
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Online Gradient Boosting Decision Tree:
In-Place Updates for Adding/Deleting Data

Anonymous authors
Paper under double-blind review

Abstract

Gradient Boosting Decision Tree (GBDT) is one of the most popular machine
learning models in various applications. But in the traditional settings, all data
should be simultaneously accessed in the training procedure: it does not allow to
add or delete any data instances after training. In this paper, we propose a novel
online learning framework for GBDT supporting both incremental and decremental
learning. To the best of our knowledge, this is the first work that considers an
in-place unified incremental and decremental learning on GBDT. To reduce the
learning cost, we present a collection of optimizations for our framework, so that
it can add or delete a small fraction of data on the fly. We theoretically show the
relationship between the hyper-parameters of the proposed optimizations, which
enables trading off accuracy and cost on incremental and decremental learning. The
backdoor attack results show that our framework can successfully inject and remove
backdoor in a well-trained model using incremental and decremental learning, and
the empirical results on public datasets confirm the effectiveness and efficiency of
our proposed online learning framework and optimizations.

1 Introduction
Gradient Boosting Decision Tree (GBDT) has demonstrated outstanding performance across a wide
range of applications Sudakov et al. (2019); Biau et al. (2019); Rao et al. (2019); Liu & Yu (2007).
It outperforms deep learning models on many datasets in accuracy and provides interpretability for
the trained models. However, in traditional setting, all data is simultaneously accessed in training
procedure, which makes its application scenarios limited.

Online Learning. Online learning is a machine learning approach where data is sequentially
available and used to update the predictor for the latest data Bertsekas (2015); Parisi et al. (2019);
Hazan (2016); Oza (2005). Generally, online learning is expected to possess the capabilities of both
incremental learning (adding training data) and decremental learning (removing a subset of training
data). This allows the model to dynamically adapt to the latest data while removing outdated data.

Incremental Learning. There are some challenges for incremental learning in GBDT due to its
natural properties Friedman et al. (2000). Traditional GBDT trains over an entire dataset, and each
node is trained on the data reaching it to achieve the best split for optimal accuracy. Adding unseen
data may affect node splitting results, potentially leading to catastrophic performance changes.

Moreover, training gradient boosting models involves creating trees for each iteration, with tree fitting
based on the residual of previous iterations. More iterations create more trees, increasing model
sizes and hurting inference throughput. This also prohibits tasks like fine-tuning or transfer learning
without substantially increasing model sizes.

Recent studies have explored incremental learning on classic machine learning, such as SVM, random
forest, and gradient boosting. Shilton et al. (2005); Laskov et al. (2006); Fine & Scheinberg (2001)
proposed methods to maintain SVM optimality after adding a few training vectors. Wang et al. (2009)
presented an incremental random forest for online learning with small streaming data. Beygelzimer
et al. (2015a) extended gradient boosting theory for regression to online learning. Zhang et al. (2019)
proposed iGBDT for incremental learning by “lazily” updating, but it may require retraining many
trees when the new data size is large. It is important to note that prior studies on online gradient
boosting Beygelzimer et al. (2015a); Chen et al. (2012); Beygelzimer et al. (2015b) and incremental
gradient boosting Zhang et al. (2019); Hu et al. (2017) do not support decremental learning.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Algorithm 1 Robust LogitBoost Algorithm.
1: Fi,k = 0, pi,k = 1

K
, k = 0 to K − 1, i = 1 to N

2: for m = 0 to M − 1 do
3: for k = 0 to K − 1 do
4: D̂tr = {ri,k − pi,k, xi}Ni=1

5: wi,k = pi,k(1− pi,k)

6: {Rj,k,m}Jj=1 = J-terminal node regression
tree from D̂tr, with weights wi,k, using the
tree split gain formula Eq. equation 5.

7: βj,k,m = K−1
K

∑
xi∈Rj,k,m

ri,k−pi,k∑
xi∈Rj,k,m

(1−pi,k)pi,k

8: fi,k =
∑J

j=1 βj,k,m1xi∈Rj,k,m , Fi,k =
Fi,k + νfi,k

9: end for
10: pi,k = exp(Fi,k)/

∑K
s=1 exp(Fi,s)

11: end for

Algorithm 2 Online Learning in Gradient Boosting
1. D′ = Din if incremental learning else Dde
2. for m = 0 to M − 1 do
3. for k = 0 to K − 1 do
4. D̂′ = {ri,k − pi,k, xi}|D

′|
i=1

5. Compute wi,k = pi,k(1− pi,k) for D̂′ using Fi,k

6. Compute ri,k for D̂′ using Fi,k

7. if incremental learning then
8.

{
R̂j,k,m

}J

j=1
= incr({Rj,k,m}Jj=1, D̂′, wi,k, ri,k)

9. else
10.

{
R̂j,k,m

}J

j=1
= decr({Rj,k,m}Jj=1, D̂′, wi,k, ri,k)

11. end if
12. Update Fi,k with

{
R̂j,k,m

}J

j=1

13. end for
14. end for

Decremental Learning. Decremental learning is more complex and less studied than incremental
learning. Cauwenberghs & Poggio (2000) presented an online recursive algorithm for training SVM
with an efficient decremental learning method. Chen et al. (2019) proposed online incremental and
decremental learning algorithms based on variable SVM, leveraging pre-calculated results. Brophy &
Lowd (2021) and Brophy & Lowd (2020) provided methods for data addition and removal in random
forests. Schelter et al. (2021) proposed robust tree node split criteria and alternative splits for low-
latency unlearning. Many works have also studied decremental learning in deep neural networks
(DNN). Bourtoule et al. (2021) introduced a framework that accelerates decremental learning by
constraining individual data points’ impact during training.

While online learning has emerged as a popular topic recently, it has been barely investigated on
GBDT. Wu et al. (2023); Lin et al. (2023) are among the latest studies in decremental learning
for GBDT. Wu et al. (2023) presented DeltaBoost, a GBDT-like model enabling data deletion.
DeltaBoost uses bagging to divide the training dataset into disjoint sub-datasets, training each
iteration’s tree on a different sub-dataset, reducing tree dependency. However, this simplification
may impact model performance. Lin et al. (2023) proposed an unlearning framework in GBDT
without simplification, unlearning specific data using recorded auxiliary information from training.
It optimizes to reduce unlearning time, making it faster than retraining from scratch, but introduces
many hyper-parameters and performs poorly on extremely large datasets.

In this paper, we propose a novel incremental and decremental learning framework for GBDT. To
the best of our knowledge, this is the first work that considers in-place online incremental and
decremental learning at the same time on GBDT. The incremental and decremental learning in this
work applies a unified notion, which enables convenient implementation.

Challenges. We identify three major challenges of in-place online learning for GBDT: (1) Unlike
batch training of deep neural networks (DNN), more iterations in GBDT create more trees and
parameters, leading to unbounded memory and computation costs in online learning. In-place
learning on originally constructed trees is necessary for practicality. (2) Gradient-based methods
in DNN add and subtract gradients for incremental and decremental learning, but GBDT is not
differentiable. (3) GBDT depends on the residual of the previous tree, unlike independent iterations in
random forests. Changing one tree requires modifying all subsequent trees, complicating incremental
and decremental learning.

Contributions. (1) We introduce a novel in-place online learning framework for gradient boost-
ing models supporting incremental and decremental learning, extensible to fine-tuning and transfer
learning. (2) We present optimizations to reduce the cost of incremental and decremental learning,
making adding or deleting a small data fraction substantially faster than retraining. (3) We theo-
retically show the relationship among optimization hyper-parameters, enabling trade-offs between
accuracy and cost. (4) We experimentally evaluate our framework on public datasets, confirming its
effectiveness and efficiency. (5) We release an open-source implementation of our framework1.

2 Online GBDT Framework
2.1 GBDT Preliminary
Gradient Boosting Decision Tree (GBDT) is an powerful ensemble technique that combines multiple
decision tree to produce an accurate predictive model (Friedman et al., 2000; Friedman, 2001).

1 https://anonymous.4open.science/r/In-PlaceOnlineGBDT

2

https://anonymous.4open.science/r/In-PlaceOnlineGBDT

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Split Candidates

Loan < 31, Gain: 26.937

…

(a)

Keep the split

Auto < 57

-0.1252 House < 19 Income < 23

-0.0165 0.1834 0.2033 -0.1728

Age < 42

Update

0.2735

Loan < 31

𝑑 = 𝐷!" = 𝐷#$ = 4

𝑑 = 1

𝑑 = 1 𝑑 = 0

𝑑 = 3

𝐷!" = {20, 21, 22, 23}

Inc.: {0, 3, 7, 10, 15, 22}

{1, 6, 14, 16, 17}

(b) 𝐷#$ = {2, 7,11,13}

Dec.: {0, 3, 7, 10, 15}
Pending Sub-tree

Pending Sub-tree

Split Candidates

Credit < 24, Gain: 17.482

…

Retrain Credit < 24

Income < 35

Auto < 17

0.1193 -0.0274

-0.0284

0.2938

{2, 4, 5, 8, 9, 11, 12, 13, 18, 19}

Best Split has shifted

Incremental Learning Decremental Learning
① Recompute gain value

Income < 5, Gain: 19.345

Split Candidates

…

Retrain Income < 5

Auto < 18 Credit < 9

-0.2831 0.8364Loan < 23 -0.6238

{2, 4, 5, 8, 9, 11, 12, 13, 18, 19, 20, 21, 23}

Best Split has shifted

-0.5639 0.7362

② Replace the original sub-tree(c)

(d) Derivatives:

Update the derivatives of {0, 3, 4, 5, 8, 9, 10, 12, 15, 18, 19}

3 4 8 9 18 1910 155 120

Decremental Learning:

2 3 4 8 9 11 13 1910 155 120 20 21 22 237 18

Incremental Learning:

Update the derivatives of {0, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 18, 19, 20, 21, 22, 23}

Incremental Learning
Decremental Learning

Figure 1: An example for the incremental learning and decremental learning procedure in the
proposed framework. (a) For the node of Loan < 31, the current split is still the best after online
learning. Thus, the split does not need to change. (b) An already well-trained tree in Dtr. (c) For
the node of Auto < 57, the best split has shifted after online learning. (d) Incremental update for
derivatives – only update the derivatives for those data reaching the changed terminal nodes.

Given a dataset Dtr = {yi,xi}Ni=1, where N is the size of training dataset, and xi indicates the ith

data vector and yi ∈ {0, 1, ...,K − 1} denotes the label for the ith data point. For a GBDT model
with M iteration, the probability pi,k for ith data and class k is:

pi,k = Pr (yi = k|xi) =
eFi,k(xi)∑K
s=1 e

Fi,s(xi)
, i = 1, 2, ..., N (1)

where F is a combination of M terms:
F (M)(x) =

M−1∑
m=0

ρmh(x;am) (2)

where h(x;am) is a regression tree, and ρm and am denote the tree parameters that learned by
minimizing the negative log-likelihood:

L =

N∑
i=1

Li, Li = −
K−1∑
k=0

ri,k log pi,k (3)

where ri,k =

{
1, if yi = k

0, otherwise
. The training procedures require calculating the derivatives of loss

function L with respect to Fi,k:
gi,k =

∂Li

∂Fi,k
= − (ri,k − pi,k) , hi,k =

∂2Li

∂F 2
i,k

= pi,k (1− pi,k) . (4)

In GBDT training, to solve numerical instability problem (Friedman et al., 2000; Friedman, 2001;
Friedman et al., 2008), we apply Robust LogitBoost algorithm (Li, 2010) as shown in Algorithm 1,
which has three parameters, the number of terminal nodes J , the shrinkage ν and the number of
boosting iterations M . To find the optimal split for a decision tree node, we first sort the N data by
the feature values being considered for splitting. We then iterate through each potential split index
s, where 1 ≤ s < N , to find the best split that minimizes the weighted squared error (SE) between
the predicted and true labels. Specifically, we aim to find an split s to maximize the gain function:

Gain(s) =

(∑s
i=1 gi,k

)2∑s
i=1 hi,k

+

(∑N
i=s+1 gi,k

)2

∑N
i=s+1 hi,k

−

(∑N
i=1 gi,k

)2

∑N
i=1 hi,k

. (5)

2.2 Problem Setting
For classic GBDT, all training data must be loaded during training, and adding/deleting instances
is not allowed afterwards. This work proposes an online GBDT framework that enables in-place
addition/deletion of specific data instances to/from a well-trained model through incremental and
decremental learning.

Problem Statement. Given a trained gradient boosting model T (θ) on training dataset Dtr, where
θ indicates the parameters of model T , an incremental learning dataset Din, and/or a decremental

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

learning datasetDde (Dde ⊆ Dtr), our goal is to find a tree modelT (θ′) that fits datasetDtr∪Din\Dde,
where |θ| = |θ′| (the parameter size and the number of trees stay unchanged).

The most obvious way is to retrain the model from scratch on dataset Dtr ∪ Din \ Dde. However,
retraining is time-consuming and resource-intensive. Especially for online learning applications,
rapid retraining is not practical. The key question of this problem is: Can we obtain the model T (θ′)
based on the learned knowledge of the original model T (θ) without retraining the entire model?

The proposed framework aims to find a tree model T (θ′) as close to the model retraining from scratch
as possible based on the learned knowledge of the model T (θ). In addition, this online learning
algorithm is in a “warm-start” manner, because it learns a new dataset Din or removes a learned
sub-dataset Dde ⊆ Dtr on a model that is already well-trained on training dataset Dtr.

Let A denotes the initial GBDT learning algorithm , then we have A(Dtr) ∈ H, where H is the
hypothesis space. An online learning algorithm L for incremental learning or decremental learning
can be used to learn dataset Din or remove dataset Dde ⊆ Dtr.

2.3 Framework Overview
The goal of this work is to propose an online learning framework for GBDT that supports incremental
learning and decremental learning for any collection of data.

Online Learning in GBDT. The Algorithm 2 shows the procedure of online learning in GBDT. At
first, the GBDT model is a well-trained model on the training dataset Dtr. Recall that the GBDT
model is frozen and can not be changed after training—no training data modification. In this proposed
framework, the user can do (1) incremental learning: update a new dataset Din to the model, and (2)
decremental learning: remove a learned dataset Dde ⊆ Dtr and its effect on the model.

As shown in Algorithm 2, it is similar to the learning process, but it only needs to compute ri,k and
pi,k(1 − pi,k) for online dataset D′ without touching the training dataset Dtr. Then, it will call the

function of incremental learning or decremental learning to obtain
{
R̂j,k,m

}J

j=1
. Finally, we update

Fi,k with new
{
R̂j,k,m

}J

j=1
. Here we use the same notion to design the function of incremental

learning and decremental learning – decremental learning is the inverse process of incremental
learning for dataset D′. Therefore, we describe them in the Algorithm 3 at the same time.

Algorithm 3 Incr./Decr. Learning on One Tree

1. for non-terminal node in {Rj,k,m}Jj=1 with as-
cending depths do

2. D̂′ = {ri,k − pi,k, xi}|D
′|

i=1

3. s = current split of node
4. s′ = compute best gain with Eq. equation 5

with ri,k and wi,k after adding/removing D̂′

5. if s′ ̸= s then
6. Retrain the subtree rooted at node.
7. end if
8. end for
9. Update prediction value βj,k,m for all terminal

nodes

Incremental & Decremental Learning on One
Tree. Algorithm 3 describes the detailed process for
incremental and decremental learning, which are al-
most the same as decremental learning is the inverse
of incremental learning for dataset D′. The main dif-
ference is at Line 3. First, we traverse all non-terminal
nodes with ascending depths. For each node, let s de-
note the current split. We recompute the new best gain
value with ri,k and pi,k(1− pi,k) after adding D′ for
incremental learning or removing D′ for decremental
learning. If the current split s matches the new best
split s′ (after adding/removing D′), we keep the cur-
rent split (Figure 1(a)). Otherwise, if the current best
split has changed (s ̸= s′), as shown in Figure 1(c),
we retrain the sub-tree rooted on this node and replace it with the new sub-tree. After testing all
nodes, node splits remain on the best split. Finally, we recompute the prediction value on all terminal
nodes. Appendix C provides a detailed explanation of Figure 1.

3 Optimizing Learning Time
In this section, we introduce optimizations for our online learning framework to reduce computation
overhead and costs. The key step is deciding whether a node should be kept or replaced: Can we
design an algorithm to quickly test whether the node should be retained or retrained without touching
the training data? Our most important optimization is to avoid touching the full training dataset.
We apply incremental update and split candidates sampling concepts from Lin et al. (2023), extend
them to support online learning, and provide evidence of the relationship between hyper-parameters

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

of different optimizations, enabling trade-offs between accuracy and cost. Additionally, we design
optimizations specific to online learning: 1) adaptive lazy update for residuals and hessians to
substantially decrease online learning time; 2) adaptive split robustness tolerance to significantly
reduce the number of retrained nodes.

3.1 Update without Touching Training Data
To reduce computation overhead and online learning time, we target to avoid touching the original
training dataset D, and only focus on the online learning dataset D′. Following the study Lin et al.
(2023), we extend the optimization of updating statistical information to the scenarios of online
learning: (1) Maintain Best Split; (2) Recomputing Prediction Value; (3) Incremental Update for
Derivatives, and the computation cost is reduced from O(D±D′) to O(D′) by these optimizations.
The implementation of these optimizations are included in Appendix E.

3.2 Adaptive Lazy Update for Derivatives
Although incremental update can substantially reduce online learning time, we can take it a step
further: if no retraining occurs, the changes to the derivatives will be very small. How can we
effectively utilize the parameters already learned to reduce online learning time?

Gradient Accumulation Li et al. (2014); Goyal et al. (2017); Ruder (2016) is widely used in DNN
training. After computing the loss and gradients for each mini-batch, the system accumulates these
gradients over multiple batches instead of updating the model parameters immediately. Inspired by
Gradient Accumulation techniques, we introduce an adaptive lazy update for our online learning
framework. Unlike Lin et al. Lin et al. (2023), which perform updates after a fixed number of
batches, we update the derivatives only when retraining occurs. This approach uses more outdated
derivatives for gain computation but significantly reduces the cost of derivative updates.

3.3 Split Candidates Sampling
From the above optimizations, if retraining is not required, we can keep the current best split. In this
case, we only need to iterate over the online learning dataset D′ and update the prediction values to
accomplish online learning, whether it involves adding or removing data. However, if the sub-tree
rooted in this node requires retraining, it is necessary to train the new sub-tree on the data from the
dataset Dtr ±D′ that reaches this node. It is clear that retraining incurs more resource consumption
and takes a longer execution time. In the worst case, if retraining is required in the root node, it has
to retrain the entire new tree on full dataset Dtr ±D′.

To reduce the time and resource consumption of online learning, a straightforward approach is to
minimize the frequency of retraining. Therefore, we introduce split candidate sampling to reduce
frequent retraining by limiting the number of splits, and it is beneficial for both training and online
learning. All features are discretized into integers in {0, 1, 2, · · · , B − 1}, as shown in Appendix A.
The original training procedure enumerates all B potential splits, and then obtains the best split with
the greatest gain value. In split candidates sampling, we randomly select ⌈αB⌉ potential splits as
candidates and only perform gain computing on these candidates. As α decreases, the number of
split candidates decreases, resulting in larger distances between split candidates. Consequently, the
best split is less likely to change frequently.

Definition 1 (Distance Robust) Let s be the best split, and |D′|
|Dtr| = λ. N∆ is the distance between s

and its nearest split t with the same feature, N∆ = ||t− s||. s is distance robust if

N∆ >
λGain(s)

1
Nls

(∑
xi∈ls

gi,k

)2∑
xi∈ls

hi,k
+ 1

Nrs

(∑
xi∈rs

gi,k

)2∑
xi∈rs

hi,k

(6)

where l represents the left child of split s, and it contains the samples belonging to this node, while
r represent the right child, Nls denotes |ls|, and Nrs denotes |rs|. In this definition, E(N∆) = 1/α,
where α denotes the split sampling rate, we can observe that a smaller sampling rate will result in a
more robust split, so we can reduce the number of retrain operations by reducing the sampling rate.
Similarly, incremental learning can get the same result.
Definition 2 (Robustness Split) For a best split s and an arbitrary split t, t ̸= s, and online learning
data rate |D′|

|Dtr| = λ, the best split s is robust split if

Gain(s) >
1

1− λ
Gain(t) (7)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Robustness split shows that, as λ = |D′|
|Dtr| decreases, the splits are more robust, leading to a reduction

in the frequency of retraining. In conclusion, decreasing either α or λ makes the split more robust,
reducing the change occurrence in the best split, and it can significantly reduce the online learning
time. We provide the proof of Distance Robust and Robustness Split in Appendix D.

3.4 Adaptive Split Robustness Tolerance

20 40 60 80 100
Iteration

0

5

10

B
es

t S
pl

it
S

hi
ft

D
is

ta
nc

e

Adult
Add 1
Add 0.1%
Add 0.5%
Add 1.0%

20 40 60 80 100
Iteration

0

5

10

15

B
es

t S
pl

it
S

hi
ft

D
is

ta
nc

e

Covtype
Add 1
Add 0.1%
Add 0.5%
Add 1.0%

20 40 60 80 100
Iteration

0

2

4

6

B
es

t S
pl

it
S

hi
ft

D
is

ta
nc

e

Letter
Del 1
Del 0.1%
Del 0.5%
Del 1.0%

20 40 60 80 100
Iteration

0

2

4

6

8

10

B
es

t S
pl

it
S

hi
ft

D
is

ta
nc

e

SUSY
Del 1
Del 0.1%
Del 0.5%
Del 1.0%

Figure 2: Observation of distance of best split
changes. The lines represents the average changes
of best split distance, and the shaded region is the
standard error.

Recall the retraining condition for a node that
we mentioned previously: we retrain the sub-
tree rooted at a node if the best split changes.
Although the best split may have changed to an-
other one, the gain value might only be slightly
different from the original best split. We illus-
trate the observation of the distance of best split
changes (the changes in the ranking of the best
split) in Figure 2. The top row illustrates the dis-
tance of best split changes observed in the Adult
and Covtype datasets for incremental learning,
while the bottom row depicts same in Letter and
SUSY datasets for decremental learning. Sim-
ilar patterns are observed across various other
datasets. For adding or deleting a single data
point, the best split does not change in most
cases. As the |D′| increases to 0.1%, 0.5%, and
1%, the best split in most cases switch to the second best. If we only apply the optimal split, it will
lead to frequent retraining during online learning.

The distance of the best split changes is usually small. Tolerating its variation within a certain range
and continuing to use the original split significantly accelerates online learning. We propose adaptive
split robustness tolerance: for a node with ⌈αB⌉ potential splits, if the current split is among the top
⌈σαB⌉, we continue using it, where σ (0 ≤ σ ≤ 1) is the robustness tolerance. σ = 0 selects only
the best split, while σ = 1 avoids retraining. Higher σ indicates greater tolerance, making the split
more robust and less likely to retrain.

4 Experimental Evaluation
In this section, we report empirical evaluation in different aspects. We compare our 1) incremental
learning with OnlineGradientBoost (OnlineGB)2 Leistner et al. (2009) and iGBDT Zhang et al.
(2019); 2) decremental learning with DeltaBoost3 Wu et al. (2023) and MUinGBDT4 Lin et al. (2023);
3) training cost with popular GBDT libraries XGBoost Chen & Guestrin (2016), LightGBM Ke et al.
(2017), CatBoost Dorogush et al. (2018) and ThunderGBM Wen et al. (2020).

Table 1: Dataset specifications.
Dataset # Train # Test # Dim # Class
Adult 36,139 9,034 87 2
CreditInfo 105,000 45,000 10 2
SUSY 2,500,000 2,500,000 18 2
HIGGS 5,500,000 5,500,000 28 2
Optdigits 3,822 1,796 64 10
Pendigits 7,493 3,497 16 10
Letter 15,000 5,000 16 26
Covtype 290,506 290,506 54 7
Abalone 2,785 1,392 8 Reg.
WineQuality 4,332 2,165 12 Reg.

Implementation Details. The details of environments and set-
tings are included in Appendix B. We employ one thread for all
experiments to have a fair comparison, and run ThunderGBM
on a NVIDIA A100 40GB GPU, since it does not support only
CPU5. Unless explicitly stated otherwise, our default parameter
settings are as follows: ν = 1, M = 100, J = 20, B = 1024,
|D′| = 0.1%× |Dtr|, α = 0.1, and σ = 0.1.

Datasets. We utilize 10 public datasets in the experiments. The
specifications of these datasets are presented in Table 1. The smallest dataset, Optdigits, consists of
3,822 training instances, while the largest dataset, HIGGS, contains a total of 11 million instances.
The number of dimensions or features varies between 8 and 87 across the datasets.

4.1 Training Time and Memory Overhead
Since the proposed online learning framework stores certain statistical information during training,
this may impact both the training time and memory usage. Table 2 presents a detailed report of the
total training time and memory overhead.
2 https://github.com/charliermarsh/online_boosting 3 https://github.com/Xtra-Computing/DeltaBoost/
4 https://github.com/huawei-lin/GBDT_unlearning
5 https://github.com/Xtra-Computing/thundergbm/blob/master/docs/faq.md

6

https://github.com/charliermarsh/online_boosting
https://github.com/Xtra-Computing/DeltaBoost/
https://github.com/huawei-lin/GBDT_unlearning
https://github.com/Xtra-Computing/thundergbm/blob/master/docs/faq.md

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Total incremental or decremental learning time (seconds). For the methods supporting
incremental or decremental learning (OnlineGB, iGBDT, DeltaBoost, MU in GBDT), speedup =
incr./decr. learning time
our online learning time , otherwise, speedup = training time

our online learning time .
Incremental Learning Decremental Learning

Total Time (seconds) Speedup v.s. Total Time (seconds) Speedup v.s.Dataset |D′|
OnlineGB iGBDT Ours OnlineGB iGBDT XGBoost LightGBM CatBoost ThunderGBM

(GPU) DeltaBoost MU in GBDT Ours DeltaBoost MU in GBDT XGBoost LightGBM CatBoost ThunderGBM
(GPU)

1 0.265 0.595 0.035 7.6x 17x 270.5x 14.7x 43.8x 16.1x 0.923 0.217 0.034 27.1x 6.4x 278.4x 15.2x 45.1x 16.6x
0.1% 9.02 1.145 0.105 85.9x 10.9x 90.2x 4.9x 14.6x 5.4x 28.022 0.751 0.103 272.1x 7.3x 91.9x 5x 14.9x 5.5x
0.5% 44.65 1.296 0.212 210.6x 6.1x 44.7x 2.4x 7.2x 2.7x 34.461 1.059 0.222 155.2x 4.8x 42.6x 2.3x 6.9x 2.5xAdult
1% 98 1.573 0.344 284.9x 4.6x 27.5x 1.5x 4.5x 1.6x 62.124 1.276 0.379 163.9x 3.4x 25x 1.4x 4x 1.5x
1 29 0.475 0.114 254.4x 4.2x 116.8x 16.1x 30.2x 5.1x 89.097 0.113 0.055 1,619.9x 2.1x 242.1x 33.4x 62.7x 10.6x

0.1% 3,386.25 1.391 0.249 13,599.4x 5.6x 53.5x 7.4x 13.8x 2.3x 78.836 0.426 0.153 515.3x 2.8x 87x 12x 22.5x 3.8x
0.5% 28,875 1.428 0.321 89,953.3x 4.4x 41.5x 5.7x 10.7x 1.8x 80.559 0.824 0.251 321x 3.3x 53x 7.3x 13.7x 2.3xCreditInfo
1% 336,000 1.568 0.383 877,284.6x 4.1x 34.8x 4.8x 9x 1.5x 74.331 1.065 0.355 209.4x 3x 37.5x 5.2x 9.7x 1.6x
1 OOM 12.037 1.678 - 7.2x 974.3x 58.2x 64.9x 3.6x 309.19 1.707 1.303 237.3x 1.3x 1,254.7x 74.9x 83.6x 4.6x

0.1% OOM 53.46 7.972 - 6.7x 205.1x 12.2x 13.7x 0.8x 180.894 23.999 6.263 28.9x 3.8x 261x 15.6x 17.4x 1x
0.5% OOM 55.38 13.39 - 4.1x 122.1x 7.3x 8.1x 0.4x 197.86 53.962 15.438 12.8x 3.5x 105.9x 6.3x 7.1x 0.4xSUSY
1% OOM 57.68 20.093 - 2.9x 81.4x 4.9x 5.4x 0.3x 298.44 77.76 25.98 11.5x 3x 62.9x 3.8x 4.2x 0.2x
1 OOM 45.25 5.488 - 8.2x 406.3x 38.4x 55.3x 2.5x OOM 4.967 3.367 - 1.5x 662.3x 62.7x 90.2x 4.1x

0.1% OOM 132.46 26.558 - 5x 84x 7.9x 11.4x 0.5x OOM 55.265 18.926 - 2.9x 117.8x 11.1x 16x 0.7x
0.5% OOM 165.34 43.17 - 3.8x 51.7x 4.9x 7x 0.3x OOM 152.095 48.683 - 3.1x 45.8x 4.3x 6.2x 0.3xHIGGS
1% OOM 171.16 65.579 - 2.6x 34x 3.2x 4.6x 0.2x OOM 251.224 80.776 - 3.1x 27.6x 2.6x 3.8x 0.2x
1 0.032 0.174 0.011 2.9x 15.8x 68.4x 9.6x 16.1x 26.9x 0.687 0.015 0.01 68.7x 1.5x 75.2x 10.6x 17.7x 29.6x

0.1% 0.091 0.181 0.015 6.1x 12.1x 50.1x 7.1x 11.8x 19.7x 0.645 0.032 0.014 46.1x 2.3x 53.7x 7.6x 12.6x 21.1x
0.5% 0.559 0.191 0.029 19.3x 6.6x 25.9x 3.7x 6.1x 10.2x 0.563 0.067 0.029 19.4x 2.3x 25.9x 3.7x 6.1x 10.2xOptdigits
1% 1.403 0.196 0.043 32.6x 4.6x 17.5x 2.5x 4.1x 6.9x 0.638 0.085 0.046 13.9x 1.8x 16.3x 2.3x 3.8x 6.4x
1 0.014 0.181 0.014 1x 12.9x 41x 9.4x 13.1x 27.6x 0.525 0.013 0.015 35x 0.9x 38.3x 8.7x 12.2x 25.8x

0.1% 0.082 0.224 0.026 3.2x 8.6x 22.1x 5x 7x 14.9x 0.465 0.022 0.025 18.6x 0.9x 23x 5.2x 7.3x 15.5x
0.5% 0.427 0.234 0.042 10.2x 5.6x 13.7x 3.1x 4.4x 9.2x 0.531 0.089 0.041 13x 2.2x 14x 3.2x 4.5x 9.4xPendigits
1% 0.82 0.235 0.053 15.5x 4.4x 10.8x 2.5x 3.5x 7.3x 0.768 0.129 0.057 13.5x 2.3x 10.1x 2.3x 3.2x 6.8x
1 0.033 0.102 0.016 2.1x 6.4x 73.2x 12.7x 14.5x 22.9x 0.863 0.017 0.014 61.6x 1.2x 83.6x 14.5x 16.6x 26.1x

0.1% 0.551 0.167 0.04 13.8x 4.2x 29.3x 5.1x 5.8x 9.2x 0.664 0.032 0.058 11.4x 0.6x 20.2x 3.5x 4x 6.3x
0.5% 2.768 0.187 0.067 41.3x 2.8x 17.5x 3x 3.5x 5.5x 0.676 0.066 0.103 6.6x 0.6x 11.4x 2x 2.3x 3.6xLetter
1% 5.68 0.201 0.128 44.4x 1.6x 9.1x 1.6x 1.8x 2.9x 0.997 0.094 0.134 7.4x 0.7x 8.7x 1.5x 1.7x 2.7x
1 0.09 1.321 0.29 0.3x 4.6x 220.4x 15.8x 21.2x 5.1x 28.519 0.562 0.161 177.1x 3.5x 397x 28.5x 38.1x 9.2x

0.1% 21.408 6.391 0.639 33.5x 10x 100x 7.2x 9.6x 2.3x 19.61 3.44 0.546 35.9x 6.3x 117.1x 8.4x 11.2x 2.7x
0.5% 105.688 7.765 1.095 96.5x 7.1x 58.4x 4.2x 5.6x 1.3x 20.035 5.519 1.187 16.9x 4.6x 53.8x 3.9x 5.2x 1.2xCovtype
1% 214.188 8.088 1.724 124.2x 4.7x 37.1x 2.7x 3.6x 0.9x 21.864 6.917 1.963 11.1x 3.5x 32.6x 2.3x 3.1x 0.8x
1 0.013 0.331 0.027 0.5x 12.3x 6.9x 3.6x 19.7x 15.5x 0.659 0.069 0.026 25.3x 2.7x 7.2x 3.8x 20.5x 16.1x

0.1% 0.026 0.356 0.032 0.8x 11.1x 5.8x 3.1x 16.7x 13.1x 0.586 0.263 0.029 20.2x 9.1x 6.4x 3.4x 18.4x 14.4x
0.5% 0.17 0.338 0.049 3.5x 6.9x 3.8x 2x 10.9x 8.5x 1.015 0.372 0.054 18.8x 6.9x 3.4x 1.8x 9.9x 7.7xAbalone
1% 0.354 0.366 0.055 6.4x 6.7x 3.4x 1.8x 9.7x 7.6x 0.917 0.417 0.049 18.7x 8.5x 3.8x 2x 10.9x 8.5x
1 0.014 0.239 0.017 0.8x 14.1x 12.4x 5.3x 50.5x 21.5x 0.574 0.022 0.016 35.9x 1.4x 13.1x 5.6x 53.6x 22.9x

0.1% 0.057 0.262 0.027 2.1x 9.7x 7.8x 3.3x 31.8x 13.6x 0.329 0.196 0.024 13.7x 8.2x 8.8x 3.8x 35.8x 15.3x
0.5% 0.296 0.282 0.041 7.2x 6.9x 5.1x 2.2x 20.9x 8.9x 2.173 0.298 0.037 58.7x 8.1x 5.7x 2.4x 23.2x 9.9xWineQuality
1% 0.608 0.276 0.051 11.9x 5.4x 4.1x 1.8x 16.8x 7.2x 2.711 0.333 0.051 53.2x 6.5x 4.1x 1.8x 16.8x 7.2x

Table 2: Comparison of total training time (in
seconds) and memory usage (total allocated, MB).

Method Adult CreditInfo SUSY HIGGS Optdigits Pendigits Letter Covtype Abalone WineQuality

Tr
ai

ni
ng

Ti
m

e
(S

ec
on

ds
) iGBDT 1.875 1.787 63.125 180.459 0.263 0.345 0.26 9.158 1.434 1.047

OnlineGB 6,736.18 330,746.80 OOM OOM 130.7 87.361 771.99 19,938.80 39.874 62.034
DeltaBoost 78.213 154.52 4,281.59 OOM 9.517 18.457 21.532 582.36 3.104 4.89

MU in GBDT 1.285 1.648 58.551 175.95 0.261 0.35 0.289 6.454 1.431 1.034
XGBoost 9.467 13.314 1,634.82 2,230.03 0.752 0.574 1.171 63.917 0.186 0.21

LightGBM 0.516 1.836 97.622 211 0.106 0.131 0.203 4.581 0.098 0.09
CatBoost 1.532 3.447 108.95 303.56 0.177 0.183 0.232 6.14 0.533 0.858

ThunderGBM (GPU) 0.564 0.583 5.993 13.708 0.296 0.387 0.366 1.474 0.418 0.366
Ours 2.673 1.818 64.935 177.1 0.276 0.368 0.352 9.336 0.582 0.427

M
em

or
y

U
sa

ge
(M

B
) iGBDT 1,153.13 2,192.13 31,320.40 31,724.40 2,161.20 3,917.61 3,370.38 18,381.10 1,767.23 1,281.08

OnlineGB 35,804.10 58,119.61 OOM OOM 7,493.97 6,488.75 13,067.75 19,699.62 582.97 345.83
DeltaBoost 43,286.70 285,608 409,850.30 OOM 2,336.79 1,173.59 3,741.46 210,409 786.53 549.64

MU in GBDT 570.78 1,095.70 16,576.50 34,380.90 1,080.49 1,959.02 1,805.22 9,637.65 1,711.02 1,194.82
XGBoost 179.13 140.88 2,093.95 7,467.32 131.11 120.93 121.59 770.3 204.74 200.91

LightGBM 150.45 149.19 1,688.57 4,109.54 121.08 135.45 161.97 542.47 215.15 214.95
CatBoost 83.02 129.09 1,503.93 3,090.55 29.41 36.64 99.79 595.27 40.97 27.91

ThunderGBM (GPU) 673.45 418.97 3,725.82 5,855.04 353.95 378.11 360.56 931.89 367.67 348.83
Ours 577.18 1,096.71 16,576.40 24,333.30 1,081.15 1,959.49 1,805.76 9,665.21 762.78 531.88

Training Time. Table 2 shows the total train-
ing time of our framework and baselines. Our
online learning framework is substantially faster
than OnlineGB, DeltaBoost, and XGBoost, and
slightly slower than iGBDT. While slower on
smaller datasets compared to LightGBM, it
outperforms on larger datasets like SUSY and
HIGGS, with training times similar to MU-
inGBDT. Overall, our framework offers signifi-
cantly faster training than existing incr./decr. methods and is comparable to popular GBDT libraries.

Memory Overhead. Memory usage is crucial for practical applications. Most incremental and
decremental learning methods store auxiliary information or learned knowledge during training,
potentially occupying significant memory. As shown in Table 2, our framework’s memory usage is
significantly lower than OnlineGB, iGBDT, and DeltaBoost. Moreover, OnlineGB and DeltaBoost
encountered OOM in the experiments.

4.2 Online Learning Time
Retraining from scratch can be time-consuming, but in some cases, the cost of online learning
outweighs the benefits compared to retraining from scratch, making online learning unnecessary or
unjustified. Hence, evaluating the cost of online learning is crucial for practical applications. Table 3
shows the total online learning time (seconds) and speedup v.s. baselines, comparing OnlineGB and
iGBDT for incremental learning, and DeltaBoost and MUinGBDT for decremental learning.

In incremental learning, compared to OnlineGB and iGBDT, which also support incremental learning,
adding a single data instance can be up to 254.4x and 17x faster, respectively. Furthermore, compared
to retraining from scratch on XGBoost, LightGBM, CatBoost, and ThunderGBM (GPU), it can
achieve speedups of up to 974.3x, 58.2x, 64.9x, and 27.6x, respectively. In decremental learning,
when deleting a data instance, our method offers a speedup of 1,619.9x and 6.4x over DeltaBoost and
MUinGBDT, respectively, and is 1,254.7x, 74.9x, 90.2x, and 29.6x faster than XGBoost, LightGBM,
CatBoost, and ThunderGBM (GPU), respectively.

Our method is substantially faster than other methods both in incremental and decremental learning,
especially on large datasets. For example, in HIGGS dataset, the largest dataset in our experiments,
on removing (adding) 1% data, we are 3.1x faster than MUinGBDT (2.6x faster than iGBDT), while
OnlineGB and DeltaBoost encounter out of memory (OOM).

Interestingly, we observed that when |D′| is small, decremental learning is faster than incremental
learning. However, as |D′| increases, incremental learning becomes faster than decremental learning.
For decremental learning, the data to be removed has already been learned, and their derivatives have
been stored from training. However, the deleted data often exists discretely in memory. On the other

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: The test error after training, adding, and deleting.
Task Method Adult CreditInfo SUSY HIGGS Optdigits Pendigits Letter Covtype Abalone

(×10−2)
WineQuality

(×10−3)

Training

iGBDT 0.1276 0.0629 0.1987 0.2742 0.0290 0.0295 0.0418 0.1702 5.7721 1.2085
DeltaBoost 0.1814 0.0642 0.2122 OOM 0.0652 0.0417 0.0968 0.2764 7.5905 1.3134

MU in GBDT 0.1276 0.0629 0.1987 0.2742 0.0307 0.0294 0.0418 0.1702 5.7721 1.2085
XGBoost 0.1270 0.0630 0.1977 0.2761 0.0418 0.0397 0.0524 0.1896 6.1472 1.1674

LightGBM 0.1277 0.0635 0.1984 0.2725 0.0334 0.0355 0.0374 0.1688 5.8392 1.1993
CatBoost 0.2928 0.1772 0.4324 0.5384 0.0618 0.0440 0.0655 0.1572 5.7265 1.2457

ThunderGMB (GPU) 0.2405 0.0659 0.4576 0.4698 0.2739 0.1155 0.1170 0.6298 8.4272 1.6953
Ours 0.1276 0.0629 0.1987 0.2742 0.0307 0.0294 0.0418 0.1702 5.7721 1.2085

In
cr

e.
Le

ar
ni

ng

Add 1 iGBDT 0.1279 0.0633 0.1987 0.2769 0.0301 0.0286 0.0418 0.1696 5.8801 1.1953
Ours 0.1275 0.0630 0.1988 0.2742 0.0295 0.0297 0.0404 0.1685 5.811 1.2079

Add 0.1% iGBDT 0.1267 0.0630 0.1995 0.2742 0.0323 0.0363 0.0446 0.1777 6.2531 1.2680
Ours 0.1269 0.0626 0.1989 0.2747 0.0295 0.0297 0.0406 0.1686 5.900 1.2040

Add 0.5% iGBDT 0.1287 0.0636 0.2012 0.2795 0.0390 0.0440 0.0572 0.1788 7.6510 1.2907
Ours 0.1294 0.0632 0.1988 0.2734 0.0290 0.0295 0.0394 0.1681 5.7701 1.2198

Add 1% iGBDT 0.1291 0.0630 0.2014 0.2780 0.0529 0.0603 0.0875 0.1868 8.5324 1.4462
Ours 0.1267 0.0632 0.1990 0.2740 0.0262 0.0283 0.0440 0.1683 5.8378 1.2209

D
ec

re
.L

ea
rn

in
g

Del 1
DeltaBoost 0.1818 0.0642 0.2122 OOM 0.0640 0.0424 0.0974 0.2764 7.4359 1.3084

MU in GBDT 0.1280 0.0629 0.1987 0.2742 0.0306 0.0295 0.0408 0.1702 5.8025 1.2095
Ours 0.1276 0.0628 0.1987 0.2742 0.0306 0.0295 0.0416 0.1702 5.8723 1.2143

Del 0.1%
DeltaBoost 0.1823 0.066 0.2122 OOM 0.0629 0.0412 0.0956 0.2764 7.3402 1.3159

MU in GBDT 0.1285 0.0634 0.1988 0.2742 0.0301 0.0295 0.0444 0.1734 5.9727 1.2202
Ours 0.1284 0.0633 0.1988 0.2747 0.0295 0.0283 0.0432 0.1712 5.8744 1.2109

Del 0.5%
DeltaBoost 0.1829 0.0642 0.2122 OOM 0.0663 0.0423 0.0960 0.2762 7.2955 1.3022

MU in GBDT 0.1309 0.0640 0.1988 0.2751 0.0306 0.0283 0.0442 0.1727 6.3142 1.2398
Ours 0.1295 0.0634 0.1988 0.2746 0.0301 0.0303 0.0432 0.1675 5.7733 1.2052

Del 1%
DeltaBoost 0.1812 0.0642 0.2123 OOM 0.0624 0.0435 0.0958 0.2764 7.3100 1.3163

MU in GBDT 0.1311 0.0639 0.1988 0.2745 0.0334 0.0312 0.0460 0.1766 6.3558 1.2925
Ours 0.1295 0.0632 0.1987 0.2747 0.0273 0.0303 0.0424 0.1695 5.7620 1.2111

hand, for incremental learning, the data to be added are unseen, and derivatives need to be computed
during the incremental learning process. Nevertheless, we append the added data at the end, ensuring
that the added data are stored contiguously in memory. With a small |D′|, derivatives can be reused in
decremental learning, whereas derivatives need to be computed in incremental learning. Therefore,
decremental learning is less time-consuming. However, as |D′| grows, continuous memory access
in incremental learning is faster than decremental learning, making incremental learning faster.

4.3 Test Error Rate
Table 4 presents the test error for different methods, defined as (1 - accuracy) for classification tasks
and Mean Squared Error (MSE) for regression tasks. Due to page limitations, we have omitted the
results for OnlineGB, as its excessively long learning time makes it relatively insignificant compared
to the other methods. Three scenarios are considered: (1) Training, reporting the test error for
models trained on the full dataset D; (2) Incremental Learning, performing incremental learning
to add a randomly selected portion D′ into a model pre-trained on D − D′; and (3) Decremental
Learning, conducting decremental learning to remove D′ from a model trained on the full dataset
D. Our method achieved the best error rates in most cases.

4.4 Batch Addition & Removal

5 50 100 50 5

Trained Data Rate (%)

70

75

80

85

90

95

100

T
e
s
t
A

c
c
 (

%
)

Adult

Retrain (Ours)

Add & Delete (Ours)

LightGBM

XGBoost

5 50 100 50 5

Trained Data Rate (%)

70

75

80

85

90

95

100

T
e
s
t
A

c
c
 (

%
)

Letter

Retrain (Ours)

Add & Delete (Ours)

LightGBM

XGBoost

5 50 100 50 5

Trained Data Rate (%)

70

75

80

85

90

95

100

T
e
s
t
A

c
c
 (

%
)

Optdigits

Retrain (Ours)

Add & Delete (Ours)

LightGBM

XGBoost

100 50 5 50 100

Trained Data Rate (%)

70

75

80

85

90

95

100

T
e
s
t
A

c
c
 (

%
)

Adult

Retrain (Ours)

Delete & Add (Ours)

LightGBM

XGBoost

100 50 5 50 100

Trained Data Rate (%)

70

75

80

85

90

95

100

T
e
s
t
A

c
c
 (

%
)

Letter

Retrain (Ours)

Delete & Add (Ours)

LightGBM

XGBoost

100 50 5 50 100

Trained Data Rate (%)

70

75

80

85

90

95

100

T
e
s
t
A

c
c
 (

%
)

Optdigits

Retrain (Ours)

Delete & Add (Ours)

LightGBM

XGBoost

Figure 3: The impact of tuning data size on the number of
retrained nodes for each iteration in incremental learning.

In the traditional setting, GBDT mod-
els must be trained in one step with ac-
cess to all training data, and they can-
not be modified after training – data
cannot be added or removed. In our
proposed online learning framework,
GBDT models support both incre-
mental and decremental learning, al-
lowing continual batch learning (data
addition) and batch removal, similar
to mini-batch learning in DNNs.

We conducted experiments on contin-
ual batch addition and removal by dividing the data into 20 equal parts, each with 5%|Dtr|. Figure 3
(top) shows a GBDT model incrementally trained from 5% to 100% of the data, then decrementally
reduced back to 5%. We retrained models for comparison. Figure 3 (bottom) depicts a model
decrementally reduced from 100% to 5%, then incrementally trained back to 100%. We also report
the accuracy of XGBoost and LightGBM. The overlapping curves demonstrate the effectiveness of
our online learning framework. Due to space limitations, results are shown for only three datasets.

4.5 Data Addition with More Classes
Our framework can update data with unseen classes. We divide the dataset into sub-datasets based
on labels (e.g., Optdigits has 10 labels, so we divide it into 10 sub-datasets). We train a model on the
first sub-dataset and test it on two test datasets: 1) the original full test dataset with all labels, and 2)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

2 4 6 8 10

Added Label

0

20

40

60

80

100

T
e
s
t
A

c
c
 (

%
)

Optdigits

Addition: Partial Test Data

Addition: Full Test Data

Retrain: Partial Test Data

Retrain: Full Test Data

2 4 6 8 10

Added Label

0

20

40

60

80

100

T
e
s
t
A

c
c
 (

%
)

Pendigits

Addition: Partial Test Data

Addition: Full Test Data

Retrain: Partial Test Data

Retrain: Full Test Data

5 10 15 20 25

Added Label

0

20

40

60

80

100

T
e

s
t

A
c
c
 (

%
)

Letter

Addition: Partial Test Data

Addition: Full Test Data

Retrain: Partial Test Data

Retrain: Full Test Data

1 2 3 4 5 6 7

Added Label

0

20

40

60

80

100

T
e
s
t
A

c
c
 (

%
)

Covtype

Addition: Partial Test Data

Addition: Full Test Data

Retrain: Partial Test Data

Retrain: Full Test Data

Figure 4: The impact of tuning data size
on the number of retrained nodes for each
iteration in incremental learning.

the partial test dataset with only the learned labels. We
fine-tune the model with a new sub-dataset through
incremental learning until learning the full dataset,
testing the model on both test datasets after each train-
ing. Figure 4 shows that the accuracy of incremental
learning and retraining is nearly identical on both the
full and partial datasets. Note that the decrease in
accuracy on the partial dataset is likely due to the in-
creasing complexity of the learned data, which leads
to a decrease in accuracy.

4.6 Verifying by Backdoor Attacking
Backdoor attacks in machine learning refers to a type
of malicious manipulation of a trained model, which
is designed to modify the model’s behavior or output when it encounters a specific, predefined
trigger input pattern Salem et al. (2022); Saha et al. (2020). In this evaluation, we demonstrate that
our framework can successfully inject and remove backdoor in a well-trained, clean GBDT model
using incremental learning and decremental learning. The details of backdoor attack experiments
are provided in Appendix G.

Table 5: Accuracy for clean test dataset and attack
successful rate for backdoor test dataset.

Dataset Train Clean Train Backdoor Add Backdoor Remove Backdoor
Clean Backdoor Clean Backdoor Clean Backdoor Clean Backdoor

Optdigits 96.21% 8.91% 96.27% 100% 95.94% 100% 95.82% 9.69%
Pendigits 96.11% 3.97% 96.43% 100% 96.48% 100% 96.51% 5.55%

Letter 93.9% 1.38% 94.08% 100% 93.62% 100% 93.78% 3.48%
Covtype 78.4% 47.83% 78.32% 100% 78.38% 100% 78.38% 51.71%

In this evaluation, we randomly selected a subset
of the training dataset and injected triggers into
it to create a backdoor training dataset, leaving
the rest as the clean training dataset. The test
dataset was similarly divided into backdoor and
clean subsets. We report the accuracy for clean
test dataset and attack successful rate (ASR) for backdoor test dataset in Table 5. Initially, we trained
a model on the clean training data (“Train Clean”), which achieved high accuracy on the clean test
dataset but low ASR on the backdoor test dataset. We then incrementally add the backdoor training
data with triggers in to the model (“Add Backdoor”). After incremental learning, the model attained
100% ASR on the backdoor test dataset, demonstrating effective learning of the backdoor data.
For comparison, training a model on the combined clean and backdoor training datasets (“Train
Backdoor”) yielded similar results to “Add Backdoor”. Finally, we removed the backdoor data using
decremental learning (“Remove Backdoor”), reducing the ASR to the level of the clean model and
confirming the successful removal of backdoor data. This evaluation shows the effectiveness of our
online learning framework in handling backdoor attacks.

4.7 Verifying by Membership Inference Attack
The membership inference attack (MIA) aims to predict whether a data sample is part of the training
dataset Shokri et al. (2017); Hu et al. (2022); Choquette-Choo et al. (2021). Therefore, the goal of this
experiments is to determine if ”deleted” data can still be identified as training data after decremental
learning. However, in our experiment with default hyper-parameter setting, the predictions made by
MIA are nearly random guesses.

Experimental Setup. Previous studies demonstrate that overfitting can make machine learning
models more vulnerable to MIA Yeom et al. (2018); van Breugel et al. (2023); Hu et al. (2022). To
further validate our approach, we apply a smaller model with number of iteration M = 5, which
can be easily overfitted. Conducting MIA on such a small model can further confirm our approach
indeed deletes the data from the model. Therefore, we conduct the this experiments on multi-class
datasets: Optdigits, Pendigits, Letter and Covtype. For each dataset, we split it into three subsets:
base dataset Dbase, online dataset D′, and test dataset Dtest. We first train a base model on Dbase+D′.
For this base model, the MIA should identify the data in D′ as part of the training dataset. Next, we
perform decremental learning to delete D′ from the base model. After this process, the MIA should
no longer identify the data in D′ as part of the training dataset. Finally, we add D′ back to the model
using incremental learning. Following this, the MIA should once again identify the data in D′ as
part of the training dataset. Further details about the MIA experiment are provided in Appendix H.

Results. Table 6 presents the average probability of data samples being identified as part of the
training dataset at different stages. For the base model, MIA identifies 100% of the data in Dbase and
D′ as part of the training dataset, while the data in Dtest has a low probability of being identified as

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: Membership Inference Attack.
Dataset Base Model After decremetal learning After incremetal learning

Dbase D′ Dtest Dbase D′ Dtest Dbase D′ Dtest

Optdigits 100% 100% 43.59% 100% 33.93% 42.19% 100% 100% 43.82%
Pendigits 100% 100% 56.09% 100% 55.04% 46.15% 100% 100% 56.63%
Letter 100% 100% 26.31% 100% 13.33% 47.37% 100% 100% 36.84%
Covtype 100% 100% 38.89% 100% 15.2% 38.89% 100% 100% 44.31%

part of the training dataset. After decremental
learning, the probability for Dbase remains un-
changed, while the probability for D′ drops to
a level almost identical to Dtest. This confirms
that D′ has been effectively deleted from the
base model. After incremental learning, the probability for D′ increases to 100% again, indicating
that the model has relearned D′. The probability for Dtest in the incremental model remains almost
the same as in the base model. This result confirms that our decremental/incremental learning
approach can indeed delete/add data from/to the model.

4.8 Additional Evaluations
To further verify our method’s effectiveness and efficiency, we provide additional evaluations:

• Extremely High-dimensional Datasets: To confirm the scalability of our framework, we report
the experiments for two extremely high-dimensional datasets, RCV1 and News20, in Appendix I.
• Model Functional Similarity: We report this metric in Appendix F to evaluate the similarity
between the model learned by online learning and the one retrained from scratch.
• Approximation Error of Leaf Scores: Since the outdated derivatives are used in gain computa-
tion, to evaluate the effect of these outdated derivatives, we report the approximation error of leaf
scores between the model after addition/deletion and the one retrained from scratch in Appendix J.
• Ablation Study: We report the ablation study for different hyper-parameter settings in Appendix K.

5 Related Work
Incremental Learning is a technique in machine learning that involves the gradual integration of new
data into an existing model, continuously learning from the latest data to ensure performance on new
data van de Ven et al. (2022). It has been a open problem in machine learning, and has been studied
in convolutional neural network (CNN) Polikar et al. (2001); Kuzborskij et al. (2013); Zhou et al.
(2022), DNN Hussain et al. (2023); Dekhovich et al. (2023), SVM Chen et al. (2019); Cauwenberghs
& Poggio (2000) , random forest (RF) Wang et al. (2009); Brophy & Lowd (2020). In gradient
boosting, iGBDT Zhang et al. (2019) offers incremental updates, while other methods Beygelzimer
et al. (2015a); Babenko et al. (2009) extend gradient boosting to online learning. However, these
methods do not support removing data.

Decremental Learning allows for the removal of trained data and eliminates their influence on
the model, which can be used to delete outdated or privacy-sensitive data Bourtoule et al. (2021);
Nguyen et al. (2022); Sekhari et al. (2021); Xu et al. (2024). It has been researched in various
models, including CNN Poppi et al. (2023); Tarun et al. (2021), DNN Chen et al. (2023); Thudi et al.
(2022), SVM Karasuyama & Takeuchi (2009); Cauwenberghs & Poggio (2000), Naive Bayes Cao &
Yang (2015), K-means Ginart et al. (2019), RF Schelter et al. (2021); Brophy & Lowd (2021), and
gradient boosting Wu et al. (2023); Zhang et al. (2023). In random forests, DaRE Brophy & Lowd
(2021) and a decremental learning algorithm Schelter et al. (2021) were proposed for data removal
with minimal retraining and latency.

However, in GBDT, trees in subsequent iterations rely on residuals from previous iterations, making
decremental learning more complicated. DeltaBoost Wu et al. (2023) simplified the dependency for
data deletion by dividing the dataset into disjoint sub-datasets, while a recent study Lin et al. (2023)
proposed an efficient unlearning framework without simplification, utilizing auxiliary information to
reduce unlearning time. Although effective, its performance on large datasets remains unsatisfactory.

6 Conclusion
In this paper, we propose an novel in-place online learning framework for GBDT that support
incremental and decremental learning: it enables us to dynamically add a new dataset to the model
and delete a learned dataset from the model. It support continual batch addition/removal, and data
additional with unseen classes. We present a collection of optimizations on our framework to reduce
the cost of online learning. Adding or deleting a small fraction of data is substantially faster than
retraining from scratch. Our experimental results, including backdoor attack, membership inference
attack, and other empirical evaluations confirm the effectiveness and efficiency of our framework
and optimizations – successfully adding or deleting data while maintaining accuracy.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

References
Yossi Adi, Carsten Baum, Moustapha Cissé, Benny Pinkas, and Joseph Keshet. Turning your

weakness into a strength: Watermarking deep neural networks by backdooring. In 27th USENIX
Security Symposium (USENIX Security), pp. 1615–1631, Baltimore, MD, 2018.

Boris Babenko, Ming-Hsuan Yang, and Serge J. Belongie. A family of online boosting algorithms.
In 12th IEEE International Conference on Computer Vision Workshops (ICCV), pp. 1346–1353,
Kyoto, Japan, 2009.

Dimitri P. Bertsekas. Incremental gradient, subgradient, and proximal methods for convex optimiza-
tion: A survey. CoRR, abs/1507.01030, 2015.

Alina Beygelzimer, Elad Hazan, Satyen Kale, and Haipeng Luo. Online gradient boosting. In
Advances in Neural Information Processing Systems (NIPS), pp. 2458–2466, Montreal, Quebec,
Canada, 2015a.

Alina Beygelzimer, Satyen Kale, and Haipeng Luo. Optimal and adaptive algorithms for online
boosting. In Proceedings of the 32nd International Conference on Machine Learning (ICML),
volume 37 of JMLR Workshop and Conference Proceedings, pp. 2323–2331, Lille, France, 2015b.

Gérard Biau, Benoı̂t Cadre, and Laurent Rouvı̀ère. Accelerated gradient boosting. Mach. Learn.,
108(6):971–992, 2019.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 42nd IEEE
Symposium on Security and Privacy (SP), pp. 141–159, San Francisco, CA, 2021.

Jonathan Brophy and Daniel Lowd. DART: data addition and removal trees. CoRR, abs/2009.05567,
2020.

Jonathan Brophy and Daniel Lowd. Machine unlearning for random forests. In Proceedings of
the 38th International Conference on Machine Learning (ICML), volume 139 of Proceedings of
Machine Learning Research, pp. 1092–1104, Virtual Event, 2021.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
IEEE Symposium on Security and Privacy (SP), pp. 463–480, San Jose, CA, 2015.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramèr.
Membership inference attacks from first principles. In 43rd IEEE Symposium on Security and
Privacy, SP, pp. 1897–1914, San Francisco, CA, 2022.

Gert Cauwenberghs and Tomaso A. Poggio. Incremental and decremental support vector machine
learning. In Advances in Neural Information Processing Systems (NIPS), pp. 409–415, Denver,
CO, 2000.

Min Chen, Weizhuo Gao, Gaoyang Liu, Kai Peng, and Chen Wang. Boundary unlearning: Rapid
forgetting of deep networks via shifting the decision boundary. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7766–7775, Vancouver,
BC, Canada, 2023.

Shang-Tse Chen, Hsuan-Tien Lin, and Chi-Jen Lu. An online boosting algorithm with theoretical
justifications. In Proceedings of the 29th International Conference on Machine Learning (ICML),
Edinburgh, Scotland, UK, 2012.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp.
785–794, San Francisco, CA, 2016.

Yuantao Chen, Jie Xiong, Weihong Xu, and Jingwen Zuo. A novel online incremental and decremen-
tal learning algorithm based on variable support vector machine. Clust. Comput., 22:7435–7445,
2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Christopher A. Choquette-Choo, Florian Tramèr, Nicholas Carlini, and Nicolas Papernot. Label-only
membership inference attacks. In Proceedings of the 38th International Conference on Machine
Learning, ICML, volume 139 of Proceedings of Machine Learning Research, pp. 1964–1974,
Virtual Event, 2021.

Aleksandr Dekhovich, David MJ Tax, Marcel HF Sluiter, and Miguel A Bessa. Continual prune-
and-select: class-incremental learning with specialized subnetworks. Applied Intelligence, pp.
1–16, 2023.

Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. Catboost: gradient boosting with
categorical features support. CoRR, abs/1810.11363, 2018.

Shai Fine and Katya Scheinberg. Incremental learning and selective sampling via parametric opti-
mization framework for SVM. In Advances in Neural Information Processing Systems (NIPS), pp.
705–711, Vancouver, British Columbia, Canada, 2001.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of
Statistics, 29(5):1189–1232, 2001.

Jerome H. Friedman, Trevor J. Hastie, and Robert Tibshirani. Additive logistic regression: a statistical
view of boosting. The Annals of Statistics, 28(2):337–407, 2000.

Jerome H. Friedman, Trevor J. Hastie, and Robert Tibshirani. Response to evidence contrary to the
statistical view of boosting. Journal of Machine Learning Research, 9:175–180, 2008.

Antonio Ginart, Melody Y. Guan, Gregory Valiant, and James Zou. Making AI forget you: Data
deletion in machine learning. In Advances in Neural Information Processing Systems (NeurIPS),
pp. 3513–3526, Vancouver, BC, Canada, 2019.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training imagenet
in 1 hour. CoRR, abs/1706.02677, 2017.

Elad Hazan. Introduction to online convex optimization. Found. Trends Optim., 2(3-4):157–325,
2016.

Hanzhang Hu, Wen Sun, Arun Venkatraman, Martial Hebert, and J. Andrew Bagnell. Gradient
boosting on stochastic data streams. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics (AISTATS), volume 54 of Proceedings of Machine Learning
Research, pp. 595–603, Fort Lauderdale, FL, 2017.

Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S. Yu, and Xuyun Zhang. Member-
ship inference attacks on machine learning: A survey. ACM Comput. Surv., 54(11s):235:1–235:37,
2022.

Muhammad Awais Hussain, Chun-Lin Lee, and Tsung-Han Tsai. An efficient incremental learning
algorithm for sound classification. IEEE Multim., 30(1):84–90, 2023.

Masayuki Karasuyama and Ichiro Takeuchi. Multiple incremental decremental learning of support
vector machines. In Advances in Neural Information Processing Systems (NIPS), pp. 907–915,
Vancouver, Canada, 2009.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems (NIPS), pp. 3146–3154, Long Beach, CA, 2017.

Ilja Kuzborskij, Francesco Orabona, and Barbara Caputo. From N to N+1: multiclass transfer
incremental learning. In 2013 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3358–3365, Portland, OR, 2013.

Pavel Laskov, Christian Gehl, Stefan Krüger, and Klaus-Robert Müller. Incremental support vector
learning: Analysis, implementation and applications. J. Mach. Learn. Res., 7:1909–1936, 2006.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Christian Leistner, Amir Saffari, Peter M. Roth, and Horst Bischof. On robustness of on-line boosting
- a competitive study. In 12th IEEE International Conference on Computer Vision Workshops,
(ICCV) Workshops, pp. 1362–1369, Kyoto, Japan, 2009.

Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J. Smola. Efficient mini-batch training for
stochastic optimization. In The 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pp. 661–670, New York, NY, 2014.

Ping Li. Robust logitboost and adaptive base class (abc) logitboost. In Proceedings of the Twenty-
Sixth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI), pp. 302–311,
Catalina Island, CA, 2010.

Shuhao Li, Yajie Wang, Yuanzhang Li, and Yu-an Tan. l-leaks: Membership inference attacks with
logits. CoRR, abs/2205.06469, 2022.

Huawei Lin, Jun Woo Chung, Yingjie Lao, and Weijie Zhao. Machine unlearning in gradient boosting
decision trees. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD), pp. 1374–1383, Long Beach, CA, 2023.

Xiaoming Liu and Ting Yu. Gradient feature selection for online boosting. In IEEE 11th International
Conference on Computer Vision (ICCV), pp. 1–8, Rio de Janeiro, Brazil, 2007.

Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen, Alan Wee-Chung Liew, Hongzhi Yin,
and Quoc Viet Hung Nguyen. A survey of machine unlearning. CoRR, abs/2209.02299, 2022.

Nikunj C. Oza. Online bagging and boosting. In Proceedings of the IEEE International Conference
on Systems, Man and Cybernetics (SMC), pp. 2340–2345, Waikoloa, Hawaii, 2005.

German Ignacio Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter.
Continual lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019.

Robi Polikar, L. Upda, S. S. Upda, and Vasant G. Honavar. Learn++: an incremental learning
algorithm for supervised neural networks. IEEE Trans. Syst. Man Cybern. Part C, 31(4):497–508,
2001.

Samuele Poppi, Sara Sarto, Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. Multi-class
explainable unlearning for image classification via weight filtering. CoRR, abs/2304.02049, 2023.

Haidi Rao, Xianzhang Shi, Ahoussou Kouassi Rodrigue, Juanjuan Feng, Yingchun Xia, Mohamed
Elhoseny, Xiaohui Yuan, and Lichuan Gu. Feature selection based on artificial bee colony and
gradient boosting decision tree. Appl. Soft Comput., 74:634–642, 2019.

Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR, abs/1609.04747,
2016.

Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden trigger backdoor attacks.
In The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI), pp. 11957–11965, New
York, NY, 2020.

Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and Yang Zhang. Dynamic backdoor attacks
against machine learning models. In 7th IEEE European Symposium on Security and Privacy,
EuroS&P, pp. 703–718, Genoa, Italy, 2022. IEEE.

Sebastian Schelter, Stefan Grafberger, and Ted Dunning. Hedgecut: Maintaining randomised trees
for low-latency machine unlearning. In SIGMOD, pp. 1545–1557, Virtual Event, China, 2021.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
you want to forget: Algorithms for machine unlearning. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 18075–18086, Virtual, 2021.

Alistair Shilton, Marimuthu Palaniswami, Daniel Ralph, and Ah Chung Tsoi. Incremental training
of support vector machines. IEEE Trans. Neural Networks, 16(1):114–131, 2005.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE Symposium on Security and Privacy, SP, pp. 3–18,
San Jose, CA, 2017.

Oleg Sudakov, Evgeny Burnaev, and Dmitry A. Koroteev. Driving digital rock towards machine
learning: Predicting permeability with gradient boosting and deep neural networks. Comput.
Geosci., 127:91–98, 2019.

Ayush K. Tarun, Vikram S. Chundawat, Murari Mandal, and Mohan S. Kankanhalli. Fast yet effective
machine unlearning. CoRR, abs/2111.08947, 2021.

Anvith Thudi, Hengrui Jia, Ilia Shumailov, and Nicolas Papernot. On the necessity of auditable
algorithmic definitions for machine unlearning. In 31st USENIX Security Symposium (USENIX
Security), pp. 4007–4022, Boston, MA, 2022.

Boris van Breugel, Hao Sun, Zhaozhi Qian, and Mihaela van der Schaar. Membership inference
attacks against synthetic data through overfitting detection. In International Conference on Arti-
ficial Intelligence and Statistics, volume 206 of Proceedings of Machine Learning Research, pp.
3493–3514, Valencia, Spain, 2023.

Gido M. van de Ven, Tinne Tuytelaars, and Andreas S. Tolias. Three types of incremental learning.
Nat. Mac. Intell., 4(12):1185–1197, 2022.

Aiping Wang, Guowei Wan, Zhi-Quan Cheng, and Sikun Li. An incremental extremely random
forest classifier for online learning and tracking. In Proceedings of the International Conference
on Image Processing (ICIP), pp. 1449–1452, Cairo, Egypt, 2009.

Zeyi Wen, Hanfeng Liu, Jiashuai Shi, Qinbin Li, Bingsheng He, and Jian Chen. Thundergbm: Fast
gbdts and random forests on gpus. J. Mach. Learn. Res., 21:108:1–108:5, 2020.

Zhaomin Wu, Junhui Zhu, Qinbin Li, and Bingsheng He. Deltaboost: Gradient boosting decision
trees with efficient machine unlearning. In Proceedings of the ACM on Management of Data
(SIGMOD), volume 1, pp. 168:1–168:26, Seattle, WA, 2023.

Heng Xu, Tianqing Zhu, Lefeng Zhang, Wanlei Zhou, and Philip S. Yu. Machine unlearning: A
survey. ACM Comput. Surv., 56(1):9:1–9:36, 2024.

Hongyang Yan, Shuhao Li, Yajie Wang, Yaoyuan Zhang, Kashif Sharif, Haibo Hu, and Yuanzhang
Li. Membership inference attacks against deep learning models via logits distribution. IEEE
Trans. Dependable Secur. Comput., 20(5):3799–3808, 2023.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learning:
Analyzing the connection to overfitting. In 31st IEEE Computer Security Foundations Symposium,
CSF, pp. 268–282, Oxford, United Kingdom, 2018.

Chongsheng Zhang, Yuan Zhang, Xianjin Shi, George Almpanidis, Gaojuan Fan, and Xiajiong
Shen. On incremental learning for gradient boosting decision trees. Neural Process. Lett., 50(1):
957–987, 2019.

Jian Zhang, Bowen Li, Jie Li, and Chentao Wu. Securecut: Federated gradient boosting decision
trees with efficient machine unlearning. CoRR, abs/2311.13174, 2023.

Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, Liang Ma, Shiliang Pu, and De-Chuan Zhan. Forward
compatible few-shot class-incremental learning. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 9036–9046, New Orleans, LA, 2022.

A Feature Discretization.

The preprocessing step of feature discretization plays a crucial role in simplifying the implementation
of Eq. equation 5 and reducing the number of splits that need to be evaluated. This process
involves sorting the data points based on their feature values and assigning them to bins, taking
into account the distribution of the data, as shown in Figure 5 and Algorithm 4. By starting with
a small bin-width (e.g., 10−8) and a predetermined maximum number of bins B (e.g., 1024).
It assigns bin numbers to the data points from the smallest to the largest, carefully considering

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7

Figure 5: Feature discretization example. For
a feature, all its values are grouped into 8 bins,
i.e., the original feature values become integers
between 0 to 7 assigned to the nearest bin.

the presence of data points in each bin. This
iterative process continues until the number of
bins exceeds the specified maximum.

In cases where the number of required bins sur-
passes the maximum limit, the bin-width is dou-
bled, and the entire process is repeated. This
adaptive discretization approach proves partic-
ularly effective for boosted tree methods, ensuring that feature values are mapped to integers within
a specific range. Consequently, after the discretization mapping is established, each feature value
is assigned to the nearest bin. After this discretization preprocessing, all feature values are integers
within {0, 1, 2, · · · , B − 1}.

Algorithm 4 Discretize Feature
1: v{1..N} = sorted feature values, bin width =

10−10

2: while true do
3: cnt = 0, curr idx = 0
4: for i = 1 to N do
5: if vi − vcurr idx > bin width then
6: cnt = cnt + 1, cur idx = i
7: if cnt > B then
8: bin width = bin width ∗ 2
9: break

10: end if
11: end if
12: v′i = cnt
13: end for
14: if cnt <= B then break
15: end while
16: return v′ as discretized feature values

The advantage of this discretization technique
becomes evident during the gain searching step.
Instead of iterating over allN feature values, the
algorithm only needs to consider a maximum of
B splits for each feature. This substantial re-
duction in the number of splits to evaluate leads
to a significant decrease in the computational
cost, transforming it from being dependent on
the dataset size N to a manageable constant B.

B Experiment Setting

The experiments are performed on a Linux
computing node running Red Hat Enterprise
Linux 7, utilizing kernel version 5.10.155-
1.el7.x86 64. The CPU employed was an In-
tel(R) Xeon(R) Gold 6150 CPU operating at a
clock speed of 2.70GHz, featuring 18 cores and
36 threads. The system was equipped with a total memory capacity of 376 GB. We have built a
prototype of our online learning framework using C++11. The code is compiled with g++-11.2.0,
utilizing the “O3” optimization. Unless explicitly stated otherwise, our default parameter settings
are as follows: J = 20, B = 1024, |D′| = 0.1% × |Dtr|, α = 0.1, and σ = 0.1. We report the
ablation study for different settings in Appendix K.

C Framework Overview

Figure 1 is a visual example of incremental and decremental learning of our proposed framework. Fig-
ure 1(b) is one tree of the GBDT model and has been well-trained on dataset Dtr = {0, 1, 2, 3..., 19}.
Every rectangle in the tree represents a node, and the labels inside indicate the splitting criteria. For
instance, if the condition Age < 42 is met, the left-child node is followed; otherwise, the right-child
node is chosen. The numbers within the rectangles represent the prediction value of the terminal
nodes. Please note that here the feature 42 is a discretized value, instead of the raw feature. Our
online learning framework has the capability to not only incrementally learn a new dataset Din, but
also decrementally delete a learned dataset Dde ⊆ Dtr.

Example for Incremental Learning. Here, we would like to add a new dataset D′ = Din =
{20, 21, 22, 23} to the original model, so we will call the function of incremental learning. |d|
denotes how many data of the D′ reach this node. As shown in Algorithm 3, we traverse all non-
terminal nodes (non-leaf nodes) in the tree at first. For example, we are going to test the node of
Loan < 31. Its current best split is Loan < 31. One of the new data instances {22} reaches this
node. After adding this data and recomputing the gain value, Loan < 31 is still best split with the
greatest gain value of 26.937, and meets s = s′, as shown in Figure 1(a). Thus, we can keep this
split and do not need to do any changes for this node. Then we are going to test the node of Auto <
57 and the remaining three new data instances {20, 21, 23} reach this node. As shown in the left side
of Figure 1(c), we recompute the gain value for this node, but the best split changes to Income < 5.
Therefore, we retrain the pending sub-tree rooted on Auto < 57 after adding new data instances to

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

obtain a new sub-tree rooted on Income < 5. Then we replace the pending sub-tree with the new
one. Finally, we update the prediction value on terminal nodes (leaf nodes). For example, 0.4322
is updated to 0.2735 because of adding data {22}; −0.1252 has no change because the data of this
node are still the same.

Example for Decremental Learning. Similar to incremental learning, we would like to delete a
learned dataset Dde = {2, 7, 11, 13} and its effect on the model. The best split of node Loan < 31
does not change, so we keep the split. For Auto < 57, as shown in the right side of Figure 1(c), after
removing data instances {2, 11, 13}, the best split changes from Auto < 57 to Credit < 24, so
we retrain the pending sub-tree rooted on Loan < 31 and then replace it with the new sub-tree. For
terminal nodes (leaf nodes), the prediction value changes if any data reaching this node is removed.

D Split Candidates Sampling

Definition 1 (Distance Robust) Let s be the best split, and |D′|
|Dtr| = λ. N∆ is the distance between s

and its nearest split t, N∆ = ||t− s||. s is distance robust if

N∆ >
λGain(s)

1
Nls

(∑
xi∈ls

gi,k

)2∑
xi∈ls

hi,k
+ 1

Nrs

(∑
xi∈rs

gi,k

)2∑
xi∈rs

hi,k

(8)

Proof. In decremental learning, for a fixed λ, we have
(1− λ)Gain(s)−Gain(s+N∆) (9)

≈ (1− λ)

(∑

xi∈ls
gi,k

)2∑
xi∈ls

hi,k
+

(∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

−

(∑
xi∈ls∪rs

gi,k
)2∑

xi∈ls∪rs
hi,k

−

(
1− N∆

Nls

) (∑
xi∈ls

gi,k
)2∑

xi∈ls
hi,k

+

(
1− N∆

Nrs

) (∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

−

(∑
xi∈ls∪rs

gi,k
)2∑

xi∈ls∪rs
hi,k

 (10)

where l represents the left child of split s, and it contains the samples belonging to this node, while
r represent the right child, Nls denotes |ls|, and Nrs denotes |rs|.
Let (1− λ)Gain(s)−Gain(s+N∆) > 0, we have

approx⇒ (1− λ)Gain(s)−

(
1 +

N∆

Nls

) (∑
xi∈ls

gi,k
)2∑

xi∈rs
hi,k

+

(
1− N∆

Nrs

) (∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

−

(∑
xi∈ls∪rs

gi,k
)2∑

xi∈ls∪rs
hi,k

 (11)

⇒ N∆

Nls

(∑
xi∈ls

gi,k
)2∑

xi∈ls
hi,k

+
N∆

Nrs

(∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

− λGain(s) > 0 (12)

⇒ N∆ >
λGain(s)

1
Nls

(∑
xi∈ls

gi,k

)2∑
xi∈ls

hi,k
+ 1

Nrs

(∑
xi∈rs

gi,k

)2∑
xi∈rs

hi,k

(13)

□

In the above definition, E(N∆) = 1/α, where α denotes the split sampling rate, we can observe that
a smaller sampling rate will result in a more robust split, so we can reduce the number of retrain
operations by reducing the sampling rate. Similarly, incremental learning can get the same result.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Definition 2 (Robustness Split) For a best split s and an split t with the same feature, t ̸= s, and
online learning data rate |D′|

|Dtr| = λ, the best split s is robust split if

Gain(s) >
1

1− λ
Gain(t) (14)

Proof. Initially, we have

Gain(s) =

(∑
xi∈ls

gi,k
)2∑

xi∈ls
hi,k

+

(∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

−

(∑
xi∈ls∪rs

gi,k
)2∑

xi∈ls∪rs
hi,k

(15)

After decremental learning, we get

Gain′(s) =

(∑
xi∈ls

gi,k −
∑

xi∈ls∩D′ gi,k
)2∑

xi∈ls
hi,k −

∑
xi∈ls∩D′ hi,k

+

(∑
xi∈rs

gi,k −
∑

xi∈rs∩D′ gi,k
)2∑

xi∈rs
hi,k

∑
xi∈rs∩D′ hi,k

(16)

−

(∑
xi∈ls∪rs

gi,k −
∑

xi∈(ls∪rs)∩D′ gi,k
)2∑

xi∈ls∪rs
hi,k −

∑
xi∈(ls∪rs)∩D′ hi,k

For any possible split t (t ̸= s), the split s is robust only and only if Gain(s) > Gain(t) and
Gain′(s) > Gain′(t). First, let’s analyze the first term of Gain′(s). Suppose |D′|

|Dtr| = λ, and D′ is
randomly selected from D. Here we consider the leaf child ls of split s, and let the |ls ∩D′| to be
nls, |ls| to be Nls. Then we have(∑

xi∈ls
gi,k −

∑
xi∈ls∩D′ gi,k

)2∑
xi∈ls

hi,k −
∑

xi∈ls∩D′ hi,k

approx⇒

(∑
xi∈ls

gi,k − nlsgls

)2

∑
xi∈ls

hi,k − nlshls

(17)

⇒
(
1− nls

Nls

) (∑
xi∈ls

gi,k
)2∑

xi∈ls
hi,k

(18)

where g and h denote the average of the gi,k and hi,k respectively.

Similarly, we can get all three terms for Gain(s), Gain′(s), Gain(t), and Gain′(t) in a similar
form. For Gain′(s) > Gain′(t), finally, we have Gain(s) > Gain(t) + C, where

C =

 nls

Nls

(∑
xi∈ls

gi,k
)2∑

xi∈rs
hi,k

+
nrs

Nrs

(∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

− nls + nrs

Nls +Nrs

(∑
xi∈ls∪rs

gi,k
)2∑

xi∈ls∪rs
hi,k

−

 nlt

Nlt

(∑
xi∈lt

gi,k
)2∑

xi∈rt
hi,k

+
nrt

Nrt

(∑
xi∈rt

gi,k
)2∑

xi∈rt
hi,k

− nlt + nrt

Nlt +Nrt

(∑
xi∈lt∪rt

gi,k
)2∑

xi∈lt∪rt
hi,k

 (19)

The upper bound of C is λGain(s). Further, we have

Gain(s) >
1

1− λ
Gain(t) (20)

□

The above definition shows that, as λ = |D′|
|Dtr| decreases, the splits are more robust, leading to a

reduction in the frequency of retraining. In conclusion, decreasing either α or λ makes the split more
robust, reducing the change occurrence in the best split, and it can significantly reduce the online
learning time.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

E Update w/o Touching Training Data

Maintain Best Split. The split gain is calculated by Eq. equation 5. There are three terms: the gain
for the left-child, the gain for the right-child, and subtracting the gain before the split. Each gain is

computed as the sum of the squared first derivatives
([∑N

i=1 (ri,k − pi,k)
]2)

divided by the sum of

the second derivatives
(∑N

i=1 pi,k(1− pi,k)
)

for all the data in the node. To compute these terms,
it is necessary to iterate over all the data that reaches the current node. The most straightforward
way for online learning to obtain the split gain is to directly compute these three terms for dataset
Dtr ± D′. In the worst case, which is the root node, the computation cost for gain computing is
|Dtr|+ |Din| or |Dtr| − |Dde| because the root node contains all the training data.

We calculate the split gain for Dtr ± D′ without touching the Dtr. In this optimization, during
the training process, we store the Srp =

∑N
i=1 (ri,k − pi,k) and Spp =

∑N
i=1 pi,k(1 − pi,k) for the

training dataset Dtr for every potential split. In incremental learning process, we can only calculate
the S′

rp and S′
pp for Din. To obtain the new split gain based on Eq. equation 5, we add it to the stored

Srp and Spp. Similarly, for decremental learning, we can only calculate the S′
rp and S′

pp for Dde to
obtain the new split gain. In this manner, we successfully avoid the original training data for split
gain computation and reduce the computation cost from O(Dtr ±D′) to O(D′).

Recomputing Prediction Value. For the terminal node (leaf node), if there are no data of D′

reaching this node, we can skip this node and do not need to change the prediction value. Otherwise,
we have to calculate a prediction value f as shown in line 5 of the Algorithm 1. Similar to split
gain computing, it is required to iterate over all the data that reaches this terminal node. Here we
store Srp =

∑
xi∈Rj,k,m

(ri,k − pi,k) and Spp =
∑

xi∈Rj,k,m
(1− pi,k) pi,k for training dataset Dtr

in training process. Thus, in online learning process, we only need to calculate S′
rp and S′

pp for online
learning dataset D′.

Incremental Update for Derivatives. After conducting online learning on a tree, we need to update
the derivatives and residuals for learning the next tree. From the perspective of GBDT training, each
tree in the ensemble is built using the residuals learned from the trees constructed in all previous
iterations: Modifying one of the trees affects all the subsequent trees. A trivial method is to update
the derivatives and residuals for all data instances of Dtr ±D′ in every tree, but it is time-consuming.

When performing online learning on a tree, not all terminal nodes will be changed—some terminal
nodes remain unchanged because there is no data from D′ that reaches these terminal nodes. Note
that our goal is to find a model close to the model retraining from scratch. In the online learning
scenario, all trees have already been well-trained on Dtr. Intuitively, the derivative changes for data
in those unchanged terminal nodes should be minimal. Therefore, as shown in Figure 1(d), we only
update the derivatives for those data reaching the changed terminal nodes. For example, the terminal
node with a prediction value of −0.1252 does not meet any data in D′ in both incremental learning
and decremental learning, so the prediction value of this node does not need to be changed. Therefore,
we do not need to update the derivatives of the data {1, 6, 14, 16, 17} reaching this terminal node.

F Model Functional Similarity

As mentioned in Section 2.2, the goal of the framework is to find a model close to the model
retrained from scratch. The model functional similarity is a metric to evaluate how close the model
learned by online learning and the one retrained from scratch. We show the model functional
similarity for incremental learning and decremental learning in Table 7. C2W refers to the ratio
of testing instances that are correctly predicted during retraining but are wrongly predicted after
decremental learning. Similarly, W2C represents the testing instances that are wrongly predicted
during retraining but are correctly predicted after decremental learning. The W2W column indicates
the cases where the two models have different wrong predictions. For binary labels, W2W is
not applicable. In the |D′| column, 1 indicates that only add/remove one instance, while 0.1%
corresponds to |D′| = 0.1% × |Dtr|. We present ϕ to evaluate the model functional similarity
(adapted from the model functionality Adi et al. (2018)), indicating the leakage of online learning:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 7: Model functionality change after online learning.

Dataset Metric iGBDT (Incr.) Ours (Incr.) DeltaBoost (Decr.) MUinGBDT (Decr.) Ours (Decr.)
Add 1 Add 0.1% Add 1 Add 0.1% Del 1 Del 0.1% Del 1 Del 0.1% Del 1 Del 0.1%

Adult
C2W ↓ 0.40% 0.93% 0.17% 0.61% 1.17% 1.87% 0.63% 0.51% 0.55% 0.51%
W2C ↓ 0.27% 0.80% 0.18% 0.56% 0.72% 1.28% 0.60% 0.73% 0.56% 0.68%
ϕ ↑ 99.34% 98.27% 99.66% 98.83% 98.11% 96.85% 98.77% 98.76% 98.88% 98.82%

CreditInfo
C2W ↓ 0.21% 0.40% 0.16% 0.30% 0.58% 0.92% 0.10% 0.21% 0.10% 0.18%
W2C ↓ 0.18% 0.40% 0.15% 0.29% 0.08% 0.13% 0.08% 0.23% 0.08% 0.19%
ϕ ↑ 99.60% 99.20% 99.70% 99.41% 99.34% 98.96% 99.82% 99.56% 99.82% 99.63%

SUSY
C2W ↓ 0.25% 0.82% 0.22% 0.74% 3.50% 3.40% 0% 0.78% 0% 0.73%
W2C ↓ 0.24% 0.78% 0.21% 0.73% 1.34% 1.14% 0% 0.79% 0% 0.76%
ϕ ↑ 99.51% 98.40% 99.58% 98.53% 95.16% 95.46% 100% 98.43% 100% 98.51%

HIGGS
C2W ↓ 0.00% 2.52% 0% 2.64%

OOM
0% 1.92% 0% 1.92%

W2C ↓ 0.00% 2.56% 0% 2.63% 0% 1.93% 0% 1.92%
ϕ ↑ 100.00% 94.92% 100% 94.73% 100% 96.14% 100% 96.17%

Optdigits
C2W ↓ 0.33% 0.56% 0.17% 0.28% 0.22% 0.56% 0.61% 0.45% 0.45% 0.61%
W2C ↓ 0.56% 0.61% 0.28% 0.50% 0.28% 0.22% 0.22% 0.33% 0.28% 0.39%
W2W ↓ 0.06% 0.11% 0.06% 0% 0.17% 0.11% 0.06% 0.11% 0.06% 0.06%
ϕ ↑ 99.05% 98.72% 99.50% 99.22% 99.33% 99.11% 99.11% 99.11% 99.22% 98.94%

Pendigits
C2W ↓ 0.26% 0.83% 0.14% 0.17% 0.17% 0.09% 0.29% 0.26% 0.26% 0.23%
W2C ↓ 0.14% 0.43% 0.11% 0.17% 0.26% 0.37% 0.17% 0.20% 0.23% 0.20%
W2W ↓ 0.06% 0.20% 0.06% 0.03% 0.03% 0.09% 0.06% 0.09% 0.03% 0.09%
ϕ ↑ 99.54% 98.54% 99.69% 99.63% 99.54% 99.46% 99.49% 99.46% 99.49% 99.49%

Letter
C2W ↓ 0.74% 1.62% 0.64% 0.68% 0.52% 0.80% 1.24% 1.36% 1.26% 1.40%
W2C ↓ 0.82% 0.88% 0.78% 0.80% 0.58% 0.62% 1.06% 1.42% 1.06% 1.38%
W2W ↓ 0.28% 0.44% 0.30% 0.30% 0.20% 0.40% 0.44% 0.24% 0.42% 0.28%
ϕ ↑ 98.16% 97.06% 98.28% 98.22% 98.70% 98.18% 97.26% 96.98% 97.26% 96.94%

Covtype
C2W ↓ 0.98% 2.37% 1.78% 1.78% 0.11% 0.61% 1.94% 2.04% 1.94% 1.96%
W2C ↓ 1.15% 2.10% 1.77% 1.77% 0.14% 0.70% 1.80% 1.76% 1.80% 1.71%
W2W ↓ 0.04% 0.09% 0.07% 0.07% 0.02% 0.03% 0.06% 0.07% 0.06% 0.07%
ϕ ↑ 97.83% 95.44% 96.38% 96.38% 99.74% 98.66% 96.19% 96.13% 96.20% 96.26%

Definition 3 (Functional Similarity) Given an input space X , a model T , a model T̂ online learned
from T , and a dataset D = {yi,ai} ∈ X , the functional similarity ϕ between model T and T̂ is:
ϕ = 1− (rw2w + rw2c + rc2w) ,where ϕ is the leakage of learning.

Due to the size limitations of the table, we have omitted OnlineGB from this table because its
learning duration is excessively long, making it relatively meaningless compared to other methods.
We compared iGBDT in adding 1 and 0.1% data instances, and DeltaBoost and MUinGBDT in
deleting data. As shown in Table 7, we have a comparable model functionality in adding/deleting
both 1 and 0.1%. In most cases, our online learned model reaches 98% similarity in both incremental
learning and decremental learning.

G Backdoor Attacking

Experimental Setup. In this evaluation, we randomly select a subset of the training dataset, and set
first a few features to a specific value (trigger, e.g. 0 or greatest feature value) on these data instances,
and then set the label to a target label (e.g., 0). In the testing dataset, we set all labels to the target
label to compose a backdoor test dataset. In this setting, if the model has correctly learned the trigger
and target label, it should achieve a high accuracy on backdoor test dataset.

H Membership Inference Attack

Experimental Setup. For over-fitting the model, we set the number of iteration M to be 5, and split
each dataset into three subsets: base dataset Dbase (49.9%), online dataset D′ (0.1%), and test dataset
Dtest (50%). We first train a base model on Dbase +D′. For this base model, the MIA should identify
the data in D′ as part of the training dataset. Next, we perform decremental learning to delete D′

from the base model. After this process, the MIA should no longer identify the data in D′ as part
of the training dataset. Finally, we add D′ back to the model using incremental learning. Following
this, the MIA should once again identify the data in D′ as part of the training dataset.

MIA Model. By following the existing MIA methods Yan et al. (2023); Li et al. (2022); Carlini
et al. (2022), we train an MIA model (binary classification) on the prediction probabilities of each
class. Since the GBDT model is overfitted, the probability distributions of the training data should
substantially differ from those of the unseen data (test data). Therefore, the MIA model can predict

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

whether a data sample is part of the training dataset based on its probability distribution. We sample
50% of Dbase and 50% of Dtest to train the MIA model. Then remaining 50% of Dbase, the entire D′

and 50% of Dtest are used for evaluation.

I Extremely High-dimensional Datasets

We include two dataset with more features / high dimensional: RCV1 and News20, which have
47,236 and 1,355,191 features respectively. For News20 dataset, the substantial high dimension
causes segmentation fault on CatBoost and GPU out of memory (OOM) on thunderGBM. We omit
the results from the other incremental/decremental method because infeasible running time and
massive occupied memory. Table 9 shows the comparison of the training time and memory usage
for our methods and other popular methods. Table 10 illustrates the incremental and decremental
learning time of our method for two high dimensional dataset.

Table 8: Dataset specifications.
Dataset # Train # Test # Dim # Class
News20 5,000 14,996 1,355,191 2
RCV1 20,242 677,399 47,236 2

Table 9: Comparison of the training time consumption and
memory usage for RCV1 and News20.

Dataset XGBoost LightGBM CatBoost ThunderGMB
(GPU) Ours

Training Time (s) RCV1 459.75 59.63 335.70 49.44 295.43
News20 637.02 28.42 Seg. Fault OOM 225.73

Memory (MB) RCV1 3,008.28 2,922.32 263.63 1,913.05 185,851.72
News20 3,061.99 2,509.29 Seg. Fault OOM 128,131.43

Table 10: The incremental/decremental learning time of the proposed method for RCV1 and News20.
(ms, per tree, incre./decre.)

Dataset |D′|
Incremental Learning Decremental Learning

Learning Time
(Ours)

Speedup v.s. Learning Time
(Ours)

Speedup v.s.

XGBoost LightGBM CatBoost ThunderGBM
(GPU) XGBoost LightGBM CatBoost ThunderGBM

(GPU)

RCV1
1 21.431 214.5x 27.8x 156.6x 23.1x 19.268 238.6x 30.9x 174.2x 25.7x

0.1% 37.707 121.9x 15.8x 89.0x 13.1x 29.232 157.3x 20.4x 114.8x 16.9x
0.5% 39.428 116.6x 15.1x 85.1x 12.5x 48.218 95.3x 12.4x 69.6x 10.3x
1% 43.901 104.7x 13.6x 76.5x 11.3x 70.666 65.1x 8.4x 47.5x 7.0x

News20
1 11.76 541.7x 24.2x - - 7.718 825.4x 36.8x - -

0.1% 17.113 372.2x 16.6x - - 12.363 515.3x 23.0x - -
0.5% 22.261 286.2x 12.8x - - 30.076 211.8x 9.5x - -
1% 23.469 271.4x 12.1x - - 37.825 168.4x 7.5x - -

Table 11: The approximation error of leave’s score between the model after addition/delection and
the model retrained from scratch. Appr. Error =

∑
all trees

∑
all leaves abs(padd/del−pretrain)∑

all trees
∑

all leaves abs(pretrain)
, where padd/del is the

leave’s score after adding/deleting, pretrain is the leave’s score of the model retraining from scratch.

Adult CreditInfo SUSY HIGGS Optdigits Pendigits Letter Covtype
Add 1 2.42% 1.18% 0.24% 0.00% 2.69% 2.23% 1.31% 0.17%
Add 0.1% 4.59% 6.57% 2.73% 1.63% 3.48% 4.12% 5.78% 9.47%
Add 0.5% 5.10% 7.44% 2.27% 3.05% 5.12% 4.50% 10.45% 11.68%
Add 1% 5.30% 7.43% 3.07% 3.89% 5.92% 4.70% 11.75% 10.01%
Add 10% 4.25% 8.33% 1.07% 1.73% 4.64% 4.42% 13.34% 4.96%
Add 50% 3.55% 0.00% 0.00% 1.51% 0.00% 0.00% 6.26% 0.01%
Add 80% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Del 1 1.21% 0.00% 0.00% 0.00% 0.01% 0.19% 0.57% 0.28%
Del 0.1% 3.63% 3.80% 0.79% 0.72% 1.40% 0.50% 1.88% 4.31%
Del 0.5% 3.58% 3.76% 0.18% 0.56% 2.52% 1.15% 3.49% 6.04%
Del 1% 3.40% 3.16% 0.15% 0.65% 3.07% 1.73% 3.74% 4.48%
Del 10% 0.27% 0.39% 0.00% 0.16% 1.67% 0.97% 1.35% 0.46%
Del 50% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Del 80% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

8
7
.2

3

9
3
.7

1

8
0
.1

3

7
2
.5

7

9
6
.9

3

9
7
.0

5

9
5
.8

2

8
2
.9

7

8
7
.2

5

9
3
.7

4

8
0
.1

4

7
2
.6

3

9
7
.6

6

9
7
.0

2

9
5
.7

4

8
3
.1

1

8
7
.3

8

9
3
.7

5

8
0
.1

4

7
2
.5

6

9
7
.1

6

9
7
.1

9

9
5
.7

6

8
3
.2

68
7
.2

1

9
3
.7

1

8
0
.1

2

7
2
.6

0

9
7
.1

6

9
7
.1

1

9
6
.1

6

8
3
.0

4

8
7
.4

2

9
3
.7

0

8
0
.1

1

7
2
.6

1

9
7
.3

8

9
7
.0

2

9
6
.0

4

8
2
.9

9

8
7
.1

7

9
3
.7

2

8
0
.0

9

7
2
.6

3

9
7
.1

0

9
7
.1

4

9
5
.9

8

8
2
.8

4

8
7
.3

0

9
3
.7

2

8
0
.1

2

7
2
.5

1

9
7
.2

1

9
7
.0

5

9
5
.7

4

8
3
.1

4

Adult CreditInfo SUSY HIGGS Optdigits Pendigits Letter Covtype
60

65

70

75

80

85

90

95

100

T
e
s
t
A

c
c
 (

%
)

Train 100%

Train 5% + Add 95%

Train 10% + Add 90%

Train 20% + Add 80%

Train 50% + Add 50%

Train 95% + Add 5%

Train 99% + Add 1%

Figure 7: Different fine-tuning ratio.

J Approximation Error of Leaf Scores

As mentioned in Section 3.2, outdated derivatives are used in gain computation to reduce the cost of
updating derivatives. However, these outdated derivatives are only applied to nodes where the best
split remains unchanged. When a sub-tree requires retraining, the derivatives are updated. Therefore,
using outdated derivatives typically occurs when |D′| is small, as fewer data modifications result
in fewer changes to the best splits. Conversely, when more data is added or deleted, |D′| becomes
larger, increasing the likelihood of changes to the best splits in some nodes. As a result, the sub-trees
are retrained, and the derivatives for the data reaching those nodes are updated.

To confirm the effect of using outdated derivatives during online learning, we report the result for the
approximation error of leaf scores in Table 11. Appr. Error =

∑
all trees

∑
all leaves abs(padd/del−pretrain)∑

all trees
∑

all leaves abs(pretrain)
, where

padd/del is the leaf score after adding/deleting, and pretrain is the leaf score of the model retraining from
scratch. Please note that the retrained model has the same structure and split in all nodes of all trees
as the model after adding/deleting, and we only update the latest residual and hessian to calculate the
latest leaf score. When the number of added/deleted data increases, the error will increase because
our method uses outdated derivatives if the best splits remain unchanged. When the number of
add/delete is large enough, almost all nodes in the model will be retrained because their best splits
have changed, so the error becomes 0.

K Ablation Study

20 40 60 80 100

Iteration

0

0.5

1

1.5

2

2.5

3

A
v
g
 T

im
e
 (

m
s
/p

e
r

tr
e
e
)

Pendigits (Incr.) Sampling Rate: 5%

Sampling Rate: 10%

Sampling Rate: 50%

Sampling Rate: 100%

20 40 60 80 100

Iteration

0

0.5

1

1.5

2

2.5

3

A
v
g
 T

im
e
 (

m
s
/p

e
r

tr
e
e
)

Pendigits (Decr.) Sampling Rate: 5%

Sampling Rate: 10%

Sampling Rate: 50%

Sampling Rate: 100%

20 40 60 80 100

Iteration

0

200

400

600

800

1000

1200

1400

#
 R

e
tr

a
in

e
d
 N

o
d
e
s

Pendigits (Incr.)

Sampling Rate: 5%

Sampling Rate: 10%

Sampling Rate: 50%

Sampling Rate: 100%

20 40 60 80 100

Iteration

0

200

400

600

800

1000

1200

1400

#
 R

e
tr

a
in

e
d
 N

o
d
e
s

Pendigits (Decr.)

Sampling Rate: 5%

Sampling Rate: 10%

Sampling Rate: 50%

Sampling Rate: 100%

9
7

.2
5

9
7

.0
5

9
6

.6
8

9
6

.4
2

9
7

.2
8

9
7

.1
1

9
6

.5
9

9
6

.4
8

Pendigits (Incr.)

5% 10% 50% 100%

Sampling Rate

60

70

80

90

100

T
e
s
t
A

c
c
 (

%
)

Train

Add 1.0%

9
7

.3
9

9
7

.0
8

9
6

.5
9

9
6

.4
8

9
7

.2
5

9
6

.9
9

9
6

.6
2

9
6

.4
2

Pendigits (Decr.)

5% 10% 50% 100%

Sampling Rate

60

70

80

90

100

T
e
s
t
A

c
c
 (

%
)

Train

Del 1.0%

Figure 6: The impact of sampling rate on time,
number of retrain nodes, and test accuracy during
incremental/decremental learning.

In this section, we discuss the impact of different
settings on the performance of our framework,
e.g., time and accuracy.

Size of Online Dataset |D′|. Different sizes
of online learning dataset D′ can have varying
impacts on both the accuracy and time of the
online learning process. Figure 7 shows the im-
pact of different data addition settings on test
accuracy. Across all datasets, our framework
achieved nearly the same test accuracy, which
validates the effectiveness of our online learn-
ing framework. Decremental learning also has
similar results.

Figure 8 shows the influence of |Din| on in-
cremental/decremental learning time. We only
present the experiment on 2 datasets each for
incremental/decremental learning, due to the
results on other datasets show a similar trend.
These results show that the online learning time

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

20 40 60 80 100

Iteration

0

5

10

15

20

25

A
v
g
 T

im
e
 (

m
s
/p

e
r

tr
e
e
)

Adult Add 1

Add 0.1%

Add 0.5%

Add 1.0%

Train

20 40 60 80 100

Iteration

0

0.5

1

1.5

2

2.5

3

A
v
g
 T

im
e
 (

m
s
/p

e
r

tr
e
e
)

Letter

Add 1

Add 0.1%

Add 0.5%

Add 1.0%

Train

20 40 60 80 100

Iteration

0

20

40

60

80

100

120

A
v
g

 T
im

e
 (

m
s
/p

e
r

tr
e

e
)

Covtype

Del 1

Del 0.1%

Del 0.5%

Del 1.0%

Train

20 40 60 80 100

Iteration

0

100

200

300

400

500

600

700

800

A
v
g
 T

im
e
 (

m
s
/p

e
r

tr
e
e
)

SUSY

Del 1

Del 0.1%

Del 0.5%

Del 1.0%

Train

Figure 8: The impact of |D′| on average learn-
ing time in incremental/decremental learning
(top/bottom row).

20 40 60 80 100

Iteration

0

200

400

600

800

1000

1200

#
 R

e
tr

a
in

e
d
 N

o
d
e
s

Adult

Add 1

Add 0.1%

Add 0.5%

Add 1.0%

20 40 60 80 100

Iteration

0

50

100

150

200

250

300

#
 R

e
tr

a
in

e
d
 N

o
d
e
s

Letter

Add 1

Add 0.1%

Add 0.5%

Add 1.0%

20 40 60 80 100

Iteration

0

500

1000

1500

#
 R

e
tr

a
in

e
d

 N
o

d
e

s

Covtype

Del 1

Del 0.1%

Del 0.5%

Del 1.0%

20 40 60 80 100

Iteration

0

500

1000

1500

2000

#
 R

e
tr

a
in

e
d

 N
o

d
e

s

SUSY

Del 1

Del 0.1%

Del 0.5%

Del 1.0%

Figure 9: The impact of |D′| on the accumulated
number of retrained nodes for each iteration in
incr./decr. learning (top/bottom row).

0 0.1 0.2 0.3 0.4

Robustness Tolerance

0

5

10

15

A
v
g

 T
im

e
 (

m
s
/p

e
r

tr
e

e
)

Incr. Learning

Adult

CreditInfo

Optdigits

Pendigits

Letter

0 0.1 0.2 0.3 0.4

Robustness Tolerance

60

70

80

90

100

T
e

s
t

A
c
c
 (

%
)

Incr. Learning

Adult

CreditInfo

Optdigits

Pendigits

Letter

0 0.1 0.2 0.3 0.4

Robustness Tolerance

92

94

96

98

100

F
u
n
c
ti
o
n
a
l
S

im
ila

ri
ty

 (
%

)

Incr. Learning

Adult

CreditInfo

Optdigits

Pendigits

Letter

Figure 10: The impact of split robustness tolerance on the learning time, test accuracy, and model
functional similarity ϕ in incremental learning.

increase when the size of Din increase. The reason is straightforward: as the size of Din increases,
the model undergoes more significant changes, resulting in unstable splits. This leads to a greater
number of sub-trees that require retraining, ultimately consuming more time. Figure 9 provides
evidence to support this observation. It illustrates the accumulated number of retrained nodes – how
many nodes need to be retrained. As the size of Din increases, the number of nodes that need to be
retrained also increases. This leads to longer learning times.

Split Random Sampling. Split random sampling is designed to reduce the frequency of retraining
by limiting the number of splits. As mentioned in Section 3.3, a smaller sampling rate leads to
more stable splits, resulting in fewer nodes that require retraining and shorter online learning time.
Figure 6 shows the impact of sampling rate α in split random sampling. The figures at the top
demonstrate that when the sample rate is reduced, a smaller number of split candidates are taken into
account, leading to an expected decrease in online learning time. However, there is no significant
difference between 5% and 10% in the Pendigits dataset. The figures in the second row show the
accumulated number of retrained nodes. It also shows that as the sample rate decreases, the splits
become more stable, resulting in fewer nodes that require retraining. In Pendigits, since the number
of nodes that require retraining is similar for 5% and 10%, it results in a minimal difference in the
online learning time, as mentioned above. However, interestingly, for example in 100% sampling
rate, although there are fewer retraining in incremental learning, it take more time during learning
process, because incremental learning does not have derivatives of the data to be added. Therefore,
more time is needed to calculate their derivatives. On the contrary, decremental learning can reuse
the stored derivatives of the training process, resulting in less time. The bottom row shows the
impact of the sampling rate on the test accuracy. The test accuracy remains almost identical across
all sampling rates. Similar results can be observed in other datasets.

Split Robustness Tolerance. Split robustness tolerance aims to enhance the robustness of a split
in online learning. As the observation in Figure 2, most best splits will be changed to second-best.
Although the best split may change, we can avoid frequent retraining if we allow the split to vary

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

128 256 512 1024 2048 4096

Bins

0

20

40

60

80

100

120

S
p
e
e
d
u
p Incr. Learning

Adult

CreditInfo

SUSY

HIGGS

Optdigits

Pendigits

Letter

Covtype

128 256 512 1024 2048 4096

Bins

60

70

80

90

100

T
e

s
t

A
c
c
 (

%
)

Incr. Learning

Adult

CreditInfo

SUSY

HIGGS

Optdigits

Pendigits

Letter

Covtype

4 20 60 100 140 180

Leaves

0

50

100

150

S
p
e
e
d
u
p

Incr. Learning

Adult

CreditInfo

SUSY

HIGGS

Optdigits

Pendigits

Letter

Covtype

4 20 60 100 140 180

Leaves

60

70

80

90

100

T
e
s
t
A

c
c
 (

%
)

Incr. Learning

Adult

CreditInfo

SUSY

HIGGS

Optdigits

Pendigits

Letter

Covtype

Figure 11: The impact of the # bins and # leaves on the acceleration factor of incremental learning
(adding 1 data point).

within a certain range. For a node with ⌈αB⌉ potential splits, if the current split remains within the
top ⌈σαB⌉, we will continue using it. Here σ (0 ≤ σ ≤ 1) is the robustness tolerance. Figure 10
illustrates the impact of split robustness tolerance σ on learning time, test accuracy, and functional
similarity ϕ in incremental learning. To obtain more pronounced experimental results, in this
experiment, we set |D′| = 1%× |Dtr|. The figure on the left shows that the learning time decreases
as the tolerance level increases. Although test accuracy changes only slightly (middle figure), the
functional similarity ϕ drops significantly (right figure). For example, in the Letter dataset, ϕ drops
about 5% from σ = 0 to σ = 0.5. This demonstrates that higher tolerance levels result in faster
learning by avoiding retraining, but with a trade-off of decreased functional similarity. Therefore, we
suggest σ should not be greater than 0.15. Similar results can be obtained on decremental learning.

Number of Bins and Leaves. In online learning procedure, the number of bins and leaves also affects
the online learning time. We report the impact of varying the number of bins (128, 256, · · · , 4096)
and leaves (4, 10, 20, 40, 60, · · · , 200) on the acceleration factor of incremental learning (adding 1
data point) in Figure 11. The number of bins has few effect on both accuracy and the speed of
online learning as shown in the top row of the figures. In terms of the number of leaves, when it
exceeds 20, the accuracy tends to stabilize, except for Covtype, as shown in the bottom row of the
figures. For smaller datasets (Adult, Optdigits, Pendigits, Letter), the more the number of leaves,
the lower the acceleration factor for incremental learning. However, for larger datasets (CreditInfo,
SUSY, HIGGS, Covtype), the more the number of leaves, the greater the acceleration is. Especially
for HIGGS, the largest dataset in our experiments, the acceleration can be more than 100x.

23

	Introduction
	Online GBDT Framework
	GBDT Preliminary
	Problem Setting
	Framework Overview

	Optimizing Learning Time
	Update without Touching Training Data
	Adaptive Lazy Update for Derivatives
	Split Candidates Sampling
	Adaptive Split Robustness Tolerance

	Experimental Evaluation
	Training Time and Memory Overhead
	Online Learning Time
	Test Error Rate
	Batch Addition & Removal
	Data Addition with More Classes
	Verifying by Backdoor Attacking
	Verifying by Membership Inference Attack
	Additional Evaluations

	Related Work
	Conclusion
	Feature Discretization.
	Experiment Setting
	Framework Overview
	Split Candidates Sampling
	Update w/o Touching Training Data
	Model Functional Similarity
	Backdoor Attacking
	Membership Inference Attack
	Extremely High-dimensional Datasets
	Approximation Error of Leaf Scores
	Ablation Study

