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Abstract

Uncertainty estimation remains a critical chal-
lenge in adapting pre-trained language mod-
els to classification tasks, particularly under
parameter-efficient fine-tuning approaches such
as adapters. We introduce AdUE!, an efficient
post-hoc uncertainty estimation (UE) method,
to enhance softmax-based estimates. Our ap-
proach (1) uses a differentiable approximation
of the maximum function and (2) applies ad-
ditional regularization through L2-SP, anchor-
ing the fine-tuned head weights and regulariz-
ing the model. Evaluations on five NLP clas-
sification datasets across four language mod-
els (RoBERTa, ELECTRA, LLaMA-2, Qwen)
demonstrate that our method consistently out-
performs established baselines such as Maha-
lanobis distance and softmax response. Our ap-
proach is lightweight (no base-model changes)
and produces better-calibrated confidence.

1 Introduction

Large-scale pretrained language models (LLMs)
have become foundational tools in natural lan-
guage processing (NLP), offering strong perfor-
mance on a wide range of tasks through transfer
learning. To adapt such models to downstream clas-
sification problems, parameter-efficient fine-tuning
methods—such as adapters (Houlsby et al., 2019)
and LoRA (Hu et al., 2022)—have emerged as scal-
able alternatives to full model fine-tuning. These
methods update only a small subset of parameters
while retaining the majority of the pre-trained back-
bone, enabling efficient adaptation with reduced
computational and storage costs.

Despite their advantages, adapter-based meth-
ods are prone to overfitting, especially on low-
resource tasks, and often produce overconfident
predictions even when incorrect. This limits their
reliability in risk-sensitive applications such as
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medical triage, toxic content filtering, or auto-
mated moderation. A principled estimate of pre-
dictive uncertainty—the model’s confidence in its
own outputs—is therefore essential. Common un-
certainty estimation techniques include softmax
response (Geifman and El-Yaniv, 2017), Maha-
lanobis distance (Lee et al., 2018)and deep ensem-
bles (Lakshminarayanan et al., 2017). However,
these approaches face trade-offs between computa-
tional cost, scalability, and generalization.

We revisit the softmax response as a lightweight
yet effective uncertainty measure. Although
softmax-based confidence is often unreliable due to
model miscalibration (Guo et al., 2017), we show
that it can be improved post-hoc by fine-tuning a
small classification head using a smooth approx-
imation of the max function. Our method AAUE
builds on frozen, fine-tuned adapter models and
optimizes a multi-task objective that combines bi-
nary classification loss, regularization towards the
original softmax output, and L2-SP parameter an-
choring (Xuhong et al., 2018). This approach en-
hances uncertainty estimation without degrading
task performance or inducing forgetting.

We evaluate our approach across five diverse
text classification datasets—SST-2, SST-5, CoLLA,
20 Newsgroups, and ToxiGen— and across four
Transformer-based architectures representing both
encoders (RoBERTa, ELECTRA) and decoders
(LLaMA-2, Qwen). Our experiments demonstrate
that the proposed softmax response fine-tuning
(AdUE) outperforms baselines Mahalanobis-based
and robust distance-based uncertainty estimation
methods in terms of AUC-ROC between predicted
confidence and classification error.

Our main contributions are as follows:

* We propose AdUE — a lightweight post-hoc
fine-tuning method based on softmax response
uncertainty estimation in adapter-based LLMs.
Figure 1 illustrates the approach.
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Figure 1: UAYVE head training scheme. We initialize the new uncertainty head with the original classifier’s weights
0ini+ and fine-tune it with a three-term loss (binary CE, softmax-regularization, L2-SP). The hard max is replaced

by a differentiable SmoothMax during training

* We introduce a loss that balances classification
accuracy, softmax regularization, and parame-
ter anchoring for improved robustness.

* We extensively evaluate our approach on five
NLP benchmarks and four different LoRA
fine-tuned LLMs, demonstrating performance
gains in uncertainty estimation.

2 Background Uncertainty Estimation
Methods

Letz = h(x) € R?denote the latent representation
of an input instance X, typically extracted from
the penultimate layer of a neural network. For a
classification problem with classes ¢ € C, we aim
to provide an uncertain score U (x) that reflects the
possibility of an error for an example x. We focus
on methods that require low computational cost.

2.1 Softmax Response

The Softmax Response (SR) (Geifman and El-
Yaniv, 2017) provides a computationally efficient
measure of aleatoric uncertainty by examining the
model’s maximum class probability:

US(x) =1 -3, (M
with § = max.ccp(y = c|x), where p(y = c|x)
represents the softmax probability for class ¢ € C.
2.2 Mahalanobis Distance (MD) Method

The MD-based uncertainty estimation method (Lee
et al., 2018) models each class as a Gaussian dis-

tribution characterized by class centroids p, =
E[h(x)|y = ¢], a shared covariance matrix ¥ =
E[(z - p)(z — 1)7).

The uncertainty score for an input x is given by
the minimum Mahalanobis distance to any class
centroid:

Uvp(x) =min(z — p) 27 (z—p,). @)

ceC

where z is a representation from the penultimate
layer.

Two methods extend MD to make it more robust:
the Relative Mahalanobis Distance (RMD) (Ren
et al., 2021) and the Robust Distance Estimation
(RDE) (Yoo et al., 2022). These modifications
enhance robustness to outliers while preserving
the discriminative power of the original representa-
tions.

Further details on distance-based methods are
available in Appendix B.

3 Methodology

For experimentation, we chose Low-Rank Adap-
tation methods because of their computational ef-
ficiency. After fine-tuning the LoRA model, we
extract embedding and fine-tuning the classifica-
tion head with smooth max and regularization to
obtain the probability of classification error.

3.1 Efficient Fine-tuning with LoRA

We employ Low-Rank Adaptation (LoRA) (Hu
et al., 2022), which is still one of the most popu-



lar fine-tuning approaches (Tuggener et al., 2024)
from the peft library (Mangrulkar et al., 2022), to
efficiently fine-tune the attention weights. This ap-
proach reduces the number of trainable parameters
compared to full fine-tuning, while maintaining
competitive quality.

3.2 Softmax Response Fine-Tuning

Softmax response (SR) (1) performs better in var-
ious uncertainty estimation scenarios without ad-
ditional training (Vazhentsev et al., 2023; Holm
et al., 2023).

After training LoRA adapters for the task,
we attach a small trainable head—the Smooth-
Max head—initialized with the classification head
weights, to predict an uncertainty score (error prob-
ability). This head approximates the softmax re-
sponse and is fine-tuned independently, using only
the frozen model representations.

Naive fine-tuning this head often underperforms
the original softmax response due to two key chal-
lenges:

* Overfitting: A fully connected layer in tra-
ditional classification heads contains orders
of magnitude more trainable parameters than
available training samples, leading to severe
overfitting.

* Optimization Difficulty: Direct optimization
of the maximum function in uncertainty es-
timation proves computationally challenging
due to its non-smooth nature.

To address these limitations, we introduce the
SmoothMax Classifier Nonlinearity, which extends
a conventional classification head with an addi-
tional smooth operation to produce similar out-
put to softmax response. Given class probabilities
{p;}$_, from the base classifier, our head computes
the smooth maximum as:

UAdUE — 1 _ SmoothMax(p),
1 C
_ ADi
SmoothMax(p) = X log ;1 e™Pi 3)

where A > 0 is a temperature parameter controlling
the smoothing intensity. This function is differen-
tiable, allowing backpropagation.

3.3 Training Objective

The smooth head with parameters 0 is trained
using a multi-task objective that combines three

components, that takes into account model error
e; = [J # Ytrue)> uncertainty estimates USF(x)
and parameters Oy, from the original head:

The first is classic Binary Cross-Entropy Loss:

N
1
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The next now is a regularization loss:

N
Lras = - S(UMB() — U ()2
i=1
This encourages the new uncertainty scores to stay
close to the original softmax-based confidence on
average, preventing drastic shifts.

Finally, we add L2-SP loss adopted from the
transfer learning domain (Xuhong et al., 2018),
this keeps the fine-tuned weights near their initial-
ization, avoiding forgetting and overfitting:

2
Liasp = (|0 — Oinit |2
The combined training objective, where « and
control the regularization strengths:

L= LpcE + Oé»creg + BLLa2sp, 4)

4 Experiments

4.1 Models

We evaluate AdUE on four pretrained
models: roberta-base (Liu et al., 2019)
(125M, masked language modeling),

electra-base-discriminator (Clark et al.,
2020) (110M, replaced token detection), and two
7B autoregressive models—Qwen2.5-7B (Yang
et al.,, 2024) and LLaMA-2-7b (Touvron et al.,
2023).

4.2 Training algorithm

After training a LoRA-adapter model on the task
and obtain representation z:

1. Build a UE head initialized with 6;;;.
2. Compute U on each training example.

3. Train the uncertainty head to predict proba-
bility of error using the combined loss (4)
replacing the hard max with the differentiable
SmoothMax (3).



Dataset  Cola News SST2 SST5  Toxigen Cola News SST2 SST5  Toxigen Rank |
Model Electra Roberta

RMD 70.0+2.6 83.7+0.6 79.2+4.1 57.2+1.3 67.9+1.5 65.3+1.7 84.7+0.7 73.0+2.8 58.1+1.1 69.1x2.2 3.7
MD 80.9+1.1 74.1+0.7 88.2+1.0 55.5+1.0 74.0+1.6 73.7+0.6 79.5+0.4 82.842.2 55.6*x1.9 65.1+9.2 3.2
RDE 80.0+1.3 70.8+1.8 68.8+24.1 56.2+09 74.3+1.3 73.4+1.4 77.3x0.5 67.3+254 55.9+1.5 65.1+89 4.2
SR 79.241.5 83.4+0.6 86.6+2.1 60.8+1.5 74.5+1.4 75.1£2.5 84.8+0.2 80.8+2.0 60.9+1.8 74.3x0.6 2.4
AdUE 79.4+1.3 84.9+0.6 86.8+2.5 62.4+0.9 75.2+x1.1 75.4+3.0 86.0+0.3 80.8+2.0 62.1+1.5 74.6x1.0 1.5
Model LLaMA Qwen

RMD 67.3+6.0 80.7x1.1 78.7£2.5 53.4+04 67.5+£2.5 65.2+4.1 81.2+0.7 78.6x4.1 54.3x1.4 66.4+x19 3.0
MD 60.5£4.3 56.3£2.7 59.9£10.0 51.4%£1.0 56.3x1.8 56.7£2.6 53.9+0.7 54.2+6.4 52.1£1.2 58.1£50 4.3
RDE 62.1£5.8 47.6£3.3 72.248.7 49.2+1.8 53.6x2.0 47.2+2.4 48.2+2.8 63.8+£16.2 48.0+0.9 54.9+55 4.7
SR 77.8£0.7 86.3+0.4 88.3+1.8 59.54£2.4 76.7+1.6 78.1+2.1 85.6£0.4 86.3+1.7 60.8+1.1 72.1+24 2.0
AdUE 77.8+0.5 88.4+0.4 88.4+1.7 61.7+2.7 77.2+2.5 79.7+2.1 87.4%+0.1 86.3+2.1 62.5x14 72.8+24 1.0
Table 1: ROC AUC mean and standard deviation values of five runs for error classification problem, our AdUE

improves performance for almost all datasets and language models.

For all models, we train the LoRA adapter five
times with different seeds and apply the AdUE
method to compute the mean and standard devia-
tion for each dataset (see Appendix D). Hyperpa-
rameter search details are provided in Appendix C.

4.3 Results

AdUE improves results for both generative and
encoder-based transformer architectures across
most datasets. The results are presented in Table 1.
We also performed an ablation study to see what
would happen if we trained the linear layer on z
or initialized the classification layer with random
parameters. The results of disabling each loss term
are shown in Table 2 with details provided in the
Appendix F.

5 Related work

Predictive uncertainty in LLMs can be estimated
using various methods. Among these, information-
based methods are widely utilized, which an-
alyze token probability distributions by access-
ing logits or outputs from the internal layers of
LLMs (Takayama and Arase, 2019; Fomicheva
et al., 2020; van der Poel et al., 2022; Colombo

Method Rank |
AdUE (Ours) 23
Loss: BCE 2.95
Loss: BCE+L2SP 2.75
Loss: BCE+reg 2.9
Full loss + rand cls 4.75
Full loss + random linear 5.35

Table 2: Ablation of loss components and initialization
strategies. Using all loss terms with classification head
initialization yields the best performance.

et al.,, 2023), or by relying on the generated
text (Tian et al., 2023). However, these methods are
often outperformed by sample diversity methods,
which involve generating multiple outputs for LLM
and either aggregating their confidence scores or
assessing their diversity (Kuhn et al., 2023; Malinin
and Gales, 2021; Duan et al., 2024).

In contrast, density-based methods approximate
the distribution of training data using embeddings
of training instances (Lee et al., 2018; Yoo et al.,
2022; Renet al., 2023; Vazhentsev et al., 2023). Ad-
ditionally, predictive uncertainty can be estimated
using reflexive methods, in which the model is
asked directly to provide confidence levels for its
responses (Kadavath et al., 2022; Tian et al., 2023).

6 Conclusion

This work introduces AdUE Softmax Response
Fine-Tuning, a lightweight post-hoc method to en-
hance uncertainty estimation in parameter-efficient
fine-tuned LLMs. Empirical results demonstrate
that AdUE improves the correlation between pre-
dictive uncertainty and classification error across
a diverse set of tasks and model architectures, out-
performing both traditional and robust distance-
based uncertainty estimation techniques. Look-
ing ahead, we aim to explore whether combin-
ing AdUE with existing calibration techniques or
uncertainty-aware training objectives may further
enhance robustness.

7 Limitations

While our method demonstrates promising im-
provements in uncertainty estimation, several lim-
itations remain. On certain datasets, notably SST-
2—where encoder models were originally trained



on substantially larger samples—AdUE underper-
forms relative to alternative methods. This indi-
cates that the advantage of our approach may de-
pend significantly on training set characteristics
and traditional methods may be more effective in
data-rich scenarios.

Additionally, we recognize that the evaluation
scope could be expanded. First, our experi-
ments focus exclusively on adapter-based fine-
tuning, specifically LoRA, and do not explore
other parameter-efficient methods such as prompt
or prefix tuning, which might exhibit different un-
certainty characteristics. Second, our assessment
is restricted to classification tasks. The proposed
SmoothMax head has not yet been evaluated in gen-
eration tasks or other contexts, such as sequence
labeling, where uncertainty dynamics differ, and
factors like beam diversity or exposure bias become
relevant. Third, training and evaluating the uncer-
tainty head using pseudo-error labels derived from
the model’s own predictions could introduce bias,
particularly when the base model tends toward over-
confidence. Lastly, our primary evaluation metric,
uncertainty—error AUC, does not directly measure
calibration metrics such as Expected Calibration
Error (ECE). Future research should address these
limitations, extending the analysis to additional ar-
chitectures, tasks, and evaluation frameworks.
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A Hardware

The experiments utilized a high-performance com-
puting cluster with the above specifications. Train-
ing and evaluating 100 model instances across all
datasets and architectures required substantial com-
putational resources to ensure reliable estimation
of means and standard deviations.

CPU Cores 128
CPU Memory 2TB
GPU 8 x NVIDIA A100 80GB
Total GPU Hours 340

B Details on distance-based UE methods

Here we described implementation as well as ex-
tensions of MD — a Mahalanobis distance-based
uncertainty estimation method.

B.1 Implementation details

For Electra and Roberta models incorporate spec-
tral normalization (Miyato et al., 2018) in the penul-
timate layer of their classification heads, which has
been shown to stabilize density-based uncertainty
estimation (Vazhentsev et al., 2022) and also test
L2 normalization for representation vector z, re-
sults shown in Tables 7, 8.

B.2 Relative Mahalanobis Distance (RMD)

The Relative Mahalanobis Distance (RMD) (Ren
et al., 2021) improves upon standard MD for near-
OOQOD detection by comparing class-conditional and
background distributions:

RMDk(Z) = MDk(Z) — MD()(Z),
where  MDy(z) = (z — )" S (2 — ),
MDy(z) = (z — o) Sy (2 — o),
with pg = E[z], 3¢ = Cov(z) computed across all
classes.

B.3 Robust Distance Estimation (RDE)

The RDE (Yoo et al., 2022) extends MD with two
key improvements:

1. Class-specific covariance matrices X, esti-
mated via Minimum Covariance Determinant
(MCD), achieving higher robustness of the
computation (Rousseeuw, 1984).

2. Dimensionality reduction of z through kernel
PCA with Radial Basis Function (RBF).

C AdUE Hyperparameters search

We conducted extensive hyperparameter optimiza-
tion across the following ranges:

* Learning Rates: 1x1073,1x1074,1x107°
* Training Epochs: 5, 10, 20

* Softmax response fine tune parameters:

- \: 100.0
— Out regularization («): 0.0, 0.1, 0.3, 1.0
- L2SP (): 0.01,0.1,0.5, 1.0

D Datasets

We evaluated our approach on five benchmark
datasets spanning different text classification tasks.
The sizes of the datasets and the number of classes
represented are shown in the Table 5.

SST-2 & SST-5 The Stanford Sentiment Tree-
bank provides sentence-level sentiment labels from
movie reviews. SST-2 is a binary classification
task (positive/negative), while SST-5 offers fine-
grained sentiment analysis (very negative to very
positive). Both datasets contain parse trees en-
abling full-sentence compositional analysis.

20Newsgroups A classic text categorization cor-
pus comprising newsgroup posts across 20 topics.
The dataset presents challenges in document-level
understanding and contains significant class imbal-
ance.

ToxiGen A large-scale dataset for detecting hate
speech against 13 minority groups, with synthetic
and human-annotated examples. It focuses on im-
plicit toxicity detection in diverse linguistic con-
structions.

CoLA The Corpus of Linguistic Acceptability
evaluates models’ ability to judge grammatical cor-
rectness. It contains expert-labeled examples of
English grammatical phenomena, testing linguistic
competence.

E LoRA Adapter training

All models in our experiments employed parameter-
efficient fine-tuning through Low-Rank Adaptation
(LoRA). This approach enables effective model
adaptation while maintaining computational effi-
ciency and preserving the original model knowl-
edge. The LoRA implementation follows stan-
dard practices for transformer-based architectures,



Model Electra Roberta

Dataset Cola News SST2  SST5 Toxigen Cola News SST2 SST5  Toxigen Rank |
AdUE (Ours) 79.4+1.3 84.9+0.6 86.8+2.5 62.4+0.9 75.2+1.1 75.4+3.0 86.0+0.3 80.8+2.0 62.1+1.5 74.6+1.0 2.3
Loss: BCE 79.2+1.7 85.440.6 86.74£2.5 62.0+1.2 75.1£1.0 75.4+2.8 85.8£0.6 80.7+2.6 62.1£1.4 74.6+1.1 3.5
Loss: BCE+L2SP 79.3+1.4 84.8+0.5 86.8+2.3 62.3+0.9 75.1+1.0 75.3£2.9 86.0+0.3 80.8+1.9 62.1+1.6 74.8+0.9 3.1
Loss: BCE+reg 79.4+1.3 85.5+0.6 86.8+2.5 62.0+1.1 74.9+£0.5 75.6+£2.9 85.7+0.7 80.9+2.5 62.2+1.5 74.6+x1.0 2.7
Full loss: rand cls 80.6+1.4 83.1+1.0 88.0+1.4 57.7+3.2 70.0+8.5 63.2+7.7 78.7+1.6 81.4+3.2 58.7+3.8 68.9+8.5 3.9
Full loss: random linear 77.4+7.5 78.0+1.9 87.941.6 56.7+2.0 72.8+3.4 59.4+6.4 77.8+1.3 77.4+11.5 57.5£1.6 59.2+10.6 5.5

Table 3: Ablation study on uncertainty estimation for encoder models. Mean ROC-AUC and standard deviation over
5 runs are reported. Results indicate that using all loss components combined with classification head initialization

yields the best performance.

Model LLaMA Qwen

Dataset Cola News SST2  SST5 Toxigen Cola News  SST2  SST5 Toxigen Rank |
AdUE (Ours) 77.840.5 88.4+0.4 88.4+1.7 61.7+2.7 77.242.5 79.7+2.1 87.4+0.1 86.3+2.1 62.5+1.4 72.8+24 2.3
Loss: BCE 78.1+0.5 88.4+0.4 88.5+1.4 62.3+1.2 76.9+2.3 79.7+2.1 87.5+0.2 86.2+2.2 62.4+1.4 72.6+2.7 24
Loss: BCE+L2SP 77.7+0.6 88.4+0.4 88.6+1.4 60.8+3.7 77.0£2.5 79.6+2.4 87.5+0.1 86.3+2.2 62.5+1.4 72.7+2.6 2.4
Loss: BCE+reg 77.7+0.5 88.4+0.4 88.4+2.3 62.4+1.3 76.9+2.3 79.7+2.1 87.5+0.2 85.9+1.8 62.5+1.4 72.6£2.7 3.1
Full loss: rand cls 68.74£6.7 71.8+3.1 88.0£1.0 54.74#2.1 66.4£10.3 78.9+2.9 69.1£3.2 85.7£1.8 54.1%£1.8 65.3£7.9 5.6
Full loss: random linear 68.8+7.1 74.8+1.5 87.9+1.5 54.1+£3.0 67.3£8.1 75.2+7.6 70.5+1.0 86.3£1.2 54.2+1.6 56.0+7.3 5.2

Table 4: Ablation study on uncertainty estimation for generative models. Mean ROC-AUC and standard deviation
across 5 runs are presented. Similar to encoder models, the combination of all loss terms and initialization from the
classification head provides the most effective configuration.

Dataset Description Classes Trainsize Valid size Test size
SST-2 Stanford Sentiment Treebank (Socher et al., 2013) 2 53879 13470 872
SST-5 Stanford Sentiment Treebank (Socher et al., 2013) 5 6840 1711 1043
20Newsgroups  Topic classification (Lang, 1995) 20 9051 2263 7532
ToxiGen Hate speech detection (Hartvigsen et al., 2022) 2 7168 1792 940
CoLA Linguistic acceptability (Warstadt et al., 2019) 2 6840 1711 1043

Table 5: Dataset inforamtion, number of classes and split sizes.

with adaptations applied to attention mechanisms
throughout the network. The specifications were as
follows:

Weights = {W,, Wy, W, }

=16
LoRA config = “

rank = 8

dropout = 0.05
Parameter Value
Optimizer AdamW
Learning rate 5x 1074
Weight Decay 0.1
Batch Size 64
Learning Rate Schedule Linear decay to 0
Warmup steps 0.1

Mixed-precision bfloat16-mixed

E.1 Metrics

The final quality of each LoRA fine-tuned model
is summarized in Table 6, which reports the mean
and standard deviation of accuracy across multiple
runs.

News SST2 SSTS Cola  Toxigen

77.5+2.2 96.4+0.2 59.3+0.8 85.7+0.5
79.3+0.7 96.0+0.6 58.8+0.4 84.6+1.1
72.3+x0.4 93.9+0.4 56.0£1.1 85.1+0.7
74.2+0.7 93.2+0.5 55.2+1.2 83.3x0.9

85.3+0.4
85.3+0.7
81.3+0.4
79.4+1.0

LLaMA
Qwen
Electra
Roberta

Table 6: Classification accuracy across all datasets
shows that the fine-tuned LLaMA model achieves the
best performance among all the models we trained.

F Ablation

Also we do ablation study in different scenarios:
first we disable each part of final loss, train our
smooth head. We check what will happen if we do
not init our head with trained classification head



Model Electra Roberta

Dataset Cola News SST2 SSTS5 Toxigen  Cola News SST2 SST5  Toxigen Rank |
RMD 70.5+2.4 83.7+£0.6 80.1+2.1 57.3+1.2 68.6+0.9 64.2+1.7 84.3£0.7 73.9+3.8 57.9+1.1 68.3+2.5 4.8
RMD L2 norm 70.0£2.6 83.7£0.6 79.2+4.1 57.2+1.3 67.9+1.5 65.3£1.7 84.7£0.7 73.0£2.8 58.1x1.1 69.1£2.2 4.8
MD 76.2+2.0 74.6+£0.7 85.1+2.4 53.3+1.1 62.843.9 52.8+11.2 78.4+0.7 76.4£11.7 51.0+1.8 53.2+11.3 6.2
MD L2 norm  80.9+1.1 74.1£0.7 88.2+1.0 55.5£1.0 74.0£1.6 73.7£0.6 79.5+0.4 82.8+2.2 55.6£1.9 65.149.2 3.8
RDE 73.2+£2.6 68.5+£0.5 85.3£2.2 53.8+1.3 64.8+4.0 50.6+11.3 74.2+1.0 74.8£11.5 51.0£1.7 51.6£11.0 6.9
RDE L2 norm 80.0+1.3 70.8+£1.8 68.8+24.1 56.2+0.9 74.3+1.3 73.4+1.4 77.3x0.5 67.3+25.4 55.9+1.5 65.1489 5.5
SR 79.2+1.5 83.4+0.6 86.6+2.1 60.8+1.5 74.5+1.4 75.1+£2.5 84.8+0.2 80.8+2.0 60.9+1.8 74.3+0.6 2.5

AdUE (Ours) 79.4%1.3 84.9+0.6 86.8+2.5 62.4+0.9 75.2+1.1 75.4+3.0 86.0+0.3 80.8+2.0 62.1+1.5 74.6x1.0 1.5

Table 7: L2 normalization on representation show better UE ROC-AUC for encoder models

Model LLaMA Qwen

Dataset Cola News SST2 SSTS Toxigen  Cola News SST2 SST5 Toxigen Rank |
RMD 67.0+£5.6 80.4+1.1 79.0+2.3 53.4+0.4 67.6£2.5 65.3+4.2 82.0+0.8 78.5+4.6 54.3+1.5 65.8+1.5 34
RMD L2 norm 67.3£6.0 80.7£1.1 78.7+£2.5 53.4+0.4 67.5£2.5 65.2+4.1 81.240.7 78.6+4.1 54.3t1.4 66.4+£1.9 3.6
MD 60.5+4.0 55.242.4 57.3£12.2 52.0£0.9 55.74#2.2 52.1+3.8 60.5£1.6 52.6+6.7 52.2+1.5 52.7+3.0 6.3
MD L2 norm  60.5+4.3 56.3£2.7 59.9+£10.0 51.4£1.0 56.3£1.8 56.7£2.6 53.9+0.7 54.24+6.4 52.1+1.2 58.1+5.0 6.0
RDE 63.7+£9.6 43.5+£3.7 60.0£9.3 51.6+1.2 52.7+4.7 42.5+12.0 51.0+4.4 52.2+7.4 52.1+1.0 51.3+2.8 7.0
RDE L2 norm 62.14£5.8 47.6+£3.3 72.2+8.7 49.2+1.8 53.6£2.0 47.2+2.4 48.2+2.8 63.8+£16.2 48.0+0.9 54.9+5.5 6.7
SR 77.8+£0.7 86.3+0.4 88.3+1.8 59.5+2.4 76.7+1.6 78.1+2.1 85.6+0.4 86.3+1.7 60.8+1.1 72.1+2.4 2.0

AdUE (Ours) 77.840.5 88.4+0.4 88.4+1.7 61.7+2.7 77.2+2.5 79.742.1 87.4+0.1 86.3+2.1 62.5+1.4 72.8+2.4 1.0

Table 8: For generative model L2 normalization on representation do not change significant ROC-AUC

and replace it with a random initialization of one
linear layer.

* Loss: BCE - Uses only binary cross-entropy
loss for training.

* Loss: BCE+L2SP - Combines binary cross-
entropy with L2SP loss to prevent weights
from deviating significantly from their initial
values.

* Loss: BCE+reg - Extends binary cross-
entropy with a regularization term that encour-
ages model outputs to stay close to a softmax
response distribution.

* Full loss: rand linear - Uses our complete
proposed loss function and replaces the uncer-
tainty prediction head with a single randomly
initialized linear layer.

e Full loss: rand cls - Uses our full loss but ini-
tializes the uncertainty prediction layer with
the same architecture as the classification
head, though with random initialization.

Our results are presented in Tables 3, 4.

For all baselines, we compare two options for dis-
tance calculation: using the original representation
or the L.2-normalized representation, see Tables 7
and 8.
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