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ABSTRACT

Gradient Boosting Decision Tree (GBDT) is one of the most popular machine
learning models in various applications. But in the traditional settings, all data
should be simultaneously accessed in the training procedure: it does not allow to
add or delete any data instances after training. In this paper, we propose a novel
online learning framework for GBDT supporting both incremental and decremental
learning. To the best of our knowledge, this is the first work that considers an
in-place unified incremental and decremental learning on GBDT. To reduce the
learning cost, we present a collection of optimizations for our framework, so that
it can add or delete a small fraction of data on the fly. We theoretically show the
relationship between the hyper-parameters of the proposed optimizations, which
enables trading off accuracy and cost on incremental and decremental learning. The
backdoor attack results show that our framework can successfully inject and remove
backdoor in a well-trained model using incremental and decremental learning, and
the empirical results on public datasets confirm the effectiveness and efficiency of
our proposed online learning framework and optimizations.

1 INTRODUCTION

Gradient Boosting Decision Tree (GBDT) has demonstrated outstanding performance across a wide
range of applications [Sudakov et al.| (2019); Biau et al.| (2019); Rao et al.| (2019); Liu & Yu|(2007).
It outperforms deep learning models on many datasets in accuracy and provides interpretability for
the trained models. However, in traditional setting, all data is simultaneously accessed in training
procedure, which makes its application scenarios limited.

Online Learning. Online learning is a machine learning approach where data is sequentially
available and used to update the predictor for the latest data Bertsekas|(2015)); |Parisi et al.| (2019);
Hazan| (2016); Ozal (2005). Generally, online learning is expected to possess the capabilities of both
incremental learning (adding training data) and decremental learning (removing a subset of training
data). This allows the model to dynamically adapt to the latest data while removing outdated data.

Incremental Learning. There are some challenges for incremental learning in GBDT due to its
natural properties |[Friedman et al.| (2000). Traditional GBDT trains over an entire dataset, and each
node is trained on the data reaching it to achieve the best split for optimal accuracy. Adding unseen
data may affect node splitting results, potentially leading to catastrophic performance changes.

Moreover, training gradient boosting models involves creating trees for each iteration, with tree fitting
based on the residual of previous iterations. More iterations create more trees, increasing model
sizes and hurting inference throughput. This also prohibits tasks like fine-tuning or transfer learning
without substantially increasing model sizes.

Recent studies have explored incremental learning on classic machine learning, such as SVM, random
forest, and gradient boosting. [Shilton et al.|(2005); Laskov et al.|(2006); Fine & Scheinberg| (2001)
proposed methods to maintain SVM optimality after adding a few training vectors. |Wang et al.|(2009)
presented an incremental random forest for online learning with small streaming data. Beygelzimer
et al.|(2015a) extended gradient boosting theory for regression to online learning. [Zhang et al.|(2019)
proposed iGBDT for incremental learning by “lazily” updating, but it may require retraining many
trees when the new data size is large. It is important to note that prior studies on online gradient
boosting Beygelzimer et al.| (2015a)); \Chen et al.|(2012)); Beygelzimer et al.| (2015b) and incremental
gradient boosting Zhang et al.|(2019); Hu et al.| (2017) do not support decremental learning.



Under review as a conference paper at ICLR 2025

Algorithm 1 Robust LogitBoost Algorithm. Algorithm 2 Online Learning in Gradient Boosting

. 1. D' = D, if incremental learning else Dy,
. o 1 _ _ _ in de
I Fy=0pir=g.k=0t0K-1i=1toN 2. form=0to M — 1do
2: form=0to M — 1do _
3. fork=0to K —1do
3: fork=0to K —1do 5, 10|
4: Dy = {Tik — Pisk, Xitiea 4. D' ={rik —pik, Xi}imy .
5: wi g = pix(l— pik) 5. Compute w; ) = pj,k(l — pi,k) for D’ using F;
6: {R}k,?n}t]]:l = J-terminal node regression 6. Compute 7% for D’ using F;
- . . . 7. if incremental learning then
tree from D,,, with weights w; x, using the R 7 R
tree split gain formula Eq. equation 3] 8. {Rj,k,m} = incr({Rj,k,m}jzl, D', wik, Tik)
rik— j=1

7: o = L i€ TR TR 9. else

Bjk, K Zx,,,eRJ e (1*Pi./c)P1,;c 10 {R }J decr({R }J D )

o . ik = decr dokym fi_1s s Wi ks Ti,

8: fik = S Bikamlxien; gmy Fik = ek Plom =1 Bl Tk

Fix+vfin 11. end if §
9: endfor . 12. Update F; ;. with {Rj,k,m}

. . — . . J=
10: pik = exp(Fix)/ 3,y exp(Fis) 13.  end for
11: end for
14. end for

Decremental Learning. Decremental learning is more complex and less studied than incremental
learning. [Cauwenberghs & Poggio| (2000) presented an online recursive algorithm for training SVM
with an efficient decremental learning method. |Chen et al.| (2019) proposed online incremental and
decremental learning algorithms based on variable SVM, leveraging pre-calculated results. |Brophy &
Lowd|(2021)) and Brophy & Lowd|(2020) provided methods for data addition and removal in random
forests. Schelter et al.| (2021) proposed robust tree node split criteria and alternative splits for low-
latency unlearning. Many works have also studied decremental learning in deep neural networks
(DNN). Bourtoule et al| (2021)) introduced a framework that accelerates decremental learning by
constraining individual data points’ impact during training.

While online learning has emerged as a popular topic recently, it has been barely investigated on
GBDT. |Wu et al| (2023); |Lin et al.| (2023) are among the latest studies in decremental learning
for GBDT. Wu et al.| (2023) presented DeltaBoost, a GBDT-like model enabling data deletion.
DeltaBoost uses bagging to divide the training dataset into disjoint sub-datasets, training each
iteration’s tree on a different sub-dataset, reducing tree dependency. However, this simplification
may impact model performance. [Lin et al.| (2023) proposed an unlearning framework in GBDT
without simplification, unlearning specific data using recorded auxiliary information from training.
It optimizes to reduce unlearning time, making it faster than retraining from scratch, but introduces
many hyper-parameters and performs poorly on extremely large datasets.

In this paper, we propose a novel incremental and decremental learning framework for GBDT. To
the best of our knowledge, this is the first work that considers in-place online incremental and
decremental learning at the same time on GBDT. The incremental and decremental learning in this
work applies a unified notion, which enables convenient implementation.

Challenges. We identify three major challenges of in-place online learning for GBDT: (1) Unlike
batch training of deep neural networks (DNN), more iterations in GBDT create more trees and
parameters, leading to unbounded memory and computation costs in online learning. In-place
learning on originally constructed trees is necessary for practicality. (2) Gradient-based methods
in DNN add and subtract gradients for incremental and decremental learning, but GBDT is not
differentiable. (3) GBDT depends on the residual of the previous tree, unlike independent iterations in
random forests. Changing one tree requires modifying all subsequent trees, complicating incremental
and decremental learning.

Contributions. (1) We introduce a novel in-place online learning framework for gradient boost-
ing models supporting incremental and decremental learning, extensible to fine-tuning and transfer
learning. (2) We present optimizations to reduce the cost of incremental and decremental learning,
making adding or deleting a small data fraction substantially faster than retraining. (3) We theo-
retically show the relationship among optimization hyper-parameters, enabling trade-offs between
accuracy and cost. (4) We experimentally evaluate our framework on public datasets, confirming its
effectiveness and efficiency. (5) We release an open-source implementation of our frameworKT]

2  OnNLINE GBDT FRAMEWORK

2.1 GBDT PrRELIMINARY

Gradient Boosting Decision Tree (GBDT) is an powerful ensemble technique that combines multiple
decision tree to produce an accurate predictive model (Friedman et al., [2000j Friedman, [2001)).

! https://anonymous.4open.science/r/In-PlaceOnlineGBDT
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Figure 1: An example for the incremental learning and decremental learning procedure in the
proposed framework. (a) For the node of Loan < 31, the current split is still the best after online
learning. Thus, the split does not need to change. (b) An already well-trained tree in D,,. (c) For
the node of Auto < 57, the best split has shifted after online learning. (d) Incremental update for
derivatives — only update the derivatives for those data reaching the changed terminal nodes.

Given a dataset D, = {y;,x;})\.;, where N is the size of training dataset, and x; indicates the i"
data vector and y; € {0, 1,..., K — 1} denotes the label for the i data point. For a GBDT model

with M iteration, the probability p; ;. for " data and class k is:
Fi g (x3)
e v .
Dik —Pr(yq, —k'xz) = W, 1= 172,...,N (1)

where F' is a combination of M terms: 1

FM(x) = 3" pmh(x;am) 6)
m=0

where h(x;a,,) is a regression tree, and p,, and a,, denote the tree parameters that learned by
minimizing the negative log-likelihood:
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’ 0, otherwise
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In GBDT training, to solve numerical instability problem (Friedman et al., 2000; |[Friedman, 2001}
Friedman et al.,[2008), we apply Robust LogitBoost algorithm (Li, 2010) as shown in Algorithm (I}
which has three parameters, the number of terminal nodes .J, the shrinkage v and the number of
boosting iterations M. To find the optimal split for a decision tree node, we first sort the [V data by
the feature values being considered for splitting. We then iterate through each potential split index
s, where 1 < s < N, to find the best split that minimizes the weighted squared error (SE) between
the predicted and true labels. Specifically, we aim to find an split s to maximize the gain function:

2 2
St (Sane) ()
> iz hik va:sﬂ hik SN hik

Gain(s) = (5)

2.2 PrROBLEM SETTING

For classic GBDT, all training data must be loaded during training, and adding/deleting instances
is not allowed afterwards. This work proposes an online GBDT framework that enables in-place
addition/deletion of specific data instances to/from a well-trained model through incremental and
decremental learning.

Problem Statement. Given a trained gradient boosting model 7'(6) on training dataset D,,, where
0 indicates the parameters of model 7', an incremental learning dataset D;,, and/or a decremental
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learning dataset Dy, (D4 C Dj,), our goal is to find a tree model T'(6”) that fits dataset Dy, U Dy, \ Dye,
where |0 = |0'| (the parameter size and the number of trees stay unchanged).

The most obvious way is to retrain the model from scratch on dataset D, U D;, \ D,.. However,
retraining is time-consuming and resource-intensive. Especially for online learning applications,
rapid retraining is not practical. The key question of this problem is: Can we obtain the model T'(6")
based on the learned knowledge of the original model T (0) without retraining the entire model?

The proposed framework aims to find a tree model 7'(6’) as close to the model retraining from scratch
as possible based on the learned knowledge of the model 7'(9). In addition, this online learning
algorithm is in a “warm-start” manner, because it learns a new dataset D, or removes a learned
sub-dataset D, C D, on a model that is already well-trained on training dataset D;,.

Let A denotes the initial GBDT learning algorithm , then we have A(D,,) € H, where H is the
hypothesis space. An online learning algorithm £ for incremental learning or decremental learning
can be used to learn dataset D;, or remove dataset D;, C D;,.

2.3 FRAMEWORK OVERVIEW

The goal of this work is to propose an online learning framework for GBDT that supports incremental
learning and decremental learning for any collection of data.

Online Learning in GBDT. The Algorithm |2 shows the procedure of online learning in GBDT. At
first, the GBDT model is a well-trained model on the training dataset D,.. Recall that the GBDT
model is frozen and can not be changed after training—no training data modification. In this proposed
framework, the user can do (1) incremental learning: update a new dataset D;, to the model, and (2)
decremental learning: remove a learned dataset D, C D, and its effect on the model.

As shown in Algorithm 2] it is similar to the learning process, but it only needs to compute r; 3 and

pi k(1 — p; i) for online dataset D’ without touching the training dataset D,,. Then, it will call the
J

function of incremental learning or decremental learning to obtain {Rjkm} . Finally, we update
j=1

. J
F; 1, with new {Rﬂ“m} . Here we use the same notion to design the function of incremental

learning and decremental learning — decremental learning is the inverse process of incremental
learning for dataset D’. Therefore, we describe them in the Algorithm at the same time.

Incremental & Decremental Learning on One

Algorithm 3 Incr./Decr. Learning on One Tree

Tree. Algorithm [3|describes the detailed process for
incremental and decremental learning, which are al- 1. for non-terminal node in {Rj,k,m}jzl with as-
most the same as decremental learning is the inverse cending depths do

of incremental learning for dataset D’. The main dif- D' = {rix —pix, xi}2
ference is at Line 3. First, we traverse all non-terminal s = current split of node
nodes with ascending depths. For each node, let s de-
note the current split. We recompute the new best gain with r; j and w; , after adding/removing D’

e

value with 7; ;, and p; (1 — p; 1) after adding D’ for 5. if s # s then

incremental learning or removing D’ for decremental ~ 6- Retrain the subtree rooted at node.
learning. If the current split s matches the new best g en:;l;‘grlf

split " (after adding/removing D’), we keep the cur- : - , .
rent split (Figure[T(a)). Otherwise, if the current best % Egg;:e prediction value . for all terminal

s’ = compute best gain with Eq. equation

split has changed (s # s’), as shown in Figure c),
we retrain the sub-tree rooted on this node and replace it with the new sub-tree. After testing all
nodes, node splits remain on the best split. Finally, we recompute the prediction value on all terminal
nodes. Appendix [C|provides a detailed explanation of Figure

3  OpriMizING LEARNING TIME

In this section, we introduce optimizations for our online learning framework to reduce computation
overhead and costs. The key step is deciding whether a node should be kept or replaced: Can we
design an algorithm to quickly test whether the node should be retained or retrained without touching
the training data? Our most important optimization is to avoid touching the full training dataset.
We apply incremental update and split candidates sampling concepts from |Lin et al.| (2023), extend
them to support online learning, and provide evidence of the relationship between hyper-parameters
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of different optimizations, enabling trade-offs between accuracy and cost. Additionally, we design
optimizations specific to online learning: 1) adaptive lazy update for residuals and hessians to
substantially decrease online learning time; 2) adaptive split robustness tolerance to significantly
reduce the number of retrained nodes.

3.1 UppATE WITHOUT TOUCHING TRAINING DATA

To reduce computation overhead and online learning time, we target to avoid touching the original
training dataset D, and only focus on the online learning dataset D’. Following the study |Lin et al.
(2023), we extend the optimization of updating statistical information to the scenarios of online
learning: (1) Maintain Best Split; (2) Recomputing Prediction Value; (3) Incremental Update for
Derivatives, and the computation cost is reduced from O(D £ D’) to O(D') by these optimizations.
The implementation of these optimizations are included in Appendix [E]

3.2 AbpAPTIVE LAZY UPDATE FOR DERIVATIVES

Although incremental update can substantially reduce online learning time, we can take it a step
further: if no retraining occurs, the changes to the derivatives will be very small. How can we
effectively utilize the parameters already learned to reduce online learning time?

Gradient Accumulation |Li et al.| (2014); Goyal et al.| (2017); Ruder| (2016) is widely used in DNN
training. After computing the loss and gradients for each mini-batch, the system accumulates these
gradients over multiple batches instead of updating the model parameters immediately. Inspired by
Gradient Accumulation techniques, we introduce an adaptive lazy update for our online learning
framework. Unlike Lin et al. |Lin et al. (2023), which perform updates after a fixed number of
batches, we update the derivatives only when retraining occurs. This approach uses more outdated
derivatives for gain computation but significantly reduces the cost of derivative updates.

3.3 SpLiT CANDIDATES SAMPLING

From the above optimizations, if retraining is not required, we can keep the current best split. In this
case, we only need to iterate over the online learning dataset D’ and update the prediction values to
accomplish online learning, whether it involves adding or removing data. However, if the sub-tree
rooted in this node requires retraining, it is necessary to train the new sub-tree on the data from the
dataset D, + D’ that reaches this node. It is clear that retraining incurs more resource consumption
and takes a longer execution time. In the worst case, if retraining is required in the root node, it has
to retrain the entire new tree on full dataset D,, &= D’.

To reduce the time and resource consumption of online learning, a straightforward approach is to
minimize the frequency of retraining. Therefore, we introduce split candidate sampling to reduce
frequent retraining by limiting the number of splits, and it is beneficial for both training and online
learning. All features are discretized into integers in {0,1,2,--- , B — 1}, as shown in Appendix
The original training procedure enumerates all B potential splits, and then obtains the best split with
the greatest gain value. In split candidates sampling, we randomly select [aB] potential splits as
candidates and only perform gain computing on these candidates. As « decreases, the number of
split candidates decreases, resulting in larger distances between split candidates. Consequently, the
best split is less likely to change frequently.

|D’|

Definition 1 (Distance Robust) Let s be the best split, and o = . Na is the distance between s
and its nearest split t with the same feature, Na = ||t — s||. s is distance robust if
AGain(s
Na > 3 (5) 3 (0)
1 (ingls gi,k) L1 (qu,ers gi,k)
Nis  Xx;etls Mk Nrs L ers Pik

where [ represents the left child of split s, and it contains the samples belonging to this node, while
r represent the right child, N;s denotes |I5|, and N,.s denotes |r|. In this definition, E(Na) = 1/«
where o denotes the split sampling rate, we can observe that a smaller sampling rate will result in a
more robust split, so we can reduce the number of retrain operations by reducing the sampling rate.
Similarly, incremental learning can get the same result.

Definition 2 (Robustness Split) For a best split s and an arbitrary split t,t # s, and online learning

’
data rate % = ), the best split s is robust split if

Gain(s) > ﬁGain(t) 7
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Robustness split shows that, as A = % decreases, the splits are more robust, leading to a reduction
in the frequency of retraining. In conclusion, decreasing either o or A makes the split more robust,
reducing the change occurrence in the best split, and it can significantly reduce the online learning

time. We provide the proof of Distance Robust and Robustness Split in Appendix D]

3.4 ADAPTIVE SPLIT ROBUSTNESS TOLERANCE —

Adult

=
@

—Add 1

—Add 0.1%
Add 0.5%

—Add 1.0%

—Add 0.1% Covtype

Add 0.5%
—Add 1.0%

=
o

Recall the retraining condition for a node that
we mentioned previously: we retrain the sub-
tree rooted at a node if the best split changes.
Although the best split may have changed to an- Lk ’ b Al AU AG Sl A
other one, the gain value might only be slightly 0 4 e s 100 20 40 60 80 100
different from the original best split. We illus- teraon teraon
trate the observation of the distance of best split
changes (the changes in the ranking of the best Delos
split) in Figure[2] The top row illustrates the dis-

tance of best split changes observed in the Adult

and Covtype datasets for incremental learning, MWWM@M
while the bottom row depicts same in Letter and 2w © W 0w .
SUSY datasets for decremental learning. Sim-

ilar patterns are observed across various other
datasets. For adding or deleting a single data
point, the best split does not change in most
cases. As the | D’| increases to 0.1%, 0.5%, and
1%, the best split in most cases switch to the second best. If we only apply the optimal split, it will
lead to frequent retraining during online learning.

o
S

@

Best Split Shift Distance
o

Best Split Shift Distance

)

—Del 1

Letter —Del 0.1%
Del 0.5%

—Del 1.0%

—Del 1
10/-SUsY —Del 0.1%

Del 0.5%

>

N

Best Split Shift Distance
Best Split Shift Distance

o

Figure 2: Observation of distance of best split
changes. The lines represents the average changes
of best split distance, and the shaded region is the
standard error.

The distance of the best split changes is usually small. Tolerating its variation within a certain range
and continuing to use the original split significantly accelerates online learning. We propose adaptive
split robustness tolerance: for a node with [« B] potential splits, if the current split is among the top
[caB], we continue using it, where o (0 < ¢ < 1) is the robustness tolerance. ¢ = 0 selects only
the best split, while ¢ = 1 avoids retraining. Higher o indicates greater tolerance, making the split
more robust and less likely to retrain.

4 EXPERIMENTAL EVALUATION

In this section, we report empirical evaluation in different aspects. We compare our 1) incremental
learning with OnlineGradientBoost (OnlineGB)? [Leistner et al,| (2009) and iGBDT |[Zhang et al.
(2019); 2) decremental learning with DeltaBoos{?|Wu et al.[(2023)) and MUinGBDLin etal.|(2023));
3) training cost with popular GBDT libraries XGBoost/Chen & Guestrin| (2016)), LightGBM Ke et al.
(2017), CatBoost Dorogush et al.|(2018)) and ThunderGBM |Wen et al.| (2020).

Implementation Details. The details of environments and set- __1acle 1: Dataset specifications.

tings are included in Appendix[B] We employ one thread for all ~_Daaet #Train  #Test #Dim #Class
: : : Adul 36,139 9,034 87 2
experiments to have a fair comparison, and run ThunderGBM ¢ ediino 105000 45000 10 2
1 1 SUSY 2,500,000 2,500,000 18 2

on a NVIDIA AIOQ 4OGB GPU, since it does not support only SusY 2200000 3200000 b :
CPU?] Unless explicitly stated otherwise, our default parameter  Opuisits 3,822 1796 64 10
: Pendigits 7,493 3,497 16 10
settings are as follows: v = 1, M = 100, J = 20, B = 1024,  jaer 15000 S0 16 26
" — — — Covtype 290,506 290,506 54 7
|D’| =0.1% X |Dy|, « = 0.1,and 0 = 0.1. Covtype s e S e
WineQuality 4,332 2,165 12 Reg.

Datasets. We utilize 10 public datasets in the experiments. The
specifications of these datasets are presented in Table[I] The smallest dataset, Optdigits, consists of
3,822 training instances, while the largest dataset, HIGGS, contains a total of 11 million instances.
The number of dimensions or features varies between 8 and 87 across the datasets.

4.1 TrAINING TIME AND MEMORY OVERHEAD

Since the proposed online learning framework stores certain statistical information during training,
this may impact both the training time and memory usage. Table 2] presents a detailed report of the
total training time and memory overhead.

2 https://github.com/charliermarsh/online_boosting 3 https://github.com/Xtra-Computing/DeltaBoost/
4 https://github.com/huawei-1in/GBDT_unlearning
5 https://github.com/Xtra-Computing/thundergbm/blob/master/docs/faq.md
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Table 3: Total incremental or decremental learning time (seconds). For the methods supporting
incremental or decremental learning (OnlineGB, iGBDT, DeltaBoost, MU in GBDT), speedup =
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19 | 1403 0196 0043 | 326x  46x  175x 25x 41x 69x 0638 0085 0046 | 13.9x 18 163x 23x 38 6x
T | 0014 oist 0014 Ix 29 dix 9x Bx 276x 0525 0013 0015 | 35x 09x 38 $7x 122x 258
Pendigns O1%| 0082 024 002 | 3 S6 2ix Sx 7x 149x 0.465 0022 0025 | 186x 09x 23x 52 73x 155
S 0S| 0427 023 0042 | 02x  Sex  137x 3ix 4dx 9.2x 0531 0089 0041 | 13x 22¢ 14x 3 45x 9.4x
lo | 082 0235 0053 | Is5x  4dx 108 25x 350 73x 0.768 0129 0057 | 135x 23x 10.1x 23x 320 6.5x
T | 0035 0002 0016 [ 2Ix  6ax  732x 7% 145 29% 0863 0017 0014 | 616x T2x 360 a5 166x %1%
Lewer Ol | 0SSI 0167 004 | D& 42 293 Six s8¢ 9.2x 0664 0032 0058 | Ilax 0.6x 202x 3.5x ax 63x
05% | 2768 0187 0067 | 413x  28x  175x 3x 350 55x 0676 0066 0103 | 661 0.6x 114x 2 23 36
19 | Ses 0201 0128 | 44k lex  9Qx 16x 138 20x 0997 0094 013 | 7 07x 87x 1:5x 1% 27x
1 009 1321 029 | 03 46x  204x  I58x  20x Six 28519 0562 0161 | 177.0x 35 397x ®sx 38x 92x
Covgpe O1% | 21408 631 0® | S loc oo 72x 960 23 1961 344 0546 | 359x 63x ITEATSI 112x 27x
05% | 105688 7765 1095 | 965x  TAx  S8dx 42x 561 13x 20035 5519 L187 | 169x 46x 53.8x 39x 520 12x
loc | 214188 8088 1724 | 1242 47x  37ix 27x 36x 09x 21.864 6917 1963 | 11ix 3:5x 3260 23x 3x 03
T | 003 0331 0027 | 05 123 69 36x 197x 155x 0659 0069 0026 | 253x 27 720 38x 205x T61x
abalone O1% | 0026 0356 0032 | 08y ILx 5 3x 167x 131x 0586 0263 0029 | 202x 91x 6x 3dx 18.4x 1.4x
05%| 617 0338 0049 | 35 69x 38 2 109x 85¢ 1015 0372 0084 | 183x 69x 3dx 18x 9.0x 77x
19 | 0354 0366 0055 | 6dx  67x  3dx 18 9.7x 76x 0917 0417 0049 | 187x 85x 38x 2 109x 85x
T | 00l 0239 007 | 08 1alx  124x B 05x 205 0574 0022 0016 | 359x Tx B Sox 5360 20
WineQuay 015 | 0057 0262 00 | 21x  97x T 33 318 136x 0329 019 0024 | 137x 820 8.8x 38 35.8x 153x
05% | 0296 0282 0041 | 72 69x  Sx 22x 209x 89x 2173 0298 0037 | 587x 8l1x 57x 2ix 232x 99x
19 | 0608 0276 0051 | 19 sax  dx 18 168 72x 2711 0333 00st | 532x 65¢ dix 18x 1638x 72

Table 2: Comparison of total training time (in

Training Time. Table[2|shows the total train- seconds) and memory usage (total allocated, MB).

ing time of our framework and baselines. Our

ptdig i ype Y
online learmng framework is substant1ally faster GBDT 5w eim w0z 05 0% oism L 10n
. DeltaBoost 78.213 4,281.59 0OM 9517 18.457 489
than OnlineGB, DeltaBoost, and XGBoost, and Uhomsr s hew e e o o f
1 b : LightGBM 0516 1.836 97.622 211 0.106 0.131 0.09
slightly slower than iGBDT. While slower on L LI R
. : g Ours 2673 1818 64.935 177.1 0276 0.368 0427
smaller datasets compared to LightGBM, it “—r—— i sme e sma o
f 1 d 1k S S d E OnlineGB 35804.10  58,119.61 0OM 0OM 749397  6488.75 145.83
outperforms on larger datasets like SUSY and  § i amer wses wsow oon woen 1o
, with training times similar to B o0 Isses  jo0ss  mar Gaes o1
S ThunderGBM (GPU) 673.45 41897 3,725.82 5.855.04 353.95 378.11 5 348.8:
= 577.18 1,096.71 16,576.40 2433330  1,081.15 1.959.49 1,805.76 9,665.21 762.78 531.88

inGBDT. Overall, our framework offers signifi-

cantly faster training than existing incr./decr. methods and is comparable to popular GBDT libraries.

Memory Overhead. Memory usage is crucial for practical applications. Most incremental and
decremental learning methods store auxiliary information or learned knowledge during training,
potentially occupying significant memory. As shown in Table[2] our framework’s memory usage is
significantly lower than OnlineGB, iGBDT, and DeltaBoost. Moreover, OnlineGB and DeltaBoost
encountered OOM in the experiments.

4.2  ONLINE LEARNING TIME

Retraining from scratch can be time-consuming, but in some cases, the cost of online learning
outweighs the benefits compared to retraining from scratch, making online learning unnecessary or
unjustified. Hence, evaluating the cost of online learning is crucial for practical applications. Table[3]
shows the total online learning time (seconds) and speedup v.s. baselines, comparing OnlineGB and
iGBDT for incremental learning, and DeltaBoost and MUinGBDT for decremental learning.

Inincremental learning, compared to OnlineGB and iGBDT, which also support incremental learning,
adding a single data instance can be up to 254.4x and 17x faster, respectively. Furthermore, compared
to retraining from scratch on XGBoost, LightGBM, CatBoost, and ThunderGBM (GPU), it can
achieve speedups of up to 974.3x, 58.2x, 64.9x, and 27.6x, respectively. In decremental learning,
when deleting a data instance, our method offers a speedup of 1,619.9x and 6.4x over DeltaBoost and
MUinGBDT, respectively, and is 1,254.7x, 74.9x, 90.2x, and 29.6x faster than XGBoost, LightGBM,
CatBoost, and ThunderGBM (GPU), respectively.

Our method is substantially faster than other methods both in incremental and decremental learning,
especially on large datasets. For example, in HIGGS dataset, the largest dataset in our experiments,
on removing (adding) 1% data, we are 3.1x faster than MUinGBDT (2.6x faster than iGBDT), while
OnlineGB and DeltaBoost encounter out of memory (OOM).

Interestingly, we observed that when |D’| is small, decremental learning is faster than incremental
learning. However, as |D’| increases, incremental learning becomes faster than decremental learning.
For decremental learning, the data to be removed has already been learned, and their derivatives have
been stored from training. However, the deleted data often exists discretely in memory. On the other
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Table 4: The test error after training, adding, and deleting.

Abalone  WineQuality

Task Method Adult  Creditinfo SUSY HIGGS Optdigits Pendigits Letter Covtype (x10-2) (x10-3)
iGBDT 0.1276 0.0629 0.1987 0.2742 0.0290 0.0295  0.0418  0.1702 5.7721 1.2085

DeltaBoost 0.1814 0.0642 02122 OOM 0.0652 0.0417  0.0968  0.2764 7.5905 1.3134

MU in GBDT 0.1276 0.0629 0.1987 0.2742 0.0307 0.0294  0.0418  0.1702 5.7721 1.2085

Training XGBoost 0.1270 0.0630 0.1977  0.2761 0.0418 0.0397  0.0524  0.1896 6.1472 1.1674
LightGBM 0.1277 0.0635 0.1984  0.2725 0.0334 0.0355  0.0374  0.1688 5.8392 1.1993

CatBoost 0.2928 0.1772 0.4324 0.5384 0.0618 0.0440  0.0655 0.1572 5.7265 1.2457

ThunderGMB (GPU)  0.2405 0.0659 0.4576  0.4698 0.2739 0.1155 0.1170  0.6298 8.4272 1.6953

Ours 0.1276 0.0629 0.1987 0.2742 0.0307 0.0294  0.0418  0.1702 5.7721 1.2085

Add 1 iGBDT 0.1279 0.0633 0.1987 0.2769 0.0301 0.0286  0.0418  0.1696 5.8801 1.1953

o Ours 0.1275 0.0630 0.1988  0.2742 0.0295 0.0297  0.0404  0.1685 5.811 1.2079
‘g Add 0.1% iGBDT 0.1267 0.0630 0.1995  0.2742 0.0323 0.0363  0.0446  0.1777 6.2531 1.2680
3 ) Ours 0.1269 0.0626 0.1989  0.2747 0.0295 0.0297  0.0406  0.1686 5.900 1.2040
— Add 0.5% iGBDT 0.1287 0.0636 02012 0.2795 0.0390 0.0440 0.0572  0.1788 7.6510 1.2907
g T Ours 0.1294 0.0632 0.1988  0.2734 0.0290 0.0295  0.0394  0.1681 5.7701 1.2198
= Add 1% iGBDT 0.1291 0.0630 0.2014 0.2780 0.0529 0.0603  0.0875  0.1868 8.5324 1.4462
Ours 0.1267 0.0632 0.1990  0.2740 0.0262 0.0283  0.0440  0.1683 5.8378 1.2209

DeltaBoost 0.1818 0.0642 02122 OOM 0.0640 0.0424  0.0974 0.2764 7.4359 1.3084

Del 1 MU in GBDT 0.1280  0.0629  0.1987 0.2742  0.0306 0.0295  0.0408  0.1702  5.8025 1.2095

Ours 0.1276 0.0628 0.1987  0.2742 0.0306 0.0295  0.0416  0.1702 5.8723 1.2143

2 DeltaBoost 0.1823 0.066 02122 OOM 0.0629 0.0412  0.0956  0.2764 7.3402 1.3159
‘E Del0.1% MU in GBDT 0.1285 0.0634 0.1988  0.2742 0.0301 0.0295  0.0444  0.1734 5.9727 1.2202
33 Ours 0.1284  0.0633  0.1988 0.2747  0.0295 0.0283  0.0432  0.1712  5.8744 1.2109
X DeltaBoost 0.1829 0.0642 02122 OOM 0.0663 0.0423  0.0960 0.2762 7.2955 1.3022
g Del 0.5% MU in GBDT 0.1309 0.0640 0.1988 0.2751 0.0306 0.0283  0.0442  0.1727 6.3142 1.2398
A Ours 0.1295 0.0634 0.1988  0.2746 0.0301 0.0303  0.0432  0.1675 5.7733 1.2052
DeltaBoost 0.1812 0.0642 02123 OOM 0.0624 0.0435  0.0958 0.2764 7.3100 1.3163

Del 1% MU in GBDT 0.1311 0.0639 0.1988  0.2745 0.0334 0.0312  0.0460  0.1766 6.3558 1.2925

Ours 0.1295 0.0632 0.1987 0.2747 0.0273 0.0303  0.0424  0.1695 5.7620 1.2111

hand, for incremental learning, the data to be added are unseen, and derivatives need to be computed
during the incremental learning process. Nevertheless, we append the added data at the end, ensuring
that the added data are stored contiguously in memory. With a small | D’|, derivatives can be reused in
decremental learning, whereas derivatives need to be computed in incremental learning. Therefore,
decremental learning is less time-consuming. However, as | D’| grows, continuous memory access
in incremental learning is faster than decremental learning, making incremental learning faster.

4.3 Test ERROR RATE

Table [] presents the test error for different methods, defined as (1 - accuracy) for classification tasks
and Mean Squared Error (MSE) for regression tasks. Due to page limitations, we have omitted the
results for OnlineGB, as its excessively long learning time makes it relatively insignificant compared
to the other methods. Three scenarios are considered: (1) Training, reporting the test error for
models trained on the full dataset D; (2) Incremental Learning, performing incremental learning
to add a randomly selected portion D’ into a model pre-trained on D — D’; and (3) Decremental
Learning, conducting decremental learning to remove D’ from a model trained on the full dataset
D. Our method achieved the best error rates in most cases.

4.4 BatcH ApDITION & REMOVAL

In the traditional setting, GBDT mod-
els must be trained in one step with ac-
cess to all training data, and they can-

not be modified after training — data
cannot be added or removed. In our

proposed online learning framework, ~ !
GBDT models support both incre- !
mental and decremental learning, al- *,| .,
lowing continual batch learning (data -

addition) and batch removal, similar st ©

to mini-batch learning in DNN. Figure 3: The impact of tuning data size on the number of

We conducted experiments on contin- retrained nodes for each iteration in incremental learning.

ual batch addition and removal by dividing the data into 20 equal parts, each with 5%|Dy|. Figure
(top) shows a GBDT model incrementally trained from 5% to 100% of the data, then decrementally
reduced back to 5%. We retrained models for comparison. Figure [3| (bottom) depicts a model
decrementally reduced from 100% to 5%, then incrementally trained back to 100%. We also report
the accuracy of XGBoost and LightGBM. The overlapping curves demonstrate the effectiveness of
our online learning framework. Due to space limitations, results are shown for only three datasets.

4.5 Data ApbpIiTiON WITH MORE CLASSES

Our framework can update data with unseen classes. We divide the dataset into sub-datasets based
on labels (e.g., Optdigits has 10 labels, so we divide it into 10 sub-datasets). We train a model on the
first sub-dataset and test it on two test datasets: 1) the original full test dataset with all labels, and 2)
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the partial test dataset with only the learned labels. We »
fine-tune the model with a new sub-dataset through ¢«
incremental learning until learning the full dataset, i<
testing the model on both test datasets after each train-
ing. Figure |4|shows that the accuracy of incremental :
learning and retraining is nearly identical on both the
full and partial datasets. Note that the decrease in
accuracy on the partial dataset is likely due to the in-
creasing complexity of the learned data, which leads
to a decrease in accuracy.

Optdigits.

8 10 2

4 6 8 10
Added Label

4 6
Added Label

4.6 VERIFYING BY BACKDOOR ATTACKING Figure 4: The impact of tuning data size

Backdoor attacks in machine learning refers to a type on the number of retrained nodes for each
of malicious manipulation of a trained model, which iteration in incremental learning.

is designed to modify the model’s behavior or output when it encounters a specific, predefined
trigger input pattern Salem et al.[(2022); Saha et al.| (2020). In this evaluation, we demonstrate that
our framework can successfully inject and remove backdoor in a well-trained, clean GBDT model
using incremental learning and decremental learning. The details of backdoor attack experiments
are provided in Appendix

Table 5: Accuracy for clean test dataset and attack

In this evaluation, we randomly selected a subset
Y successful rate for backdoor test dataset.

of the training dataset and injected triggers into

Add Backdoor
Clean  Backdoor

Remove Backdoor
Clean  Backdoor

Train Backdoor
Clean  Backdoor

Train Clean
Clean  Backdoor

it to create a backdoor training dataset, leaving ~ baset

96.21%  8.91%
96.11%  3.97%
93.9% 1.38%
78.4% 47.83%

96.27% 100%
96.43% 100%
94.08% 100%
78.32% 100%

95.94% 100%
96.48% 100%

95.82%  9.69%
96.51%  5.55%
93.78% 3.48%
78.38%  51.71%

the rest as the clean training dataset. The test Opudiis
dataset was similarly divided into backdoor and =~ Leter 93.620%  100%

78.38% 100%

clean subsets. We report the accuracy for clean S
test dataset and attack successful rate (ASR) for backdoor test dataset in Table@ Initially, we trained
a model on the clean training data (“Train Clean”), which achieved high accuracy on the clean test
dataset but low ASR on the backdoor test dataset. We then incrementally add the backdoor training
data with triggers in to the model (“Add Backdoor”). After incremental learning, the model attained
100% ASR on the backdoor test dataset, demonstrating effective learning of the backdoor data.
For comparison, training a model on the combined clean and backdoor training datasets (“Train
Backdoor”) yielded similar results to “Add Backdoor”. Finally, we removed the backdoor data using
decremental learning (“Remove Backdoor”), reducing the ASR to the level of the clean model and
confirming the successful removal of backdoor data. This evaluation shows the effectiveness of our
online learning framework in handling backdoor attacks.

4.7 VERIFYING BY MEMBERSHIP INFERENCE ATTACK

The membership inference attack (MIA) aims to predict whether a data sample is part of the training
dataset/Shokri et al.[(2017); Hu et al.|(2022); Choquette-Choo et al.[(2021)). Therefore, the goal of this
experiments is to determine if “deleted” data can still be identified as training data after decremental
learning. However, in our experiment with default hyper-parameter setting, the predictions made by
MIA are nearly random guesses.

Experimental Setup. Previous studies demonstrate that overfitting can make machine learning
models more vulnerable to MIA |Yeom et al.|(2018)); ivan Breugel et al.| (2023); Hu et al.| (2022). To
further validate our approach, we apply a smaller model with number of iteration M = 5, which
can be easily overfitted. Conducting MIA on such a small model can further confirm our approach
indeed deletes the data from the model. Therefore, we conduct the this experiments on multi-class
datasets: Optdigits, Pendigits, Letter and Covtype. For each dataset, we split it into three subsets:
base dataset Dy, online dataset D', and test dataset Dy.i. We first train a base model on Dy, + D’.
For this base model, the MIA should identify the data in D’ as part of the training dataset. Next, we
perform decremental learning to delete D’ from the base model. After this process, the MIA should
no longer identify the data in D’ as part of the training dataset. Finally, we add D’ back to the model
using incremental learning. Following this, the MIA should once again identify the data in D’ as
part of the training dataset. Further details about the MIA experiment are provided in Appendix

Results. Table [0] presents the average probability of data samples being identified as part of the
training dataset at different stages. For the base model, MIA identifies 100% of the data in Dy, and
D’ as part of the training dataset, while the data in Dy has a low probability of being identified as
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part of the training dataset. After decremental

Table 6: Membership Inference Attack.

After decremetal learning | After incremetal learning

Base Model
. ey . Dataset ’ v /
learning, the probability for Dy, remainsun- ‘ Drase Dai | Dwe D' Des | Due D' D
: 1 ’ Optdigits | 100%  100% 43.59% | 100% 33.93% 42.19% | 100% 100% 43.82%
changed, while the probability for D’ drops t0  pendigis | 100% 100% 56.09% | 100% 55.04% 46.15% | 100% 100% S6.63%
: : : Letter | 100% 100% 2631% | 100% 13.33% 4737% | 100% 100% 36.84%
alevel almost identical to Dicy. This confirms Covtype | 100% 100% 38.89% | 100% 15290  38.89% | 100% 100% 44.31%

that D’ has been effectively deleted from the
base model. After incremental learning, the probability for D’ increases to 100% again, indicating
that the model has relearned D’. The probability for Dy in the incremental model remains almost
the same as in the base model. This result confirms that our decremental/incremental learning
approach can indeed delete/add data from/to the model.

4.8 AbpbpiTioNAL EVALUATIONS
To further verify our method’s effectiveness and efficiency, we provide additional evaluations:

* Extremely High-dimensional Datasets: To confirm the scalability of our framework, we report
the experiments for two extremely high-dimensional datasets, RCV1 and News20, in Appendix[l|

* Model Functional Similarity: We report this metric in Appendix | to evaluate the similarity
between the model learned by online learning and the one retrained from scratch.

* Approximation Error of Leaf Scores: Since the outdated derivatives are used in gain computa-
tion, to evaluate the effect of these outdated derivatives, we report the approximation error of leaf
scores between the model after addition/deletion and the one retrained from scratch in Appendix

* Ablation Study: We report the ablation study for different hyper-parameter settings in Appendix|[K]

5 RELATED WORK

Incremental Learning is a technique in machine learning that involves the gradual integration of new
data into an existing model, continuously learning from the latest data to ensure performance on new
datavan de Ven et al.{(2022). It has been a open problem in machine learning, and has been studied
in convolutional neural network (CNN) |Polikar et al.| (2001); [Kuzborskiyj et al.| (2013)); [Zhou et al.
(2022), DNN Hussain et al.|(2023)); Dekhovich et al.|(2023), SVM Chen et al.|(2019); Cauwenberghs
& Poggio| (2000) , random forest (RF) [Wang et al.| (2009); Brophy & Lowd| (2020). In gradient
boosting, iGBDT [Zhang et al.|(2019)) offers incremental updates, while other methods Beygelzimer
et al.| (2015a); Babenko et al.| (2009) extend gradient boosting to online learning. However, these
methods do not support removing data.

Decremental Learning allows for the removal of trained data and eliminates their influence on
the model, which can be used to delete outdated or privacy-sensitive data Bourtoule et al.| (2021));
Nguyen et al| (2022); [Sekhari et al. (2021); Xu et al.| (2024). It has been researched in various
models, including CNN Poppi et al.| (2023)); [Tarun et al.[(2021)), DNN|Chen et al.|(2023)); Thudi et al.
(2022), SVM [Karasuyama & Takeuchi|(2009); Cauwenberghs & Poggio| (2000), Naive Bayes|Cao &
Yang| (2015), K-means (Ginart et al.| (2019), RF |Schelter et al.| (2021); Brophy & Lowd| (2021}, and
gradient boosting /Wu et al.[(2023); [Zhang et al.| (2023)). In random forests, DaRE |Brophy & Lowd
(2021) and a decremental learning algorithm [Schelter et al.| (2021) were proposed for data removal
with minimal retraining and latency.

However, in GBDT, trees in subsequent iterations rely on residuals from previous iterations, making
decremental learning more complicated. DeltaBoostWu et al.|(2023) simplified the dependency for
data deletion by dividing the dataset into disjoint sub-datasets, while a recent study |Lin et al.|(2023)
proposed an efficient unlearning framework without simplification, utilizing auxiliary information to
reduce unlearning time. Although effective, its performance on large datasets remains unsatisfactory.

6 CONCLUSION

In this paper, we propose an novel in-place online learning framework for GBDT that support
incremental and decremental learning: it enables us to dynamically add a new dataset to the model
and delete a learned dataset from the model. It support continual batch addition/removal, and data
additional with unseen classes. We present a collection of optimizations on our framework to reduce
the cost of online learning. Adding or deleting a small fraction of data is substantially faster than
retraining from scratch. Our experimental results, including backdoor attack, membership inference
attack, and other empirical evaluations confirm the effectiveness and efficiency of our framework
and optimizations — successfully adding or deleting data while maintaining accuracy.

10
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A FEATURE DISCRETIZATION.

The preprocessing step of feature discretization plays a crucial role in simplifying the implementation
of Eq. equation [3 and reducing the number of splits that need to be evaluated. This process
involves sorting the data points based on their feature values and assigning them to bins, taking
into account the distribution of the data, as shown in Figure [5]and Algorithm [} By starting with
a small bin-width (e.g., 10~®) and a predetermined maximum number of bins B (e.g., 1024).
It assigns bin numbers to the data points from the smallest to the largest, carefully considering
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L | | el
the presence of data points in each bin. This t’( tt| 3| ol 6| 7. |

iterative process continues until the number of
bins exceeds the specified maximum.

Figure 5: Feature discretization example. For
In cases where the number of required bins sur-  a feature, all its values are grouped into 8 bins,
passes the maximum limit, the bin-widthis dou- i.e., the original feature values become integers
bled, and the entire process is repeated. This between 0 to 7 assigned to the nearest bin.
adaptive discretization approach proves partic-
ularly effective for boosted tree methods, ensuring that feature values are mapped to integers within
a specific range. Consequently, after the discretization mapping is established, each feature value
is assigned to the nearest bin. After this discretization preprocessing, all feature values are integers
within {0,1,2,--- , B —1}.

The advantage of this discretization technique Algorithm 4 Discretize Feature

becomes evident during the gain searching step. ~ 1© ¥{1..n} = sorted feature values, bin-width =
Instead of iterating over all IV feature values, the 10719
algorithm only needs to consider a maximum of ~ 2: while true do
B splits for each feature. This substantial re- 3:  cnt =0, curr_idx = 0
duction in the number of splits to evaluate leads ~4:  for:=1to N do
to a significant decrease in the computational ~ 5: if v; — Veurriax > bin_width then
6
7
8

cost, transforming it from being dependent on ent = cnt + 1, cur_idx = i
the dataset size N to a manageable constant B. if cnt > B then

: bin_width = bin_width * 2
9: break

B EXPERIMENT SETTING 10: end if
11: end if
The experiments are performed on a Linux 12: v = cnt

computing node running Red Hat Enterprise 13: end for

Linux 7, utilizing kernel version 5.10.155- 14: if cnt <= B then break
1.el7.x86_64. The CPU employed was an In- 15: end while

tel(R) Xeon(R) Gold 6150 CPU operating at a  16: return v’ as discretized feature values
clock speed of 2.70GHz, featuring 18 cores and
36 threads. The system was equipped with a total memory capacity of 376 GB. We have built a
prototype of our online learning framework using C++11. The code is compiled with g++-11.2.0,
utilizing the “O3” optimization. Unless explicitly stated otherwise, our default parameter settings
are as follows: J = 20, B = 1024, |D’| = 0.1% x |D,|, « = 0.1, and ¢ = 0.1. We report the
ablation study for different settings in Appendix [K]

C FRAMEWORK OVERVIEW

Figure[I]is a visual example of incremental and decremental learning of our proposed framework. Fig-
ure b) is one tree of the GBDT model and has been well-trained on dataset D,, = {0,1,2,3...,19}.
Every rectangle in the tree represents a node, and the labels inside indicate the splitting criteria. For
instance, if the condition Age < 42 is met, the left-child node is followed; otherwise, the right-child
node is chosen. The numbers within the rectangles represent the prediction value of the terminal
nodes. Please note that here the feature 42 is a discretized value, instead of the raw feature. Our
online learning framework has the capability to not only incrementally learn a new dataset D;,, but
also decrementally delete a learned dataset Dy, C D,

Example for Incremental Learning. Here, we would like to add a new dataset D’ = D;, =
{20, 21, 22,23} to the original model, so we will call the function of incremental learning. |d|
denotes how many data of the D’ reach this node. As shown in Algorithm 3] we traverse all non-
terminal nodes (non-leaf nodes) in the tree at first. For example, we are going to test the node of
Loan < 31. Its current best split is Loan < 31. One of the new data instances {22} reaches this
node. After adding this data and recomputing the gain value, Loan < 31 is still best split with the
greatest gain value of 26.937, and meets s = s, as shown in Figure[I{a). Thus, we can keep this
split and do not need to do any changes for this node. Then we are going to test the node of Auto <
57 and the remaining three new data instances {20, 21, 23} reach this node. As shown in the left side
of Figure[T|c), we recompute the gain value for this node, but the best split changes to Income < 5.
Therefore, we retrain the pending sub-tree rooted on Auto < 57 after adding new data instances to
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obtain a new sub-tree rooted on Income < 5. Then we replace the pending sub-tree with the new
one. Finally, we update the prediction value on terminal nodes (leaf nodes). For example, 0.4322
is updated to 0.2735 because of adding data {22}; —0.1252 has no change because the data of this
node are still the same.

Example for Decremental Learning. Similar to incremental learning, we would like to delete a
learned dataset Dy, = {2,7,11, 13} and its effect on the model. The best split of node Loan < 31
does not change, so we keep the split. For Auto < 57, as shown in the right side of Figure[I|c), after
removing data instances {2, 11, 13}, the best split changes from Auto < 57 to Credit < 24, so
we retrain the pending sub-tree rooted on Loan < 31 and then replace it with the new sub-tree. For
terminal nodes (leaf nodes), the prediction value changes if any data reaching this node is removed.

D SpLit CANDIDATES SAMPLING

|D'| _

Definition 1 (Distance Robust) Let s be the best split, and D0 = A. N is the distance between s
and its nearest splitt, Na = ||t — s||. s is distance robust if
Na> )\Cjam(s) i @®)
1 (ingzs gi,k) + 1 (iners gi,k)
Nis  Xx;els ik Nrs  2x ers Pik
Proof. In decremental learning, for a fixed A\, we have
(1 = X) Gain(s) — Gain(s + Na) )
2 2 2
o () (Ercn) (B
- inGls hivk ZXiE’I‘S hi,k inGZSU'rS hivk
2 2
(1 NA) (inels gi,k) N (1 Na ) (ineTS gi,k)
Nis > onier, hik Nys >, Nik
2
(inelsU'rs glvk)
- (10)

inelSUrS hi,k

where [ represents the left child of split s, and it contains the samples belonging to this node, while
r represent the right child, NV;; denotes |l5|, and N,.; denotes |r]|.

Let (1 — A\)Gain(s) — Gain(s + Na) > 0, we have

NA> (zxiGZS g"v’“)2

approx .
= (1 = MNGain(s) — 1+
(1 - X)Gain(s) ( )

2

4 (1 3 %) (in@-s gi,k)z (Exielsws gzk)

- )
NTS inETs hivk leelSU’l‘s h’iak

2

2
N, (Zx1 ls g"vk) N, (le Ts g"ak)
- A = T <

— AGain(s) > 0 12
Nis >y e, bik Nrs >y er, hisk (s) (12)
= Na > AGain(s) . (13)
1 (inGls g'i,k-) L (inG'rS gi,k)
Nis 2, els Pik Nrs 2 ers Mik
(Il

In the above definition, E(Na) = 1/«, where a denotes the split sampling rate, we can observe that
a smaller sampling rate will result in a more robust split, so we can reduce the number of retrain
operations by reducing the sampling rate. Similarly, incremental learning can get the same result.
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Definition 2 (Robustness Split) For a best split s and an split t with the same feature, t # s, and
online learning data rate % = ), the best split s is robust split if

Gain(s) > ﬁGaz’n(t) (14)
Proof. Initially, we have

2 2 2
Guai ( ) (inels gz,k) n (inErs gl!k) (ExielsU'rs gl,k) (]5)
amis) = —
inels hi,k ZX¢ETS hi7k inelSUrs hi,k

After decremental learning, we get
2
(inels ik — inelst’ giﬂk) n (in@"s ik — inerst' gi,k)
inEZS h’"vk - inelsﬁD’ hivk inGTS hivk inersﬂD’ hivk

2
(inGZSUrS ik = Dxe(tatr)nD! gi»k)

inEZsurs hi’k - ine(lsurs)mD/ hi’k

2

(16)

Gain'(s) =

For any possible split ¢t (¢t # s), the split s is robust only and only if Gain(s) > Gain(t) and

Gain'(s) > Gain/(t). First, let’s analyze the first term of Gain’(s). Suppose % = A, and D' is
randomly selected from D. Here we consider the leaf child I, of split s, and let the |I; N D’| to be

nys, |Ls| to be Nis5. Then we have

2 2
(Sict, 90 = S 6) e (Sxicr, 9o = sl

— (17)
inels hi,k - inezst/ hi,k inels hi,k — nyshis
2
= (1 m ) (ZXiels gi,k) (18)
le Exiels hi,k

where g and h denote the average of the gi,, and h; ;. respectively.

Similarly, we can get all three terms for Gain(s), Gain'(s), Gain(t), and Gain’(t) in a similar
form. For Gain'(s) > Gain/(t), finally, we have Gain(s) > Gain(t) + C, where

2 2
% (inels gl’k) + Nrs (iners gz,k)
NlS Zx,;é'rs hi,k NTS inET‘q hiak’

2 2
net e (Sietion, 905) iy (St 90x)

NZS + N’fs inelSUrs h’ivk Nlt Exie'rt hivk

C =

2

2
I Nt (Zx7 cre gz,k) Nyt + Nyt (ineltU'rt g’hk)

— 19
Nee D osicr Pik Nie + Nre Doy ciyum Pick (19)
The upper bound of C' is AGain(s). Further, we have
Gain(s) > %Gain(t) (20)
O
The above definition shows that, as A = % decreases, the splits are more robust, leading to a

reduction in the frequency of retraining. In conclusion, decreasing either a or A\ makes the split more
robust, reducing the change occurrence in the best split, and it can significantly reduce the online
learning time.
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E UppATE w/0 ToucHING TRAINING DATA

Maintain Best Split. The split gain is calculated by Eq. equation[5] There are three terms: the gain
for the left-child, the gain for the right-child, and subtracting the gain before the split. Each gain is

2
computed as the sum of the squared first derivatives ( {Zf\; (rie — pi, k)} ) divided by the sum of

the second derivatives (Zf\;l pik(l— i, k)) for all the data in the node. To compute these terms,

it is necessary to iterate over all the data that reaches the current node. The most straightforward
way for online learning to obtain the split gain is to directly compute these three terms for dataset
D, + D’. In the worst case, which is the root node, the computation cost for gain computing is
|Dy| + | Din| or | Dy| — | Dye| because the root node contains all the training data.

We calculate the split gain for D, + D’ without touching the D,.. In this optimization, during
the training process, we store the S,, = Zfil (rik — pik) and Sp, = vazl Pik(1 — pi i) for the
training dataset D,, for every potential split. In incremental learning process, we can only calculate
the S;p and S[’,p for D;,. To obtain the new split gain based on Eq. equation , we add it to the stored
Syp and Spp. Similarly, for decremental learning, we can only calculate the S, and S}, for Dy, to
obtain the new split gain. In this manner, we successfully avoid the original training data for split
gain computation and reduce the computation cost from O(D,, = D) to O(D").

Recomputing Prediction Value. For the terminal node (leaf node), if there are no data of D’
reaching this node, we can skip this node and do not need to change the prediction value. Otherwise,
we have to calculate a prediction value f as shown in line 5 of the Algorithm [I} Similar to split
gain computing, it is required to iterate over all the data that reaches this terminal node. Here we
store Sy, = ineR,-,k,m (rix — pik) and Sp, = ineRj,k,m (1 — ps k) pi i for training dataset D,,

in training process. Thus, in online learning process, we only need to calculate S}, and S), for online

learning dataset D’.

Incremental Update for Derivatives. After conducting online learning on a tree, we need to update
the derivatives and residuals for learning the next tree. From the perspective of GBDT training, each
tree in the ensemble is built using the residuals learned from the trees constructed in all previous
iterations: Modifying one of the trees affects all the subsequent trees. A trivial method is to update
the derivatives and residuals for all data instances of D, &+ D’ in every tree, but it is time-consuming.

When performing online learning on a tree, not all terminal nodes will be changed—some terminal
nodes remain unchanged because there is no data from D’ that reaches these terminal nodes. Note
that our goal is to find a model close to the model retraining from scratch. In the online learning
scenario, all trees have already been well-trained on D,,. Intuitively, the derivative changes for data
in those unchanged terminal nodes should be minimal. Therefore, as shown in Figure[T(d), we only
update the derivatives for those data reaching the changed terminal nodes. For example, the terminal
node with a prediction value of —0.1252 does not meet any data in D’ in both incremental learning
and decremental learning, so the prediction value of this node does not need to be changed. Therefore,
we do not need to update the derivatives of the data {1, 6, 14, 16, 17} reaching this terminal node.

F MobpEL FUNCTIONAL SIMILARITY

As mentioned in Section the goal of the framework is to find a model close to the model
retrained from scratch. The model functional similarity is a metric to evaluate how close the model
learned by online learning and the one retrained from scratch. We show the model functional
similarity for incremental learning and decremental learning in Table [/] C2W refers to the ratio
of testing instances that are correctly predicted during retraining but are wrongly predicted after
decremental learning. Similarly, W2C represents the testing instances that are wrongly predicted
during retraining but are correctly predicted after decremental learning. The W2W column indicates
the cases where the two models have different wrong predictions. For binary labels, W2W is
not applicable. In the |D’| column, 1 indicates that only add/remove one instance, while 0.1%
corresponds to |D’| = 0.1% x |D,|. We present ¢ to evaluate the model functional similarity
(adapted from the model functionality |Adi et al.|(2018)), indicating the leakage of online learning:
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Table 7: Model functionality change after online learning.

iGBDT (Incr.) Ours (Incr.) DeltaBoost (Decr.) | MUinGBDT (Decr.) Ours (Decr.)
Add 1 Add0.1% | Add1 Add0.1% | Dell Del0.1% | Dell Del0.1% | Dell Del0.1%

C2w | 0.40% 0.93% 0.17% 0.61% 1.17% 1.87% 0.63% 0.51% 0.55% 0.51%
Adult w2C | 0.27% 0.80% 0.18% 0.56% 0.72% 1.28% 0.60% 0.73% 0.56% 0.68%
o1 99.34% 98.27% | 99.66%  98.83% | 98.11%  96.85% | 98.77%  98.76% | 98.88%  98.82%

C2w | 0.21% 0.40% 0.16% 0.30% 0.58% 0.92% 0.10% 0.21% 0.10% 0.18%
Creditlnfo | W2C | 0.18% 0.40% 0.15% 0.29% 0.08% 0.13% 0.08% 0.23% 0.08% 0.19%
o1 99.60% 99.20% | 99.70%  99.41% | 99.34%  98.96% | 99.82%  99.56% | 99.82%  99.63%

Dataset ‘ Metric

C2w | 0.25% 0.82% 0.22% 0.74% 3.50% 3.40% 0% 0.78% 0% 0.73%

SUSY w2C | 0.24% 0.78% 0.21% 0.73% 1.34% 1.14% 0% 0.79% 0% 0.76%
o1 99.51% 98.40% | 99.58%  98.53% | 95.16%  95.46% 100% 98.43% 100% 98.51%

C2w | 0.00% 2.52% 0% 2.64% 0% 1.92% 0% 1.92%

HIGGS w2C | 0.00% 2.56% 0% 2.63% OOM 0% 1.93% 0% 1.92%
o1 100.00%  94.92% 100% 94.73% 100% 96.14% 100% 96.17%

Cc2w | 0.33% 0.56% 0.17% 0.28% 0.22% 0.56% 0.61% 0.45% 0.45% 0.61%
w2C | 0.56% 0.61% 0.28% 0.50% 0.28% 0.22% 0.22% 0.33% 0.28% 0.39%

Optdigits W2W | | 0.06% 0.11% 0.06% 0% 0.17% 0.11% 0.06% 0.11% 0.06% 0.06%
o1 99.05% 98.72% | 99.50%  99.22% | 99.33%  99.11% | 99.11%  99.11% | 99.22%  98.94%

C2w | 0.26% 0.83% 0.14% 0.17% 0.17% 0.09% 0.29% 0.26% 0.26% 0.23%

Pendigits w2C | 0.14% 0.43% 0.11% 0.17% 0.26% 0.37% 0.17% 0.20% 0.23% 0.20%
el W2W | | 0.06% 0.20% 0.06% 0.03% 0.03% 0.09% 0.06% 0.09% 0.03% 0.09%

o1 99.54% 98.54% | 99.69%  99.63% | 99.54%  99.46% | 99.49%  99.46% | 99.49%  99.49%

C2w | 0.74% 1.62% 0.64% 0.68% 0.52% 0.80% 1.24% 1.36% 1.26% 1.40%

Letter w2C | 0.82% 0.88% 0.78% 0.80% 0.58% 0.62% 1.06% 1.42% 1.06% 1.38%
W2W | | 0.28% 0.44% 0.30% 0.30% 0.20% 0.40% 0.44% 0.24% 0.42% 0.28%

o1 98.16% 97.06% | 98.28%  98.22% | 98.70%  98.18% | 97.26%  96.98% | 97.26%  96.94%

C2w | 0.98% 2.37% 1.78% 1.78% 0.11% 0.61% 1.94% 2.04% 1.94% 1.96%

Covtype w2C | 1.15% 2.10% 1.77% 1.77% 0.14% 0.70% 1.80% 1.76% 1.80% 1.71%
P W2W | | 0.04% 0.09% 0.07% 0.07% 0.02% 0.03% 0.06% 0.07% 0.06% 0.07%

o1 97.83% 95.44% | 96.38%  96.38% | 99.74%  98.66% | 96.19%  96.13% | 96.20%  96.26%

Definition 3 (Functional Similarity) Given an input space X, a model T', a model T online learned

from T, and a dataset D = {y;,a;} € X, the functional similarity ¢ between model T and T is:
®=1— (Tyow + Twae + Te2w) sWhere ¢ is the leakage of learning.

Due to the size limitations of the table, we have omitted OnlineGB from this table because its
learning duration is excessively long, making it relatively meaningless compared to other methods.
We compared iGBDT in adding 1 and 0.1% data instances, and DeltaBoost and MUinGBDT in
deleting data. As shown in Table [/| we have a comparable model functionality in adding/deleting
both 1 and 0.1%. In most cases, our online learned model reaches 98% similarity in both incremental
learning and decremental learning.

G BACKDOOR ATTACKING

Experimental Setup. In this evaluation, we randomly select a subset of the training dataset, and set
first a few features to a specific value (trigger, e.g. 0 or greatest feature value) on these data instances,
and then set the label to a target label (e.g., 0). In the testing dataset, we set all labels to the target
label to compose a backdoor test dataset. In this setting, if the model has correctly learned the trigger
and target label, it should achieve a high accuracy on backdoor test dataset.

H MEMBERSHIP INFERENCE ATTACK

Experimental Setup. For over-fitting the model, we set the number of iteration M to be 5, and split
each dataset into three subsets: base dataset Dy (49.9%), online dataset D’ (0.1%), and test dataset
Diest (50%). We first train a base model on Dy, + D’. For this base model, the MIA should identify
the data in D’ as part of the training dataset. Next, we perform decremental learning to delete D’
from the base model. After this process, the MIA should no longer identify the data in D’ as part
of the training dataset. Finally, we add D’ back to the model using incremental learning. Following
this, the MIA should once again identify the data in D’ as part of the training dataset.

MIA Model. By following the existing MIA methods |Yan et al.| (2023); |Li et al.| (2022); (Carlini
et al.| (2022), we train an MIA model (binary classification) on the prediction probabilities of each
class. Since the GBDT model is overfitted, the probability distributions of the training data should
substantially differ from those of the unseen data (test data). Therefore, the MIA model can predict
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whether a data sample is part of the training dataset based on its probability distribution. We sample
50% of Dyase and 50% of Dieg, to train the MIA model. Then remaining 50% of Dy, the entire D’
and 50% of Dy are used for evaluation.

I EXTREMELY HIGH-DIMENSIONAL DATASETS

We include two dataset with more features / high dimensional: RCV1 and News20, which have
47,236 and 1,355,191 features respectively. For News20 dataset, the substantial high dimension
causes segmentation fault on CatBoost and GPU out of memory (OOM) on thunderGBM. We omit
the results from the other incremental/decremental method because infeasible running time and
massive occupied memory. Table [9] shows the comparison of the training time and memory usage
for our methods and other popular methods. Table |10)]illustrates the incremental and decremental
learning time of our method for two high dimensional dataset.

Table 9: Comparison of the training time consumption and

Table 8: Dataset specifications. memory usage for RCV1 and News20.

Dataset  # Train # Test #Dim  # Class
Dataset XGBoost LightGBM  CatBoost Thu(néi]e)rUG)MB Ours
News20 5,000 14,996 1,355,191 2
RCV1 20,242 677,399 47236 2 T RCVI 459.75 59.63 335.70 49.44 295.43
Training Time () oo 637.02 2842 Seg. Fault 0OM 225.73
RCVI  3,00828 292232 263.63 1,913.05 185,851.72

Memory (MB)  Noyo0 3106199 250929  Seg. Fault 0OM 128,131.43

Table 10: The incremental/decremental learning time of the proposed method for RCV 1 and News20.
(ms, per tree, incre./decre.)

Incremental Learning Decremental Learning
Dataset  |D’| | Learning Time Speedup v.s. Learning Time Speedup v.s.
(Ours) . . . ThunderGBM (Ours) § . i . ThunderGBM
XGBoost  LightGBM  CatBoost (GPU) XGBoost  LightGBM  CatBoost (GPU)
1 21.431 214.5x 27.8x 156.6x 23.1x 19.268 238.6x 30.9x 174.2x 25.7x
RCV1 0.1% 37.707 121.9x 15.8x 89.0x 13.1x 29.232 157.3x 20.4x 114.8x 16.9x
0.5% 39.428 116.6x 15.1x 85.1x 12.5x 48.218 95.3x 12.4x 69.6x 10.3x
1% 43.901 104.7x 13.6x 76.5x 11.3x 70.666 65.1x 8.4x 47.5x 7.0x
1 11.76 541.7x 24.2x - - 7718 825.4x 36.8x
News20 0.1% 17.113 372.2x 16.6x - - 12.363 515.3x 23.0x
W=D 0.5% 22.261 286.2x 12.8x 30.076 211.8x 9.5x
1% 23.469 271.4x 12.1x 37.825 168.4x 7.5x

Table 11: The approximation error of leave’s score between the model after addition/delection and

. . , abs(p, — Pretrain
the model retrained from scratch. Appr. Error = 2=l 2aijeges 252 el Mo )
2 all trees 2all feaves A0S (Pretrain)

leave’s score after adding/deleting, preqain 1S the leave’s score of the model retraining from scratch.

, where Dadda/ger 18 the

Adult Creditinfo SUSY HIGGS Optdigits Pendigits Letter  Covtype

Add 1 2.42% 1.18% 0.24%  0.00% 2.69% 2.23% 1.31% 0.17%
Add 0.1%  4.59% 6.57% 2.73%  1.63% 3.48% 4.12% 5.78% 9.47%
Add 0.5% 5.10% 7.44% 2.27%  3.05% 5.12% 4.50% 10.45%  11.68%
Add 1% 5.30% 7.43% 3.07%  3.89% 5.92% 4.70% 11.75%  10.01%
Add 10%  4.25% 8.33% 1.07%  1.73% 4.64% 4.42% 13.34%  4.96%
Add 50%  3.55% 0.00% 0.00%  1.51% 0.00% 0.00% 6.26% 0.01%
Add 80%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00% 0.00% 0.00%

Del 1 1.21% 0.00% 0.00%  0.00% 0.01% 0.19% 0.57% 0.28%
Del 0.1%  3.63% 3.80% 0.79%  0.72% 1.40% 0.50% 1.88% 4.31%
Del 0.5%  3.58% 3.76% 0.18%  0.56% 2.52% 1.15% 3.49% 6.04%
Del 1% 3.40% 3.16% 0.15%  0.65% 3.07% 1.73% 3.74% 4.48%
Del 10%  0.27% 0.39% 0.00%  0.16% 1.67% 0.97% 1.35% 0.46%
Del 50%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00% 0.00% 0.00%
Del 80%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00% 0.00% 0.00%

20



Under review as a conference paper at ICLR 2025

I I I
©
oo VNP NTWO
©
100 — A OO——Or=S  avoOI®Oy |
PRGNS SIS IS IS ONNTOON
- o020 OO BB OO G
~ NN o 777 DHHPDO G
505 03 05 05 03 03 2N e ]
95 — 6> N\ / N
T N
s | |
RINAS N\ N
NSNS N \
@ 06 5 N\
N \ \
N otTtAU-oON
hrharhaburiard = hat
N [<1=1=]
N 00 0 ©

v

Test Acc (%)

v

E= Train 100%
EZ8 Train 5% + Add 95%
EA Train 10% + Add 90%
rain 20% + Add 80%
rain 50% + Add 50%
rain 95% + Add 5% u
[ Train 99% + Add 1%
ERV AT T B AT TR
Optdigits Pendigits Letter Covtype

v
v

v

e 97.21

97
o7

B/, 7/ 7 /) 7
R R RS 97
T e e e 97

v

)
susy

Figure 7: Different fine-tuning ratio.

J  APPROXIMATION ERROR OF LEAF SCORES

As mentioned in Section[3.2] outdated derivatives are used in gain computation to reduce the cost of
updating derivatives. However, these outdated derivatives are only applied to nodes where the best
split remains unchanged. When a sub-tree requires retraining, the derivatives are updated. Therefore,
using outdated derivatives typically occurs when |D’| is small, as fewer data modifications result
in fewer changes to the best splits. Conversely, when more data is added or deleted, | D’| becomes
larger, increasing the likelihood of changes to the best splits in some nodes. As a result, the sub-trees
are retrained, and the derivatives for the data reaching those nodes are updated.

To confirm the effect of using outdated derivatives during online learning, we report the result for the

2 all rees 2all leaves DS (Padasdel — Pretrain)
all rees 2l feaves DS (Pretrain)

Paddidel 18 the leaf score after adding/deleting, and pyeain 1S the leaf score of the model retraining from
scratch. Please note that the retrained model has the same structure and split in all nodes of all trees
as the model after adding/deleting, and we only update the latest residual and hessian to calculate the
latest leaf score. When the number of added/deleted data increases, the error will increase because
our method uses outdated derivatives if the best splits remain unchanged. When the number of
add/delete is large enough, almost all nodes in the model will be retrained because their best splits
have changed, so the error becomes 0.

approximation error of leaf scores in Table Appr. Error = , where

K ABLATION STUDY
7 s 7
£ 2 = £ 2
In this section, we discuss the impact of different £/ opssssrsssrsst Lo -
settings on the performance of our framework, :i sOSERERSISREEnE :i
e.g., time and accuracy. ] ahdasaattannans |
Iteration Iteration
Size of Online Dataset |D’|. Different sizes Hamw; ‘ HMW: t
of online learning dataset D’ can have varying g Rt s g e 5

4 1000 [|=B—Sampling Rate: 100% 1 1000 ||—B—Sampling Rate: 100%

impacts on both the accuracy and time of the 3

online learning process. Figure[7]shows the im- [ «
pact of different data addition settings on test =

accuracy. Across all datasets, our framework = =R waeB
achieved nearly the same test accuracy, which forsten toreton
validates the effectiveness of our online learn- mo
ing framework. Decremental learning also has

similar results.

g00 | Pendigits (Incr.) Pendigits (Decr.)

# Retrained Node:

Test Acc (%)

Flgure ShOWS the lnﬂuenc.e Of: |Din‘ on 1n- " endigits (Incr.) Pendigits (Decr.

cremental/decremental learning time. We only O o
. Sampling Rate

present the experiment on 2 datasets each for o

incremental/decremental learning, due to the Fjgure 6: The impact of sampling rate on time,

results on other datasets show a similar trend.  number of retrain nodes, and test accuracy during
These results show that the online learning time  jncremental/decremental learning.

Z:
10% 50%
Sampling Rate
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Figure 10: The impact of split robustness tolerance on the learning time, test accuracy, and model
functional similarity ¢ in incremental learning.

increase when the size of D, increase. The reason is straightforward: as the size of D;, increases,
the model undergoes more significant changes, resulting in unstable splits. This leads to a greater
number of sub-trees that require retraining, ultimately consuming more time. Figure ] provides
evidence to support this observation. It illustrates the accumulated number of retrained nodes — how
many nodes need to be retrained. As the size of D;, increases, the number of nodes that need to be
retrained also increases. This leads to longer learning times.

Split Random Sampling. Split random sampling is designed to reduce the frequency of retraining
by limiting the number of splits. As mentioned in Section [3.3] a smaller sampling rate leads to
more stable splits, resulting in fewer nodes that require retraining and shorter online learning time.
Figure [6] shows the impact of sampling rate « in split random sampling. The figures at the top
demonstrate that when the sample rate is reduced, a smaller number of split candidates are taken into
account, leading to an expected decrease in online learning time. However, there is no significant
difference between 5% and 10% in the Pendigits dataset. The figures in the second row show the
accumulated number of retrained nodes. It also shows that as the sample rate decreases, the splits
become more stable, resulting in fewer nodes that require retraining. In Pendigits, since the number
of nodes that require retraining is similar for 5% and 10%, it results in a minimal difference in the
online learning time, as mentioned above. However, interestingly, for example in 100% sampling
rate, although there are fewer retraining in incremental learning, it take more time during learning
process, because incremental learning does not have derivatives of the data to be added. Therefore,
more time is needed to calculate their derivatives. On the contrary, decremental learning can reuse
the stored derivatives of the training process, resulting in less time. The bottom row shows the
impact of the sampling rate on the test accuracy. The test accuracy remains almost identical across
all sampling rates. Similar results can be observed in other datasets.

Split Robustness Tolerance. Split robustness tolerance aims to enhance the robustness of a split
in online learning. As the observation in Figure 2] most best splits will be changed to second-best.
Although the best split may change, we can avoid frequent retraining if we allow the split to vary
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Figure 11: The impact of the # bins and # leaves on the acceleration factor of incremental learning
(adding 1 data point).

within a certain range. For a node with [aB] potential splits, if the current split remains within the
top [caB], we will continue using it. Here o (0 < o < 1) is the robustness tolerance. Figure[L0]
illustrates the impact of split robustness tolerance ¢ on learning time, test accuracy, and functional
similarity ¢ in incremental learning. To obtain more pronounced experimental results, in this
experiment, we set | D’| = 1% x | D,,|. The figure on the left shows that the learning time decreases
as the tolerance level increases. Although test accuracy changes only slightly (middle figure), the
functional similarity ¢ drops significantly (right figure). For example, in the Letter dataset, ¢» drops
about 5% from o = 0 to o = 0.5. This demonstrates that higher tolerance levels result in faster
learning by avoiding retraining, but with a trade-off of decreased functional similarity. Therefore, we
suggest o should not be greater than 0.15. Similar results can be obtained on decremental learning.

Number of Bins and Leaves. In online learning procedure, the number of bins and leaves also affects
the online learning time. We report the impact of varying the number of bins (128,256, - - - , 4096)
and leaves (4, 10, 20,40, 60, - - - ,200) on the acceleration factor of incremental learning (adding 1
data point) in Figure The number of bins has few effect on both accuracy and the speed of
online learning as shown in the top row of the figures. In terms of the number of leaves, when it
exceeds 20, the accuracy tends to stabilize, except for Covtype, as shown in the bottom row of the
figures. For smaller datasets (Adult, Optdigits, Pendigits, Letter), the more the number of leaves,
the lower the acceleration factor for incremental learning. However, for larger datasets (CreditInfo,
SUSY, HIGGS, Covtype), the more the number of leaves, the greater the acceleration is. Especially
for HIGGS, the largest dataset in our experiments, the acceleration can be more than 100x.
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