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Abstract

Large Language Models (LLMs) have demon-001
strated exceptional coding capability. However,002
as another critical component of programming003
proficiency, the debugging capability of LLMs004
remains relatively unexplored. Previous evalu-005
ations of LLMs’ debugging ability are signifi-006
cantly limited by the risk of data leakage, the007
scale of the dataset, and the variety of tested008
bugs. To overcome these deficiencies, we intro-009
duce ‘DebugBench’, an LLM debugging bench-010
mark consisting of 4,253 instances. It covers011
four major bug categories and 18 minor types012
in C++, Java, and Python. To construct De-013
bugBench, we collect code snippets from the014
LeetCode community, implant bugs into source015
data with GPT-4, and assure rigorous quality016
checks. We evaluate two commercial and three017
open-source models in a zero-shot scenario.018
We find that (1) while closed-source models019
exhibit inferior debugging performance com-020
pared to humans, open-source models fail to021
attain any pass rate scores; (2) the complex-022
ity of debugging notably fluctuates depending023
on the bug category; (3) incorporating runtime024
feedback has a clear impact on debugging per-025
formance which is not always helpful. As an026
extension, we also compare LLM debugging027
and code generation, revealing a strong corre-028
lation between them for closed-source models.029
These findings will benefit the development of030
LLMs in debugging. 1031

1 Introduction032

Large language models (LLMs) have demonstrated033

exceptional code generation abilities. LLM-based034

coding methods (Zhou et al., 2023; Shinn et al.,035

2023) have achieved human-level performance on036

benchmarks like HumanEval (Chen et al., 2021)037

and MBPP (Austin et al., 2021). LLMs have also038

become the core engine of practical programming039

assistance applications like GitHub Copilot (2023).040

Figure 1: This figure illustrates the comparative debug-
ging performance of gpt-3.5-turbo-0613 (Ope-
nAI, 2022), gpt-4-0613 (OpenAI, 2023) and human
proficiency across various bug categories. Evaluations
are also performed on CodeLlama-34b (Rozière
et al., 2023), CodeLlama-34b-Instruct (Rozière
et al., 2023), and BLOOM (Workshop et al., 2022), which
fail to generate effective responses for scoring.

Similar to code generation, debugging2 is also a 041

crucial component in programming, consuming 042

35-50% of the development duration and 50-75% 043

of the total budget (McConnell, 2004). However, 044

unlike coding, the debugging abilities of LLMs 045

remain relatively unexplored. 046

One primary obstacle in code debugging re- 047

search is the lack of evaluation benchmarks. While 048

some basic evaluations (Prenner et al., 2022; Soba- 049

nia et al., 2023; Xia and Zhang, 2023b; Zhang et al., 050

2023) verify the effectiveness of LLM-based de- 051

bugging methods, these evaluations have notable 052

limitations that prevent us from comprehensively 053

assessing the debugging capabilities of LLMs as 054

exhibited in Table 1. First, as Zhang et al. (2023) re- 055

vealed, existing debugging benchmarks (Just et al., 056

2014; Lin et al., 2017) have been more or less 057

1Our code and dataset will be open-sourced.
2We use the colloquial terms ‘bug’, ‘buggy’, and ‘debug’

to refer to programming errors that cause unintended runtime
behavior, to code containing these errors, and to the process
of locating and eliminating them, respectively.
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Work Test Scale Against Data Leakage Bug Type Diversity Model Diversity Scenario Diversity

Prenner et al. (2022) 40 ✗ ✗ ✗ ✗

Sobania et al. (2023) 40 ✗ ✗ ✗ ✗

Xia and Zhang (2023a) 60 ✗ ✗ ✓ ✓

Zhang et al. (2023) 151 ✓ ✗ ✓ ✓

DebugBench 4,253 ✓ ✓ ✓ ✓

Table 1: Limitations of prior studies in LLM debugging. We introduce DebugBench, a new LLM debugging
benchmark to overcome these deficiencies.

leaked to the pre-training data of popular LLMs058

via web scraping and other means. For instance,059

ChatGPT (OpenAI, 2023) can enumerate all the060

projects in Defects4J (Just et al., 2014). While061

it’s challenging to ascertain the exposure due to062

a lack of training details, there’s a significant risk063

of data leakage. Second, all existing debugging064

evaluations have been limited to a very small scale,065

ranging from 40 to 151 examples, which may hurt066

the generalizability of the assessments. Third, ex-067

isting works reported a general pass rate across068

various bug categories instead of differentiating069

various bug types. Analyzing the variations in070

performance across different bug types can reveal071

the bottlenecks and guide focused improvements072

in LLM debugging.073

To overcome these deficiencies, we create De-074

bugBench, a dataset of 4,253 instances for LLM075

debugging evaluation. We first collect code so-076

lution snippets from LeetCode (2023), a popular077

programming challenge platform. To reduce the078

risk of data leakage, we ensure all of the instances079

in DebugBench are released after July 2022, which080

is beyond the pre-training data cutoff date of tested081

models. For fine-grained evaluation of various bug082

types, we develop a bug taxonomy based on Barr083

(2004)’s classification criteria. The classification084

encompasses four major bug categories: Syntax,085

Reference, Logic, and Multiples, along with 18 mi-086

nor types as illustrated in Figure 1. Subsequently,087

we prompt GPT-4 (OpenAI, 2023) to implant bugs088

into the code solutions in pursuit of sufficient data089

scales for each bug type. We cover snippet-level090

code in C++, Java, and Python. To ensure integrity,091

we conduct automatic filtering and manual inspec-092

tion.093

As shown in Figure 1, we evaluate two closed-094

source language models, gpt-4-0613 (Ope-095

nAI, 2022) and gpt-3.5-turbo-0613 (Ope-096

nAI, 2023), along with three open-source mod-097

els: CodeLlama-34b (Rozière et al., 2023),098

CodeLlama-34b-instruct (Rozière et al.,099

2023) and BLOOM (Workshop et al., 2022) in zero- 100

shot scenarios. Our empirical study reveals: (1) 101

LLM debugging falls short of human perfor- 102

mance. Open-source models attain a pass rate of 0 103

%, struggling to produce meaningful debugging re- 104

sponses. Closed-source LLMs significantly surpass 105

open-source ones but still fall short of human-level 106

performance; (2) The difficulty of fixing different 107

types of errors differs. Multiple errors and logical 108

errors are significantly more challenging to repair 109

than syntax and reference errors; (3) Runtime feed- 110

back has a clear impact on LLM’s debugging 111

performance but is not always helpful. While 112

runtime feedback consistently boosts the debug- 113

ging performance of syntax and reference bugs, the 114

feedback information is unhelpful for logic errors. 115

To gain deeper insights into the overall pro- 116

gramming capabilities of LLMs, we also compare 117

closed-source models’ performance on debugging 118

and code generation. Experimental results indicate 119

that for closed-source models: (1) fixing syntax or 120

reference errors is generally easier than code gener- 121

ation, while repairing logical or multiple errors can 122

be equally hard or even harder; (2) the debugging 123

and code generation performance of LLMs are cor- 124

related, which indicates the abilities of LLMs to 125

approach these two tasks are positively related. All 126

these findings are crucial for comprehending the 127

debugging capabilities of LLMs and developing 128

more comprehensive code models. 129

2 Benchmark Construction 130

As illustrated in Figure 2, to construct DebugBench, 131

we first collect questions, code snippets, and exam- 132

ples from LeetCode (2023) community, then em- 133

ploy GPT-4 (OpenAI, 2023) for bug implantation. 134

To ensure the integrity of the benchmark, we con- 135

duct automatic filtering and final human inspection. 136

2.1 Formulation of Debugging 137

Consider the input-output pairs (xi, yi) where each 138

xi is a program input and yi is the corresponding 139
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Figure 2: This figure illustrates the construction of DebugBench. We first collect code snippets from LeetCode
(2023) community, then employ GPT-4 (OpenAI, 2023) for bug implantation and finally conduct human / LLM
evaluation on the benchmark. Automatic filtering and final human inspection are conducted to ensure integrity of
the benchmark. The figure also provides qualitative cases for code snippets, bug instances, and evaluation samples.
More examples are accessible in Appendix H.

desired output, together they compose a set R that140

defines the programming problem.141

Let aθ(x) = y denote a program a, based on a142

code script θ, that maps an input x to an output y.143

We identify a code script θ that exists bugs if there144

exists a pair (xi, yi) ∈ R such that aθ(xi) ̸= yi.145

Consequently, an ideal debugger D that rectifies146

any buggy code from θ to θ∗ should satisfy that147

D(θ) = θ∗ s.t. ∀(xi, yi) ∈ R, aθ∗(xi) = yi. De-148

bugging can be regarded as the converting process149

of debugger D.150

2.2 Source Data Collection151

We collect 3,206 samples from user-submitted solu-152

tions to specific programming challenges on Leet-153

Code (2023). Each sample contains the question,154

solution code, examples, and release date. We uti-155

lize GPT-2 (Radford et al., 2019) tokenizer to to-156

kenize these instances and report an average to-157

ken length of 468.1 tokens, a typical length scale158

of code snippets. All of instances were released159

after June 2022, with an average release date of160

April 2023. This minimizes the risk of data leak-161

age3 (Zhang et al., 2023).162

3The cutoff date of pretraining data for gpt-3.5-
turbo-0613 and gpt-4-0613 is officially September
2021 (OpenAI, 2023). The latest release of BLOOM was in
July 2022 (Workshop et al., 2022). While the two CodeL-
lama models are likely to have a cutoff date later than June
2022, the impact can be neglected since they do not produce
effective responses.

Apart from reducing data leakage, our choice of 163

LeetCode is driven by two other reasons: (1) Leet- 164

Code offers sufficiently challenging code problems 165

even for state-of-the-art LLMs like GPT-4 (Shinn 166

et al., 2023); (2) LeetCode provides comprehen- 167

sive test suites that facilitate automated evaluation, 168

while other data sources like GitHub (2023) may 169

suffer from arduous human labor (Hu et al., 2023) 170

or incomplete test suites. A qualitative example of 171

scraped code snippets can be found in Figure 2. 172

We select the three most popular programming 173

languages (TIOBE Index, 2023), C++, Java, and 174

Python3, to reflect the LLM debug capability in 175

real-world scenarios. Our dataset comprises 1,438 176

instances in C++, 1,401 in Java, and 1,414 in 177

Python. 178

2.3 Bug Implantation 179

After collecting source data from LeetCode (2023), 180

we adopt GPT-4 (OpenAI, 2023) to implant bugs 181

into code snippets. For implanting single errors 182

(one bug in one code snippet), we prompt GPT-4 183

(OpenAI, 2023) with the correct code, desired bug 184

type and instruct the model to generate a buggy 185

version of the input code and a few sentences of ex- 186

planation on the inserted bug. To implant multiple 187

errors, we adopt rule-based merging based on sin- 188

gle errors, which is similar to the merge operation 189

in version control systems. The prompt we use for 190

bug implantation can be found in Appendix A. 191
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Type Minor Type Number

Syntax

misused ==/= 137
missing colons 129

unclosed parentheses 133
illegal separation 68
illegal indentation 45

unclosed string 125
illegal comment 124

Reference

faulty indexing 206
undefined objects 187

undefined methods 167
illegal keywords 124

Logic

condition error 260
operation error 180
variable error 100

other error 50

Multiple
double bugs 750
triple bugs 750

quadruple bugs 718

Table 2: Bug types and their distribution in Debug-
Bench.

We instruct GPT-4 to add diverse types of bugs192

into code snippets. Based on the bug classification193

criteria from Barr (2004), we categorize the bug194

into 4 major categories and 18 minor types. Table195

2 depicts the scope of bug types in DebugBench.196

This diversity enables a thorough investigation of197

LLMs’ ability to debug a wide array of program-198

ming errors. The definition of each minor type can199

be found in Appendix B.200

We choose bug synthesis rather than bugs from201

traditional Debugging datasets like Defects4J (Just202

et al., 2014) and QuixBugs (Lin et al., 2017) in203

pursuit of a vast degree of freedom in error diver-204

sity design and lower risk of data leakage. The205

feature schema of generated instances be found in206

Appendix C.207

2.4 Quality Control208

To ensure the quality of DebugBench, we conduct209

automatic filtering and manual inspection.210

Automatic Filtering. First, we filter the source211

data collected from LeetCode (2023). We design212

the following automatic filtering criteria: (1) The213

code solution must be correct, that is, to pass the214

whole corresponding test suites. (2) The instances215

must contain necessary information like program-216

ming language, release time, and question id. (3)217

The release date of code snippets must be no earlier218

than July 2022, the official knowledge cutoff date219

of two closed-source models (OpenAI, 2023) in220

case of data leakage. 72.1% of the user-submitted221

Criteria Pass Rate/%

Bug Validity 97.4
Sensitive Information Security 100.0

Scenario Alignment 93.2
All Three criteria 92.1

Table 3: Results of manual inspection of DebugBench.

code snippets pass this automatic filtering. Second, 222

we filter the data synthesized by GPT-4 (OpenAI, 223

2023) since the LLM occasionally fails to perform 224

bug implantation as expected. We again establish 225

automatic filter criteria: (1) The code with im- 226

planted bugs must fail certain test cases to confirm 227

its erroneous nature. (2) The buggy code should 228

not include in-line comments that could leak infor- 229

mation about the bug. (3) The explanation for the 230

bug must be thorough and relevant to the assigned 231

bug type. Following these criteria, 79.2% of the 232

3,000 bug-implanted instances pass the filtering 233

process. 234

Manual Inspection. After automatic generation 235

and filtering, we manually inspect the quality of 236

DebugBench. We apply three criteria for manual 237

inspection: (1) Bug Validity: The bugs must cause 238

the intended malfunction, fail specific test cases, 239

and align with the assigned bug type and descrip- 240

tion. (2) Sensitive Information Security: The 241

instances must be devoid of sensitive data, such 242

as personal information. (3) Scenario Alignment: 243

The bugs should resemble those found in actual 244

code debugging scenarios and should not include 245

obvious clues, like comments indicating the bug’s 246

location. 247

We hire three programmers with over four years 248

of experience in programming to conduct the man- 249

ual inspection on 180 cases over two hours each 250

after training on 30 cases. Their review reveals that 251

the DebugBench benchmark is of high quality as 252

exhibited in Table 3. Failing cases can be found in 253

Appendix F. 254

3 Experiments 255

Evaluated Models. To obtain a comprehensive 256

understanding of LLMs’ debugging capabilities 257

and identify the potential gap between open-source 258

and closed-source models, we conduct experi- 259

ments on two popular commercial models: gpt- 260

3.5-turbo-0613 (OpenAI, 2022) and gpt-4- 261

0613 (OpenAI, 2023). For open-source models, 262

we select BLOOM (176B) (Workshop et al., 2022), 263
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Major Category Minor Type BLOOM CodeLlama CodeLlama-Inst. gpt-3.5 gpt-4 human

Syntax

misused ==/=

0.0 0.0 0.0

70.5 87.9 11/12
missing colons 80.9 93.6 12/12

unclosed parentheses 81.2 89.6 12/12
illegal separation 78.1 89.0 12/12
illegal indentation 79.6 87.8 12/12

unclosed string 82.0 91.4 12/12
illegal comment 67.4 78.0 11/12

Reference

faulty indexing

0.0 0.0 0.0

72.9 77.1 10/12
undefined objects 70.6 81.7 12/12

undefined methods 59.3 78.5 11/12
illegal keywords 76.1 83.6 11/12

Logic

condition error

0.0 0.0 0.0

58.5 73.1 10/12
operation error 49.5 68.6 10/12
variable error 52.3 63.1 9/12

other error 61.1 72.2 10/12

Multiple
double bugs

0.0 0.0 0.0
56.4 70.7 11/12

triple bugs 45.5 58.9 9/12
quadraple bugs 38.7 55.9 8/12

Table 4: Debugging performance of various models against human proficiency measured by Pass Rate. Model
names are abbreviated for clarity: CodeLlama represents CodeLlama-34b; CodeLlama-Inst. is short
for CodeLlama-34b-Instruct; gpt-3.5 denotes gpt-3.5-turbo-0613; and gpt-4 refers to gpt-
4-0613. The experimental results reveal that while closed-source models are less effective compared to human
performance, open-source models struggle to yield efficient outcomes in debugging tasks.

CodeLlama-34b (Rozière et al., 2023) and264

CodeLlama-34b-Instruct (Rozière et al.,265

2023) for assessment. While the experiments are266

primarily conducted in zero-shot scenarios, we ad-267

ditionally test a three-shot context for open-source268

models in an attempt to further activate their debug-269

ging abilities.270

Metric. The metric for DebugBench is based271

on the test suites4 provided by LeetCode (2023).272

These suites include a mix of 1-3 known test cases273

and 8-100 unknown test cases for each instance.274

Specifically, we use Pass Rate to quantify275

the debug ability of language models. For276

a buggy snippet θi and its fixed version θ∗i ,277

we have a corresponding set of test cases278

(x0i , y
0
i ), (x

1
i , y

1
i ), ..., (x

m
i , ymi ). Whether the bug279

instance is successfully repaired can be referred to280

as
∧m

j=0[aθ∗i (x
j
i ) = yji ], an aggregate result of all281

test cases. The Pass Rate, PR, that represents the282

test result on n bug instances are defined as:283

PR =

n∑
i=0

∧m
j=0[aθ∗i (x

j
i ) = yji ]

n
× 100%284

Human Performance. The proficiency of human285

debuggers is assessed by three programmers, each286

4Users of the benchmark will require a LeetCode account
to access these test suites.

with over four years of experience in programming. 287

Before the formal experiment, they underwent a 288

two-hour training session focused on understanding 289

the purpose of human evaluation and the criteria 290

for metrics. This was followed by a one-hour trial 291

session. Each participant independently debugged 292

72 bugs, dedicating approximately 20 hours per 293

person. During this process, access to Integrated 294

Development Environments (IDEs) was provided 295

to facilitate runtime analysis but any access to deep 296

learning tools like GitHub Copilot (2023) was pro- 297

hibited. 298

3.1 Debugging Capabilities 299

We evaluate the debugging capabilities of LLMs by 300

assessing two closed-source and three open-source 301

LLMs across 18 types of programming errors in 302

three distinct scenarios. 303

3.1.1 Overall Results 304

Close-Source Models As shown in Figure 1 and 305

Table 4, we examined the performance of closed- 306

source models, gpt-4-0613 (OpenAI, 2023) 307

and gpt-3.5-0613 (OpenAI, 2022). They re- 308

spectively pass 75.0% and 62.1% of the bug in- 309

stances, achieving a level of debugging perfor- 310

mance below human. The superiority of human 311

debuggers can be attributed to robust test cases 312
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Figure 3: Qualitative example of open-source models’ response to a debugging problem. The query is deliberately
selected to be basic and clear to illustrate ineffectiveness.

and interaction with the program through break-313

points and developmental environments. Despite314

LLMs’ limited effectiveness, they exhibit signifi-315

cant time efficiency. The models complete infer-316

ence processes for one bug in less than 10 seconds,317

a task that averagely takes humans around 20 min-318

utes. This indicates that commercial models are319

now capable of partially achieving the objectives320

of Automated Debugging, bringing benefits in time321

efficiency, cost reduction, and minimizing human322

labor. The zero-shot prompts utilized in model323

evaluation can be found in Appendix A.324

Open-Source Models As illustrated in Table 4,325

none of these three open-source models is able to326

produce effective debugging responses or attain any327

Pass Rate score. This underscores a notable short-328

fall in the zero-shot debugging abilities of open329

versus closed-source LLMs. We additionally exper-330

iment with a simplified version of prompt that elim-331

inates the influence of parsing and other marginal332

instructions, and a three-shot prompt (Appendix A),333

but find no success with either. The ineffectiveness334

is likely due to a limited presence of debugging335

data in their pre-training datasets. These findings336

highlight the need for an open-source model capa-337

ble of supporting debugging for research utility and338

practical applications. Qualitative examples of the339

response from open-source models are accessible340

in Figure 3 and Appendix E.341

3.1.2 Effect of Bug Types342

As illustrated in Figure 1 and Table 4, the challenge343

of debugging varies markedly with the bug type for344

both humans and models. Syntax and reference345

errors are comparatively simpler to spot and rectify.346

Figure 4: Pass Rate of GPT-4 (OpenAI, 2023) and GPT-
3.5-turbo (OpenAI, 2022) with more samples containing
logical errors, particularly noting a significant improve-
ment from 1 to 4 samples.

In contrast, logic bugs pose a greater challenge, re- 347

quiring an understanding of the code’s underlying 348

mechanisms. Additionally, the complexity of de- 349

bugging escalates with an increase in the number of 350

bugs within a code snippet. Therefore, in training 351

or improving models for debugging, special em- 352

phasis should be placed on enhancing their ability 353

to handle logic errors and scenarios with multiple 354

concurrent errors. 355

3.1.3 In-depth Analysis 356

In this section, we examine two additional scenar- 357

ios for deeper analyses. 358

Effect of Multiple Sampling. In this scenario, a 359

language model is permitted to generate multiple 360

responses to a single debugging query. An instance 361

is marked as ‘pass’ if at least one response suc- 362

cessfully meets all test case criteria. Due to budget 363

constraints, we limit our sampling to a maximum 364

of nine answers for each instance with logical er- 365
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Figure 5: Effect of runtime feedback on gpt-4-0613
(OpenAI, 2023) and gpt-3.5-turbo-0613’s (Ope-
nAI, 2022) debugging performance. It improves syntax
and reference error handling but impairs logic error res-
olution.

rors. As illustrated in Figure 4, increased sampling366

attempts enhance debugging performance, indicat-367

ing an effective trade-off: better debugging at the368

cost of using more inference tokens.369

Effect of Runtime Feedback. Recent stud-370

ies (Chen et al., 2023; Jiang et al., 2023) find out371

that providing runtime information like program372

output and traceback messages enhances the coding373

capabilities of LLMs. In this section, we investigate374

the influence of runtime messages on the debug-375

ging process. We leveraged the built-in runtime376

environment of the LeetCode test suites to obtain377

feedback information. As illustrated in Figure 5,378

the runtime feedback has a clear impact on the de-379

bugging performance of LLMs. For syntax and380

reference errors, traceback information effectively381

identifies the locations of bugs, thereby facilitating382

the debugging process. However, for logic bugs,383

the details provided in traceback messages are of-384

ten too low-level to facilitate effective debugging385

and may even cause disruptions. This indicates that386

the information provided by Runtime Feedback is387

not always useful for debugging LLMs. Positive388

and negative examples of runtime messages are389

accessible in Appendix G.390

3.2 Interplay between Debugging and Coding391

As an extension of the evaluation of debugging392

capabilities, we compare the difficulty and corre-393

lation of these tasks to deepen our understanding394

of LLMs’ proficiency in both code generation and395

debugging.396

Comparison of Difficulty. We analyze the de-397

bugging and code generation performance of gpt-398

4-0613(OpenAI, 2022) and gpt-3.5-turbo-399

Figure 6: Pass Rate of coding and debugging tasks with
same programming problems.

0613(OpenAI, 2023) on identical instances. As 400

illustrated in Figure 6, we find that correcting syn- 401

tax and reference errors typically presents less diffi- 402

culty than generating full code for a specific query, 403

while addressing logical errors or multiple issues 404

can be as challenging as code generation itself. 405

This pattern implies that for closed-source mod- 406

els, the task of debugging is relatively easier than 407

code generation. The limited debugging capabil- 408

ities in open-source models probably don’t stem 409

from a disparity in complexity between debugging 410

and coding tasks. 411

Correlation between Debugging and Coding 412

To explore the correlation between debugging and 413

coding, i.e., whether a programming question is 414

more likely to be easy-to-debug if it is easy-to-code 415

and vice versa, we compute the Phi-Coefficient for 416

closed-source LLMs and find that all categories 417

of bugs have a positive Phi-Coefficient score with 418

code generation ranging from 0.1 to 0.3 as shown 419

in Table 5. This suggests that the capabilities of 420

closed-source LLMs to approach these two tasks 421

are explicitly correlated. But this conclusion does 422

not hold for open-sourced models, which perform 423

well in code generation tasks but fail to achieve any 424

Pass Rate scores for debugging. 425

Model Bug Type Phi-Coefficient

GPT-4

syntax 0.221
reference 0.115

logic 0.353
multiple 0.273

GPT-3.5-Turbo

syntax 0.148
reference 0.196

logic 0.174
multiple 0.298

Table 5: Phi-Coefficient of LLMs’ coding and debug-
ging performance.
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4 Related Work426

4.1 LLM-based Coding427

The field of LLM code generation has been exten-428

sively studied. Researchers have collected code429

corpora to train large language models that special-430

ize in code generation (Chen et al., 2021; Nijkamp431

et al., 2022; Li et al., 2023). General-purpose432

LLMs also demonstrated impressive coding abili-433

ties as a result of extensive pre-training on datasets434

rich in code-related content (Touvron et al., 2023;435

Workshop et al., 2022; OpenAI, 2022, 2023). Par-436

allel to the development of these foundational mod-437

els, innovative methods such as verbal reinforce-438

ment learning with feedback from runtime mes-439

sages (Shinn et al., 2023), and multi-agent collabo-440

ration (Qian et al., 2023), have been implemented441

to further refine the coding abilities of LLMs.442

As another key component of programming pro-443

ficiency, LLMs’ debugging capabilities have not444

garnered so much attention. This can be partly at-445

tributed to the absence of evaluation benchmarks.446

To overcome this deficiency, we introduce Debug-447

Bench, the new LLM debugging benchmark dis-448

cussed in this work.449

4.2 Automated Program Repair450

Automated Program Repair (APR) refers to the451

process of automatically fixing program bugs or452

errors without human intervention. This topic has453

gained significant attention due to its potential to454

reduce the time and cost in software development455

(Goues et al., 2019). While template-based (Liu456

et al., 2019), search-based (Ke et al., 2015) and457

generic (Le Goues et al., 2011) methods have been458

proposed to solve the task, program repair based459

on Large Language Models exhibit significant po-460

tential (Prenner et al., 2022).461

Prenner et al. (2022) evaluated OpenAI’s CodeX462

(Chen et al., 2021) on QuixBugs (Lin et al., 2017)463

and found LLM debugging promising. Sobania464

et al. (2023) utilized ChatGPT (OpenAI, 2022) to465

address bugs in QuixBugs, outperforming the previ-466

ous state-of-the-art. Xia and Zhang (2023a) tested467

LLM debugging with a conversational strategy to468

refine the debugging patches based on the feed-469

back from each turn on QuixBugs and achieved470

higher performance. However, Zhang et al. (2023)471

pointed out that evaluations on traditional APR472

datasets like QuixBugs (Lin et al., 2017) and De-473

fects4J (Just et al., 2014) face a severe risk of data474

leakage and evaluate ChatGPT (OpenAI, 2023) on475

a new benchmark of 151 bugs from competitive 476

programming problems. 477

These works are fundamental in verifying the 478

feasibility of LLMs for debugging, but they face 479

challenges that require further investigation. Apart 480

from data leakage, current evaluations of LLM de- 481

bugging face significant constraints: limited bug 482

diversity and constrained test scale as illustrated in 483

Table 1. In order to gain a deeper understanding of 484

the potential for LLM debugging, we conducted a 485

systematic evaluation with DebugBench. 486

5 Conclusion 487

In this work, we presented DebugBench, a bench- 488

mark specifically designed to evaluate the debug- 489

ging capabilities of large language models. Debug- 490

Bench was developed utilizing source data from 491

LeetCode (LeetCode, 2023) and bug implantation 492

with prompted GPT-4, underpinned by a stringent 493

quality control process. 494

Our experiments with DebugBench revealed 495

several key findings: (1) In a zero-shot scenario, 496

closed-source models exhibited lower debugging 497

performance compared to humans, while all tested 498

open-source models struggled to generate mean- 499

ingful debugging responses in both zero-shot and 500

three-shot scenarios; (2) Multiple and logical er- 501

rors posed a greater challenge for the repair com- 502

pared to syntax and reference errors; (3) Runtime 503

feedback enhanced the debugging performance for 504

syntax and reference errors but is unhelpful for log- 505

ical errors; (4) For closed-source LLMs, debugging 506

syntax or reference errors is easier than code gen- 507

eration while logic or multiple errors can equally 508

hard or even harder. And their capabilities in cod- 509

ing and debugging are correlated. Hopefully, these 510

findings will contribute to the advancement of large 511

language models in the field of automatic debug- 512

ging. The data is open-sourced via Apache-2.0 513

license. 514

Future Work The scope of debugging scenarios 515

can be expanded to more practical and complex 516

situations like repository-level debugging (Jimenez 517

et al., 2023; Bairi et al., 2023) and scenarios in- 518

volving human interaction. Additionally, based 519

on the results of human evaluation, the ability to 520

write reliable test cases and interact with Integrated 521

Development Environments (IDEs) significantly 522

boosts manual debugging performance. It can be 523

meaningful to evaluate how well LLMs write test 524

cases and interact with IDEs for debugging. 525
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Limitations526

This study has certain limitations that must be ac-527

knowledged. The bugs in our experiments were528

synthetically created and might not entirely reflect529

the intricacies of real-world coding scenarios. The530

scope of our study was confined to two open-source531

and three closed-source models, which do not rep-532

resent the full spectrum of existing LLMs.533
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Appendix685

A Prompts686

In this section, we detail the prompt utilized in the687

process of bug implantation and model evaluation.688

The following is the prompt we use for GPT-4 to689

implant different types of bugs into code snippets.690

Prompt: Observe the following code implemen-
tation. Your task is to first add a(n) {BUG_TYPE}
bug to the code and then to explain the bug you add
in 15 words. You have to write the implementation
again. You should put <bug> </bug>, <exp> </exp>
in the beginning and end of the code and explanation.
Make sure the bug incurs unexpected behaviors. Do
not write anything else in your response. You must
not add any comment about the bug in code. {CODE
IMPLEMENTATION}

691

The following is the prompt for zero-shot evalu-692

ation.693

Prompt: Observe the following faulty code. Your
task is to fix up the code and explain on the mod-
ification in less than 20 words. You have to write
the fixed code again. You should put <code></code>
and <exp></exp> on the boundary of the code and
the explanation. Do not write anything else in your
response. {BUG INSTANCE}

694

This is the simplified version of zero-shot695

prompt.696

Simplified Prompt: Observe the following faulty
code implementation. Your task is to fix up the code.
{BUG INSTANCE}

697

Below is the three shot prompt for model evalua-698

tion.699

Three-Shot Prompt: Observe the following faulty
code implementation. Your task is to fix up the code.
Example 1 {BUG INSTANCE1}
{FIXED INSTANCE1}
Example 2 ...
Example 4 {BUG INSTANCE4}
{FIXED INSTANCE4}
Test Example {BUG INSTANCE}

700

B Bug Type Definition701

The bug instances in DebugBench are categorized702

into four major categories and 18 minor types. The703

definitions and distributions of these categories are704

detailed in Table 6 and Table 7. It’s important to705

note that instances of multiple bugs constitute a sig- 706

nificant portion of the total count. This is because 707

they can be further classified according to specific 708

combinations of bug types, rather than simply by 709

the number of bugs. To ensure a sufficient number 710

of instances for each unique combination of bugs, 711

a substantial volume of instances is required. 712

Type Type Number

Syntax Error 761
Reference Error 684
Logic Error 590
Multiple Error 2218

Table 6: Distribution of major bug types.

C Instance Feature Schema 713

As exhibited in Figure 2, the features of an instance 714

in DebugBench includes ‘Question’, ‘Example’, 715

‘Oracle Code Solution’, ‘Buggy code’, and ‘Bug 716

Explanation’. ‘Question’ refers to the original pro- 717

gramming query, which decides the requirement for 718

the program. ‘Example’ encompasses one to three 719

input-output pairs, which serve either as supple- 720

mentary explanations of the program requirements 721

or as test cases for debugging. ‘Oracle Code So- 722

lution’ denotes the accurate code implementation 723

that successfully passes all test cases, acting as the 724

annotation for correct solutions. ‘Buggy Code’ con- 725

sists of code snippets embedded with one or more 726

errors, forming the primary subject for debugging 727

processes. Lastly, ‘Bug Explanation’ provides a 728

brief overview by GPT-4 (OpenAI, 2023) regarding 729

the nature of the bug, which aids in understanding 730

the bug and and quality control. Qualitative exam- 731

ples are accessible in Appendix H. 732

D Expenditure Estimation 733

We employed commercial models from OpenAI 734

for constructing and evaluating our dataset which 735

cost around $330. The estimated expenditures for 736

this process are detailed in Table 8. 737

E Responses of Open-sourced Models 738

Our evaluation indicates that BLOOM 739

(176B) (Workshop et al., 2022), CodeLlama- 740

34b (Rozière et al., 2023), and CodeLlama- 741

34b-Instruct (Rozière et al., 2023) is unable 742

to produce effective debugging responses. In this 743
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Minor Types Definition Instance Number

misused ==/= Misuse between equality (==) or assignment (=) op-
erators.

137

missing colons Omission of colons where required, such as in control
structures (if, for, while) or function definitions in
certain programming languages.

129

unclosed parentheses Failure to close a set of parentheses, leading to syntax
errors.

133

illegal separation Improper use of separators like commas or semi-
colons, causing syntax errors.

68

illegal indentation Incorrect indentation that violates the syntax rules of
indentation-sensitive languages like Python.

45

unclosed string A string literal that is not properly closed with match-
ing quotation marks.

125

illegal comment Use of incorrect syntax for comments, or placing
comments where they are not allowed.

124

faulty indexing Accessing elements of a collection (like arrays or
lists) with an incorrect index, often leading to runtime
errors.

206

undefined objects Reference to an object that has not been defined or
imported.

187

undefined methods Calling a method that doesn’t exist for a given object
or class.

167

illegal keywords Misuse of reserved words in a programming lan-
guage.

124

condition error Logical errors in conditions used in control struc-
tures.

260

operation error Errors in arithmetic or other operations, such as divi-
sion by zero.

180

variable error Errors related to variable misuse, like using an unini-
tialized variable.

100

other error Any programming error that does not fit into the
above categories.

50

double bug Two distinct bugs present in a single snippet or sec-
tion of code.

750

triple bug Three distinct bugs present in a single snippet or
section of code.

750

quadruple bug Four distinct bugs present in a single snippet or sec-
tion of code.

718

Table 7: Definition and distribution of each minor type of bugs from categories of syntax error, reference error, logic
error and multiple error.

Process Query Number Token Num Price Model Price Expenditure

Bug Implantation 2760 500 / 500 $0.03 / $0.06 (1k tokens) gpt-4 $124.2
Model Evaluation 4405 500 / 500 $0.03 / $0.06 (1k tokens) gpt-4 $198.2
Model Evaluation 4405 500 / 500 $0.0010 / $0.0020 (1k tokens) gpt-3.5-turbo $6.6

Table 8: Expenditure Approximation of Commercial Models. Token number and model price are written in a format
of input token / output token.
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section, we show more qualitative examples about744

their behaviors.745

1a. CodeLlama-34b746

Case (a) is about Fibonacci numbers and the bug747

is in the recursive step where fibon(n+2) is called748

instead of fibon(n-2). But CodeLlama-34b does749

not generate any text.750

Input: Observe the following cpp faulty code which
is complete with no extra context. Your task is to fix
up the code. You have to write the fixed code again.
Do not write anything else in your response.

class Solution {

int dp[33];

public:

int fibon(int n) {

cout<<n<<endl;

if(n==1)return 1;

if(n<=0)return 0;

int& ans = dp[n];

if(ans!=-1)return ans;

return ans = fibon(n-1) + fibon(n

↪→ +2);

}

int fib(int n){

for(int i = 0 ; i < 33 ; i++)dp[i

↪→ ]=-1;

int ans = fibon(n);

cout<<ans<<endl;

return ans;

}

};

Output: (No Text Generated)
751

1b. CodeLlama-34b752

The case (b) is about removing a subarray from753

arr such that the remaining elements in arr are non-754

decreasing. The buggy code is about operation,755

changing ’res = min(res,h-l-1);’ to ’res = min(res,h).756

CodeLlama-34b does not generate any tokens757

for this case.758

Input: Observe the following cpp faulty code which
is complete with no extra context. Your task is to fix
up the code. You have to write the fixed code again.
Do not write anything else in your response.

class Solution {

public:

int findLengthOfShortestSubarray(

759

↪→ vector<int>& arr) {

int n =(int) arr.size();

int h = n-1 , l=0 ;

for(int i=h;i>=1;i--)

{

if(arr[i]>=arr[i-1] && h>0)

{

h--;

}

else break;

}

int res=h;

for( l=0 ; l<h && (l==0 || arr[l

↪→ -1]<=arr[l]) ;l++)

{

while(h<n && arr[l]>arr[h])

{

h++;

}

res = min(res,h);

}

return res;

}

};

Output: (No text generated)
760

2a. CodeLlama-34b-Instruct 761

Case (a) is about Fibonacci numbers and the 762

bug is in the recursive step where fibon(n+2) is 763

called instead of fibon(n-2). But CodeLlama- 764

34b-Instruct gives a response which stops 765

early and does not carry effective information about 766

debugging. 767

Input: Observe the following cpp faulty code which
is complete with no extra context. Your task is to fix
up the code. You have to write the fixed code again.
Do not write anything else in your response.

class Solution {

int dp[33];

public:

int fibon(int n) {

cout<<n<<endl;

if(n==1)return 1;

if(n<=0)return 0;

int& ans = dp[n];

if(ans!=-1)return ans;

return ans = fibon(n-1) + fibon(n

↪→ +2);

}

768
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int fib(int n){

for(int i = 0 ; i < 33 ; i++)dp[i

↪→ ]=-1;

int ans = fibon(n);

cout<<ans<<endl;

return ans;

}

};

Output: Answer to the above Code :
class Solution { int d

769

2b. CodeLlama-34b-Instruct770

The case (b) is about removing a subarray from771

arr such that the remaining elements in arr are non-772

decreasing. The buggy code is about operation,773

changing ’res = min(res,h-l-1);’ to ’res = min(res,h).774

CodeLlama-34b-Instruct generate a line of775

code that is irrelavent to the context.776

Input: Observe the following cpp faulty code which
is complete with no extra context. Your task is to fix
up the code. You have to write the fixed code again.
Do not write anything else in your response.

class Solution {

public:

int findLengthOfShortestSubarray(

↪→ vector<int>& arr) {

int n =(int) arr.size();

int h = n-1 , l=0 ;

for(int i=h;i>=1;i--)

{

if(arr[i]>=arr[i-1] && h>0)

{

h--;

}

else break;

}

int res=h;

for( l=0 ; l<h && (l==0 || arr[l

↪→ -1]<=arr[l]) ;l++)

{

while(h<n && arr[l]>arr[h])

{

h++;

}

res = min(res,h);

}

return res;

}

};

Output: var y=[1,2,3,4]
777

3a. BLOOM778

Case (a) is about Fibonacci numbers and the 779

bug is in the recursive step where fibon(n+2) is 780

called instead of fibon(n-2). BLOOM responds to 781

this question with an inaccurate and general expla- 782

nation about local variables and does not generate 783

any fixed code. 784

Input: Observe the following cpp faulty code which
is complete with no extra context. Your task is to fix
up the code. You have to write the fixed code again.
Do not write anything else in your response.

class Solution {

int dp[33];

public:

int fibon(int n) {

cout<<n<<endl;

if(n==1)return 1;

if(n<=0)return 0;

int& ans = dp[n];

if(ans!=-1)return ans;

return ans = fibon(n-1) + fibon(n

↪→ +2);

}

int fib(int n){

for(int i = 0 ; i < 33 ; i++)dp[i

↪→ ]=-1;

int ans = fibon(n);

cout<<ans<<endl;

return ans;

}

};

Output: The problem is that you are using a refer-
ence to a local variable. The reference is valid only
until the function returns. So, when you return from
the function, the reference is invalid

785

3b. BLOOM 786

The case (b) is about removing a subarray from 787

arr such that the remaining elements in arr are non- 788

decreasing. The buggy code is about operation, 789

changing ’res = min(res,h-l-1);’ to ’res = min(res,h). 790

BLOOM attempts to change the range of the loop 791

and does not follow the instruction about parsing. 792

Input: Observe the following cpp faulty code which
is complete with no extra context. Your task is to fix
up the code. You have to write the fixed code again.
Do not write anything else in your response.

class Solution {

public:

793
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int findLengthOfShortestSubarray(

↪→ vector<int>& arr) {

int n =(int) arr.size();

int h = n-1 , l=0 ;

for(int i=h;i>=1;i--)

{

if(arr[i]>=arr[i-1] && h>0)

{

h--;

}

else break;

}

int res=h;

for( l=0 ; l<h && (l==0 || arr[l

↪→ -1]<=arr[l]) ;l++)

{

while(h<n && arr[l]>arr[h])

{

h++;

}

res = min(res,h);

}

return res;

}

};

Output: This loop initializes h from n - 1 (actually
arr.size() - 1, because it is not guaranteed that n will
be an array size) to 0, which is incorrect:

for(int i=h;i>=1;i--)

{

if(arr[i]>=arr[i-1] && h>0)

{

h--;

}

else break;

}

It should be initialized from 0 to n - 1, because the
loop should iterate over all elements of the array.

for(int i=h;i>=0;i--)

{

if(arr[i]>=arr[i-1] && h>0)

{

h--;

}

else break;

}

Also, the loop should be terminated by i == 0, not
i == 1, because the loop should iterate over all ele-
ments of the array, not just the first one.

794

F Cases Failing Manual Inspection 795

During manual inspection, we propose three evalu- 796

ating criteria (1) The bugs must cause the intended 797

malfunction, fail specific test cases, and align with 798

the assigned bug type and description. (2) Sensitive 799

Information Security: The instances must be de- 800

void of sensitive data, such as personal information. 801

(3) Scenario Alignment: The bugs should resemble 802

those found in actual code debugging scenarios and 803

should not include obvious clues, like comments 804

indicating the bug’s location. 805

We detect some instances that violate code (1) 806

and code (3) and showcase them as follows. 807

808

Wrong Categories. GPT-4 (OpenAI, 2023) oc- 809

casionally introduces bugs that differ from their 810

assigned category, thereby violating code princi- 811

ple (1). An example of this is a bug generated in 812

response to a prompt specifying ’undefined meth- 813

ods.’ Rather than invoking undefined functions as 814

expected, the code triggers an infinite loop. 815

Buggy Code:

class TreeAncestor {

public:

vector<vector<int>>v;

TreeAncestor(int n, vector<int>&

↪→ parent) {

vector<vector<int>> par(n, vector<

↪→ int>(20));

for (int i = 0; i < n; i++) par[i

↪→ ][0] = parent[i];

for (int j = 1; j < 20; j++) {

for (int i = 0; i < n; i++) {

if (par[i][j - 1] == -1)

↪→ par[i][j] = -1;

else par[i][j] = par[par[i

↪→ ][j - 1]][j - 1];

}

}

swap(v, par);

}

int getKthAncestor(int node, int k) {

for (int i = 0; i < 20; i++) {

if ((k >> i) & 1) {

node = v[node][i];

if (node == -1) return -1;

getKthAncestor(node, k);

}

}

return node;

}

816
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};

817

Unlikely Bugs. Some instances of bugs are ac-818

curately categorized by their error type, yet they819

are unlikely to appear in practical scenarios. For820

instance, it is atypical for ’undefined objects’ in nor-821

mal circumstances to be named ’undefined’, which822

violates code (3).823

Buggy Code:

class Solution {

public:

bool doesValidArrayExist(vector<int>&

↪→ derived) {

int xoor = 0;

vector<int>& undefined;

for (auto i: derived) xoor ^= i;

xoor ^= undefined[0];

return !xoor;

}

};

824

G Runtime Messages825

In this section, we present several examples of run-826

time messages that may or may not provide clues827

for the debugging process.828

When dealing with bugs that raise runtime er-829

rors, these information are specifically helpful. For830

example, the following runtime messages directly831

points out the bug.832

Buggy Code:

class Solution:

def dp(self,i,s,prev,k,ct,n,dct:

if k<0:

return float("infinity")

if i>=n:

x=0

if ct>1:

x=len(str(ct))+1

elif ct==1:

x=1

return x

if (i,prev,ct,k) in dct:

return dct[(i,prev,ct,k)]

if s[i]==prev:

inc=self.dp(i+1,s,prev,k,ct+1,

↪→ n,dct)

else:

x=0

if ct>1:

833

x=len(str(ct))+1

elif ct==1:

x=1

inc=x+self.dp(i+1,s,s[i],k,1,n,

↪→ dct)

exc=self.dp(i+1,s,prev,k-1,ct,n,

↪→ dct)

dct[(i,prev,ct,k)]=min(inc,exc)

return min(inc,exc)

def getLengthOfOptimalCompression(

↪→ self, s: str, k: int) -> int:

n=len(s)

return self.dp(0,s,"",k,0,n,{})

834

Runtime Messages:
Line 3: SyntaxError: ’(’ was
never closed

835

Traceback messages may sometimes be too low- 836

level to offer effective information. The follow- 837

ing bug change one detail of operation about the 838

prime arrangements from ’+n’ to ’-n’, for which 839

the ’stackoverflow’ messages does not provide any 840

help. 841

Buggy Code:

class Solution {

public:

long long fact(int n)

{

if(n<=1)return 1;

return (n*fact(n+1)%1000000007)

↪→ %1000000007;

}

int numPrimeArrangements(int n) {

if(n==1)return 1;

if(n<=3)return n-1;

int t=0,flag;

for(int i=2;i<=n;i++)

{

flag=0;

for(int j=2;j<=sqrt(i);j++)

{

if(i%j==0)

{

flag=1;

break;

}

}

if(flag==0)

842
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{

t++;

}

}

return (fact(t)*fact(n-t))

↪→ %1000000007;

}

};

843

Runtime Messages:
AddressSanitizer: stack-overflow
on the address 0x7ffcdc8e9ff8 (pc
0x000000366e14 bp 0x7ffcdc8ea000
sp 0x7ffcdc8ea000 T0)

844

H Examples in BuGalley845

In this section we demonstrated 4 positive and846

4 negative cases of source data (blue), buggy847

code (red), LLM generation and evaluation results848

(green) of different language, different models and849

different types of bugs.850

851

1. GPT-4, Python3, colon missing852

Question: Given a sentence text (A sentence is
a string of space-separated words) in the following
format:
First letter is in upper case. Each word in text is
separated by a single space.
Your task is to rearrange the words in text such that all
words are rearranged in an increasing order of their
lengths. If two words have the same length, arrange
them in their original order. Return the new text fol-
lowing the format shown above.

853

Examples: Input: text = "Leetcode is cool"
Output: "Is cool leetcode"
Explanation: There are 3 words, "Leetcode" of length
8, "is" of length 2 and "cool" of length 4.
Output is ordered by length and the new first word
starts with capital letter.

854

Oracle Solution Code:

class Solution:

def arrangeWords(self, text: str) ->

↪→ str:

return " ".join(sorted(text.split

↪→ (), key=len)).capitalize()

855

Buggy Code:

class Solution:

def arrangeWords(self, text: str) ->

↪→ str

return " ".join(sorted(text.split

↪→ (), key=len)).capitalize()

856

Bug Explanation: A colon is missing at the end of
the function definition line.

857

GPT-4 Debugging:

class Solution:

def arrangeWords(self, text: str) ->

↪→ str:

return " ".join(sorted(text.split

↪→ (), key=len)).capitalize()

858

Debugging Explanation: The code was missing a
colon at the end of the method definition.

859

Test Results: Run time: 43 ms
Run Memory: 18624000
Test Cases Results: 11111111111111111111111111
11111111111111111111111111111111111111111
1111111

860

Test Decision: True
861

2. GPT-4, C++, undefined objects 862

Question: A 0-indexed array derived with length
n is derived by computing the bitwise XOR of ad-
jacent values in a binary array original of length n.
Specifically, for each index i in the range [0, n - 1]:
If i = n - 1, then derived[i] = original[i] XOR origi-
nal[0]. Otherwise, derived[i] = original[i] XOR orig-
inal[i + 1].
Given an array derived, your task is to determine
whether there exists a valid binary array original that
could have formed derived. Return true if such an
array exists or false otherwise.
A binary array is an array containing only 0’s and 1’s

863

Examples: Input: derived = [1,1,0]
Output: true
Explanation: A valid original array that gives derived
is [0,1,0].
derived[0] = original[0] XOR original[1] = 0 XOR 1

864
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= 1
derived[1] = original[1] XOR original[2] = 1 XOR 0
= 1
derived[2] = original[2] XOR original[0] = 0 XOR 0
= 0

865

Oracle Solution Code:

class Solution {

public:

bool doesValidArrayExist(vector<int>&

↪→ derived) {

int xoor = 0;

for (auto i: derived) xoor ^= i;

return !xoor;

}

};

866

Buggy Code:

class Solution {

public:

bool doesValidArrayExist(vector<int>&

↪→ derived) {

int xoor = 0;

vector<int>& undefined;

for (auto i: derived) xoor ^= i;

xoor ^= undefined[0];

return !xoor;

}

};

867

Bug Explanation: The bug is in ‘vector<int>&
undefined;‘ the vector undefined is declared but never
defined.

868

GPT-4 Debugging:

class Solution {

public:

bool doesValidArrayExist(vector<int>&

↪→ derived, vector<int>&

↪→ undefined) {

int xoor = 0;

for (auto i: derived) xoor ^= i;

xoor ^= undefined[0];

return !xoor;

}

};

869

Debugging Explanation: The undefined vector
was declared but not defined and also was not part of
function parameter.

870

Test Results: Run time: N/A
Run Memory: 0
Test Cases Results: complingerror

871

Test Decision: False
872

3. GPT-4, Java, operation error 873

Question: Given two arrays arr1 and arr2, the el-
ements of arr2 are distinct, and all elements in arr2
are also in arr1. Sort the elements of arr1 such that
the relative ordering of items in arr1 are the same as
in arr2. Elements that do not appear in arr2 should
be placed at the end of arr1 in ascending order.

874

Examples: Input: arr1 = [2,3,1,3,2,4,6,7,9,2,19],
arr2 = [2,1,4,3,9,6]
Output: [2,2,2,1,4,3,3,9,6,7,19]

875

Oracle Solution Code:

import java.util.Arrays;

class Solution {

public int[] relativeSortArray(int[]

↪→ arr1, int[] arr2) {

Arrays.sort(arr1);

int[] ans = new int[arr1.length];

int start = 0;

int end = arr1.length - 1;

int index = 0;

for (int i = 0; i < arr2.length; i

↪→ ++) {

int target = arr2[i];

start = 0;

end = arr1.length - 1;

while (end >= start) {

int mid = start + (end -

↪→ start) / 2;

if (arr1[mid] == target) {

for (int j = start; j

↪→ <= end; j++) {

if (arr1[j] ==

↪→ target) {

ans[index++] =

↪→ arr1[j];

876
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}

}

break;

}

if (arr1[mid] < target) {

start = mid + 1;

} else {

end = mid - 1;

}

}

}

for (int i = 0; i < arr1.length; i

↪→ ++) {

if (index == arr1.length) {

break;

}

boolean found = false;

for (int num : arr2) {

if (arr1[i] == num) {

found = true;

break;

}

}

if (!found) {

ans[index++] = arr1[i];

}

}

return ans;

}

}

877

Buggy Code:

import java.util.Arrays;

class Solution {

public int[] relativeSortArray(int[]

↪→ arr1, int[] arr2) {

Arrays.sort(arr1);

int[] ans = new int[arr1.length];

int start = 0;

int end = arr1.length - 1;

int index = 0;

for (int i = 0; i < arr2.length; i

↪→ ++) {

int target = arr2[i];

start = 0;

end = arr1.length - 1;

while (end >= start) {

int mid = start + (end -

878

↪→ start) / 2;

if (arr1[mid] == target) {

for (int j = start; j

↪→ <= end; j++) {

if (arr1[j] ==

↪→ target) {

ans[index++] =

↪→ arr1[j];

arr1[j] = -1;

}

}

break;

}

if (arr1[mid] < target) {

start = mid + 1;

} else {

end = mid - 1;

}

}

}

Arrays.sort(arr1);

for (int i = 0; i < arr1.length; i

↪→ ++) {

if (index == arr1.length) {

break;

}

boolean found = false;

for (int num : arr2) {

if (arr1[i] == num) {

found = true;

break;

}

}

if (!found && arr1[i] != -1) {

ans[index++] = arr1[i];

}

}

return ans;

}

}

879

Bug Explanation: The bug I added was modifying
the array in the sorting step without considering its
impact on forthcoming operations, causing incorrect
output.

880

GPT-4 Debugging:

import java.util.*;

881
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class Solution {

public int[] relativeSortArray(int[]

↪→ arr1, int[] arr2) {

int[] ans = new int[arr1.length];

int index = 0;

for (int i = 0; i < arr2.length; i

↪→ ++) {

for (int j = 0; j < arr1.

↪→ length; j++) {

if (arr1[j] == arr2[i]) {

ans[index++] = arr1[j];

}

}

}

List < Integer > list = new

↪→ ArrayList < > ();

for (int i = 0; i < arr1.length; i

↪→ ++) {

boolean found = false;

for (int num : arr2) {

if (arr1[i] == num) {

found = true;

break;

}

}

if (!found) {

list.add(arr1[i]);

}

}

Collections.sort(list);

for (Integer i: list) {

ans[index++] = i;

}

return ans;

}

}

882

Debugging Explanation: Simplified logic to fill the
resultant array by iterating through the second array
and filling for each occurrence in the first array.

883

Test Results: Run time: 4 ms
Run Memory: 40848000
Test Cases Results: 11111111111111111

884

Test Decision: True
885

4. GPT-4, Python3, triple bugs886

Question: You are given the root of a binary tree
and a positive integer k. The level sum in the tree
is the sum of the values of the nodes that are on the
same level. Return the kth largest level sum in the
tree (not necessarily distinct). If there are fewer than
k levels in the tree, return -1. Note that two nodes
are on the same level if they have the same distance
from the root.

887

Examples: Input: root = [5,8,9,2,1,3,7,4,6], k = 2
Output: 13
Explanation: The level sums are the following:
- Level 1: 5.
- Level 2: 8 + 9 = 17.
- Level 3: 2 + 1 + 3 + 7 = 13.
- Level 4: 4 + 6 = 10.
The 2nd largest level sum is 13.

888

Oracle Solution Code:

# Definition for a binary tree node.

# class TreeNode:

# def __init__(self, val=0, left=None,

↪→ right=None):

# self.val = val

# self.left = left

# self.right = right

class Solution:

def kthLargestLevelSum(self, root:

↪→ Optional[TreeNode], k: int) ->

↪→ int:

dq = collections.deque([root])

a = []

lvl = 1

while dq:

lvlsum = 0

for i in range(len(dq)):

n = dq.popleft()

lvlsum += n.val

if n.left: dq.append(n.left)

↪→
if n.right: dq.append(n.

↪→ right)

a.append(lvlsum)

lvl += 1

a.sort(reverse=True)

return a[k-1] if len(a) >= k else

↪→ -1

889

Buggy Code:

# Definition for a binary tree node.

890
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# class TreeNode:

# def __init__(self, val=0, left=None,

↪→ right=None):

# self.val = val

# self.left = left

# self.right = right

class Solution:

def kthLargestLevelSum(self, root:

↪→ Optional[TreeNode], k: int) ->

↪→ int:

dq = collections.deque([root])

a = []

lvl = 1

while dq:

lvlsum = 0

for i in range(len(dq)):

n = dq.popleft()

lvlsum += n.val

if n.left: dq.append(n.left)

↪→
if n.right: dq.append(n.

↪→ right)

a.append(self.

↪→ calculateLevelSum(

↪→ lvlsum))

lvl += 1

a.sort(reverse=False)

return a[k] if len(a) >= k else -1

891

Bug Explanation: other error+ undefined methods+
indexing error

892

GPT-4 Debugging:

# Definition for a binary tree node.

# class TreeNode:

# def __init__(self, val=0, left=None,

↪→ right=None):

# self.val = val

# self.left = left

# self.right = right

class Solution:

def kthLargestLevelSum(self, root:

↪→ TreeNode, k: int) -> int:

dq = collections.deque([root])

a = []

while dq:

lvlsum = 0

for _ in range(len(dq)):

n = dq.popleft()

lvlsum += n.val

if n.left: dq.append(n.

893

↪→ right)

if n.right: dq.append(n.

↪→ left)

a.append(lvlsum)

if len(a) < k:

return -1

else:

a.sort(reverse=True)

return a[k-1]

894

Debugging Explanation: Fixed iteration on chil-
dren nodes and indexing for kth largest element

895

Test Results: Run time: N/A
Run Memory: 16340000
Test Cases Results: 10000000000000000000000000
0000000000000000000

896

Test Decision: False
897

5. GPT-3.5-Turbo, C++, unclosed string 898

Question: You are given a string word that con-
sists of digits and lowercase English letters. You will
replace every non-digit character with a space. For
example, "a123bc34d8ef34" will become " 123 34
8 34". Notice that you are left with some integers
that are separated by at least one space: "123", "34",
"8", and "34". Return the number of different inte-
gers after performing the replacement operations on
word. Two integers are considered different if their
decimal representations without any leading zeros
are different.

899

Examples: Input: word = "a123bc34d8ef34"
Output: 3
Explanation: The three different integers are "123",
"34", and "8". Notice that "34" is only counted once.

900

Oracle Solution Code:

class Solution {

public:

int numDifferentIntegers(string word)

↪→ {

int n = word.length();

unordered_set<string>s;

int i=0;

while(i<n){

if(isdigit(word[i]) == false){

i++;

901
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continue;

}

string temp = "";

while(i<n && isdigit(word[i]))

↪→ {

temp+=word[i];

i++;

}

int j=0;

while(j<temp.length() && temp[

↪→ j] == '0') j++;

temp = temp.substr(j);

s.insert(temp);

}

return s.size();

}

};

902

Buggy Code:

class Solution {

public:

int numDifferentIntegers(string word)

↪→ {

int n = word.length();

unordered_set<string>s;

int i=0;

while(i<n){

if(isdigit(word[i]) == false){

i++;

continue;

}

string temp = "Start of sub-

↪→ string;

while(i<n && isdigit(word[i]))

↪→ {

temp+=word[i];

i++;

}

int j=0;

while(j<temp.length() && temp[

↪→ j] == '0') j++;

temp = temp.substr(j);

s.insert(temp);

}

return s.size();

}

};

903

Bug Explanation: The string temp is left unclosed
after "Start of sub-string". This will cause an error.

904

GPT-3.5-Turbo Debugging:

p

class Solution {

public:

int numDifferentIntegers(string word)

↪→ {

int n = word.length();

unordered_set<string>s;

int i=0;

while(i<n){

if(isdigit(word[i]) == false){

i++;

continue;

}

string temp;

while(i<n && isdigit(word[i]))

↪→ {

temp+=word[i];

i++;

}

int j=0;

while(j<temp.length() && temp[

↪→ j] == '0') j++;

temp = temp.substr(j);

s.insert(temp);

}

return s.size();

}

};

```
<exp>

To fix the code, I added double quotes

↪→ and also removed the "Start of

↪→ sub-string" as it was invalid

↪→ syntax

905

Debugging Explanation: To fix the code, I added
double quotes and also removed the "Start of sub-
string" as it was invalid syntax

906

Test Results: Run time: N/A
Run Memory: 0
Test Cases Results: complingerror

907

Test Decision: False
908

6. GPT-3.5-Turbo, Java, undefined methods 909

Question: Given an array of integers temperatures
represents the daily temperatures, return an array
answer such that answer[i] is the number of days
you have to wait after the ith day to get a warmer

910
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temperature. If there is no future day for which this
is possible, keep answer[i] == 0 instead.

911

Examples: Input: temperatures =
[73,74,75,71,69,72,76,73]
Output: [1,1,4,2,1,1,0,0]

912

Oracle Solution Code:

class Solution {

public int[] dailyTemperatures(int[]

↪→ temperatures) {

int[] arr = new int[temperatures.

↪→ length];

ArrayDeque<int[]> st = new

↪→ ArrayDeque<>();

int i=0, j=temperatures.length-1 ;

while( j >= 0){

if(st.size()==0){

arr[i++] = 0;

}

else if (st.size()>0 && st.

↪→ peek()[0]>temperatures[

↪→ j])

{

arr[i++]=1;

}

else if (st.size()>0 && st.

↪→ peek()[0]<=temperatures

↪→ [j])

{ while(st.size()>0 && st.peek

↪→ ()[0]<=temperatures[j])

↪→ {

st.pop();

}

if(st.size()==0){

arr[i++]=0;

}

else{

arr[i++]=st.peek()[1]-j;

}

}

st.push(new int[]{temperatures[j],

↪→ j});

j--;

}

913

int[] ans = new int[temperatures.

↪→ length]; int k=0;

for(i=arr.length-1; i>=0; i--){

ans[k++]=arr[i];

}

return ans;

}

}

914

Buggy Code:

class Solution {

public int[] dailyTemperatures(int[]

↪→ temperatures) {

int[] arr = new int[temperatures.

↪→ length];

ArrayDeque<int[]> st = new

↪→ ArrayDeque<>();

int i=0, j=temperatures.length-1 ;

while( j >= 0){

if(st.size()==0){

arr[i++] = 0;

}

else if (st.size()>0 && st.

↪→ peek()[0]>temperatures[

↪→ j])

{

arr[i++]=1;

}

else if (st.size()>0 && st.

↪→ peek()[0]<=temperatures

↪→ [j])

{ while(st.size()>0 && st.peek

↪→ ()[0]<=temperatures[j])

↪→ {

st.pop();

}

if(st.size()==0){

arr[i++]=0;

}

else{

arr[i++]=st.peek()[1]-j;

}

}

doSomething();

915

23



st.push(new int[]{temperatures[j],

↪→ j});

j--;

}

int[] ans = new int[temperatures.

↪→ length]; int k=0;

for(i=arr.length-1; i>=0; i--){

ans[k++]=arr[i];

}

return ans;

}

}

916

Bug Explanation: The method ’doSomething()’ is
called but it has not been defined anywhere in the
class.

917

GPT-3.5-Turbo Debugging:

import java.util.ArrayDeque;

class Solution {

public int[] dailyTemperatures(int[]

↪→ temperatures) {

int[] arr = new int[temperatures.

↪→ length];

ArrayDeque<int[]> st = new

↪→ ArrayDeque<>();

int i=0, j=temperatures.length-1 ;

while( j >= 0){

if(st.size()==0){

arr[i++] = 0;

}

else if (st.size()>0 && st.

↪→ peek()[0]>temperatures[

↪→ j])

{

arr[i++]=1;

}

else if (st.size()>0 && st.

↪→ peek()[0]<=temperatures

↪→ [j])

{ while(st.size()>0 && st.peek

↪→ ()[0]<=temperatures[j])

918

↪→ {

st.pop();

}

if(st.size()==0){

arr[i++]=0;

}

else{

arr[i++]=st.peek()[1]-j;

}

}

doSomething();

st.push(new int[]{temperatures[j],

↪→ j});

j--;

}

int[] ans = new int[temperatures.

↪→ length]; int k=0;

for(i=arr.length-1; i>=0; i--){

ans[k++]=arr[i];

}

return ans;

}

// Added method for compilation

public static void doSomething(){

// Do nothing

}

}

919

Debugging Explanation: Added empty method
doSomething() to fix a compile time error

920

Test Results: Run time: 25 ms
Run Memory: 60564000
Test Cases Results: 11111111111111111111111111
1111111111111111111111

921

Test Decision: True
922

7. GPT-3.5-Turbo, Python3, variable error 923

Question: Given a 0-indexed integer array nums,
find the leftmost middleIndex (i.e., the smallest
amongst all the possible ones). A middleIndex
is an index where nums[0] + nums[1] + ... +
nums[middleIndex-1] == nums[middleIndex+1] +
nums[middleIndex+2] + ... + nums[nums.length-1].

924
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If middleIndex == 0, the left side sum is considered
to be 0. Similarly, if middleIndex == nums.length -
1, the right side sum is considered to be 0. Return the
leftmost middleIndex that satisfies the condition, or
-1 if there is no such index.

925

Examples: Input: nums = [2,3,-1,8,4]
Output: 3
Explanation: The sum of the numbers before index 3
is: 2 + 3 + -1 = 4
The sum of the numbers after index 3 is: 4 = 4

926

Oracle Solution Code:

class Solution:

def findMiddleIndex(self, nums: List[

↪→ int]) -> int:

def dnc(l, r, lo, hi):

if l == r - 1:

return l if lo == hi else

↪→ -1

mid = (l + r) // 2

right = sum(nums[mid:r])

left = sum(nums[l:mid])

left_ind = dnc(l, mid, lo, hi

↪→ + right)

return left_ind if left_ind !=

↪→ -1 else dnc(mid, r, lo

↪→ + left, hi)

return dnc(0, len(nums), 0, 0)

927

Buggy Code:

class Solution:

def findMiddleIndex(self, nums: List[

↪→ int]) -> int:

def dnc(l, r, lo, hi):

if l == r - 1:

return l if lo == hi else

↪→ -1

mid = (l + r) // 2

right = sum(nums[mid:r])

left = sum(nums[l:mid])

left_ind = dnc(l, mid, lo, hi

↪→ + left)

return left_ind if left_ind !=

↪→ -1 else dnc(mid, r, lo

↪→ + left, hi)

return dnc(0, len(nums), 0, 0)

928

Bug Explanation: The bug is in the line "left_ind
= dncl,mid, lo, hi + left" where ’left’ should be
replaced with ’right’. This error will result in incor-
rect values for the left and right sums, causing the
function to incorrectly identify the middle index or
terminate prematurely.

929

GPT-3.5-Turbo Debugging:

class Solution:

def findMiddleIndex(self, nums: List[

↪→ int]) -> int:

def dnc(l, r, lo, hi):

if l == r:

return l if lo == hi else

↪→ -1

mid = (l + r) // 2

right = sum(nums[mid:r])

left = sum(nums[l:mid])

left_ind = dnc(l, mid, lo, hi

↪→ + left)

return left_ind if left_ind !=

↪→ -1 else dnc(mid + 1, r

↪→ , lo + left, hi)

return dnc(0, len(nums), 0, 0)

930

Debugging Explanation: The condition for termi-
nation was wrong, changed r-1 to r and mid to mid+1
because mid is already included.

931

Test Results: Run time: N/A
Run Memory: 16508000
Test Cases Results: 00111111100111110011111111
01111001111111111001100000000000000000000
00000000010001100011111101010101001000010
00000000000000000000000000010101011101011
00110010010011100000000000000000000000000
00000010000100101100000010000000000000000
00001011111111111111111111111100000000000
0000000001111100000111

932

Test Decision: False
933

8. GPT-3.5-Turbo, C++, double bugs 934

Question: Given two strings s and goal, return true
if you can swap two letters in s so the result is equal
to goal, otherwise, return false. Swapping letters is
defined as taking two indices i and j (0-indexed) such

935
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that i != j and swapping the characters at s[i] and s[j].
For example, swapping at indices 0 and 2 in "abcd"
results in "cbad".

936

Examples: Input: s = "ab", goal = "ba"
Output: true
Explanation: You can swap s[0] = ’a’ and s[1] = ’b’
to get "ba", which is equal to goal.

937

Oracle Solution Code:

class Solution {

public:

bool buddyStrings(string s, string p)

↪→ {

int n=s.length(), m=p.length();

if(n!=m) return false;

vector<int> freq(26,0);

int first=-1, second=-1;

for(int i=0;i<n;i++){

if(s[i] != p[i]){

if(first==-1){

first=i;

}else if(second==-1){

second=i;

}else{

return false; // more

↪→ than 2

↪→ mismatching

↪→ characters

}

}

freq[s[i]-'a']++;

}

// similar strings

if(first == -1 && second == -1){

for(int i=0;i<26;i++) if(freq[

↪→ i] > 1) return true; //

↪→ can swap similar

↪→ characters

return false; // all

↪→ characters occur only

↪→ once

}else if(second == -1){

return false; // exactly 1

↪→ mismatch

}

return (s[first]==p[second] && s[

↪→ second]==p[first]); //

↪→ check similarity on 2

938

↪→ mismatched indexes

}

};

939

Buggy Code:

class Solution {

public:

bool buddyStrings(string s, string p)

↪→ {

int n=s.length(), m=p.length();

if(n!=m) return false;

vector<int> freq(26,0);

int first=-1, second=-1;

for(int i=0;i<=n;i++){

if(s[i] != p[i]){

if(first==-1){

first=i;

}else if(second==-1){

second=i;

}else{

return false;

}

}

freq[s[i]-'z']++;

}

if(first == -1 && second == -1){

for(int i=0;i<26;i++) if(freq[

↪→ i] > 1) return true;

return false;

}else if(second == -1){

return false;

}

return (s[first]==p[second] && s[

↪→ second]==p[first]);

}

};

940

Bug Explanation: indexing error+ operation error
941

GPT-3.5-Turbo Debugging:

class Solution {

public:

bool buddyStrings(string s, string p)

↪→ {

int n=s.length(), m=p.length();

if(n!=m) return false;

942
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vector<int> freq(26,0);

int first=-1, second=-1;

for(int i=0;i<n;i++){ // modified

↪→ from i<=n to i<n

if(s[i] != p[i]){

if(first==-1){

first=i;

}else if(second==-1){

second=i;

}else{

return false;

}

}

freq[s[i]-'a']++; // modified

↪→ from 'z' to 'a'

}

if(first == -1 && second == -1){

for(int i=0;i<26;i++) if(freq[

↪→ i] > 1) return true;

return false;

}else if(second == -1){

return false;

}

return (s[first]==p[second] && s[

↪→ second]==p[first]);

}

};

943

Debugging Explanation: 1. Modified the loop
condition from i<=n to i<n to prevent accessing out
of range. 2. Changed the index calculation in freq[]
from s[i]-’z’ to s[i]-’a’ to get the correct index of the
frequency array.

944

Test Results: Run time: 5 ms
Run Memory: 7144000
Test Cases Results: 11111111111111111111111111
1111111111111

945

Test Decision: True
946
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