen scenarios), making it challenging to assess whether the algorithms would perform
equally well in unseen scenarios. Nevertheless, this conventional protocol remains the predominant
evaluation protocol for assessing algorithms across most CL domains.

Algorithm 1: The Generalizable Two-phase Evaluation Protocol

Input : A CL algorithm A, a model θ, the dataset for the hyperparameter tuning phase DHT , the
dataset for the evaluation phase DE , the number of random samplings R, the number of trials S,
and the number of hyperparameters K.

Output : Final evaluation result (PE) for a CL algorithm A in the evaluation phase
1. {(Hi, P

HT
i )}Ri=1← HyperparameterTuning(θ,A, DHT , R, S,K)

2. H∗ ← SelectBestHyperparameter({(Hi, P
HT
i )}Ri=1)

3. PE ← Evaluation(θ,A, DE ,H∗, S)

3.2 GENERALIZABLE TWO-PHASE EVALUATION PROTOCOL (GTEP) FOR CL

Given the previously discussed issues with the conventional evaluation protocol, the key question
becomes: What hyperparameter tuning and evaluation protocol should be used to properly assess CL
algorithms? Note that effective evaluation in machine learning should prioritize realistic methods
tailored to each learning scenario, rather than rigidly adhering to assumptions (e.g., i.i.d.) for
theoretical convenience. In this regards, we argue that evaluating the generalizability of each
algorithm’s CL capacity is essential. For example, consider a real-world CL scenario where an
algorithm is applied to a CL scenario consisting of a sequence of tasks. Since the entire task data
would not be fully accessible at once, the conventional hyperparameter tuning method cannot be
applied. In such cases, a reasonable approach is to construct a simulated CL scenario, reflecting the
expected actual CL scenario, using a benchmark or available dataset. This involves identifying the
best hyperparameters in the simulated scenario and then applying them to the actual CL scenario.
In other words, one of the basic evaluation protocols—consistent with the fundamental principles
of evaluation in machine learning—is to tune hyperparameters in seen scenarios (e.g., simulated
scenarios) and test them in unseen scenarios (e.g., actual scenarios).

Building on the above concept, we propose a revised evaluation protocol consisting of two phases,
the Generalizable Two-phase Evaluation Protocol (GTEP): hyperparameter tuning and evaluation.
Figure 3 and Algorithm 1 outlines the overall process. The key idea is that CL scenarios for the
hyperparameter tuning and evaluation phases are generated from different datasets (i.e., DHT ̸= DE)
but share the same scenario configuration (e.g., the number of tasks and classes per task), based

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

on expectations on the actual scenario. In the hyperparameter tuning phase, the goal is to identify
the best hyperparameters for the CL algorithm. In the evaluation phase, these hyperparameters are
applied to assess the algorithm’s CL capacity in unseen scenarios, providing a more realistic measure
of its generalizability.

The pseudo algorithm of the hyperparameter tuning phase is outlined in Algorithm 2 of the Appendix.
First, we randomly sample hyperparameters hk from a predefined set hSet

k and build a list of selected
hyperparametersHr. Next, we generate a predefined CL scenario using the function F with shuffled
class orderings. Afterward, the model θ is trained using the selected hyperparameters Hr, the
CL algorithm A, and the training dataset DHT

tr . Performance (PHT ) is then measured on the
validation dataset DHT

val . This phase returns multiple sets of hyperparameters and their corresponding
performance. Next, using the SelectBestHyperparameter function in Algorithm 1, we select
the best hyperparameters, denoted asH∗. Note that the hyperparameter tuning phase is identical to
the conventional evaluation protocol. However, we only use the results from this phase to select the
best hyperparameters.

In the evaluation phase (shown in Algorithm 3 of the Appendix), we train a model θ using the CL
algorithm with the best hyperparameters H∗. The trained model is then tested on the validation
dataset DE

val. The final performance metric is the averaged performance (PE) of the trained model
across multiple class orderings, which serves as the evaluation criterion for the CL algorithm.

To find the best hyperparameters for each algorithm, we optimize both algorithm-specific hyperpa-
rameters (e.g., regularization strength) and general hyperparameters (e.g., learning rate and batch
size). During the hyperparameter tuning phase, we train the model with R sets of randomly selected
hyperparameters and account for S task orderings per set. In the evaluation phase, we assess the
performance across S task orderings as well. In this paper, we set R = 30 and S = 5 for all experi-
ments. We also take into account various similarity scenarios between the hyperparameter tuning
dataset (DHT ) and the evaluation dataset (DE). High similarity indicates that the characteristics of
the dataset used in the actual scenario are somewhat predictable, allowing us to generate a scenario
for the hyperparameter tuning phase using a similar dataset. Conversely, low similarity suggests
unpredictability, indicating that the datasets used to generate scenarios in both phases differ signifi-
cantly. Evaluating each algorithm under both similarity cases offers a comprehensive understanding
of the generalizability of its CL capacity. Furthermore, these efforts towards accurate evaluation
highlight the methodological differences from previously proposed evaluation protocols (Chaudhry
et al., 2018b; Chen et al., 2023; Bornschein et al., 2023; Mundt et al., 2022), as the revised evaluation
protocol. Additionally, note that the high-level concept of the proposed protocol can be applied to
various CL domains by considering the specific characteristics of these domains (e.g., imbalanced
classes per task, blurred task boundaries, or entirely different domains such as semantic segmentation)
in the CL scenario generation process (denoted as F in Algorithms 2 and 3) for both phases.

4 EXPERIMENTAL RESULTS

In this section, we present extensive experimental results using our proposed protocol in the most
actively researched domain of continual learning (CL) (Wang et al., 2023), class-incremental learning
(class-IL) both without and with pretrained models (Masana et al., 2020; Zhou et al., 2024a; 2023a).

4.1 CLASS-INCREMENTAL LEARNING WITHOUT PRETRAINED MODELS

Experimental settings We conduct the hyperparameter tuning and evaluation phases
Table 1: Scenarios and datasets.

Scenario DHT DE

10 Tasks
(C10×T10) ImageNet-100-1 ImageNet-100-2

6 Tasks
(C50×T1 + C10×T5)

10 Tasks
(C5×T10) ImageNet-50-1,

CIFAR-50-1
ImageNet-50-2,

CIFAR-50-26 Tasks
(C25×T1 + C5×T5)

using benchmark datasets, as shown in Table 1. From
ImageNet-1k (Deng et al., 2009), we derive two
subsets, ImageNet-100-1 and ImageNet-100-2, each
containing 100 randomly selected non-overlapping
classes. To account for varying dataset similari-
ties, we further divide CIFAR-100 (Krizhevsky et al.,
2009) and ImageNet-100-1 into disjoint classes, gen-
erating CIFAR-50-1, CIFAR-50-2, ImageNet-50-1,
and ImageNet-50-2. We focus on two primary class-incremental learning (class-IL) scenarios (Masana
et al., 2020): 10 Tasks, where the model learns an equal number of classes from each task, and 6

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Tasks, where the model learns half of the total classes in the first task then evenly distributes the
remaining classes evenly across subsequent tasks. Note that evaluating using both scenarios has
been widely considered the proper assessment of each algorithm (Masana et al., 2020; Zhou et al.,
2023a) The table presents the configuration of the number classes (C) and tasks (T) for each scenario.
We conduct experiments using ResNet (He et al., 2016). We employ two key performance metrics
commonly used for evaluating class-IL algorithms (Masana et al., 2020): Acc is final classification
accuracy for the entire validation dataset after training the final task, and AvgAcc = 1

T

∑T
t=1 Acct,

where Acct denotes accuracy on the validation data up to task t. The hyperparameters that yield the
highest harmonic mean of Acc and AvgAcc are selected during the hyperparameter tuning phase.

Baselines We evaluate nine major class-IL algorithms, including replay-based methods (Replay,
iCaRL (Rebuffi et al., 2017), and WA (Zhao et al., 2020)) and regularization-based methods (BiC (Wu
et al., 2019) and PODNet (Douillard et al., 2020)) and expansion-based methods (DER (Yan et al.,
2021), FOSTER (Wang et al., 2022b), and BEEF (Wang et al., 2022a)). Note that we use the partially
implemented DER, as neither PyCIL nor the official DER code includes the implementation details
for masking and pruning. Replay serves as a naive baseline, where a model is fine-tuned using both
the exemplar memory and the current task’s dataset. Note that these algorithms have demonstrated
progressively improved performance in the order of their publication. Among them, FOSTER,
BEEF, and MEMO are recognized as the current state-of-the-art, reporting superior performance that
surpasses DER by a small margin. We conduct experiments using the implementation code proposed
in PyCIL (Zhou et al., 2023a). The size of the exemplar memory is set to 2000 for ImageNet-100, and
1000 for ImageNet-50 and CIFAR-50 variants. More details on settings, predefined hyperparameter
sets and selected hyperparameters are presented in Section B.1 of the Appendix.

(a) Results on DHT = ImageNet-100-1 (b) Comparing results on DHT and DE

Figure 4: Experimental results (AvgAcc) on the 10 Tasks scenario using ImageNet-100-1 for DHT

and ImageNet-100-2 for DE (high similarity). The term ’Original’ andH∗ refer to the use of reported
hyperparameters and hyperparameters selected from our protocol, respectively. BEEF constantly
returns NaN in training loss at specific seeds so we could not report its performance.

Experiments using original and selected hyperparameters To demonstrate whether the hyperpa-
rameters identified during the hyperparameter tuning phase achieve better performance than those
previously reported, we conduct experiments with both sets of hyperparameters. Figure 4(a) presents
results on DHT = ImageNet-100-1, showing that using the best hyperparameters (H∗) generally out-
performs the original ones across all algorithms except BEEF. Note that the performance differences
among DER, FOSTER, and MEMO are within their respective standard deviations. Considering the
hyperparameter tuning phase aligns with the conventional evaluation protocol, this graph indicates
that each algorithm reflects the performance trends observed in their respective papers, gradually
improving over time in accordance with the order of publication. On the other hand, we confirm that
BEEF is significantly sensitive to hyperparameters, as it occasionally results in NaN (Not a Number)
in training loss for specific seeds, even when using the original hyperparameters.

In the evaluation phase, we apply the best hyperparameters to assess the CL capacity in unseen
scenarios generated by DE . Note that, due to differences in the datasets between these phases, the
final performance may vary across phases, even when using identical hyperparameters for each
algorithm. Figure 4(b) presents experimental results. The graph shows that the CL capacity of the
state-of-the-art algorithms (i.e., FOSTER, BEEF, and MEMO) is significantly inferior to that of older
algorithms, such as WA, BiC and PODNet. Additionally, BEEF again produces NaN values for
certain seeds. In contrast, DER demonstrates superior generalizability of its CL capacity, consistently
maintaining strong performance in both phases.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 5: Bar graphs depict the experimental results from the evaluation phase. The Y-axis represents
final classification accuracy (Acc). The parentheses next to each algorithm indicate the publication
year. The bar graphs in the first row show the experimental results using the best hyerparameters
selected in the hyperparameter tuning phase with DHT = CIFAR-50-1 , while the graphs in the
second row show the results using DHT = ImageNet-50-1 . In cases of using ImageNet-50-1 or
ImageNet-50-2, we encountered challenges in obtaining results for BEEF due to NaN issues.
Experiments across diverse similarity cases To broadly assess the generalizability of each al-
gorithm’s CL capacity, we conduct experiments across various similarity cases. The bar graphs
in the first row of Figure 5 display results for both high and low similarity cases, using the best
hyperparameters selected during the hyperparameter tuning phase using DHT = CIFAR-50-1. In
most cases, iCaRL performs worse than Replay, and BiC also struggles in some cases (e.g., 6 tasks
in both high and low similarity settings). Additionally, both WA and PODNet outperform other
regularization-based methods, with PODNet particularly excelling in the 6 Tasks. Lastly, the current
state-of-the-art methods—FOSTER, BEEF, and MEMO—exhibit lower performance compared to
DER, with BEEF again showing significant sensitivity, especially on ImageNet-50-2.

The second row of Figure 5 presents results using the best hyperparameters selected based on
DHT = ImageNet-50-1. The trends are consistent with previous experiments: DER maintains
superior performance in most cases, although FOSTER surpasses DER in the low similarity case (6
tasks). Additionally, BEEF suffers from NaN issues in training loss for certain seeds.

(a) Performance graph (b) Number of parameters (c) Total training time

Figure 6: Experimental analysis in the evaluation phase. All experimental results are obtained by
first identifying the best hyperparameters using CIFAR-50-1 (10 Tasks) in the hyperparameter tuning
phase, then evaluating each algorithm using CIFAR-50-2 (10 Tasks) in the evaluation phase. (b) and
(c) show results after training up to the final task.
Additional analysis Figure 6(a) shows the evaluation results for each task t in the evaluation phase,
with shaded areas representing the standard deviation across 5 trials. From these graphs, it is evident
that DER consistently outperforms current state-of-the-art algorithms (i.e., FOSTER, BEEF and
MEMO). Considering the standard deviation, the performances of FOSTER and MEMO are nearly
indistinguishable. Among the remaining algorithms, WA demonstrates relatively better performance
while BEEF performs similarly to the order algorithms.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Recent studies have increasingly focused on evaluating CL algorithms based on their training costs,
particularly in terms of GPU usage and energy consumption (Prabhu et al., 2023; Chavan et al.,
2023). However, these evaluations were often conducted by either limiting the number of training
iterations or comparing costs under a fixed number of training epochs. Building on this, we extend
the analysis by examining the final model size and total training time for each algorithm, using their
best hyperparameters to ensure a fair and comprehensive comparison of efficiency. Figures 6(b) and
6(c) present scatter plots showing achieved accuracy, total parameter counts, and training times. DER
performs the best and requires relatively less training time. Nevertheless, it exhibits considerable
inefficiency in the total number of parameters, which increases linearly with the number of tasks,
raising concerns about its actual cost-efficiency as a CL algorithm. On the other hand, BiC, BEEF,
and MEMO fail to demonstrate superior performance while requiring similar or longer training times
compared to DER, highlighting their serious inefficiency.

4.2 CLASS-INCREMENTAL LEARNING WITH PRETRAINED MODELS

Experimental details We conduct both the hyperparameter tuning and evaluation phases
Table 2: Scenarios and datasets.

Scenario DHT DE

20 Tasks
(C10×T20) CUB-200,

ImageNet-R
ImageNet-R,
ImageNet-A10 Tasks

(C20×T10)
20 Tasks

(C5×T20) CUB-100-1,
ImageNet-R-1

CUB-100-2,
ImageNet-R-2,
ImageNet-A-210 Tasks

(C10×T10)

using widely used datasets in class-incremental
learning (class-IL) with pretrained models, in-
cluding CUB-200 (Wah et al., 2011), ImageNet-
R (Hendrycks et al., 2021a), and ImageNet-
A (Hendrycks et al., 2021b), all of which contain
200 classes. To explore diverse similarity cases, we
divide these datasets into two disjoint subsets, as out-
lined in Table 2. Following Sun et al. (2023), we
consider two major class-IL scenarios: 20 Tasks and
10 Tasks, where the model learns an equal number of
classes in each task. Note that the 20 Tasks scenario has been commonly regarded as the standard for
better evaluating algorithm performance due to the need to handle more tasks. For all experiments,
we employ the ViT B16 model, which is pretrained on ImageNet (Dosovitskiy et al., 2020). The best
hyperparameters are selected based on the same metrics: the harmonic mean of Acc and AvgAcc.

Baselines We select six major algorithms: prompt-based methods (L2P (Wang et al., 2022d),
DualPrompt (Wang et al., 2022c) and CODA-Prompt (Smith et al., 2023)) and representation-based
methods (Adam-Adapter (Zhou et al., 2023b), Ranpac (McDonnell et al., 2024) and EASE (Zhou
et al., 2024b)). Within each category, CODA-Prompt and EASE represent current state-of-the-art
algorithms. Although DAP (Jung et al., 2023) reports better performance within the prompt-based
method category, we exclude it due to fairness issues in comparison, as mentioned in Zhou et al.
(2024a). All experiments are conducted using code implemented in PILOT (Sun et al., 2023). Details
on experimental settings, predefined hyperparameter sets the best hyperparameters are proposed in
Section B.2 of the Appendix.

(a) Results on DHT = CUB-200 (b) Comparing results on DHT and DE

Figure 7: Experimental results (AvgAcc) for 10 Tasks scenario using CUB-200 for DHT , ImageNet-
R, and ImageNet-A for DE (low similarity). The term ’Original’ andH∗ refer to the use of original
hyperparameters and the hyperparameters selected from our protocol, respectively.
Experiments using original and selected hyperparameters To verify best hyperparameters
selected in the hyperparameter tuning phase, we conduct experiments on DHT = CUB-200 using
both the reported and selected hyperparameters of each algorithm. Figure 7(a) demonstrates that
using the selected hyperparameters leads to better performance across all algorithms. Additionally,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 8: Bar graphs depict the experimental results from the evaluation phase. The Y-axis represents
final accuracy (Acc). In the legend, the parentheses next to each algorithm indicate the publication
year. The bar graphs in the first row show the experimental results using the best hyerparameters
selected in the hyperparameter tuning phase with DHT = CUB100-1 , while the graphs in the second
row display the results using DHT = ImageNet-R-1 .

we observe that the performance of each algorithm gradually improves in accordance with their
publication order, as reported in the respective papers. Note that Ranpac and EASE demonstrate
similar performance, with differences falling within their standard deviations.

Following our evaluation protocol, we apply the best hyperparameters for each algorithm in the
evaluation phase. We conduct experiments for two evaluation phases using ImageNet-R and ImageNet-
A as DE and Figure 7(b) shows experimental results. From these results, we can confirm the following
observations: First, among the prompt-based algorithms (solid lines), DualPrompt exhibits degraded
performance compared to L2P in both evaluation phases. Additionally, CODA-Prompt demonstrates
superior performance in all cases, although it shows nearly identical performance to L2P in the
ImageNet-R. In the case of the representation-based algorithms (dashed lines), Ranpac consistently
maintains its superiority across all datasets. However, EASE, recognized as the current state-of-the-art,
shows significantly poorer performance in both evaluation phases.

Experiments across diverse similarity cases Figure 8 presents the experimental results evaluated
in the evaluation phase. Similar to trends reported in Zhou et al. (2024a), representation-based
methods generally outperform prompt-based methods. However, significant differences are observed
under the proposed evaluation protocol: First, the prompt-based methods have reported substantial
performance improvements over previous algorithms (e.g., 7-10% increases on the CUB200 dataset
for each algorithm (Zhou et al., 2024a)). However, the proposed evaluation protocol reveals either no
significant performance difference between them (e.g., low similarity (20 tasks) using ImageNet-R-2
in the first row of the graph) or cases where an order algorithm outperforms a newer one (e.g., high
similarity (20 tasks) using CUB100-2 in the first row of the graph). Second, the current state-of-the-art
representation-based method, EASE, often underperforms compared to Ranpac, especially in low
similarity cases (e.g., low similarity (10 tasks) using ImageNet-R-2 in the first row of the graph).
Lastly, while Ranpac achieves the best performance in most cases, it exhibits significantly degraded
performance in several low similarity cases (e.g., low similarity (20 tasks) using ImageNet-A-2 in
the first row of the graph). This degradation is attributed to considerable performance instability in
certain tasks.

Additional analysis As we already confirmed in the previous experiments, Figure 9(a) illustrates
that Ranpac suffers from significant instability in certain tasks, resulting in a substantial increase
in standard deviation (shaded area). Furthermore, we observe that the state-of-the-art algorithms,
EASE and CODA-Prompt in their respective categories, do not consistently outperform baseline
algorithms like ADAM and DualPrompt in many cases, highlighting a lack of generalizability in their
CL capacity.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Performance graph (b) # of trainable params (c) Training time

Figure 9: Experimental analyses in the evaluation phase. All experimental results are obtained by first
identifying the best hyperparameters using ImageNet-R-1 (20 Tasks) in the hyperparameter tuning
phase, then evaluating each algorithm using ImageNet-A-2 (20 Tasks) in the evaluation phase. (b)
and (c) show the results after training up to the final task.

Figures 9(b) and 9(c) display the number of trainable parameters and training times with the best hy-
perparameters. For prompt-based algorithms, training times are comparable; however, CODA-Prompt
requires more parameters while delivering lower performance compared to DualPrompt. Among
representation-based methods, the oldest algorithm (i.e., ADAM) achieves the best performance with
minimal costs in terms of trainable parameters and training time.

In Section C of the Appendix, we present additional experimental results, including training graphs
and numerical data related to the results discussed in the manuscript.

5 CONCLUDING REMARKS
Problems with the conventional evaluation protocol The conventional evaluation protocol, which
is predominantly used to assess continual learning (CL) algorithms, has significant flaws because it
fails to consider real-world situations. In particular, the hyperparameter tuning method, which relies
on repeated training in a given scenario is not only inapplicable to real-world CL scenarios but also
tends to overestimate the CL capacity of each algorithm. According to the fundamental evaluation
principles of machine learning, the evaluation of CL algorithms should prioritize assessing the
generalizability of their CL capacity to unseen scenarios. In this regard, we propose the Generalizable
Two-phase Evaluation Protocol (GTEP), which involves tuning hyperparameters in seen scenarios
and then applying them to unseen scenarios, considering various similarity cases.

Summary of experimental findings Our experiments across various similarity cases provide several
key insights: First, the CL capacity of many algorithms, especially recent ones, has been significantly
overestimated. Although most state-of-the-art algorithms perform well in seen scenarios, their CL
capacity to unseen scenarios is often lacking. Second, we found that some of these algorithms are
highly sensitive to hyperparameters, resulting in instances where they fail to learn specific task orders
or exhibit significant performance variance on certain tasks. These two findings indicate that they
have reported overfitted results to the seen scenarios under the conventional evaluation protocol,
raising serious questions about their real-world applicability. Finally, even algorithms that perform
relatively well in the proposed protocol often incur excessive costs (e.g., training time and number of
parameters), undermining one of the key objectives of continual learning: cost-efficiency. Although
we reported the experimental results in class-incremental learning, we argue that these issues can
naturally be inferred to occur in other CL domains that use the same conventional evaluation protocol.

How should we evaluate going forward? – Key Takeaways We believe that the proposed
evaluation protocol provides a fundamental approach to assess the generalizability of each algorithm’s
CL capacity, taking into account both the fundamental evaluation principles in machine learning and
its real-world applications. Therefore, to make meaningful progress in CL research, we suggest that
future evaluations across all CL domains should at least check the following:

• Does the proposed algorithm outperform baseline algorithms when the best hyperparameters
selected from the hyperparameter tuning phase are applied to the evaluation phase?

• In the evaluation phase, is the proposed algorithm more efficient in terms of training costs
(e.g., total parameters and training time) compared to baseline algorithms? Additionally,
does it avoid significant instability?

There are several limitations to our work and we discuss both limitations and future work in Section
D of the Appendix.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 139–154, 2018.

Jorg Bornschein, Alexandre Galashov, Ross Hemsley, Amal Rannen-Triki, Yutian Chen, Arslan
Chaudhry, Xu Owen He, Arthur Douillard, Massimo Caccia, Qixuan Feng, et al. Nevis’ 22: A
stream of 100 tasks sampled from 30 years of computer vision research. Journal of Machine
Learning Research, 24(308):1–77, 2023.

Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo Porrello, and Simone Calderara. Class-
incremental continual learning into the extended der-verse. IEEE transactions on pattern analysis
and machine intelligence, 45(5):5497–5512, 2022.

Sungmin Cha, Hsiang Hsu, Taebaek Hwang, Flavio Calmon, and Taesup Moon. {CPR}: Classifier-
projection regularization for continual learning. In International Conference on Learning Repre-
sentations, 2021a. URL https://openreview.net/forum?id=F2v4aqEL6ze.

Sungmin Cha, YoungJoon Yoo, Taesup Moon, et al. Ssul: Semantic segmentation with unknown
label for exemplar-based class-incremental learning. Advances in neural information processing
systems, 34:10919–10930, 2021b.

Sungmin Cha, Sungjun Cho, Dasol Hwang, Sunwon Hong, Moontae Lee, and Taesup Moon. Rebal-
ancing batch normalization for exemplar-based class-incremental learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20127–20136, 2023a.

Sungmin Cha, Jihwan Kwak, Dongsub Shim, Hyunwoo Kim, Moontae Lee, Honglak Lee, and Taesup
Moon. Towards more objective evaluation of class incremental learning: Representation learning
perspective, 2023b.

Sungmin Cha, Kyunghyun Cho, and Taesup Moon. Regularizing with pseudo-negatives for continual
self-supervised learning. In Forty-first International Conference on Machine Learning, 2024.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of the
European Conference on Computer Vision (ECCV), pp. 532–547, 2018a.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018b.

Vivek Chavan, Paul Koch, Marian Schlüter, and Clemens Briese. Towards realistic evaluation of
industrial continual learning scenarios with an emphasis on energy consumption and computational
footprint. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
11506–11518, 2023.

Jiefeng Chen, Timothy Nguyen, Dilan Gorur, and Arslan Chaudhry. Is forgetting less a good inductive
bias for forward transfer? arXiv preprint arXiv:2303.08207, 2023.

Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Greg
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

11

https://openreview.net/forum?id=F2v4aqEL6ze


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and Eduardo Valle. Podnet: Pooled
outputs distillation for small-tasks incremental learning. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XX 16, pp. 86–102.
Springer, 2020.

Enrico Fini, Victor G Turrisi Da Costa, Xavier Alameda-Pineda, Elisa Ricci, Karteek Alahari, and
Julien Mairal. Self-supervised models are continual learners. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9621–9630, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 8340–8349, 2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 15262–15271, 2021b.

Dahuin Jung, Dongyoon Han, Jihwan Bang, and Hwanjun Song. Generating instance-level prompts
for rehearsal-free continual learning. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 11847–11857, 2023.

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi, Gyuhak Kim, and Bing Liu. Continual
pre-training of language models. In The Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/forum?id=m_GDIItaI3o.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Daeun Lee, Jaehong Yoon, and Sung Ju Hwang. Becotta: Input-dependent online blending of experts
for continual test-time adaptation. In Forty-first International Conference on Machine Learning,
2024.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Yaoyao Liu, Yingying Li, Bernt Schiele, and Qianru Sun. Online hyperparameter optimization for
class-incremental learning. arXiv preprint arXiv:2301.05032, 2023.

Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost
van de Weijer. Class-incremental learning: survey and performance evaluation on image classifica-
tion. arXiv preprint arXiv:2010.15277, 2020.

Mark D McDonnell, Dong Gong, Amin Parvaneh, Ehsan Abbasnejad, and Anton van den Hengel.
Ranpac: Random projections and pre-trained models for continual learning. Advances in Neural
Information Processing Systems, 36, 2024.

Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin. The stability-plasticity dilemma: Inves-
tigating the continuum from catastrophic forgetting to age-limited learning effects. Frontiers in
psychology, 4:504, 2013.

Martin Mundt, Steven Lang, Quentin Delfosse, and Kristian Kersting. CLEVA-compass: A continual
learning evaluation assessment compass to promote research transparency and comparability. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=rHMaBYbkkRJ.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019.

12

https://openreview.net/forum?id=m_GDIItaI3o
https://openreview.net/forum?id=rHMaBYbkkRJ
https://openreview.net/forum?id=rHMaBYbkkRJ


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hongming Piao, Yichen Wu, Dapeng Wu, and Ying Wei. Federated continual learning via prompt-
based dual knowledge transfer. In Forty-first International Conference on Machine Learning,
2024.

Ameya Prabhu, Hasan Abed Al Kader Hammoud, Puneet K Dokania, Philip HS Torr, Ser-Nam Lim,
Bernard Ghanem, and Adel Bibi. Computationally budgeted continual learning: What does matter?
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3698–3707, 2023.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Minhyuk Seo, Hyunseo Koh, Wonje Jeung, Minjae Lee, San Kim, Hankook Lee, Sungjun Cho,
Sungik Choi, Hyunwoo Kim, and Jonghyun Choi. Learning equi-angular representations for online
continual learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 23933–23942, 2024.

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf
Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed
attention-based prompting for rehearsal-free continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11909–11919, 2023.

Hai-Long Sun, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Pilot: A pre-trained model-based
continual learning toolbox. arXiv preprint arXiv:2309.07117, 2023.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Fu-Yun Wang, Da-Wei Zhou, Liu Liu, Han-Jia Ye, Yatao Bian, De-Chuan Zhan, and Peilin Zhao.
Beef: Bi-compatible class-incremental learning via energy-based expansion and fusion. In The
Eleventh International Conference on Learning Representations, 2022a.

Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Foster: Feature boosting and
compression for class-incremental learning. In European conference on computer vision, pp.
398–414. Springer, 2022b.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
Theory, method and application. arXiv preprint arXiv:2302.00487, 2023.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. In European Conference on Computer Vision, pp. 631–648.
Springer, 2022c.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149, 2022d.

Tongtong Wu, Linhao Luo, Yuan-Fang Li, Shirui Pan, Thuy-Trang Vu, and Gholamreza Haffari.
Continual learning for large language models: A survey. arXiv preprint arXiv:2402.01364, 2024.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large
scale incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 374–382, 2019.

Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for class
incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3014–3023, 2021.

Jayeon Yoo, Dongkwan Lee, Inseop Chung, Donghyun Kim, and Nojun Kwak. What how and
when should object detectors update in continually changing test domains? In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23354–23363, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547, 2017.

Bo Yuan and Danpei Zhao. A survey on continual semantic segmentation: Theory, challenge, method
and application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-Tao Xia. Maintaining discrimination and
fairness in class incremental learning. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 13208–13217, 2020.

Da-Wei Zhou, Qi-Wei Wang, Han-Jia Ye, and De-Chuan Zhan. A model or 603 exemplars: Towards
memory-efficient class-incremental learning. arXiv preprint arXiv:2205.13218, 2022.

Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, and De-Chuan Zhan. Pycil: a python toolbox for class-
incremental learning. SCIENCE CHINA Information Sciences, 66(9):197101–, 2023a. doi:
https://doi.org/10.1007/s11432-022-3600-y.

Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Revisiting class-incremental learn-
ing with pre-trained models: Generalizability and adaptivity are all you need. arXiv preprint
arXiv:2303.07338, 2023b.

Da-Wei Zhou, Hai-Long Sun, Jingyi Ning, Han-Jia Ye, and De-Chuan Zhan. Continual learning with
pre-trained models: A survey. arXiv preprint arXiv:2401.16386, 2024a.

Da-Wei Zhou, Hai-Long Sun, Han-Jia Ye, and De-Chuan Zhan. Expandable subspace ensemble for
pre-trained model-based class-incremental learning. arXiv preprint arXiv:2403.12030, 2024b.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ALGORITHM TABLES

Algorithm 2: Pseudo algorithm of the hyperparameter tuning phase

Input : A CL algorithm A, a model θ, the dataset for the hyperparameter tuning phase DHT , the
number of random samplings R, the number of trials S, the number of hyperparameters K, and
the function that generates a CL scenario F .

Output : {(Hi, P
HT
i )}Ri=1

1. Result← {}
2. for r ← 1 to R do
3. for k ← 1 to K do
4. hk ← RandomSample(hSet

k )

5. Hr ← (h0, h1, · · · , hK)

6. for s← 1 to S do
7. Initialize θ

8. DHT
tr , DHT

val ← F(Shuffle(DHT ))

9. PHT
s ← TrainCL(A, DHT

tr , DHT
val , θ,Hr)

10. PHT
r ← 1

S

∑S
s=1 P

HT
s

11. Add (Hr, P
HT
r ) to Result

Algorithm 3: Pseudo algorithm of the evaluation phase

Input : A CL Algorithm A, a model θ, the dataset for the Eval phase DE , the best
hyperparameter valueH∗, the number of trials S, the number of hyperparameters K, and the
function that generates a CL scenario F .

Output : Final evaluation result (PE) for A
1. for s← 1 to S do
2. Initialize θ

3. DE
tr, D

E
val ← F(Shuffle(DE))

4. PE
s ← TrainCL(A, DE

tr, D
E
val, θ,H∗)

5. PE ← 1
S

∑S
s=1 P

E
s

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B ADDITIONAL DETAILS ON EXPERIMENTAL SETTINGS

B.1 CLASS-INCREMENTAL LEARNING WITHOUT A PRETRAINED MODEL

Experimental details We conduct all experiments using PyCIL (Zhou et al., 2023a) in the following
environment: Python 3.8, PyTorch 1.13.1, and CUDA 11.7. We use ResNet-18 and ResNet-32
architectures for our experiments. For class-incremental learning without a pretrained model, we
employ the SGD optimizer with a momentum of 0.9 across all methods, consistent with their
respective implementations. Other hyperparameters, however, are sampled during the hyperparameter
tuning phase.

Table 3: Hyperparameters for training the first task.

Hyperparameters Values
Init epochs 200

Init learning rate 0.1

Init milestones [60, 120, 170]
(Only applied when ’StepLR’ is selected)

Init learning rate decay 0.1
Init weight decay 0.0005

Predefiend hyperparameters Recent studies have demonstrated that newer algorithms perform
better when trained for more epochs on the first task and fewer epochs on subsequent tasks (Masana
et al., 2020). Additionally, it is known that performance on the first task significantly impacts overall
performance (Cha et al., 2023b). To apply this approach consistently across all algorithms, we train a
model on the first task using the hyperparameters listed in Table 3. Subsequently, we train that model
with randomly sampled hyperparameters starting from the second task.

Figure 10: # of hyperparameters.

Figure 10 shows the number of hyperparameters for each algorithm. We consider both algorithm-
specific and general hyperparameters in the hyperparameter tuning phase. Table 4 presents the sets of
predefined hyperparameters considered for each algorithm. Note that ’Epoch’, ’Num milestones’, ’LR
decay’, ’Batch size’, ’Weight decay’, and ’LR scheduler’ are commonly considered hyperparameters
for all algorithms. Additionally, both ’Num milestones’ and ’Lr decay’ are applicable only when
’StepLR’ is selected as a scheduler. The others are specific hyperparameters of each algorithm. We
consider all the hyperparameters necessary for implementing each algorithm. For instance, even if a
specific algorithm uses the same value for a particular hyperparameter across all experiments (e.g.,
fixing the strength of an additional regularization to 1), we aimed to find the best hyperparameter for
it (e.g., setting the strength as α and finding the best value of it in the hyperparameter tuning phase).
We determine the range of values for the predefined hyperparameters based on the following criteria.
First, for general hyperparameters, we establish the range to include all optimal values reported by
each algorithm. For specific hyperparameters related to each algorithm, we not only include the
optimal values report in the papers but also considered the full range of values that were explored
during their hyperparameter searches.

When the LR scheduler is set to StepLR, the milestones must be determined. To achieve this, we
generalize the process of random sampling based on the milestones used in existing algorithms. First,
we randomly sample num_milestones. Based on this sampling, the milestones for the StepLR are
set according to the following rule: For example, if Num_milestones is set to 2, the milestones are
defined as [epoch*(2/5), epoch*(4/5)]. If set to 3, the milestones become [epoch*(2/7), epoch*(4/7),
epoch*(6/7)]. Similarly, for 4 milestones, the values are [epoch*(2/9), epoch*(4/9), epoch*(6/9),

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

epoch*(8/9)]. However, note that the num_milestones is ignored when another LR schduler is
selected.

Table 4: The predefined set of hyperparametes for class-IL without a pretrained model.

Algorithm Hyperparameter Name hSet

All algorithms

Epoch [30, 70, 120, 160, 200]
LR [0.05, 0.1, 0.15, 0.2, 0.3]

Num
milestones [2, 3, 4]

LR
decay [0.1, 0.3, 0.5]

Batch
size [32, 64, 128, 256, 512]

Weigh
decay [0.0001, 0.0005, 0.001, 0.005]

LR
Scheduler [’StepLR’, ’Cosine’]

iCaRL, BiC, WA and FOSTER T
(KD) [0.5, 1, 1.5, 2, 2.5]

BiC, WA and FOSTER λ
(KD) [0.5, 1, 1.5, 2, 3]

BiC Split
ratio [0.05, 0.1, 0.15, 0.2, 0.3]

iCaRL, PODNet, DER and MEMO λ
(Aux) [0.5, 1, 1.5, 2, 3]

FOSTER λ
(FE) [0.5, 1, 1.5, 2, 3]

FOSTER β1 [0.93, 0.95, 0.97, 0.99]
FOSTER β2 [0.93, 0.95, 0.97, 0.99]

PODNet Num
proxy [10, 20, 30, 50, 100]

PODNet, FOSTER and BEEF Post FT
epochs

[5, 10, 20, 30, 50]
/ [30, 70, 120, 160, 200] (FOSTER and BEEF)

PODNet Post FT
LR [0.001, 0.003, 0.005, 0.007, 0.01]

PODNet Adaptive factor [True, False]

BEEF Energy
weight [0.001, 0.005, 0.01, 0.02, 0.05]

BEEF Logit
alignment [1.1, 1.4, 1.7, 2.0, 2.3]

MEMO Exemplar
batch size [16, 32, 64, 128, 256]

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Original hyperparameters The following shows the original hyperparameters of each algorithm
reported in PyCIL.

• Replay: ep_70_lr_0.1_lr_decay_0.1_batch_128_w_decay_0.0002_scheduler_steplr
• BiC: ep_170_lr_0.1_lr_decay_0.1_batch_128_w_decay_0.0002_scheduler_steplr

T_2_lambda_kd_0_split_ratio_0.1
• PODNet: ep_160_milestone_2_lr_0.1_lr_decay_0.1_batch_128_w_decay_0.0005_scheduler_cosine

lambda_c_5_lambda_f_1.0_nb_proxy_10_ft_epochs_20_ft_lrate_0.005_adaptive_factor_True
• FOSTER: ep_170_lr_0.1_lr_decay_0.1_batch_128_w_decay_0.0005_scheduler_cosine

T_2_lambda_kd_1_fe_1_beta_0.96_0.97_comp_ep_130
• MEMO: ep_170_milestone_3_lr_0.1_lr_decay_0.1_batch_128_w_decay_0.0002_scheduler_steplr

lambda_aux_1_examplar_bs_64
• iCaRL: ep_170_lr_0.1_lr_decay_0.1_batch_128_w_decay_0.0002_scheduler_steplr

T_2_lambda_aux_1
• WA: ep_170_milestone_3_lr_0.1_lr_decay_0.1_batch_128_w_decay_0.0002_scheduler_steplr

T_2.0_lambda_kd_0
• DER: ep_170_lr_0.1_lr_decay_0.1_batch_128_w_decay_0.0002_scheduler_steplr

lambda_aux_1
• BEEF: ep_170_milestone_4_lr_0.1_lr_decay_0.1_batch_128_w_decay_0.0005_scheduler_cosine

fusion_ep_60_energy_w_0.01_logits_align_1.7

Note that setting ’lambda_kd = 0’ for both BiC and WA indicates the use of their adaptive rule.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Best hyperparameters (ImageNet-100, 10 Tasks) The following represents the best hyperpa-
rameters of each algorithm selected in the hyperparameter tuning phase using ImageNet-100 (10
Tasks).

• Replay: ep_70_milestone_3_lr_0.2_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_steplr
• BiC: ep_120_milestone_3_lr_0.1_lr_decay_0.1_batch_32_w_decay_0.0001_scheduler_steplr

T_1_lambda_kd_3.0_split_ratio_0.1
• PODNet: ep_30_milestone_4_lr_0.05_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_steplr

lambda_c_3_lambda_f_1.5_nb_proxy_20_ft_epochs_5_ft_lrate_0.005_adaptive_factor_False
• FOSTER: ep_30_milestone_4_lr_0.05_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_steplr

T_1_lambda_kd_1.5_fe_1_beta_0.93_0.97_comp_ep_160
• MEMO: ep_120_milestone_3_lr_0.15_lr_decay_0.1_batch_512_w_decay_0.001_scheduler_steplr

ambda_aux_0.5_examplar_bs_32
• iCaRL: ep_200_milestone_3_lr_0.15_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_cosine

T_2.5_lambda_aux_2
• WA: ep_120_milestone_3_lr_0.1_lr_decay_0.1_batch_32_w_decay_0.0001_scheduler_steplr

T_1_lambda_kd_3.0_split_ratio_0.1
• DER: ep_200_milestone_3_lr_0.15_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_cosine

lambda_aux_3
• BEEF: ep_120_milestone_2_lr_0.2_lr_decay_0.3_batch_128_w_decay_0.0001_scheduler_steplr

fusion_ep_30_energy_w_0.02_logits_align_2.3

Best hyperparameters (ImageNet-100, 6 Tasks) The following represents the best hyperparameters
of each algorithm selected in the hyperparameter tuning phase using ImageNet-100 (6 Tasks).

• Replay: ep_70_milestone_3_lr_0.2_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_steplr
• BiC: ep_30_milestone_4_lr_0.05_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_steplr

T_1_lambda_kd_1.5_split_ratio_0.1
• PODNet: ep_30_milestone_2_lr_0.15_lr_decay_0.1_batch_128_w_decay_0.001_scheduler_steplr

lambda_c_9_lambda_f_0.5_nb_proxy_100_ft_epochs_10_ft_lrate_0.007_adaptive_factor_False
• FOSTER: ep_70_milestone_3_lr_0.05_lr_decay_0.1_batch_512_w_decay_0.0001_scheduler_cosine

T_2.5_lambda_kd_0.5_fe_3_beta_0.95_0.93_comp_ep_30
• MEMO: ep_120_milestone_3_lr_0.15_lr_decay_0.1_batch_512_w_decay_0.001_scheduler_steplr

lambda_aux_0.5_examplar_bs_32
• iCaRL: ep_200_milestone_3_lr_0.15_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_cosine

T_2.5_lambda_aux_2
• WA: ep_170_lr_0.1_lr_decay_0.1_batch_128_w_decay_0.0002_scheduler_steplr

T_2_lambda_kd_1
• DER: ep_200_milestone_3_lr_0.15_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_cosine

lambda_aux_3
• BEEF: ep_30_milestone_4_lr_0.05_lr_decay_0.1_batch_128_w_decay_0.0001_scheduler_steplr

fusion_ep_70_energy_w_0.01_logits_align_1.4

Best hyperparameters (CIFAR-50, 10 Tasks) The following represents the best hyperparameters
of each algorithm selected in the hyperparameter tuning phase using CIFAR-50 (10 Tasks).

• Replay: ep_160_milestone_3_lr_0.15_lr_decay_0.3_batch_32_w_decay_0.0001_scheduler_cosine
• BiC: ep_200_milestone_2_lr_0.1_lr_decay_0.1_batch_32_w_decay_0.0001_scheduler_cosine

T_0.5_lambda_kd_0.5_split_ratio_0.2
• PODNet: ep_70_milestone_2_lr_0.1_lr_decay_0.1_batch_32_w_decay_0.0001_scheduler_steplr

lambda_c_1_lambda_f_1_nb_proxy_10_ft_epochs_30_ft_lrate_0.007_adaptive_factor_False
• FOSTER: ep_120_milestone_3_lr_0.1_lr_decay_0.5_batch_32_w_decay_0.0001_scheduler_steplr

T_2_lambda_kd_1.5_fe_0.5_beta_0.97_0.93_comp_ep_160

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

• MEMO: ep_120_milestone_4_lr_0.05_lr_decay_0.3_batch_32_w_decay_0.0005_scheduler_steplr
lambda_aux_0.5_examplar_bs_16

• iCaRL: ep_70_milestone_3_lr_0.05_lr_decay_0.3_batch_32_w_decay_0.001_scheduler_cosine
T_2.5_lambda_aux_1

• WA: ep_160_milestone_4_lr_0.05_lr_decay_0.1_batch_64_w_decay_0.001_scheduler_cosine
T_2_lambda_kd_3

• DER: ep_200_milestone_3_lr_0.2_lr_decay_0.1_batch_256_w_decay_0.001_scheduler_cosine
lambda_aux_2

• BEEF: ep_200_milestone_3_lr_0.15_lr_decay_0.1_batch_128_w_decay_0.0001_scheduler_cosine
fusion_ep_200_energy_w_0.02_logits_align_2.3

Best hyperparameters (CIFAR-50, 6 Tasks) The following represents the best hyperparameters of
each algorithm selected in the hyperparameter tuning phase using CIFAR-50 (6 Tasks).

• Replay: ep_70_milestone_2_lr_0.05_lr_decay_0.1_batch_32_w_decay_0.0001_scheduler_cosine

• BiC: ep_120_milestone_2_lr_0.05_lr_decay_0.3_batch_32_w_decay_0.0001_scheduler_cosine
T_2.5_lambda_kd_1.5_split_ratio_0.3

• PODNet: ep_30_milestone_3_lr_0.05_lr_decay_0.5_batch_64_w_decay_0.0005_scheduler_cosine
lambda_c_1_lambda_f_3_nb_proxy_30_ft_epochs_50_ft_lrate_0.003_adaptive_factor_False

• FOSTER: ep_70_milestone_2_lr_0.05_lr_decay_0.1_batch_64_w_decay_0.0005_scheduler_steplr
T_1.5_lambda_kd_1_fe_3_beta_0.97_0.93_comp_ep_200

• MEMO: ep_160_milestone_4_lr_0.05_lr_decay_0.1_batch_32_w_decay_0.001_scheduler_cosine
lambda_aux_0.5_examplar_bs_256

• iCaRL: ep_120_milestone_2_lr_0.05_lr_decay_0.1_batch_32_w_decay_0.0005_scheduler_steplr
T_1_lambda_aux_1

• WA: ep_160_milestone_3_lr_0.05_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_cosine
T_2_lambda_kd_1.5

• DER: ep_120_milestone_3_lr_0.05_lr_decay_0.5_batch_64_w_decay_0.001_scheduler_cosine
lambda_aux_1.5

• BEEF: ep_30_milestone_4_lr_0.05_lr_decay_0.1_batch_128_w_decay_0.0001_scheduler_steplr
fusion_ep_70_energy_w_0.01_logits_align_1.4

Best hyperparameters (ImageNet-50, 10 Tasks) The following represents the best hyperparameters
of each algorithm selected in the hyperparameter tuning phase using ImageNet-50 (10 Tasks).

• Replay: ep_70_milestone_3_lr_0.2_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_steplr

• BiC: ep_120_milestone_3_lr_0.1_lr_decay_0.1_batch_32_w_decay_0.0001_scheduler_steplr
T_1_lambda_kd_3_split_ratio_0.1

• PODNet: ep_30_milestone_4_lr_0.2_lr_decay_0.3_batch_64_w_decay_0.0005_scheduler_cosine
lambda_c_7_lambda_f_1_nb_proxy_50_ft_epochs_20_ft_lrate_0.007_adaptive_factor_True

• FOSTER: ep_120_milestone_3_lr_0.1_lr_decay_0.1_batch_32_w_decay_0.0001_scheduler_steplr
T_1_lambda_kd_3_fe_1_beta_0.99_0.93_comp_ep_160

• MEMO: ep_120_milestone_3_lr_0.1_lr_decay_0.1_batch_32_w_decay_0.0001_scheduler_steplr
lambda_aux_1_examplar_bs_256

• iCaRL: ep_200_milestone_3_lr_0.15_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_cosine
T_2.5_lambda_aux_2

• WA: ep_200_milestone_3_lr_0.15_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_cosine
T_2.5_lambda_kd_2

• DER: ep_200_milestone_3_lr_0.15_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_cosine
lambda_aux_3

• BEEF NaN

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Best hyperparameters (ImageNet-50, 6 Tasks) The following represents the best hyperparameters
of each algorithm selected in the hyperparameter tuning phase using ImageNet-50 (6 Tasks).

• Replay: ep_200_milestone_2_lr_0.2_lr_decay_0.3_batch_32_w_decay_0.0001_scheduler_steplr
• BiC: ep_120_milestone_3_lr_0.1_lr_decay_0.1_batch_32_w_decay_0.0001_scheduler_steplr

T_1_lambda_kd_3_split_ratio_0.1
• PODNet: ep_30_milestone_4_lr_0.2_lr_decay_0.3_batch_64_w_decay_0.0005_scheduler_cosine

lambda_c_7_lambda_f_1_nb_proxy_50_ft_epochs_20_ft_lrate_0.007_adaptive_factor_True
• FOSTER: ep_30_milestone_4_lr_0.2_lr_decay_0.3_batch_64_w_decay_0.0005_scheduler_cosine

T_2_lambda_kd_1_fe_2_beta_0.97_0.99_comp_ep_120
• MEMO: ep_120_milestone_3_lr_0.15_lr_decay_0.1_batch_512_w_decay_0.001_scheduler_steplr

lambda_aux_0.5_examplar_bs_32
• iCaRL: ep_200_milestone_3_lr_0.15_lr_decay_0.1_batch_64_w_decay_0.0001_scheduler_cosine

T_2.5_lambda_aux_2
• WA: ep_120_milestone_4_lr_0.1_lr_decay_0.5_batch_64_w_decay_0.0005_scheduler_steplr

T_1_lambda_kd_1
• DER: ep_120_milestone_4_lr_0.3_lr_decay_0.5_batch_128_w_decay_0.0005_scheduler_cosine

lambda_aux_0.5
• BEEF: NaN

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B.2 EXPERIMENTAL SETTINGS FOR CLASS-INCREMENTAL LEARNING WITH A PRETRAINED
MODEL

Experimental details For experiments using the proposed evaluation protocol on class-incremental
learning algorithms with a pretrained model, we employ the PILOT (Sun et al., 2023) code for each
algorithm. The experimental setup closely followed PILOT’s environment, using Python 3.8, PyTorch
2.0.1, and CUDA 11.7.

Figure 11: # of hyperparameters.

Pretrained hyperparameters The process of selecting hyperparameters for algorithms using
a pretrained model is similar to the previous experiments. We comprehensively consider both
general hyperparameters and algorithm-specific ones, finding the best hyperparameters during the
tuning phase. Figure 11 shows the number of hyperparameters for each algorithm. The predefined
hyperparameters used for this process are listed in Table 5. Using the selected hyperparameters,
we train each algorithm across the entire CL scenario. The range of each hyperparameter is set
based on values reported in previous work for each type of algorithm. Unlike the algorithms without
pretrained models, which use the same optimizer (i.e., SGD), different optimizers have been used
across algorithms in this case, so we also perform sampling for the optimizer. For hyperparameters of
the optimizer that were not sampled, we use the default values provided in PyTorch.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 5: The predefined set of hyperparametes for class-IL with a pretrained model.

Algorithm Hyperparameter Name hSet

All algorithms

Epoch

[3, 5, 10, 15, 20, 25]
(for L2P, DualPrompt. CODA-Pormpt)

/ [5, 10, 15, 20, 25, 30]
(for Adam-Adapter, Ranpac, EASE)

LR

[0.000875, 0.001375, 0.001875, 0.002375, 0.0025]
(for L2P, DualPrompt. CODA-Pormpt)

/ [0.01, 0.02, 0.03, 0.04, 0.05]
(for Adam-Adapter, Ranpac, EASE)

Num
milestones [2, 3, 4]

LR
decay [0.1, 0.3, 0.5]

Batch
size

[8, 16, 24, 48, 64, 128]
(for L2P, DualPrompt, CODA-Prompt, Adam-Adapter

Weigh
decay

[0, 0.0001, 0.0005]
(for L2P, DualPrompt, CODA-Prompt)

/ [0.0001, 0.0005, 0.001, 0.005]
(for Adam-Adapter, Ranpac, EASE)

LR
Scheduler [’steplr’, ’cosine’, ’constant’]

Optimizer [’sgd’, ’adam’, ’adamw’]
L2P, DualPrompt M Size [10, 15, 20, 25, 30]

L2P Length (Lp) [2, 4, 6, 8, 10]
L2P Top k [2, 4, 6, 8, 10]

L2P, DualPrompt λ [0.1, 0.3, 0.5]
DualPrompt Prompt length of g (Lg) [5, 10, 15, 20, 30]
DualPrompt Length (Le) [5, 10, 15, 20, 30]

CODA-Prompt Pool size [30, 50, 100, 200, 300]
CODA-Prompt Prompt length [4, 8, 16, 24, 32]
CODA-Prompt Orthogonality Mu [0.2, 0.1, 0.01, 0.001, 0]

Adam-Adapter, Ranpac, EASE FFN num [4,8,16,32,64]
Ranpac M [5000, 10000, 15000, 20000]
Ranpac Prompt token num [3, 5, 10, 20, 30, 50]
EASE α [0.01, 0.05, 0.1, 0.15, 0.2]

Original hyperparameters The following shows the original hyperparameters of each algorithm
reported in PILOT.

• L2P_ep_10_milestone_3_lr_0.001875_lr_decay_0_batch_32_w_decay_0
scheduler_constant_optimizer_adam_size_10_length_5_top_k_5_lamb_0.1

• DualPrompt_ep_10_milestone_4_lr_0.001_lr_decay_0.0_batch_24_w_decay_0.0
scheduler_constant_optimizer_adam_size_10_L_e_5_L_g_5_top_k_1_lamb_0.1

• CODA-Prompt_ep_50_milestone_2_lr_0.001_lr_decay_0.0_batch_128_w_decay_0.0
scheduler_cosine_optimizer_adam_e_pool_size_100_e_p_length_8_ortho_mu_0.0

• Adam_ep_10_milestone_3_lr_0.05_lr_decay_0.0_batch_16_w_decay_0.005
scheduler_constant_optimizer_sgd_ffn_num_100

• Ranpac_ep_10_milestone_2_lr_0.05_lr_decay_0.0_batch_16_w_decay_0.005
scheduler_constant_optimizer_sgd_ffn_num_64_M_10000_pt_num_30

• EASE_ep_20_milestone_4_lr_0.05_lr_decay_0.0_batch_16_w_decay_0.005
scheduler_cosine_optimizer_sgd_ffn_num_64_alpha_0.1

Best hyperparameters (CUB-200, 20 Tasks) The following represents the best hyperparameters of
each algorithm selected in the hyperparameter tuning phase using CUB-200 (20 Tasks).

• L2P: ep_20_milestone_2_lr_0.002375_lr_decay_0.5_batch_64_w_decay_0.0001
scheduler_constant_optimizer_adamw_size_15_length_6_top_k_4_lamb_0.1

• DualPrompt: ep_25_milestone_3_lr_0.000875_lr_decay_0.1_batch_48_w_decay_0.0005
scheduler_constant_optimizer_adamw_size_20_L_e_5_L_g_30_top_k_1_lamb_0.3

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

• CODA-Prompt: ep_25_milestone_2_lr_0.000875_lr_decay_0.3_batch_24_w_decay_0.0005
scheduler_steplr_optimizer_sgd_e_pool_size_30_e_p_length_4_ortho_mu_0.01

• Adam: ep_15_milestone_4_lr_0.05_lr_decay_0.5_batch_48_w_decay_0.0005
scheduler_cosine_optimizer_sgd_ffn_num_8

• Ranpac: ep_30_milestone_4_lr_0.01_lr_decay_0.1_batch_8_w_decay_0.0005
scheduler_cosine_optimizer_sgd_ffn_num_32_M_20000_pt_num_5

• EASE: ep_15_milestone_4_lr_0.02_lr_decay_0.5_batch_128_w_decay_0.001
scheduler_cosine_optimizer_sgd_ffn_num_8_alpha_0.01

Best hyperparameters (CUB-200, 10 Tasks) The following represents the best hyperparameters of
each algorithm selected in the hyperparameter tuning phase using CUB-200 (10 Tasks).

• L2P: ep_25_milestone_2_lr_0.001875_lr_decay_0.3_batch_64_w_decay_0.0005
scheduler_cosine_optimizer_adamw_size_10_length_6_top_k_6_lamb_0.5

• DualPrompt: ep_25_milestone_3_lr_0.0025_lr_decay_0.5_batch_128_w_decay_0.0005
scheduler_steplr_optimizer_sgd_size_20_L_e_10_L_g_10_top_k_1_lamb_0.5

• CODA-Prompt: ep_25_milestone_3_lr_0.0025_lr_decay_0.3_batch_64_w_decay_0
scheduler_cosine_optimizer_adamw_e_pool_size_100_e_p_length_8_ortho_mu_0

• Adam: ep_20_milestone_3_lr_0.04_lr_decay_0.3_batch_8_w_decay_0.0005
scheduler_steplr_optimizer_sgd_ffn_num_32

• Ranpac: ep_30_milestone_4_lr_0.02_lr_decay_0.3_batch_16_w_decay_0.0001
scheduler_steplr_optimizer_sgd_ffn_num_64_M_10000_pt_num_3

• EASE: ep_15_milestone_4_lr_0.01_lr_decay_0.3_batch_64_w_decay_0.0005
scheduler_steplr_optimizer_sgd_ffn_num_8_alpha_0.05

Best hyperparameters (ImageNet-R, 20 Tasks) The following represents the best hyperparameters
of each algorithm selected in the hyperparameter tuning phase using ImageNet-R (20 Tasks).

• L2P_ep_25_milestone_3_lr_0.000875_lr_decay_0.5_batch_64_w_decay_0
scheduler_steplr_optimizer_adam_size_10_length_10_top_k_4_lamb_0.5

• DualPrompt: ep_15_milestone_4_lr_0.001875_lr_decay_0.5_batch_128_w_decay_0
scheduler_steplr_optimizer_adam_size_20_L_e_30_L_g_5_top_k_1_lamb_0.5

• CODA-Prompt: ep_15_milestone_2_lr_0.002375_lr_decay_0.1_batch_48_w_decay_0.0001
scheduler_cosine_optimizer_adamw_e_pool_size_300_e_p_length_32_ortho_mu_0.001

• Adam: ep_25_milestone_3_lr_0.05_lr_decay_0.5_batch_64_w_decay_0.001
scheduler_constant_optimizer_sgd_ffn_num_64

• Ranpac: ep_20_milestone_2_lr_0.05_lr_decay_0.3_batch_24_w_decay_0.0005
scheduler_constant_optimizer_sgd_ffn_num_16_M_15000_pt_num_20

• EASE: ep_15_milestone_4_lr_0.04_lr_decay_0.1_batch_24_w_decay_0.0001
scheduler_constant_optimizer_sgd_ffn_num_16_alpha_0.15

Best hyperparameters (ImageNet-R, 10 Tasks) The following represents the best hyperparameters
of each algorithm selected in the hyperparameter tuning phase using ImageNet-R (10 Tasks).

• L2P: ep_25_milestone_3_lr_0.001375_lr_decay_0.5_batch_128_w_decay_0
scheduler_constant_optimizer_adamw_size_20_length_6_top_k_10_lamb_0.3

• DualPrompt: ep_25_milestone_2_lr_0.001375_lr_decay_0.3_batch_128_w_decay_0.0005
scheduler_constant_optimizer_adamw_size_30_L_e_20_L_g_20_top_k_1_lamb_0.3

• CODA-Prompt: ep_20_milestone_2_lr_0.001375_lr_decay_0.1_batch_48_w_decay_0
scheduler_steplr_optimizer_adam_e_pool_size_300_e_p_length_8_ortho_mu_0

• Adam: ep_30_milestone_2_lr_0.05_lr_decay_0.1_batch_64_w_decay_0.001
scheduler_cosine_optimizer_sgd_ffn_num_32

• Ranpac: ep_20_milestone_3_lr_0.03_lr_decay_0.1_batch_24_w_decay_0.0001
scheduler_steplr_optimizer_sgd_ffn_num_64_M_20000_pt_num_20

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

• EASE: ep_30_milestone_4_lr_0.05_lr_decay_0.3_batch_128_w_decay_0.001
scheduler_cosine_optimizer_adam_ffn_num_16

Best hyperparameters (CUB-100-1, 20 Tasks) The following represents the best hyperparameters
of each algorithm selected in the hyperparameter tuning phase using CUB-100-1 (20 Tasks).

• L2P: ep_20_milestone_3_lr_0.002375_lr_decay_0.3_batch_128_w_decay_0.0005
scheduler_constant_optimizer_adamw_size_20_length_8_top_k_4_lamb_0.5

• DualPrompt: ep_25_milestone_4_lr_0.001375_lr_decay_0.1_batch_128_w_decay_0
scheduler_constant_optimizer_adam_size_15_L_e_15_L_g_20_top_k_1_lamb_0.5

• CODA-Prompt: ep_10_milestone_4_lr_0.0025_lr_decay_0.3_batch_64_w_decay_0
scheduler_constant_optimizer_adam_e_pool_size_200_e_p_length_4_ortho_mu_0.001

• Adam: ep_5_milestone_2_lr_0.05_lr_decay_0.5_batch_16_w_decay_0.0005
scheduler_constant_optimizer_sgd_ffn_num_4

• Ranpac: ep_15_milestone_4_lr_0.04_lr_decay_0.1_batch_128_w_decay_0.0001
scheduler_cosine_optimizer_sgd_ffn_num_4_M_15000_pt_num_30

• EASE: ep_10_milestone_4_lr_0.01_lr_decay_0.1_batch_16_w_decay_0.001
scheduler_constant_optimizer_sgd_ffn_num_32_alpha_0.05

Best hyperparameters (CUB-100-1, 10 Tasks) The following represents the best hyperparameters
of each algorithm selected in the hyperparameter tuning phase using CUB-100-1 (10 Tasks).

• L2P: ep_25_milestone_2_lr_0.0025_lr_decay_0.3_batch_128_w_decay_0
scheduler_cosine_optimizer_adam_size_20_length_4_top_k_6_lamb_0.5

• DualPrompt: ep_25_milestone_4_lr_0.002375_lr_decay_0.3_batch_128_w_decay_0.0005
scheduler_cosine_optimizer_adamw_size_15_L_e_30_L_g_15_top_k_1_lamb_0.5

• CODA-Prompt: ep_25_milestone_3_lr_0.001375_lr_decay_0.1_batch_64_w_decay_0.0001
scheduler_cosine_optimizer_adamw_e_pool_size_50_e_p_length_4_ortho_mu_0

• Adam: ep_25_milestone_2_lr_0.05_lr_decay_0.3_batch_24_w_decay_0.0001
scheduler_steplr_optimizer_sgd_ffn_num_32

• Ranpac: ep_25_milestone_3_lr_0.02_lr_decay_0.3_batch_16_w_decay_0.0005
scheduler_constant_optimizer_sgd_ffn_num_16_M_10000_pt_num_20

• EASE: ep_15_milestone_3_lr_0.03_lr_decay_0.5_batch_128_w_decay_0.0001
scheduler_constant_optimizer_sgd_ffn_num_64_alpha_0.05

Best hyperparameters (ImageNet-R-1, 20 Tasks) The following represents the best hyperpa-
rameters of each algorithm selected in the hyperparameter tuning phase using ImageNet-R-1 (20
Tasks).

• L2P: ep_15_milestone_2_lr_0.002375_lr_decay_0.5_batch_48_w_decay_0
scheduler_cosine_optimizer_adamw_size_25_length_6_top_k_10_lamb_0.3

• DualPrompt: ep_20_milestone_3_lr_0.001875_lr_decay_0.1_batch_128_w_decay_0
scheduler_steplr_optimizer_adam_size_10_L_e_30_L_g_30_top_k_1_lamb_0.1

• CODA-Prompt: ep_15_milestone_2_lr_0.002375_lr_decay_0.5_batch_64_w_decay_0.0001
scheduler_cosine_optimizer_adamw_e_pool_size_100_e_p_length_4_ortho_mu_0.01

• Adam: ep_25_milestone_3_lr_0.04_lr_decay_0.3_batch_24_w_decay_0.001
scheduler_constant_optimizer_sgd_ffn_num_16

• Ranpac: ep_10_milestone_2_lr_0.02_lr_decay_0.3_batch_8_w_decay_0.0001
scheduler_cosine_optimizer_sgd_ffn_num_8_M_20000_pt_num_10

• EASE: ep_15_milestone_4_lr_0.03_lr_decay_0.5_batch_16_w_decay_0.0005
scheduler_constant_optimizer_sgd_ffn_num_64_alpha_0.05

Best hyperparameters (ImageNet-R-1, 10 Tasks) The following represents the best hyperpa-
rameters of each algorithm selected in the hyperparameter tuning phase using ImageNet-R-1 (10
Tasks).

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

• L2P: ep_20_milestone_3_lr_0.000875_lr_decay_0.1_batch_24_w_decay_0.0001
scheduler_cosine_optimizer_adamw_size_20_length_8_top_k_10_lamb_0.5

• DualPrompt: ep_25_milestone_4_lr_0.000875_lr_decay_0.3_batch_64_w_decay_0
scheduler_cosine_optimizer_adam_size_15_L_e_30_L_g_20_top_k_1_lamb_0.1

• CODA-Prompt: ep_15_milestone_3_lr_0.001375_lr_decay_0.5_batch_64_w_decay_0.0005
scheduler_constant_optimizer_adamw_e_pool_size_300_e_p_length_4_ortho_mu_0.01

• Adam: ep_25_milestone_3_lr_0.04_lr_decay_0.3_batch_24_w_decay_0.001
scheduler_constant_optimizer_sgd_ffn_num_16

• Ranpac: ep_25_milestone_4_lr_0.05_lr_decay_0.1_batch_24_w_decay_0.0001
scheduler_constant_optimizer_sgd_ffn_num_64_M_20000_pt_num_10

• EASE: ep_10_milestone_4_lr_0.04_lr_decay_0.1_batch_24_w_decay_0.001
scheduler_constant_optimizer_sgd_ffn_num_64_alpha_0.2

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

C ADDITIONAL EXPERIMENTAL RESULTS ON THE EVALUATION PHASE

C.1 RESULT TABLES

Class-IL without a pretrained model (DHT = ImageNet-100-1)

Table 6: The experimental results of class-IL without a pretrained model (using original hyperparam-
eters) The values in parentheses represent the standard deviation.

10 Tasks
(Acc / AvgAcc) DHT = ImageNet-100

Replay 41.21(1.06) / 59.82(1.48)
iCaRL 40.50(1.19) / 60.12(1.41)

BiC 39.61(2.39) / 64.27(1.59)
WA 53.34(1.39) / 68.92(1.54)

PODNet 46.66(1.11) / 64.13(1.20)
DER 61.96(1.04) / 72.10(1.41)

FOSTER 60.68(0.71) / 69.97(1.70)
BEEF NaN

MEMO 59.59(1.29) / 70.04(1.62)

Table 7: The experimental results of class-IL without a pretrained model (using DHT =
ImageNet-100-1) in the hyperparameter tuning phase. The values in parentheses represent the
standard deviation.

10 Tasks
(Acc / AvgAcc) DHT = ImageNet-100-1 DE = ImageNet-100-2

Replay 44.78(1.19) / 59.85(0.95) 44.27(1.05) / 61.49(0.87)
iCaRL 42.58(1.06) / 61.27(1.26) 42.44(1.50) / 63.39(1.18)

BiC 54.22(1.27) / 67.31(0.74) 58.77(0.96) / 71.81(1.42)
WA 54.67(0.60) / 69.54(1.41) 59.89(1.18) / 72.93(1.94)

PODNet 55.35(0.93) / 68.74(1.52) 57.48(0.94) / 71.76(1.62)
DER 63.31(0.42) / 72.93(0.87) 70.23(0.46) / 77.12(1.20)

FOSTER 58.36(0.85) / 71.99(0.98) 61.46(0.98) / 68.41(1.23)
BEEF NaN NaN

MEMO 57.91(0.54) / 71.25(1.41) 61.94(0.78) / 71.35(2.17)

Table 8: The experimental results of class-IL without a pretrained model (using DHT =
ImageNet-100-1) in the hyperparameter tuning phase. The values in parentheses represent the
standard deviation.

6 Tasks
(Acc / AvgAcc) DHT = ImageNet-100 DE = ImageNet-200

Replay 42.93(2.41) / 53.81(1.72) 43.26(1.38) / 49.28(0.53)
iCaRL 46.62(1.54) / 57.27(0.73) 45.64(1.49) / 59.18(0.54)

BiC 37.14(1.62) / 36.42(1.89) 38.43(2.53) / 40.89(3.07)
WA 58.72(1.02) / 65.58(1.55) 60.58(1.35) / 69.47(1.71)

PODNet 67.22(0.67) / 75.05(1.16) 65.51(1.83) / 75.82(1.03)
DER 72.20(0.51) / 77.68(1.08) 75.83(0.64) / 81.19(0.70)

FOSTER 69.48(0.50) / 74.59(1.18) 71.62(1.08) / 78.29(1.14)
BEEF 74.67(0.14) / 78.92(0.54) 75.09(0.29) / 81.31(0.50)

MEMO 59.91(0.87) / 67.22(1.63) 62.80(3.16) / 68.77(6.26)

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Class-IL without a pretrained model (DHT = CIFAR-50-1)

Table 9: The experimental results of class-IL without a pretrained model (using DHT = CIFAR-50-1)
in the hyperparameter tuning phase.) The values in parentheses represent the standard deviation.

10 Tasks
(Acc / AvgAcc) DE = CIFAR-50-2 DE = ImageNet-50-2

Replay 45.42(2.19) / 65.88(1.97) 42.51(0.47) / 60.72(1.58)
iCaRL 47.12(2.80) / 66.71(2.07) 42.44(1.00) / 61.55(1.64)

BiC 52.83(2.83) / 69.16(2.30) 49.52(1.16) / 67.09(1.74)
WA 54.89(2.13) / 69.85(2.32) 53.64(1.47) / 67.75(1.90)

PODNet 51.20(1.76) / 69.47(0.13) 51.70(1.19) / 67.86(1.67)
DER 63.51(1.98) / 75.04(1.24) 63.40(1.02) / 72.67(1.62)

FOSTER 60.00(2.72) / 72.29(2.09) 62.09(1.83) / 70.24(1.50)
BEEF 57.24(1.48) / 72.26(2.05) NaN

MEMO 60.72(2.41) / 73.78(1.99) 54.91(1.59) / 68.06(2.10)

Table 10: The experimental results of class-IL without a pretrained model (using DHT = CIFAR-50-1)
in the hyperparameter tuning phase.) The values in parentheses represent the standard deviation.

6 Tasks
(Acc / AvgAcc) DE = CIFAR-50-2 DE = ImageNet-50-2

Replay 48.00(1.98) / 59.86(1.03) 46.30(1.31) / 55.67(0.64)
iCaRL 46.09(1.51) / 59.14(1.39) 46.21(1.72) / 57.79(1.06)

BiC 58.22(1.20) / 68.16(1.96) 46.26(3.26) / 59.07(3.87)
WA 61.37(1.02) / 70.56(0.51) 61.47(0.72) / 69.67(0.63)

PODNet 62.62(0.39) / 72.62(0.75) 64.30(0.78) / 73.56(1.01)
DER 67.98(1.34) / 75.88(0.78) 70.68(0.75) / 76.56(0.95)

FOSTER 66.45(0.55) / 73.93(0.77) 69.86(0.45) / 75.27(0.83)
BEEF 65.51(1.29) / 72.98(0.50) NaN

MEMO 64.64(1.54) / 73.50(0.83) 51.40(3.39) / 62.11(3.33)

Class-IL without a pretrained model (DHT = ImageNet-50-1)

Table 11: The experimental results of class-IL without a pretrained model (using DHT =
ImageNet-50-1) in the hyperparameter tuning phase.) The values in parentheses represent the
standard deviation.

10 Tasks
(Acc / AvgAcc) DE = ImageNet-50-2 DE = CIFAR-50-2

Replay 43.71(0.81) / 58.75(1.60) 44.19(2.17) / 63.57(1.50)
iCaRL 39.41(1.46) / 59.51(1.70) 41.59(3.10) / 62.42(2.85)

BiC 51.26(1.39) / 65.33(2.48) 51.22(3.67) / 66.41(2.92)
WA 51.85(0.79) / 67.23(1.79) 57.72(1.92) / 71.39(2.00)

PODNet 51.31(1.24) / 67.28(1.53) 48.19(1.17) / 65.77(1.29)
DER 64.89(1.16) / 74.15(1.56) 63.64(1.32) / 75.32(1.21)

FOSTER 61.57(0.70) / 72.38(1.20) 58.64(2.15) / 72.89(1.81)
BEEF NaN NaN

MEMO 57.56(1.24) / 68.36(2.27) 58.99(1.01) / 72.43(1.81)

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 12: The experimental results of class-IL without a pretrained model (using DHT =
ImageNet-50-1) in the hyperparameter tuning phase.) The values in parentheses represent the
standard deviation.

6 Tasks
(Acc / AvgAcc) DE = ImageNet-50-2 DE = CIFAR-50-2

Replay 42.82(1.43) / 53.50(1.54) 42.28(0.71) / 52.18(1.31)
iCaRL 42.47(1.73) / 54.65(1.85) 40.24(2.64) / 52.89(2.14)

BiC 44.68(2.81) / 54.19(2.93) 39.65(1.32) / 49.49(1.46)
WA 55.68(0.07) / 64.69(0.72) 56.14(1.99) / 64.08(1.60)

PODNet 64.10(0.80) / 72.50(0.81) 61.33(0.54) / 71.27(1.07)
DER 70.28(0.98) / 76.14(1.00) 64.76(1.06) / 72.89(1.28)

FOSTER 68.40(1.08) / 75.02(0.94) 65.31(0.26) / 73.80(0.68)
BEEF NaN NaN

MEMO 50.92(1.25) / 60.93(1.67) 50.58(2.62) / 60.66(2.65)

Class-IL with a pretrained model (DHT = CUB-200)

Table 13: The experimental results of class-IL with a pretrained model (using original hyperparame-
ters) The values in parentheses represent the standard deviation.

10 Tasks
(Acc / AvgAcc) DHT = CUB-200

L2P 72.32(0.62) / 76.82(0.30)
DualPrompt 68.74(0.54) / 74.39(0.68)

CODA-Prompt 75.19(0.33) / 80.27(0.93)
Adam 71.21(1.06) / 77.52(1.24)

Ranpac 78.27(0.57) / 83.24(0.44)
EASE 77.07(0.19) / 82.65(0.68)

Table 14: The experimental results of class-IL with a pretrained model (using DHT = CUB-200) in
the hyperparameter tuning phase. The values in parentheses represent the standard deviation.

20 Tasks
(Acc / AvgAcc) DE = ImageNet-R DE = ImageNet-A

L2P 69.93(0.39) / 75.90(0.23) 40.92(1.53) / 51.24(1.39)
DualPrompt 67.20(0.78) / 73.79(0.64) 44.00(1.07) / 54.12(0.96)

CODA-Prompt 68.63(0.64) / 74.61(0.84) 48.20(1.05) / 57.94(0.87)
Adam 67.70(1.38) / 74.45(1.35) 49.61(0.29) / 59.67(0.80)

Ranpac 78.72(0.40) / 83.71(0.56) 62.95(1.41) / 68.64(2.58)
EASE 61.94(0.06) / 68.36(0.63) 49.37(0.12) / 59.48(0.75)

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 15: The experimental results of class-IL with a pretrained model (using DHT = CUB-200) in
the hyperparameter tuning phase. The values in parentheses represent the standard deviation.

10 Tasks
(Acc / AvgAcc) DE = ImageNet-R DE = ImageNet-A

L2P 71.86(0.66) / 77.42(0.92) 45.13(1.25) / 53.57(0.92)
DualPrompt 66.33(0.42) / 73.03(0.60) 39.97(2.32) / 52.58(0.70)

CODA-Prompt 72.86(0.44) / 78.49(0.99) 51.63(0.50) / 61.00(0.47)
Adam 72.68(0.77) / 79.09(0.89) 57.03(0.47) / 66.50(1.22)

Ranpac 79.59(0.29) / 84.46(0.41) 66.14(0.40) / 73.63(1.05)
EASE 61.96(0.06) / 67.74(0.67) 49.32(0.48) / 58.30(0.86)

Class-IL with a pretrained model (DHT = ImageNet-R)

Table 16: The experimental results of class-IL with a pretrained model (using DHT = ImageNet-R)
in the hyperparameter tuning phase. The values in parentheses represent the standard deviation.

20 Tasks
(Acc / AvgAcc) DE = CUB-200 DE = ImageNet-A

L2P 63.76(1.81) / 76.59(1.48) 36.97(1.31) / 46.78(0.71)
DualPrompt 68.78(0.78) / 79.67(1.04) 47.54(0.79) / 55.91(0.84)

CODA-Prompt 67.92(2.11) / 79.65(1.93) 50.07(0.29) / 59.76(0.58)
Adam 85.38(0.19) / 90.87(0.90) 53.86(1.44) / 63.99(2.61)

Ranpac 89.86(0.22) / 93.44(0.78) 38.53(31.11) / 67.65(3.37)
EASE 79.89(1.22) / 87.58(1.19) 53.99(1.05) / 64.11(0.78)

Table 17: The experimental results of class-IL with a pretrained model (using DHT = ImageNet-R)
in the hyperparameter tuning phase. The values in parentheses represent the standard deviation.

10 Tasks
(Acc / AvgAcc) DE = CUB-200 DE = ImageNet-A

L2P 69.75(1.79) / 79.92(1.24) 43.50(0.99) / 50.06(1.18)
DualPrompt 71.74(1.01) / 82.22(1.10) 39.47(0.79) / 50.63(0.94)

CODA-Prompt 72.30(1.11) / 83.00(1.35) 52.39(0.38) / 61.87(1.01)
Adam 85.90(0.17) / 90.93(0.89) 56.63(0.78) / 65.94(1.45)

Ranpac 89.99(0.29) / 93.36(0.83) 63.78(1.52) / 71.70(1.88)
EASE 74.00(0.78) / 83.69(0.74) 54.76(1.36) / 66.14(1.65)

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Class-IL with a pretrained model (DHT = CUB-100-1)

Table 18: The experimental results of class-IL with a pretrained model (using DHT = CUB-100-1)
in the hyperparameter tuning phase. The values in parentheses represent the standard deviation.

20 Tasks
(Acc / AvgAcc) DE = CUB-100-2 DE = ImageNet-R-2 ImageNet-A-2

L2P 54.12(3.59) / 68.33(3.73) 66.01(0.74) / 72.17(1.04) 28.08(2.38) / 39.18(2.75)
DualPrompt 59.83(1.63) / 73.54(2.68) 65.51(0.32) / 71.58(0.68) 33.90(2.26) / 44.84(2.25)

CODA-Prompt 58.16(1.88) / 71.05(2.68) 66.73(0.61) / 73.06(0.46) 30.62(0.82) / 41.70(1.70)
Adam 85.95(0.08) / 90.56(0.24) 67.77(0.84) / 74.53(1.74) 43.93(0.09) / 55.63(2.69)

Ranpac 89.52(0.35) / 90.52(2.96) 74.53(0.28) / 79.80(0.81) 30.30(22.41) / 45.87(4.57)
EASE 85.19(0.49) / 89.91(0.74) 67.17(0.29) / 73.61(0.75) 44.11(0.29) / 55.42(2.83)

Table 19: The experimental results of class-IL with a pretrained model (using DHT = CUB-100-1)
in the hyperparameter tuning phase. The values in parentheses represent the standard deviation.

10 Tasks
(Acc / AvgAcc) DE = CUB-100-2 DE = ImageNet-R-2 ImageNet-A-2

L2P 66.15(1.41) / 76.68(1.49) 70.11(0.53) / 75.61(0.87) 34.96(0.92) / 44.98(2.26)
DualPrompt 67.20(2.59) / 78.28(1.68) 68.29(0.49) / 74.32(0.89) 38.43(1.52) / 49.15(2.43)

CODA-Prompt 68.37(2.71) / 78.93(2.57) 70.35(0.81) / 75.59(0.90) 37.23(1.87) / 47.48(1.85)
Adam 86.76(0.21) / 90.75(0.46) 72.73(0.27) / 79.42(0.59) 44.81(0.85) / 55.08(2.22)

Ranpac 90.60(0.36) / 93.08(0.65) 80.40(0.3) / 85.00(0.47) 49.56(2.52) / 57.60(1.96)
EASE 85.86(0.10) / 90.11(0.26) 63.36(0.03) / 69.36(0.95) 43.88(0.15) / 54.49(2.64)

Class-IL with a pretrained model (DHT = ImageNet-R-1)

Table 20: The experimental results of class-IL with a pretrained model (using DHT = ImageNet-R-1)
in the hyperparameter tuning phase. The values in parentheses represent the standard deviation.

20 Tasks
(Acc / AvgAcc) DE = ImageNet-R-2 DE = CUB-100-2 ImageNet-A-2

L2P 66.15(0.85) / 71.93(1.13) 51.04(1.45) / 66.04(1.71) 25.13(2.27) / 34.21(2.51)
DualPrompt 65.77(0.78) / 71.83(1.17) 57.13(3.40) / 71.15(2.25) 31.96(2.49) / 41.71(1.76)

CODA-Prompt 66.44(0.66) / 72.62(0.36) 57.24(1.90) / 71.27(1.95) 30.48(1.62) / 41.30(2.56)
Adam 70.69(0.73) / 77.86(0.51) 86.35(0.14) / 90.83(0.56) 44.25(0.86) / 55.84(2.75)

Ranpac 76.15(0.93) / 81.68(0.94) 73.73(31.52) / 89.58(2.03) 35.06(15.86) / 47.04(6.07)
EASE 75.16(0.68) / 81.68(0.71) 76.36(2.61) / 84.35(2.55) 42.49(1.76) / 54.40(3.21)

Table 21: The experimental results of class-IL with a pretrained model (using DHT = ImageNet-R-1)
in the hyperparameter tuning phase. The values in parentheses represent the standard deviation.

10 Tasks
(Acc / AvgAcc) DE = ImageNet-R-2 DE = CUB-100-2 ImageNet-A-2

L2P 70.35(0.64) / 75.66(0.30) 63.71(2.33) / 74.62(1.61) 29.10(1.24) / 38.80(1.44)
DualPrompt 69.97(0.25) / 75.93(0.62) 66.66(1.12) / 78.11(1.43) 32.42(0.68) / 42.31(2.02)

CODA-Prompt 72.17(0.46) / 77.80(0.50) 66.98(1.3) / 78.70(0.98) 37.04(1.49) / 46.47(2.45)
Adam 72.84(0.67) / 79.69(0.86) 85.26(0.41) / 89.77(0.45) 37.36(2.72) / 48.62(4.07)

Ranpac 80.70(0.50) / 85.28(0.46) 91.09(0.51) / 91.63(3.51) 41.98(19.61) / 58.79(4.70)
EASE 78.33(0.41) / 83.82(0.71) 79.70(1.47) / 86.23(1.59) 42.49(0.69) / 53.69(2.61)

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

C.2 TRAINING GRAPHS

Class-IL without a pretrained model (DHT = CIFAR50-1, DE = CUB50-2)

(a) 10 tasks (b) 6 tasks

Figure 12: Experimental results on the evaluation phase.

Class-IL without a pretrained model (DHT = CIFAR50-1, DE = ImageNet50-2)

(a) 10 tasks (b) 6 tasks

Figure 13: Experimental results on the evaluation phase.

Class-IL without a pretrained model (DHT = ImageNet50-1, DE = ImageNet50-2)

(a) 10 tasks (b) 6 tasks

Figure 14: Experimental results on the evaluation phase.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Class-IL without a pretrained model (DHT = ImageNet50-1, DE = CIFAR50-2)

(a) 10 tasks (b) 6 tasks

Figure 15: Experimental results on the evaluation phase.

Class-IL with a pretrained model (DHT = CUB100-1, DE = CUB100-2)

(a) 20 tasks (b) 10 tasks

Figure 16: Experimental results on the evaluation phase.

Class-IL with a pretrained model (DHT = CUB100-1, DE = ImageNet-R-2)

(a) 20 tasks (b) 10 tasks

Figure 17: Experimental results on the evaluation phase.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Class-IL with a pretrained model (DHT = ImageNet-R-1, DE = ImageNet-R-2)

(a) 20 tasks (b) 10 tasks

Figure 18: Experimental results on the evaluation phase.

Class-IL with a pretrained model (DHT = ImageNet-R-1, DE = CUB100-2)

(a) 20 tasks (b) 10 tasks

Figure 19: Experimental results on the evaluation phase.

Class-IL with a pretrained model (DHT = ImageNet-R-1, DE = ImageNet-A-2)

(a) 20 tasks (b) 10 tasks

Figure 20: Experimental results on the evaluation phase.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

D LIMITATIONS AND FUTURE WORK

Our study has limitations. First, evaluating each algorithm using the proposed evaluation protocol
requires a substantial number of training trials. Although we believe that our protocol serves as a
basic method for more accurately assessing CL algorithms, it is not a perfect evaluation protocol.
Consequently, developing more efficient protocols for accurately evaluating CL algorithms remains a
significant and interesting research direction.

Second, we did not account for unpredictable CL scenarios, such as varying task numbers or class
distributions. Our study assumes CL scenarios are predictable, but each phase’s dataset differs. This
is because, in real-world situations, some level of predictability is possible, and evaluating algorithms
in completely unpredictable scenarios would be too harsh. Nevertheless, we believe that it is essential
to explore evaluation methods for unpredictable scenarios in broader CL research, potentially through
adaptive algorithms that can adjust hyperparameters for each task.

Finally, our evaluation focused solely on offline class-incremental learning algorithms. We think that
similar challenges associated with the conventional evaluation protocol also exist in other CL domains,
such as online class-incremental learning, class-incremental semantic segmentation, continual self-
supervised learning, and continual reinforcement learning. As part of our future work, we intend
to first apply the proposed protocol to online class-incremental learning algorithms, followed by its
implementation in other domains.

35


	Introduction
	Related Work
	Towards Evaluating the Generalizability of the CL Capacity
	Motivation: improper hyperparameter tuning
	Generalizable two-phase evaluation protocol (GTEP) for CL

	Experimental Results
	Class-incremental learning without pretrained models
	Class-incremental learning with pretrained models

	Concluding Remarks
	Algorithm Tables
	Additional Details on Experimental Settings
	Class-incremental learning without a pretrained model
	Experimental settings for class-incremental learning with a pretrained model

	Additional Experimental Results on the Evaluation Phase
	Result tables
	Training graphs

	Limitations and future work

