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Abstract

Gradient Boosting Decision Tree (GBDT) is one of the most popular machine
learning models in various applications. But in the traditional settings, all data
should be simultaneously accessed in the training procedure: it does not allow to
add or delete any data instances after training. In this paper, we propose a novel
online learning framework for GBDT supporting both incremental and decremental
learning. To the best of our knowledge, this is the first work that considers an
in-place unified incremental and decremental learning on GBDT. To reduce the
learning cost, we present a collection of optimizations for our framework, so that
it can add or delete a small fraction of data on the fly. We theoretically show the
relationship between the hyper-parameters of the proposed optimizations, which
enables trading off accuracy and cost on incremental and decremental learning. The
backdoor attack results show that our framework can successfully inject and remove
backdoor in a well-trained model using incremental and decremental learning, and
the empirical results on public datasets confirm the effectiveness and efficiency of
our proposed online learning framework and optimizations.

1 Introduction
Gradient Boosting Decision Tree (GBDT) has demonstrated outstanding performance across a wide
range of applications Sudakov et al. (2019); Biau et al. (2019); Rao et al. (2019); Liu & Yu (2007).
It outperforms deep learning models on many datasets in accuracy and provides interpretability for
the trained models. However, in traditional setting, all data is simultaneously accessed in training
procedure, which makes its application scenarios limited.

Online Learning. Online learning is a machine learning approach where data is sequentially
available and used to update the predictor for the latest data Bertsekas (2015); Parisi et al. (2019);
Hazan (2016); Oza (2005). Generally, online learning is expected to possess the capabilities of both
incremental learning (adding training data) and decremental learning (removing a subset of training
data). This allows the model to dynamically adapt to the latest data while removing outdated data.

Incremental Learning. There are some challenges for incremental learning in GBDT due to its
natural properties Friedman et al. (2000). Traditional GBDT trains over an entire dataset, and each
node is trained on the data reaching it to achieve the best split for optimal accuracy. Adding unseen
data may affect node splitting results, potentially leading to catastrophic performance changes.

Moreover, training gradient boosting models involves creating trees for each iteration, with tree fitting
based on the residual of previous iterations. More iterations create more trees, increasing model
sizes and hurting inference throughput. This also prohibits tasks like fine-tuning or transfer learning
without substantially increasing model sizes.

Recent studies have explored incremental learning on classic machine learning, such as SVM, random
forest, and gradient boosting. Shilton et al. (2005); Laskov et al. (2006); Fine & Scheinberg (2001)
proposed methods to maintain SVM optimality after adding a few training vectors. Wang et al. (2009)
presented an incremental random forest for online learning with small streaming data. Beygelzimer
et al. (2015a) extended gradient boosting theory for regression to online learning. Zhang et al. (2019)
proposed iGBDT for incremental learning by “lazily” updating, but it may require retraining many
trees when the new data size is large. It is important to note that prior studies on online gradient
boosting Beygelzimer et al. (2015a); Chen et al. (2012); Beygelzimer et al. (2015b) and incremental
gradient boosting Zhang et al. (2019); Hu et al. (2017) do not support decremental learning.
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Algorithm 1 Robust LogitBoost Algorithm.
1: Fi,k = 0, pi,k = 1

K
, k = 0 to K − 1, i = 1 to N

2: for m = 0 to M − 1 do
3: for k = 0 to K − 1 do
4: D̂tr = {ri,k − pi,k, xi}Ni=1

5: wi,k = pi,k(1− pi,k)

6: {Rj,k,m}Jj=1 = J-terminal node regression
tree from D̂tr, with weights wi,k, using the
tree split gain formula Eq. equation 5.

7: βj,k,m = K−1
K

∑
xi∈Rj,k,m

ri,k−pi,k∑
xi∈Rj,k,m

(1−pi,k)pi,k

8: fi,k =
∑J

j=1 βj,k,m1xi∈Rj,k,m , Fi,k =
Fi,k + νfi,k

9: end for
10: pi,k = exp(Fi,k)/

∑K
s=1 exp(Fi,s)

11: end for

Algorithm 2 Online Learning in Gradient Boosting
1. D′ = Din if incremental learning else Dde
2. for m = 0 to M − 1 do
3. for k = 0 to K − 1 do
4. D̂′ = {ri,k − pi,k, xi}|D

′|
i=1

5. Compute wi,k = pi,k(1− pi,k) for D̂′ using Fi,k

6. Compute ri,k for D̂′ using Fi,k

7. if incremental learning then
8.

{
R̂j,k,m

}J

j=1
= incr({Rj,k,m}Jj=1, D̂′, wi,k, ri,k)

9. else
10.

{
R̂j,k,m

}J

j=1
= decr({Rj,k,m}Jj=1, D̂′, wi,k, ri,k)

11. end if
12. Update Fi,k with

{
R̂j,k,m

}J

j=1

13. end for
14. end for

Decremental Learning. Decremental learning is more complex and less studied than incremental
learning. Cauwenberghs & Poggio (2000) presented an online recursive algorithm for training SVM
with an efficient decremental learning method. Chen et al. (2019) proposed online incremental and
decremental learning algorithms based on variable SVM, leveraging pre-calculated results. Brophy &
Lowd (2021) and Brophy & Lowd (2020) provided methods for data addition and removal in random
forests. Schelter et al. (2021) proposed robust tree node split criteria and alternative splits for low-
latency unlearning. Many works have also studied decremental learning in deep neural networks
(DNN). Bourtoule et al. (2021) introduced a framework that accelerates decremental learning by
constraining individual data points’ impact during training.

While online learning has emerged as a popular topic recently, it has been barely investigated on
GBDT. Wu et al. (2023); Lin et al. (2023) are among the latest studies in decremental learning
for GBDT. Wu et al. (2023) presented DeltaBoost, a GBDT-like model enabling data deletion.
DeltaBoost uses bagging to divide the training dataset into disjoint sub-datasets, training each
iteration’s tree on a different sub-dataset, reducing tree dependency. However, this simplification
may impact model performance. Lin et al. (2023) proposed an unlearning framework in GBDT
without simplification, unlearning specific data using recorded auxiliary information from training.
It optimizes to reduce unlearning time, making it faster than retraining from scratch, but introduces
many hyper-parameters and performs poorly on extremely large datasets.

In this paper, we propose a novel incremental and decremental learning framework for GBDT. To
the best of our knowledge, this is the first work that considers in-place online incremental and
decremental learning at the same time on GBDT. The incremental and decremental learning in this
work applies a unified notion, which enables convenient implementation.

Challenges. We identify three major challenges of in-place online learning for GBDT: (1) Unlike
batch training of deep neural networks (DNN), more iterations in GBDT create more trees and
parameters, leading to unbounded memory and computation costs in online learning. In-place
learning on originally constructed trees is necessary for practicality. (2) Gradient-based methods
in DNN add and subtract gradients for incremental and decremental learning, but GBDT is not
differentiable. (3) GBDT depends on the residual of the previous tree, unlike independent iterations in
random forests. Changing one tree requires modifying all subsequent trees, complicating incremental
and decremental learning.

Contributions. (1) We introduce a novel in-place online learning framework for gradient boost-
ing models supporting incremental and decremental learning, extensible to fine-tuning and transfer
learning. (2) We present optimizations to reduce the cost of incremental and decremental learning,
making adding or deleting a small data fraction substantially faster than retraining. (3) We theo-
retically show the relationship among optimization hyper-parameters, enabling trade-offs between
accuracy and cost. (4) We experimentally evaluate our framework on public datasets, confirming its
effectiveness and efficiency. (5) We release an open-source implementation of our framework1.

2 Online GBDT Framework
2.1 GBDT Preliminary
Gradient Boosting Decision Tree (GBDT) is an powerful ensemble technique that combines multiple
decision tree to produce an accurate predictive model (Friedman et al., 2000; Friedman, 2001).

1 https://anonymous.4open.science/r/In-PlaceOnlineGBDT
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𝑑 = 1 𝑑 = 0
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𝐷!" = {20, 21, 22, 23}
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(b) 𝐷#$ = {2, 7,11,13}

Dec.: {0, 3, 7, 10, 15}
Pending Sub-tree

Pending Sub-tree

Split Candidates

Credit < 24, Gain: 17.482

…

Retrain Credit < 24

Income < 35

Auto < 17

0.1193 -0.0274

-0.0284

0.2938

{2, 4, 5, 8, 9, 11, 12, 13, 18, 19}

Best Split has shifted

Incremental Learning Decremental Learning
① Recompute gain value

Income < 5, Gain: 19.345

Split Candidates

…

Retrain Income < 5

Auto < 18 Credit < 9

-0.2831 0.8364Loan < 23 -0.6238

{2, 4, 5, 8, 9, 11, 12, 13, 18, 19, 20, 21, 23}

Best Split has shifted

-0.5639 0.7362

② Replace the original sub-tree(c)

(d) Derivatives:

Update the derivatives of {0, 3, 4, 5, 8, 9, 10, 12, 15, 18, 19}

3 4 8 9 18 1910 155 120

Decremental Learning:

2 3 4 8 9 11 13 1910 155 120 20 21 22 237 18

Incremental Learning:

Update the derivatives of {0, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 18, 19, 20, 21, 22, 23}

Incremental Learning
Decremental Learning

Figure 1: An example for the incremental learning and decremental learning procedure in the
proposed framework. (a) For the node of Loan < 31, the current split is still the best after online
learning. Thus, the split does not need to change. (b) An already well-trained tree in Dtr. (c) For
the node of Auto < 57, the best split has shifted after online learning. (d) Incremental update for
derivatives – only update the derivatives for those data reaching the changed terminal nodes.

Given a dataset Dtr = {yi,xi}Ni=1, where N is the size of training dataset, and xi indicates the ith

data vector and yi ∈ {0, 1, ...,K − 1} denotes the label for the ith data point. For a GBDT model
with M iteration, the probability pi,k for ith data and class k is:

pi,k = Pr (yi = k|xi) =
eFi,k(xi)∑K
s=1 e

Fi,s(xi)
, i = 1, 2, ..., N (1)

where F is a combination of M terms:
F (M)(x) =

M−1∑
m=0

ρmh(x;am) (2)

where h(x;am) is a regression tree, and ρm and am denote the tree parameters that learned by
minimizing the negative log-likelihood:

L =

N∑
i=1

Li, Li = −
K−1∑
k=0

ri,k log pi,k (3)

where ri,k =

{
1, if yi = k

0, otherwise
. The training procedures require calculating the derivatives of loss

function L with respect to Fi,k:
gi,k =

∂Li

∂Fi,k
= − (ri,k − pi,k) , hi,k =

∂2Li

∂F 2
i,k

= pi,k (1− pi,k) . (4)

In GBDT training, to solve numerical instability problem (Friedman et al., 2000; Friedman, 2001;
Friedman et al., 2008), we apply Robust LogitBoost algorithm (Li, 2010) as shown in Algorithm 1,
which has three parameters, the number of terminal nodes J , the shrinkage ν and the number of
boosting iterations M . To find the optimal split for a decision tree node, we first sort the N data by
the feature values being considered for splitting. We then iterate through each potential split index
s, where 1 ≤ s < N , to find the best split that minimizes the weighted squared error (SE) between
the predicted and true labels. Specifically, we aim to find an split s to maximize the gain function:

Gain(s) =

(∑s
i=1 gi,k

)2∑s
i=1 hi,k

+

(∑N
i=s+1 gi,k

)2

∑N
i=s+1 hi,k

−

(∑N
i=1 gi,k

)2

∑N
i=1 hi,k

. (5)

2.2 Problem Setting
For classic GBDT, all training data must be loaded during training, and adding/deleting instances
is not allowed afterwards. This work proposes an online GBDT framework that enables in-place
addition/deletion of specific data instances to/from a well-trained model through incremental and
decremental learning.

Problem Statement. Given a trained gradient boosting model T (θ) on training dataset Dtr, where
θ indicates the parameters of model T , an incremental learning dataset Din, and/or a decremental

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

learning datasetDde (Dde ⊆ Dtr), our goal is to find a tree modelT (θ′) that fits datasetDtr∪Din\Dde,
where |θ| = |θ′| (the parameter size and the number of trees stay unchanged).

The most obvious way is to retrain the model from scratch on dataset Dtr ∪ Din \ Dde. However,
retraining is time-consuming and resource-intensive. Especially for online learning applications,
rapid retraining is not practical. The key question of this problem is: Can we obtain the model T (θ′)
based on the learned knowledge of the original model T (θ) without retraining the entire model?

The proposed framework aims to find a tree model T (θ′) as close to the model retraining from scratch
as possible based on the learned knowledge of the model T (θ). In addition, this online learning
algorithm is in a “warm-start” manner, because it learns a new dataset Din or removes a learned
sub-dataset Dde ⊆ Dtr on a model that is already well-trained on training dataset Dtr.

Let A denotes the initial GBDT learning algorithm , then we have A(Dtr) ∈ H, where H is the
hypothesis space. An online learning algorithm L for incremental learning or decremental learning
can be used to learn dataset Din or remove dataset Dde ⊆ Dtr.

2.3 Framework Overview
The goal of this work is to propose an online learning framework for GBDT that supports incremental
learning and decremental learning for any collection of data.

Online Learning in GBDT. The Algorithm 2 shows the procedure of online learning in GBDT. At
first, the GBDT model is a well-trained model on the training dataset Dtr. Recall that the GBDT
model is frozen and can not be changed after training—no training data modification. In this proposed
framework, the user can do (1) incremental learning: update a new dataset Din to the model, and (2)
decremental learning: remove a learned dataset Dde ⊆ Dtr and its effect on the model.

As shown in Algorithm 2, it is similar to the learning process, but it only needs to compute ri,k and
pi,k(1 − pi,k) for online dataset D′ without touching the training dataset Dtr. Then, it will call the

function of incremental learning or decremental learning to obtain
{
R̂j,k,m

}J

j=1
. Finally, we update

Fi,k with new
{
R̂j,k,m

}J

j=1
. Here we use the same notion to design the function of incremental

learning and decremental learning – decremental learning is the inverse process of incremental
learning for dataset D′. Therefore, we describe them in the Algorithm 3 at the same time.

Algorithm 3 Incr./Decr. Learning on One Tree

1. for non-terminal node in {Rj,k,m}Jj=1 with as-
cending depths do

2. D̂′ = {ri,k − pi,k, xi}|D
′|

i=1

3. s = current split of node
4. s′ = compute best gain with Eq. equation 5

with ri,k and wi,k after adding/removing D̂′

5. if s′ ̸= s then
6. Retrain the subtree rooted at node.
7. end if
8. end for
9. Update prediction value βj,k,m for all terminal

nodes

Incremental & Decremental Learning on One
Tree. Algorithm 3 describes the detailed process for
incremental and decremental learning, which are al-
most the same as decremental learning is the inverse
of incremental learning for dataset D′. The main dif-
ference is at Line 3. First, we traverse all non-terminal
nodes with ascending depths. For each node, let s de-
note the current split. We recompute the new best gain
value with ri,k and pi,k(1− pi,k) after adding D′ for
incremental learning or removing D′ for decremental
learning. If the current split s matches the new best
split s′ (after adding/removing D′), we keep the cur-
rent split (Figure 1(a)). Otherwise, if the current best
split has changed (s ̸= s′), as shown in Figure 1(c),
we retrain the sub-tree rooted on this node and replace it with the new sub-tree. After testing all
nodes, node splits remain on the best split. Finally, we recompute the prediction value on all terminal
nodes. Appendix C provides a detailed explanation of Figure 1.

3 Optimizing Learning Time
In this section, we introduce optimizations for our online learning framework to reduce computation
overhead and costs. The key step is deciding whether a node should be kept or replaced: Can we
design an algorithm to quickly test whether the node should be retained or retrained without touching
the training data? Our most important optimization is to avoid touching the full training dataset.
We apply incremental update and split candidates sampling concepts from Lin et al. (2023), extend
them to support online learning, and provide evidence of the relationship between hyper-parameters
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of different optimizations, enabling trade-offs between accuracy and cost. Additionally, we design
optimizations specific to online learning: 1) adaptive lazy update for residuals and hessians to
substantially decrease online learning time; 2) adaptive split robustness tolerance to significantly
reduce the number of retrained nodes.

3.1 Update without Touching Training Data
To reduce computation overhead and online learning time, we target to avoid touching the original
training dataset D, and only focus on the online learning dataset D′. Following the study Lin et al.
(2023), we extend the optimization of updating statistical information to the scenarios of online
learning: (1) Maintain Best Split; (2) Recomputing Prediction Value; (3) Incremental Update for
Derivatives, and the computation cost is reduced from O(D±D′) to O(D′) by these optimizations.
The implementation of these optimizations are included in Appendix E.

3.2 Adaptive Lazy Update for Derivatives
Although incremental update can substantially reduce online learning time, we can take it a step
further: if no retraining occurs, the changes to the derivatives will be very small. How can we
effectively utilize the parameters already learned to reduce online learning time?

Gradient Accumulation Li et al. (2014); Goyal et al. (2017); Ruder (2016) is widely used in DNN
training. After computing the loss and gradients for each mini-batch, the system accumulates these
gradients over multiple batches instead of updating the model parameters immediately. Inspired by
Gradient Accumulation techniques, we introduce an adaptive lazy update for our online learning
framework. Unlike Lin et al. Lin et al. (2023), which perform updates after a fixed number of
batches, we update the derivatives only when retraining occurs. This approach uses more outdated
derivatives for gain computation but significantly reduces the cost of derivative updates.

3.3 Split Candidates Sampling
From the above optimizations, if retraining is not required, we can keep the current best split. In this
case, we only need to iterate over the online learning dataset D′ and update the prediction values to
accomplish online learning, whether it involves adding or removing data. However, if the sub-tree
rooted in this node requires retraining, it is necessary to train the new sub-tree on the data from the
dataset Dtr ±D′ that reaches this node. It is clear that retraining incurs more resource consumption
and takes a longer execution time. In the worst case, if retraining is required in the root node, it has
to retrain the entire new tree on full dataset Dtr ±D′.

To reduce the time and resource consumption of online learning, a straightforward approach is to
minimize the frequency of retraining. Therefore, we introduce split candidate sampling to reduce
frequent retraining by limiting the number of splits, and it is beneficial for both training and online
learning. All features are discretized into integers in {0, 1, 2, · · · , B − 1}, as shown in Appendix A.
The original training procedure enumerates all B potential splits, and then obtains the best split with
the greatest gain value. In split candidates sampling, we randomly select ⌈αB⌉ potential splits as
candidates and only perform gain computing on these candidates. As α decreases, the number of
split candidates decreases, resulting in larger distances between split candidates. Consequently, the
best split is less likely to change frequently.

Definition 1 (Distance Robust) Let s be the best split, and |D′|
|Dtr| = λ. N∆ is the distance between s

and its nearest split t with the same feature, N∆ = ||t− s||. s is distance robust if

N∆ >
λGain(s)

1
Nls

(∑
xi∈ls

gi,k

)2∑
xi∈ls

hi,k
+ 1

Nrs

(∑
xi∈rs

gi,k

)2∑
xi∈rs

hi,k

(6)

where l represents the left child of split s, and it contains the samples belonging to this node, while
r represent the right child, Nls denotes |ls|, and Nrs denotes |rs|. In this definition, E(N∆) = 1/α,
where α denotes the split sampling rate, we can observe that a smaller sampling rate will result in a
more robust split, so we can reduce the number of retrain operations by reducing the sampling rate.
Similarly, incremental learning can get the same result.
Definition 2 (Robustness Split) For a best split s and an arbitrary split t, t ̸= s, and online learning
data rate |D′|

|Dtr| = λ, the best split s is robust split if

Gain(s) >
1

1− λ
Gain(t) (7)
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Robustness split shows that, as λ = |D′|
|Dtr| decreases, the splits are more robust, leading to a reduction

in the frequency of retraining. In conclusion, decreasing either α or λ makes the split more robust,
reducing the change occurrence in the best split, and it can significantly reduce the online learning
time. We provide the proof of Distance Robust and Robustness Split in Appendix D.

3.4 Adaptive Split Robustness Tolerance

20 40 60 80 100
Iteration

0

5

10

B
es

t S
pl

it 
S

hi
ft 

D
is

ta
nc

e

Adult
Add 1
Add 0.1%
Add 0.5%
Add 1.0%

20 40 60 80 100
Iteration

0

5

10

15

B
es

t S
pl

it 
S

hi
ft 

D
is

ta
nc

e

Covtype
Add 1
Add 0.1%
Add 0.5%
Add 1.0%

20 40 60 80 100
Iteration

0

2

4

6

B
es

t S
pl

it 
S

hi
ft 

D
is

ta
nc

e

Letter
Del 1
Del 0.1%
Del 0.5%
Del 1.0%

20 40 60 80 100
Iteration

0

2

4

6

8

10

B
es

t S
pl

it 
S

hi
ft 

D
is

ta
nc

e

SUSY
Del 1
Del 0.1%
Del 0.5%
Del 1.0%

Figure 2: Observation of distance of best split
changes. The lines represents the average changes
of best split distance, and the shaded region is the
standard error.

Recall the retraining condition for a node that
we mentioned previously: we retrain the sub-
tree rooted at a node if the best split changes.
Although the best split may have changed to an-
other one, the gain value might only be slightly
different from the original best split. We illus-
trate the observation of the distance of best split
changes (the changes in the ranking of the best
split) in Figure 2. The top row illustrates the dis-
tance of best split changes observed in the Adult
and Covtype datasets for incremental learning,
while the bottom row depicts same in Letter and
SUSY datasets for decremental learning. Sim-
ilar patterns are observed across various other
datasets. For adding or deleting a single data
point, the best split does not change in most
cases. As the |D′| increases to 0.1%, 0.5%, and
1%, the best split in most cases switch to the second best. If we only apply the optimal split, it will
lead to frequent retraining during online learning.

The distance of the best split changes is usually small. Tolerating its variation within a certain range
and continuing to use the original split significantly accelerates online learning. We propose adaptive
split robustness tolerance: for a node with ⌈αB⌉ potential splits, if the current split is among the top
⌈σαB⌉, we continue using it, where σ (0 ≤ σ ≤ 1) is the robustness tolerance. σ = 0 selects only
the best split, while σ = 1 avoids retraining. Higher σ indicates greater tolerance, making the split
more robust and less likely to retrain.

4 Experimental Evaluation
In this section, we report empirical evaluation in different aspects. We compare our 1) incremental
learning with OnlineGradientBoost (OnlineGB)2 Leistner et al. (2009) and iGBDT Zhang et al.
(2019); 2) decremental learning with DeltaBoost3 Wu et al. (2023) and MUinGBDT4 Lin et al. (2023);
3) training cost with popular GBDT libraries XGBoost Chen & Guestrin (2016), LightGBM Ke et al.
(2017), CatBoost Dorogush et al. (2018) and ThunderGBM Wen et al. (2020).

Table 1: Dataset specifications.
Dataset # Train # Test # Dim # Class
Adult 36,139 9,034 87 2
CreditInfo 105,000 45,000 10 2
SUSY 2,500,000 2,500,000 18 2
HIGGS 5,500,000 5,500,000 28 2
Optdigits 3,822 1,796 64 10
Pendigits 7,493 3,497 16 10
Letter 15,000 5,000 16 26
Covtype 290,506 290,506 54 7
Abalone 2,785 1,392 8 Reg.
WineQuality 4,332 2,165 12 Reg.

Implementation Details. The details of environments and set-
tings are included in Appendix B. We employ one thread for all
experiments to have a fair comparison, and run ThunderGBM
on a NVIDIA A100 40GB GPU, since it does not support only
CPU5. Unless explicitly stated otherwise, our default parameter
settings are as follows: ν = 1, M = 100, J = 20, B = 1024,
|D′| = 0.1%× |Dtr|, α = 0.1, and σ = 0.1.

Datasets. We utilize 10 public datasets in the experiments. The
specifications of these datasets are presented in Table 1. The smallest dataset, Optdigits, consists of
3,822 training instances, while the largest dataset, HIGGS, contains a total of 11 million instances.
The number of dimensions or features varies between 8 and 87 across the datasets.

4.1 Training Time and Memory Overhead
Since the proposed online learning framework stores certain statistical information during training,
this may impact both the training time and memory usage. Table 2 presents a detailed report of the
total training time and memory overhead.
2 https://github.com/charliermarsh/online_boosting 3 https://github.com/Xtra-Computing/DeltaBoost/
4 https://github.com/huawei-lin/GBDT_unlearning
5 https://github.com/Xtra-Computing/thundergbm/blob/master/docs/faq.md
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Table 3: Total incremental or decremental learning time (seconds). For the methods supporting
incremental or decremental learning (OnlineGB, iGBDT, DeltaBoost, MU in GBDT), speedup =
incr./decr. learning time
our online learning time , otherwise, speedup = training time

our online learning time .
Incremental Learning Decremental Learning

Total Time (seconds) Speedup v.s. Total Time (seconds) Speedup v.s.Dataset |D′|
OnlineGB iGBDT Ours OnlineGB iGBDT XGBoost LightGBM CatBoost ThunderGBM

(GPU) DeltaBoost MU in GBDT Ours DeltaBoost MU in GBDT XGBoost LightGBM CatBoost ThunderGBM
(GPU)

1 0.265 0.595 0.035 7.6x 17x 270.5x 14.7x 43.8x 16.1x 0.923 0.217 0.034 27.1x 6.4x 278.4x 15.2x 45.1x 16.6x
0.1% 9.02 1.145 0.105 85.9x 10.9x 90.2x 4.9x 14.6x 5.4x 28.022 0.751 0.103 272.1x 7.3x 91.9x 5x 14.9x 5.5x
0.5% 44.65 1.296 0.212 210.6x 6.1x 44.7x 2.4x 7.2x 2.7x 34.461 1.059 0.222 155.2x 4.8x 42.6x 2.3x 6.9x 2.5xAdult
1% 98 1.573 0.344 284.9x 4.6x 27.5x 1.5x 4.5x 1.6x 62.124 1.276 0.379 163.9x 3.4x 25x 1.4x 4x 1.5x
1 29 0.475 0.114 254.4x 4.2x 116.8x 16.1x 30.2x 5.1x 89.097 0.113 0.055 1,619.9x 2.1x 242.1x 33.4x 62.7x 10.6x

0.1% 3,386.25 1.391 0.249 13,599.4x 5.6x 53.5x 7.4x 13.8x 2.3x 78.836 0.426 0.153 515.3x 2.8x 87x 12x 22.5x 3.8x
0.5% 28,875 1.428 0.321 89,953.3x 4.4x 41.5x 5.7x 10.7x 1.8x 80.559 0.824 0.251 321x 3.3x 53x 7.3x 13.7x 2.3xCreditInfo
1% 336,000 1.568 0.383 877,284.6x 4.1x 34.8x 4.8x 9x 1.5x 74.331 1.065 0.355 209.4x 3x 37.5x 5.2x 9.7x 1.6x
1 OOM 12.037 1.678 - 7.2x 974.3x 58.2x 64.9x 3.6x 309.19 1.707 1.303 237.3x 1.3x 1,254.7x 74.9x 83.6x 4.6x

0.1% OOM 53.46 7.972 - 6.7x 205.1x 12.2x 13.7x 0.8x 180.894 23.999 6.263 28.9x 3.8x 261x 15.6x 17.4x 1x
0.5% OOM 55.38 13.39 - 4.1x 122.1x 7.3x 8.1x 0.4x 197.86 53.962 15.438 12.8x 3.5x 105.9x 6.3x 7.1x 0.4xSUSY
1% OOM 57.68 20.093 - 2.9x 81.4x 4.9x 5.4x 0.3x 298.44 77.76 25.98 11.5x 3x 62.9x 3.8x 4.2x 0.2x
1 OOM 45.25 5.488 - 8.2x 406.3x 38.4x 55.3x 2.5x OOM 4.967 3.367 - 1.5x 662.3x 62.7x 90.2x 4.1x

0.1% OOM 132.46 26.558 - 5x 84x 7.9x 11.4x 0.5x OOM 55.265 18.926 - 2.9x 117.8x 11.1x 16x 0.7x
0.5% OOM 165.34 43.17 - 3.8x 51.7x 4.9x 7x 0.3x OOM 152.095 48.683 - 3.1x 45.8x 4.3x 6.2x 0.3xHIGGS
1% OOM 171.16 65.579 - 2.6x 34x 3.2x 4.6x 0.2x OOM 251.224 80.776 - 3.1x 27.6x 2.6x 3.8x 0.2x
1 0.032 0.174 0.011 2.9x 15.8x 68.4x 9.6x 16.1x 26.9x 0.687 0.015 0.01 68.7x 1.5x 75.2x 10.6x 17.7x 29.6x

0.1% 0.091 0.181 0.015 6.1x 12.1x 50.1x 7.1x 11.8x 19.7x 0.645 0.032 0.014 46.1x 2.3x 53.7x 7.6x 12.6x 21.1x
0.5% 0.559 0.191 0.029 19.3x 6.6x 25.9x 3.7x 6.1x 10.2x 0.563 0.067 0.029 19.4x 2.3x 25.9x 3.7x 6.1x 10.2xOptdigits
1% 1.403 0.196 0.043 32.6x 4.6x 17.5x 2.5x 4.1x 6.9x 0.638 0.085 0.046 13.9x 1.8x 16.3x 2.3x 3.8x 6.4x
1 0.014 0.181 0.014 1x 12.9x 41x 9.4x 13.1x 27.6x 0.525 0.013 0.015 35x 0.9x 38.3x 8.7x 12.2x 25.8x

0.1% 0.082 0.224 0.026 3.2x 8.6x 22.1x 5x 7x 14.9x 0.465 0.022 0.025 18.6x 0.9x 23x 5.2x 7.3x 15.5x
0.5% 0.427 0.234 0.042 10.2x 5.6x 13.7x 3.1x 4.4x 9.2x 0.531 0.089 0.041 13x 2.2x 14x 3.2x 4.5x 9.4xPendigits
1% 0.82 0.235 0.053 15.5x 4.4x 10.8x 2.5x 3.5x 7.3x 0.768 0.129 0.057 13.5x 2.3x 10.1x 2.3x 3.2x 6.8x
1 0.033 0.102 0.016 2.1x 6.4x 73.2x 12.7x 14.5x 22.9x 0.863 0.017 0.014 61.6x 1.2x 83.6x 14.5x 16.6x 26.1x

0.1% 0.551 0.167 0.04 13.8x 4.2x 29.3x 5.1x 5.8x 9.2x 0.664 0.032 0.058 11.4x 0.6x 20.2x 3.5x 4x 6.3x
0.5% 2.768 0.187 0.067 41.3x 2.8x 17.5x 3x 3.5x 5.5x 0.676 0.066 0.103 6.6x 0.6x 11.4x 2x 2.3x 3.6xLetter
1% 5.68 0.201 0.128 44.4x 1.6x 9.1x 1.6x 1.8x 2.9x 0.997 0.094 0.134 7.4x 0.7x 8.7x 1.5x 1.7x 2.7x
1 0.09 1.321 0.29 0.3x 4.6x 220.4x 15.8x 21.2x 5.1x 28.519 0.562 0.161 177.1x 3.5x 397x 28.5x 38.1x 9.2x

0.1% 21.408 6.391 0.639 33.5x 10x 100x 7.2x 9.6x 2.3x 19.61 3.44 0.546 35.9x 6.3x 117.1x 8.4x 11.2x 2.7x
0.5% 105.688 7.765 1.095 96.5x 7.1x 58.4x 4.2x 5.6x 1.3x 20.035 5.519 1.187 16.9x 4.6x 53.8x 3.9x 5.2x 1.2xCovtype
1% 214.188 8.088 1.724 124.2x 4.7x 37.1x 2.7x 3.6x 0.9x 21.864 6.917 1.963 11.1x 3.5x 32.6x 2.3x 3.1x 0.8x
1 0.013 0.331 0.027 0.5x 12.3x 6.9x 3.6x 19.7x 15.5x 0.659 0.069 0.026 25.3x 2.7x 7.2x 3.8x 20.5x 16.1x

0.1% 0.026 0.356 0.032 0.8x 11.1x 5.8x 3.1x 16.7x 13.1x 0.586 0.263 0.029 20.2x 9.1x 6.4x 3.4x 18.4x 14.4x
0.5% 0.17 0.338 0.049 3.5x 6.9x 3.8x 2x 10.9x 8.5x 1.015 0.372 0.054 18.8x 6.9x 3.4x 1.8x 9.9x 7.7xAbalone
1% 0.354 0.366 0.055 6.4x 6.7x 3.4x 1.8x 9.7x 7.6x 0.917 0.417 0.049 18.7x 8.5x 3.8x 2x 10.9x 8.5x
1 0.014 0.239 0.017 0.8x 14.1x 12.4x 5.3x 50.5x 21.5x 0.574 0.022 0.016 35.9x 1.4x 13.1x 5.6x 53.6x 22.9x

0.1% 0.057 0.262 0.027 2.1x 9.7x 7.8x 3.3x 31.8x 13.6x 0.329 0.196 0.024 13.7x 8.2x 8.8x 3.8x 35.8x 15.3x
0.5% 0.296 0.282 0.041 7.2x 6.9x 5.1x 2.2x 20.9x 8.9x 2.173 0.298 0.037 58.7x 8.1x 5.7x 2.4x 23.2x 9.9xWineQuality
1% 0.608 0.276 0.051 11.9x 5.4x 4.1x 1.8x 16.8x 7.2x 2.711 0.333 0.051 53.2x 6.5x 4.1x 1.8x 16.8x 7.2x

Table 2: Comparison of total training time (in
seconds) and memory usage (total allocated, MB).

Method Adult CreditInfo SUSY HIGGS Optdigits Pendigits Letter Covtype Abalone WineQuality

Tr
ai

ni
ng

Ti
m

e
(S

ec
on

ds
) iGBDT 1.875 1.787 63.125 180.459 0.263 0.345 0.26 9.158 1.434 1.047

OnlineGB 6,736.18 330,746.80 OOM OOM 130.7 87.361 771.99 19,938.80 39.874 62.034
DeltaBoost 78.213 154.52 4,281.59 OOM 9.517 18.457 21.532 582.36 3.104 4.89

MU in GBDT 1.285 1.648 58.551 175.95 0.261 0.35 0.289 6.454 1.431 1.034
XGBoost 9.467 13.314 1,634.82 2,230.03 0.752 0.574 1.171 63.917 0.186 0.21

LightGBM 0.516 1.836 97.622 211 0.106 0.131 0.203 4.581 0.098 0.09
CatBoost 1.532 3.447 108.95 303.56 0.177 0.183 0.232 6.14 0.533 0.858

ThunderGBM (GPU) 0.564 0.583 5.993 13.708 0.296 0.387 0.366 1.474 0.418 0.366
Ours 2.673 1.818 64.935 177.1 0.276 0.368 0.352 9.336 0.582 0.427

M
em

or
y

U
sa

ge
(M

B
) iGBDT 1,153.13 2,192.13 31,320.40 31,724.40 2,161.20 3,917.61 3,370.38 18,381.10 1,767.23 1,281.08

OnlineGB 35,804.10 58,119.61 OOM OOM 7,493.97 6,488.75 13,067.75 19,699.62 582.97 345.83
DeltaBoost 43,286.70 285,608 409,850.30 OOM 2,336.79 1,173.59 3,741.46 210,409 786.53 549.64

MU in GBDT 570.78 1,095.70 16,576.50 34,380.90 1,080.49 1,959.02 1,805.22 9,637.65 1,711.02 1,194.82
XGBoost 179.13 140.88 2,093.95 7,467.32 131.11 120.93 121.59 770.3 204.74 200.91

LightGBM 150.45 149.19 1,688.57 4,109.54 121.08 135.45 161.97 542.47 215.15 214.95
CatBoost 83.02 129.09 1,503.93 3,090.55 29.41 36.64 99.79 595.27 40.97 27.91

ThunderGBM (GPU) 673.45 418.97 3,725.82 5,855.04 353.95 378.11 360.56 931.89 367.67 348.83
Ours 577.18 1,096.71 16,576.40 24,333.30 1,081.15 1,959.49 1,805.76 9,665.21 762.78 531.88

Training Time. Table 2 shows the total train-
ing time of our framework and baselines. Our
online learning framework is substantially faster
than OnlineGB, DeltaBoost, and XGBoost, and
slightly slower than iGBDT. While slower on
smaller datasets compared to LightGBM, it
outperforms on larger datasets like SUSY and
HIGGS, with training times similar to MU-
inGBDT. Overall, our framework offers signifi-
cantly faster training than existing incr./decr. methods and is comparable to popular GBDT libraries.

Memory Overhead. Memory usage is crucial for practical applications. Most incremental and
decremental learning methods store auxiliary information or learned knowledge during training,
potentially occupying significant memory. As shown in Table 2, our framework’s memory usage is
significantly lower than OnlineGB, iGBDT, and DeltaBoost. Moreover, OnlineGB and DeltaBoost
encountered OOM in the experiments.

4.2 Online Learning Time
Retraining from scratch can be time-consuming, but in some cases, the cost of online learning
outweighs the benefits compared to retraining from scratch, making online learning unnecessary or
unjustified. Hence, evaluating the cost of online learning is crucial for practical applications. Table 3
shows the total online learning time (seconds) and speedup v.s. baselines, comparing OnlineGB and
iGBDT for incremental learning, and DeltaBoost and MUinGBDT for decremental learning.

In incremental learning, compared to OnlineGB and iGBDT, which also support incremental learning,
adding a single data instance can be up to 254.4x and 17x faster, respectively. Furthermore, compared
to retraining from scratch on XGBoost, LightGBM, CatBoost, and ThunderGBM (GPU), it can
achieve speedups of up to 974.3x, 58.2x, 64.9x, and 27.6x, respectively. In decremental learning,
when deleting a data instance, our method offers a speedup of 1,619.9x and 6.4x over DeltaBoost and
MUinGBDT, respectively, and is 1,254.7x, 74.9x, 90.2x, and 29.6x faster than XGBoost, LightGBM,
CatBoost, and ThunderGBM (GPU), respectively.

Our method is substantially faster than other methods both in incremental and decremental learning,
especially on large datasets. For example, in HIGGS dataset, the largest dataset in our experiments,
on removing (adding) 1% data, we are 3.1x faster than MUinGBDT (2.6x faster than iGBDT), while
OnlineGB and DeltaBoost encounter out of memory (OOM).

Interestingly, we observed that when |D′| is small, decremental learning is faster than incremental
learning. However, as |D′| increases, incremental learning becomes faster than decremental learning.
For decremental learning, the data to be removed has already been learned, and their derivatives have
been stored from training. However, the deleted data often exists discretely in memory. On the other
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Table 4: The test error after training, adding, and deleting.
Task Method Adult CreditInfo SUSY HIGGS Optdigits Pendigits Letter Covtype Abalone

(×10−2)
WineQuality

(×10−3)

Training

iGBDT 0.1276 0.0629 0.1987 0.2742 0.0290 0.0295 0.0418 0.1702 5.7721 1.2085
DeltaBoost 0.1814 0.0642 0.2122 OOM 0.0652 0.0417 0.0968 0.2764 7.5905 1.3134

MU in GBDT 0.1276 0.0629 0.1987 0.2742 0.0307 0.0294 0.0418 0.1702 5.7721 1.2085
XGBoost 0.1270 0.0630 0.1977 0.2761 0.0418 0.0397 0.0524 0.1896 6.1472 1.1674

LightGBM 0.1277 0.0635 0.1984 0.2725 0.0334 0.0355 0.0374 0.1688 5.8392 1.1993
CatBoost 0.2928 0.1772 0.4324 0.5384 0.0618 0.0440 0.0655 0.1572 5.7265 1.2457

ThunderGMB (GPU) 0.2405 0.0659 0.4576 0.4698 0.2739 0.1155 0.1170 0.6298 8.4272 1.6953
Ours 0.1276 0.0629 0.1987 0.2742 0.0307 0.0294 0.0418 0.1702 5.7721 1.2085

In
cr

e.
Le

ar
ni

ng

Add 1 iGBDT 0.1279 0.0633 0.1987 0.2769 0.0301 0.0286 0.0418 0.1696 5.8801 1.1953
Ours 0.1275 0.0630 0.1988 0.2742 0.0295 0.0297 0.0404 0.1685 5.811 1.2079

Add 0.1% iGBDT 0.1267 0.0630 0.1995 0.2742 0.0323 0.0363 0.0446 0.1777 6.2531 1.2680
Ours 0.1269 0.0626 0.1989 0.2747 0.0295 0.0297 0.0406 0.1686 5.900 1.2040

Add 0.5% iGBDT 0.1287 0.0636 0.2012 0.2795 0.0390 0.0440 0.0572 0.1788 7.6510 1.2907
Ours 0.1294 0.0632 0.1988 0.2734 0.0290 0.0295 0.0394 0.1681 5.7701 1.2198

Add 1% iGBDT 0.1291 0.0630 0.2014 0.2780 0.0529 0.0603 0.0875 0.1868 8.5324 1.4462
Ours 0.1267 0.0632 0.1990 0.2740 0.0262 0.0283 0.0440 0.1683 5.8378 1.2209

D
ec

re
.L

ea
rn

in
g

Del 1
DeltaBoost 0.1818 0.0642 0.2122 OOM 0.0640 0.0424 0.0974 0.2764 7.4359 1.3084

MU in GBDT 0.1280 0.0629 0.1987 0.2742 0.0306 0.0295 0.0408 0.1702 5.8025 1.2095
Ours 0.1276 0.0628 0.1987 0.2742 0.0306 0.0295 0.0416 0.1702 5.8723 1.2143

Del 0.1%
DeltaBoost 0.1823 0.066 0.2122 OOM 0.0629 0.0412 0.0956 0.2764 7.3402 1.3159

MU in GBDT 0.1285 0.0634 0.1988 0.2742 0.0301 0.0295 0.0444 0.1734 5.9727 1.2202
Ours 0.1284 0.0633 0.1988 0.2747 0.0295 0.0283 0.0432 0.1712 5.8744 1.2109

Del 0.5%
DeltaBoost 0.1829 0.0642 0.2122 OOM 0.0663 0.0423 0.0960 0.2762 7.2955 1.3022

MU in GBDT 0.1309 0.0640 0.1988 0.2751 0.0306 0.0283 0.0442 0.1727 6.3142 1.2398
Ours 0.1295 0.0634 0.1988 0.2746 0.0301 0.0303 0.0432 0.1675 5.7733 1.2052

Del 1%
DeltaBoost 0.1812 0.0642 0.2123 OOM 0.0624 0.0435 0.0958 0.2764 7.3100 1.3163

MU in GBDT 0.1311 0.0639 0.1988 0.2745 0.0334 0.0312 0.0460 0.1766 6.3558 1.2925
Ours 0.1295 0.0632 0.1987 0.2747 0.0273 0.0303 0.0424 0.1695 5.7620 1.2111

hand, for incremental learning, the data to be added are unseen, and derivatives need to be computed
during the incremental learning process. Nevertheless, we append the added data at the end, ensuring
that the added data are stored contiguously in memory. With a small |D′|, derivatives can be reused in
decremental learning, whereas derivatives need to be computed in incremental learning. Therefore,
decremental learning is less time-consuming. However, as |D′| grows, continuous memory access
in incremental learning is faster than decremental learning, making incremental learning faster.

4.3 Test Error Rate
Table 4 presents the test error for different methods, defined as (1 - accuracy) for classification tasks
and Mean Squared Error (MSE) for regression tasks. Due to page limitations, we have omitted the
results for OnlineGB, as its excessively long learning time makes it relatively insignificant compared
to the other methods. Three scenarios are considered: (1) Training, reporting the test error for
models trained on the full dataset D; (2) Incremental Learning, performing incremental learning
to add a randomly selected portion D′ into a model pre-trained on D − D′; and (3) Decremental
Learning, conducting decremental learning to remove D′ from a model trained on the full dataset
D. Our method achieved the best error rates in most cases.

4.4 Batch Addition & Removal
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Figure 3: The impact of tuning data size on the number of
retrained nodes for each iteration in incremental learning.

In the traditional setting, GBDT mod-
els must be trained in one step with ac-
cess to all training data, and they can-
not be modified after training – data
cannot be added or removed. In our
proposed online learning framework,
GBDT models support both incre-
mental and decremental learning, al-
lowing continual batch learning (data
addition) and batch removal, similar
to mini-batch learning in DNNs.

We conducted experiments on contin-
ual batch addition and removal by dividing the data into 20 equal parts, each with 5%|Dtr|. Figure 3
(top) shows a GBDT model incrementally trained from 5% to 100% of the data, then decrementally
reduced back to 5%. We retrained models for comparison. Figure 3 (bottom) depicts a model
decrementally reduced from 100% to 5%, then incrementally trained back to 100%. We also report
the accuracy of XGBoost and LightGBM. The overlapping curves demonstrate the effectiveness of
our online learning framework. Due to space limitations, results are shown for only three datasets.

4.5 Data Addition with More Classes
Our framework can update data with unseen classes. We divide the dataset into sub-datasets based
on labels (e.g., Optdigits has 10 labels, so we divide it into 10 sub-datasets). We train a model on the
first sub-dataset and test it on two test datasets: 1) the original full test dataset with all labels, and 2)
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Figure 4: The impact of tuning data size
on the number of retrained nodes for each
iteration in incremental learning.

the partial test dataset with only the learned labels. We
fine-tune the model with a new sub-dataset through
incremental learning until learning the full dataset,
testing the model on both test datasets after each train-
ing. Figure 4 shows that the accuracy of incremental
learning and retraining is nearly identical on both the
full and partial datasets. Note that the decrease in
accuracy on the partial dataset is likely due to the in-
creasing complexity of the learned data, which leads
to a decrease in accuracy.

4.6 Verifying by Backdoor Attacking
Backdoor attacks in machine learning refers to a type
of malicious manipulation of a trained model, which
is designed to modify the model’s behavior or output when it encounters a specific, predefined
trigger input pattern Salem et al. (2022); Saha et al. (2020). In this evaluation, we demonstrate that
our framework can successfully inject and remove backdoor in a well-trained, clean GBDT model
using incremental learning and decremental learning. The details of backdoor attack experiments
are provided in Appendix G.

Table 5: Accuracy for clean test dataset and attack
successful rate for backdoor test dataset.

Dataset Train Clean Train Backdoor Add Backdoor Remove Backdoor
Clean Backdoor Clean Backdoor Clean Backdoor Clean Backdoor

Optdigits 96.21% 8.91% 96.27% 100% 95.94% 100% 95.82% 9.69%
Pendigits 96.11% 3.97% 96.43% 100% 96.48% 100% 96.51% 5.55%

Letter 93.9% 1.38% 94.08% 100% 93.62% 100% 93.78% 3.48%
Covtype 78.4% 47.83% 78.32% 100% 78.38% 100% 78.38% 51.71%

In this evaluation, we randomly selected a subset
of the training dataset and injected triggers into
it to create a backdoor training dataset, leaving
the rest as the clean training dataset. The test
dataset was similarly divided into backdoor and
clean subsets. We report the accuracy for clean
test dataset and attack successful rate (ASR) for backdoor test dataset in Table 5. Initially, we trained
a model on the clean training data (“Train Clean”), which achieved high accuracy on the clean test
dataset but low ASR on the backdoor test dataset. We then incrementally add the backdoor training
data with triggers in to the model (“Add Backdoor”). After incremental learning, the model attained
100% ASR on the backdoor test dataset, demonstrating effective learning of the backdoor data.
For comparison, training a model on the combined clean and backdoor training datasets (“Train
Backdoor”) yielded similar results to “Add Backdoor”. Finally, we removed the backdoor data using
decremental learning (“Remove Backdoor”), reducing the ASR to the level of the clean model and
confirming the successful removal of backdoor data. This evaluation shows the effectiveness of our
online learning framework in handling backdoor attacks.

4.7 Verifying by Membership Inference Attack
The membership inference attack (MIA) aims to predict whether a data sample is part of the training
dataset Shokri et al. (2017); Hu et al. (2022); Choquette-Choo et al. (2021). Therefore, the goal of this
experiments is to determine if ”deleted” data can still be identified as training data after decremental
learning. However, in our experiment with default hyper-parameter setting, the predictions made by
MIA are nearly random guesses.

Experimental Setup. Previous studies demonstrate that overfitting can make machine learning
models more vulnerable to MIA Yeom et al. (2018); van Breugel et al. (2023); Hu et al. (2022). To
further validate our approach, we apply a smaller model with number of iteration M = 5, which
can be easily overfitted. Conducting MIA on such a small model can further confirm our approach
indeed deletes the data from the model. Therefore, we conduct the this experiments on multi-class
datasets: Optdigits, Pendigits, Letter and Covtype. For each dataset, we split it into three subsets:
base dataset Dbase, online dataset D′, and test dataset Dtest. We first train a base model on Dbase+D′.
For this base model, the MIA should identify the data in D′ as part of the training dataset. Next, we
perform decremental learning to delete D′ from the base model. After this process, the MIA should
no longer identify the data in D′ as part of the training dataset. Finally, we add D′ back to the model
using incremental learning. Following this, the MIA should once again identify the data in D′ as
part of the training dataset. Further details about the MIA experiment are provided in Appendix H.

Results. Table 6 presents the average probability of data samples being identified as part of the
training dataset at different stages. For the base model, MIA identifies 100% of the data in Dbase and
D′ as part of the training dataset, while the data in Dtest has a low probability of being identified as
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Table 6: Membership Inference Attack.
Dataset Base Model After decremetal learning After incremetal learning

Dbase D′ Dtest Dbase D′ Dtest Dbase D′ Dtest

Optdigits 100% 100% 43.59% 100% 33.93% 42.19% 100% 100% 43.82%
Pendigits 100% 100% 56.09% 100% 55.04% 46.15% 100% 100% 56.63%
Letter 100% 100% 26.31% 100% 13.33% 47.37% 100% 100% 36.84%
Covtype 100% 100% 38.89% 100% 15.2% 38.89% 100% 100% 44.31%

part of the training dataset. After decremental
learning, the probability for Dbase remains un-
changed, while the probability for D′ drops to
a level almost identical to Dtest. This confirms
that D′ has been effectively deleted from the
base model. After incremental learning, the probability for D′ increases to 100% again, indicating
that the model has relearned D′. The probability for Dtest in the incremental model remains almost
the same as in the base model. This result confirms that our decremental/incremental learning
approach can indeed delete/add data from/to the model.

4.8 Additional Evaluations
To further verify our method’s effectiveness and efficiency, we provide additional evaluations:

• Extremely High-dimensional Datasets: To confirm the scalability of our framework, we report
the experiments for two extremely high-dimensional datasets, RCV1 and News20, in Appendix I.
• Model Functional Similarity: We report this metric in Appendix F to evaluate the similarity
between the model learned by online learning and the one retrained from scratch.
• Approximation Error of Leaf Scores: Since the outdated derivatives are used in gain computa-
tion, to evaluate the effect of these outdated derivatives, we report the approximation error of leaf
scores between the model after addition/deletion and the one retrained from scratch in Appendix J.
• Ablation Study: We report the ablation study for different hyper-parameter settings in Appendix K.

5 Related Work
Incremental Learning is a technique in machine learning that involves the gradual integration of new
data into an existing model, continuously learning from the latest data to ensure performance on new
data van de Ven et al. (2022). It has been a open problem in machine learning, and has been studied
in convolutional neural network (CNN) Polikar et al. (2001); Kuzborskij et al. (2013); Zhou et al.
(2022), DNN Hussain et al. (2023); Dekhovich et al. (2023), SVM Chen et al. (2019); Cauwenberghs
& Poggio (2000) , random forest (RF) Wang et al. (2009); Brophy & Lowd (2020). In gradient
boosting, iGBDT Zhang et al. (2019) offers incremental updates, while other methods Beygelzimer
et al. (2015a); Babenko et al. (2009) extend gradient boosting to online learning. However, these
methods do not support removing data.

Decremental Learning allows for the removal of trained data and eliminates their influence on
the model, which can be used to delete outdated or privacy-sensitive data Bourtoule et al. (2021);
Nguyen et al. (2022); Sekhari et al. (2021); Xu et al. (2024). It has been researched in various
models, including CNN Poppi et al. (2023); Tarun et al. (2021), DNN Chen et al. (2023); Thudi et al.
(2022), SVM Karasuyama & Takeuchi (2009); Cauwenberghs & Poggio (2000), Naive Bayes Cao &
Yang (2015), K-means Ginart et al. (2019), RF Schelter et al. (2021); Brophy & Lowd (2021), and
gradient boosting Wu et al. (2023); Zhang et al. (2023). In random forests, DaRE Brophy & Lowd
(2021) and a decremental learning algorithm Schelter et al. (2021) were proposed for data removal
with minimal retraining and latency.

However, in GBDT, trees in subsequent iterations rely on residuals from previous iterations, making
decremental learning more complicated. DeltaBoost Wu et al. (2023) simplified the dependency for
data deletion by dividing the dataset into disjoint sub-datasets, while a recent study Lin et al. (2023)
proposed an efficient unlearning framework without simplification, utilizing auxiliary information to
reduce unlearning time. Although effective, its performance on large datasets remains unsatisfactory.

6 Conclusion
In this paper, we propose an novel in-place online learning framework for GBDT that support
incremental and decremental learning: it enables us to dynamically add a new dataset to the model
and delete a learned dataset from the model. It support continual batch addition/removal, and data
additional with unseen classes. We present a collection of optimizations on our framework to reduce
the cost of online learning. Adding or deleting a small fraction of data is substantially faster than
retraining from scratch. Our experimental results, including backdoor attack, membership inference
attack, and other empirical evaluations confirm the effectiveness and efficiency of our framework
and optimizations – successfully adding or deleting data while maintaining accuracy.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

References
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A Feature Discretization.

The preprocessing step of feature discretization plays a crucial role in simplifying the implementation
of Eq. equation 5 and reducing the number of splits that need to be evaluated. This process
involves sorting the data points based on their feature values and assigning them to bins, taking
into account the distribution of the data, as shown in Figure 5 and Algorithm 4. By starting with
a small bin-width (e.g., 10−8) and a predetermined maximum number of bins B (e.g., 1024).
It assigns bin numbers to the data points from the smallest to the largest, carefully considering
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Figure 5: Feature discretization example. For
a feature, all its values are grouped into 8 bins,
i.e., the original feature values become integers
between 0 to 7 assigned to the nearest bin.

the presence of data points in each bin. This
iterative process continues until the number of
bins exceeds the specified maximum.

In cases where the number of required bins sur-
passes the maximum limit, the bin-width is dou-
bled, and the entire process is repeated. This
adaptive discretization approach proves partic-
ularly effective for boosted tree methods, ensuring that feature values are mapped to integers within
a specific range. Consequently, after the discretization mapping is established, each feature value
is assigned to the nearest bin. After this discretization preprocessing, all feature values are integers
within {0, 1, 2, · · · , B − 1}.

Algorithm 4 Discretize Feature
1: v{1..N} = sorted feature values, bin width =

10−10

2: while true do
3: cnt = 0, curr idx = 0
4: for i = 1 to N do
5: if vi − vcurr idx > bin width then
6: cnt = cnt + 1, cur idx = i
7: if cnt > B then
8: bin width = bin width ∗ 2
9: break

10: end if
11: end if
12: v′i = cnt
13: end for
14: if cnt <= B then break
15: end while
16: return v′ as discretized feature values

The advantage of this discretization technique
becomes evident during the gain searching step.
Instead of iterating over allN feature values, the
algorithm only needs to consider a maximum of
B splits for each feature. This substantial re-
duction in the number of splits to evaluate leads
to a significant decrease in the computational
cost, transforming it from being dependent on
the dataset size N to a manageable constant B.

B Experiment Setting

The experiments are performed on a Linux
computing node running Red Hat Enterprise
Linux 7, utilizing kernel version 5.10.155-
1.el7.x86 64. The CPU employed was an In-
tel(R) Xeon(R) Gold 6150 CPU operating at a
clock speed of 2.70GHz, featuring 18 cores and
36 threads. The system was equipped with a total memory capacity of 376 GB. We have built a
prototype of our online learning framework using C++11. The code is compiled with g++-11.2.0,
utilizing the “O3” optimization. Unless explicitly stated otherwise, our default parameter settings
are as follows: J = 20, B = 1024, |D′| = 0.1% × |Dtr|, α = 0.1, and σ = 0.1. We report the
ablation study for different settings in Appendix K.

C Framework Overview

Figure 1 is a visual example of incremental and decremental learning of our proposed framework. Fig-
ure 1(b) is one tree of the GBDT model and has been well-trained on dataset Dtr = {0, 1, 2, 3..., 19}.
Every rectangle in the tree represents a node, and the labels inside indicate the splitting criteria. For
instance, if the condition Age < 42 is met, the left-child node is followed; otherwise, the right-child
node is chosen. The numbers within the rectangles represent the prediction value of the terminal
nodes. Please note that here the feature 42 is a discretized value, instead of the raw feature. Our
online learning framework has the capability to not only incrementally learn a new dataset Din, but
also decrementally delete a learned dataset Dde ⊆ Dtr.

Example for Incremental Learning. Here, we would like to add a new dataset D′ = Din =
{20, 21, 22, 23} to the original model, so we will call the function of incremental learning. |d|
denotes how many data of the D′ reach this node. As shown in Algorithm 3, we traverse all non-
terminal nodes (non-leaf nodes) in the tree at first. For example, we are going to test the node of
Loan < 31. Its current best split is Loan < 31. One of the new data instances {22} reaches this
node. After adding this data and recomputing the gain value, Loan < 31 is still best split with the
greatest gain value of 26.937, and meets s = s′, as shown in Figure 1(a). Thus, we can keep this
split and do not need to do any changes for this node. Then we are going to test the node of Auto <
57 and the remaining three new data instances {20, 21, 23} reach this node. As shown in the left side
of Figure 1(c), we recompute the gain value for this node, but the best split changes to Income < 5.
Therefore, we retrain the pending sub-tree rooted on Auto < 57 after adding new data instances to
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obtain a new sub-tree rooted on Income < 5. Then we replace the pending sub-tree with the new
one. Finally, we update the prediction value on terminal nodes (leaf nodes). For example, 0.4322
is updated to 0.2735 because of adding data {22}; −0.1252 has no change because the data of this
node are still the same.

Example for Decremental Learning. Similar to incremental learning, we would like to delete a
learned dataset Dde = {2, 7, 11, 13} and its effect on the model. The best split of node Loan < 31
does not change, so we keep the split. For Auto < 57, as shown in the right side of Figure 1(c), after
removing data instances {2, 11, 13}, the best split changes from Auto < 57 to Credit < 24, so
we retrain the pending sub-tree rooted on Loan < 31 and then replace it with the new sub-tree. For
terminal nodes (leaf nodes), the prediction value changes if any data reaching this node is removed.

D Split Candidates Sampling

Definition 1 (Distance Robust) Let s be the best split, and |D′|
|Dtr| = λ. N∆ is the distance between s

and its nearest split t, N∆ = ||t− s||. s is distance robust if

N∆ >
λGain(s)

1
Nls

(∑
xi∈ls

gi,k

)2∑
xi∈ls

hi,k
+ 1

Nrs

(∑
xi∈rs

gi,k

)2∑
xi∈rs

hi,k

(8)

Proof. In decremental learning, for a fixed λ, we have
(1− λ)Gain(s)−Gain(s+N∆) (9)

≈ (1− λ)


(∑

xi∈ls
gi,k

)2∑
xi∈ls

hi,k
+

(∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

−

(∑
xi∈ls∪rs

gi,k
)2∑

xi∈ls∪rs
hi,k


−

(
1− N∆
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) (∑
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)2∑

xi∈ls
hi,k

+

(
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Nrs

) (∑
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gi,k
)2∑

xi∈rs
hi,k

−

(∑
xi∈ls∪rs

gi,k
)2∑

xi∈ls∪rs
hi,k

 (10)

where l represents the left child of split s, and it contains the samples belonging to this node, while
r represent the right child, Nls denotes |ls|, and Nrs denotes |rs|.
Let (1− λ)Gain(s)−Gain(s+N∆) > 0, we have

approx⇒ (1− λ)Gain(s)−

(
1 +

N∆

Nls

) (∑
xi∈ls

gi,k
)2∑

xi∈rs
hi,k

+

(
1− N∆

Nrs

) (∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

−

(∑
xi∈ls∪rs

gi,k
)2∑

xi∈ls∪rs
hi,k

 (11)

⇒ N∆

Nls

(∑
xi∈ls

gi,k
)2∑

xi∈ls
hi,k

+
N∆

Nrs

(∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

− λGain(s) > 0 (12)

⇒ N∆ >
λGain(s)

1
Nls

(∑
xi∈ls

gi,k

)2∑
xi∈ls

hi,k
+ 1

Nrs

(∑
xi∈rs

gi,k

)2∑
xi∈rs

hi,k

(13)

□

In the above definition, E(N∆) = 1/α, where α denotes the split sampling rate, we can observe that
a smaller sampling rate will result in a more robust split, so we can reduce the number of retrain
operations by reducing the sampling rate. Similarly, incremental learning can get the same result.
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Definition 2 (Robustness Split) For a best split s and an split t with the same feature, t ̸= s, and
online learning data rate |D′|

|Dtr| = λ, the best split s is robust split if

Gain(s) >
1

1− λ
Gain(t) (14)

Proof. Initially, we have

Gain(s) =

(∑
xi∈ls

gi,k
)2∑

xi∈ls
hi,k

+

(∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

−

(∑
xi∈ls∪rs

gi,k
)2∑

xi∈ls∪rs
hi,k

(15)

After decremental learning, we get

Gain′(s) =

(∑
xi∈ls

gi,k −
∑

xi∈ls∩D′ gi,k
)2∑

xi∈ls
hi,k −

∑
xi∈ls∩D′ hi,k

+

(∑
xi∈rs

gi,k −
∑

xi∈rs∩D′ gi,k
)2∑

xi∈rs
hi,k

∑
xi∈rs∩D′ hi,k

(16)

−

(∑
xi∈ls∪rs

gi,k −
∑

xi∈(ls∪rs)∩D′ gi,k
)2∑

xi∈ls∪rs
hi,k −

∑
xi∈(ls∪rs)∩D′ hi,k

For any possible split t (t ̸= s), the split s is robust only and only if Gain(s) > Gain(t) and
Gain′(s) > Gain′(t). First, let’s analyze the first term of Gain′(s). Suppose |D′|

|Dtr| = λ, and D′ is
randomly selected from D. Here we consider the leaf child ls of split s, and let the |ls ∩D′| to be
nls, |ls| to be Nls. Then we have(∑

xi∈ls
gi,k −

∑
xi∈ls∩D′ gi,k

)2∑
xi∈ls

hi,k −
∑

xi∈ls∩D′ hi,k

approx⇒

(∑
xi∈ls

gi,k − nlsgls

)2

∑
xi∈ls

hi,k − nlshls

(17)

⇒
(
1− nls

Nls

) (∑
xi∈ls

gi,k
)2∑

xi∈ls
hi,k

(18)

where g and h denote the average of the gi,k and hi,k respectively.

Similarly, we can get all three terms for Gain(s), Gain′(s), Gain(t), and Gain′(t) in a similar
form. For Gain′(s) > Gain′(t), finally, we have Gain(s) > Gain(t) + C, where

C =

 nls

Nls

(∑
xi∈ls

gi,k
)2∑

xi∈rs
hi,k

+
nrs
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(∑
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hi,k
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)2∑
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)2∑
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+
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Nrt

(∑
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)2∑
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(∑
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)2∑
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 (19)

The upper bound of C is λGain(s). Further, we have

Gain(s) >
1

1− λ
Gain(t) (20)

□

The above definition shows that, as λ = |D′|
|Dtr| decreases, the splits are more robust, leading to a

reduction in the frequency of retraining. In conclusion, decreasing either α or λ makes the split more
robust, reducing the change occurrence in the best split, and it can significantly reduce the online
learning time.
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E Update w/o Touching Training Data

Maintain Best Split. The split gain is calculated by Eq. equation 5. There are three terms: the gain
for the left-child, the gain for the right-child, and subtracting the gain before the split. Each gain is

computed as the sum of the squared first derivatives
([∑N

i=1 (ri,k − pi,k)
]2)

divided by the sum of

the second derivatives
(∑N

i=1 pi,k(1− pi,k)
)

for all the data in the node. To compute these terms,
it is necessary to iterate over all the data that reaches the current node. The most straightforward
way for online learning to obtain the split gain is to directly compute these three terms for dataset
Dtr ± D′. In the worst case, which is the root node, the computation cost for gain computing is
|Dtr|+ |Din| or |Dtr| − |Dde| because the root node contains all the training data.

We calculate the split gain for Dtr ± D′ without touching the Dtr. In this optimization, during
the training process, we store the Srp =

∑N
i=1 (ri,k − pi,k) and Spp =

∑N
i=1 pi,k(1 − pi,k) for the

training dataset Dtr for every potential split. In incremental learning process, we can only calculate
the S′

rp and S′
pp for Din. To obtain the new split gain based on Eq. equation 5, we add it to the stored

Srp and Spp. Similarly, for decremental learning, we can only calculate the S′
rp and S′

pp for Dde to
obtain the new split gain. In this manner, we successfully avoid the original training data for split
gain computation and reduce the computation cost from O(Dtr ±D′) to O(D′).

Recomputing Prediction Value. For the terminal node (leaf node), if there are no data of D′

reaching this node, we can skip this node and do not need to change the prediction value. Otherwise,
we have to calculate a prediction value f as shown in line 5 of the Algorithm 1. Similar to split
gain computing, it is required to iterate over all the data that reaches this terminal node. Here we
store Srp =

∑
xi∈Rj,k,m

(ri,k − pi,k) and Spp =
∑

xi∈Rj,k,m
(1− pi,k) pi,k for training dataset Dtr

in training process. Thus, in online learning process, we only need to calculate S′
rp and S′

pp for online
learning dataset D′.

Incremental Update for Derivatives. After conducting online learning on a tree, we need to update
the derivatives and residuals for learning the next tree. From the perspective of GBDT training, each
tree in the ensemble is built using the residuals learned from the trees constructed in all previous
iterations: Modifying one of the trees affects all the subsequent trees. A trivial method is to update
the derivatives and residuals for all data instances of Dtr ±D′ in every tree, but it is time-consuming.

When performing online learning on a tree, not all terminal nodes will be changed—some terminal
nodes remain unchanged because there is no data from D′ that reaches these terminal nodes. Note
that our goal is to find a model close to the model retraining from scratch. In the online learning
scenario, all trees have already been well-trained on Dtr. Intuitively, the derivative changes for data
in those unchanged terminal nodes should be minimal. Therefore, as shown in Figure 1(d), we only
update the derivatives for those data reaching the changed terminal nodes. For example, the terminal
node with a prediction value of −0.1252 does not meet any data in D′ in both incremental learning
and decremental learning, so the prediction value of this node does not need to be changed. Therefore,
we do not need to update the derivatives of the data {1, 6, 14, 16, 17} reaching this terminal node.

F Model Functional Similarity

As mentioned in Section 2.2, the goal of the framework is to find a model close to the model
retrained from scratch. The model functional similarity is a metric to evaluate how close the model
learned by online learning and the one retrained from scratch. We show the model functional
similarity for incremental learning and decremental learning in Table 7. C2W refers to the ratio
of testing instances that are correctly predicted during retraining but are wrongly predicted after
decremental learning. Similarly, W2C represents the testing instances that are wrongly predicted
during retraining but are correctly predicted after decremental learning. The W2W column indicates
the cases where the two models have different wrong predictions. For binary labels, W2W is
not applicable. In the |D′| column, 1 indicates that only add/remove one instance, while 0.1%
corresponds to |D′| = 0.1% × |Dtr|. We present ϕ to evaluate the model functional similarity
(adapted from the model functionality Adi et al. (2018)), indicating the leakage of online learning:
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Table 7: Model functionality change after online learning.

Dataset Metric iGBDT (Incr.) Ours (Incr.) DeltaBoost (Decr.) MUinGBDT (Decr.) Ours (Decr.)
Add 1 Add 0.1% Add 1 Add 0.1% Del 1 Del 0.1% Del 1 Del 0.1% Del 1 Del 0.1%

Adult
C2W ↓ 0.40% 0.93% 0.17% 0.61% 1.17% 1.87% 0.63% 0.51% 0.55% 0.51%
W2C ↓ 0.27% 0.80% 0.18% 0.56% 0.72% 1.28% 0.60% 0.73% 0.56% 0.68%
ϕ ↑ 99.34% 98.27% 99.66% 98.83% 98.11% 96.85% 98.77% 98.76% 98.88% 98.82%

CreditInfo
C2W ↓ 0.21% 0.40% 0.16% 0.30% 0.58% 0.92% 0.10% 0.21% 0.10% 0.18%
W2C ↓ 0.18% 0.40% 0.15% 0.29% 0.08% 0.13% 0.08% 0.23% 0.08% 0.19%
ϕ ↑ 99.60% 99.20% 99.70% 99.41% 99.34% 98.96% 99.82% 99.56% 99.82% 99.63%

SUSY
C2W ↓ 0.25% 0.82% 0.22% 0.74% 3.50% 3.40% 0% 0.78% 0% 0.73%
W2C ↓ 0.24% 0.78% 0.21% 0.73% 1.34% 1.14% 0% 0.79% 0% 0.76%
ϕ ↑ 99.51% 98.40% 99.58% 98.53% 95.16% 95.46% 100% 98.43% 100% 98.51%

HIGGS
C2W ↓ 0.00% 2.52% 0% 2.64%

OOM
0% 1.92% 0% 1.92%

W2C ↓ 0.00% 2.56% 0% 2.63% 0% 1.93% 0% 1.92%
ϕ ↑ 100.00% 94.92% 100% 94.73% 100% 96.14% 100% 96.17%

Optdigits
C2W ↓ 0.33% 0.56% 0.17% 0.28% 0.22% 0.56% 0.61% 0.45% 0.45% 0.61%
W2C ↓ 0.56% 0.61% 0.28% 0.50% 0.28% 0.22% 0.22% 0.33% 0.28% 0.39%
W2W ↓ 0.06% 0.11% 0.06% 0% 0.17% 0.11% 0.06% 0.11% 0.06% 0.06%
ϕ ↑ 99.05% 98.72% 99.50% 99.22% 99.33% 99.11% 99.11% 99.11% 99.22% 98.94%

Pendigits
C2W ↓ 0.26% 0.83% 0.14% 0.17% 0.17% 0.09% 0.29% 0.26% 0.26% 0.23%
W2C ↓ 0.14% 0.43% 0.11% 0.17% 0.26% 0.37% 0.17% 0.20% 0.23% 0.20%
W2W ↓ 0.06% 0.20% 0.06% 0.03% 0.03% 0.09% 0.06% 0.09% 0.03% 0.09%
ϕ ↑ 99.54% 98.54% 99.69% 99.63% 99.54% 99.46% 99.49% 99.46% 99.49% 99.49%

Letter
C2W ↓ 0.74% 1.62% 0.64% 0.68% 0.52% 0.80% 1.24% 1.36% 1.26% 1.40%
W2C ↓ 0.82% 0.88% 0.78% 0.80% 0.58% 0.62% 1.06% 1.42% 1.06% 1.38%
W2W ↓ 0.28% 0.44% 0.30% 0.30% 0.20% 0.40% 0.44% 0.24% 0.42% 0.28%
ϕ ↑ 98.16% 97.06% 98.28% 98.22% 98.70% 98.18% 97.26% 96.98% 97.26% 96.94%

Covtype
C2W ↓ 0.98% 2.37% 1.78% 1.78% 0.11% 0.61% 1.94% 2.04% 1.94% 1.96%
W2C ↓ 1.15% 2.10% 1.77% 1.77% 0.14% 0.70% 1.80% 1.76% 1.80% 1.71%
W2W ↓ 0.04% 0.09% 0.07% 0.07% 0.02% 0.03% 0.06% 0.07% 0.06% 0.07%
ϕ ↑ 97.83% 95.44% 96.38% 96.38% 99.74% 98.66% 96.19% 96.13% 96.20% 96.26%

Definition 3 (Functional Similarity) Given an input space X , a model T , a model T̂ online learned
from T , and a dataset D = {yi,ai} ∈ X , the functional similarity ϕ between model T and T̂ is:
ϕ = 1− (rw2w + rw2c + rc2w) ,where ϕ is the leakage of learning.

Due to the size limitations of the table, we have omitted OnlineGB from this table because its
learning duration is excessively long, making it relatively meaningless compared to other methods.
We compared iGBDT in adding 1 and 0.1% data instances, and DeltaBoost and MUinGBDT in
deleting data. As shown in Table 7, we have a comparable model functionality in adding/deleting
both 1 and 0.1%. In most cases, our online learned model reaches 98% similarity in both incremental
learning and decremental learning.

G Backdoor Attacking

Experimental Setup. In this evaluation, we randomly select a subset of the training dataset, and set
first a few features to a specific value (trigger, e.g. 0 or greatest feature value) on these data instances,
and then set the label to a target label (e.g., 0). In the testing dataset, we set all labels to the target
label to compose a backdoor test dataset. In this setting, if the model has correctly learned the trigger
and target label, it should achieve a high accuracy on backdoor test dataset.

H Membership Inference Attack

Experimental Setup. For over-fitting the model, we set the number of iteration M to be 5, and split
each dataset into three subsets: base dataset Dbase (49.9%), online dataset D′ (0.1%), and test dataset
Dtest (50%). We first train a base model on Dbase +D′. For this base model, the MIA should identify
the data in D′ as part of the training dataset. Next, we perform decremental learning to delete D′

from the base model. After this process, the MIA should no longer identify the data in D′ as part
of the training dataset. Finally, we add D′ back to the model using incremental learning. Following
this, the MIA should once again identify the data in D′ as part of the training dataset.

MIA Model. By following the existing MIA methods Yan et al. (2023); Li et al. (2022); Carlini
et al. (2022), we train an MIA model (binary classification) on the prediction probabilities of each
class. Since the GBDT model is overfitted, the probability distributions of the training data should
substantially differ from those of the unseen data (test data). Therefore, the MIA model can predict
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whether a data sample is part of the training dataset based on its probability distribution. We sample
50% of Dbase and 50% of Dtest to train the MIA model. Then remaining 50% of Dbase, the entire D′

and 50% of Dtest are used for evaluation.

I Extremely High-dimensional Datasets

We include two dataset with more features / high dimensional: RCV1 and News20, which have
47,236 and 1,355,191 features respectively. For News20 dataset, the substantial high dimension
causes segmentation fault on CatBoost and GPU out of memory (OOM) on thunderGBM. We omit
the results from the other incremental/decremental method because infeasible running time and
massive occupied memory. Table 9 shows the comparison of the training time and memory usage
for our methods and other popular methods. Table 10 illustrates the incremental and decremental
learning time of our method for two high dimensional dataset.

Table 8: Dataset specifications.
Dataset # Train # Test # Dim # Class
News20 5,000 14,996 1,355,191 2
RCV1 20,242 677,399 47,236 2

Table 9: Comparison of the training time consumption and
memory usage for RCV1 and News20.

Dataset XGBoost LightGBM CatBoost ThunderGMB
(GPU) Ours

Training Time (s) RCV1 459.75 59.63 335.70 49.44 295.43
News20 637.02 28.42 Seg. Fault OOM 225.73

Memory (MB) RCV1 3,008.28 2,922.32 263.63 1,913.05 185,851.72
News20 3,061.99 2,509.29 Seg. Fault OOM 128,131.43

Table 10: The incremental/decremental learning time of the proposed method for RCV1 and News20.
(ms, per tree, incre./decre.)

Dataset |D′|
Incremental Learning Decremental Learning

Learning Time
(Ours)

Speedup v.s. Learning Time
(Ours)

Speedup v.s.

XGBoost LightGBM CatBoost ThunderGBM
(GPU) XGBoost LightGBM CatBoost ThunderGBM

(GPU)

RCV1
1 21.431 214.5x 27.8x 156.6x 23.1x 19.268 238.6x 30.9x 174.2x 25.7x

0.1% 37.707 121.9x 15.8x 89.0x 13.1x 29.232 157.3x 20.4x 114.8x 16.9x
0.5% 39.428 116.6x 15.1x 85.1x 12.5x 48.218 95.3x 12.4x 69.6x 10.3x
1% 43.901 104.7x 13.6x 76.5x 11.3x 70.666 65.1x 8.4x 47.5x 7.0x

News20
1 11.76 541.7x 24.2x - - 7.718 825.4x 36.8x - -

0.1% 17.113 372.2x 16.6x - - 12.363 515.3x 23.0x - -
0.5% 22.261 286.2x 12.8x - - 30.076 211.8x 9.5x - -
1% 23.469 271.4x 12.1x - - 37.825 168.4x 7.5x - -

Table 11: The approximation error of leave’s score between the model after addition/delection and
the model retrained from scratch. Appr. Error =

∑
all trees

∑
all leaves abs(padd/del−pretrain)∑

all trees
∑

all leaves abs(pretrain)
, where padd/del is the

leave’s score after adding/deleting, pretrain is the leave’s score of the model retraining from scratch.

Adult CreditInfo SUSY HIGGS Optdigits Pendigits Letter Covtype
Add 1 2.42% 1.18% 0.24% 0.00% 2.69% 2.23% 1.31% 0.17%
Add 0.1% 4.59% 6.57% 2.73% 1.63% 3.48% 4.12% 5.78% 9.47%
Add 0.5% 5.10% 7.44% 2.27% 3.05% 5.12% 4.50% 10.45% 11.68%
Add 1% 5.30% 7.43% 3.07% 3.89% 5.92% 4.70% 11.75% 10.01%
Add 10% 4.25% 8.33% 1.07% 1.73% 4.64% 4.42% 13.34% 4.96%
Add 50% 3.55% 0.00% 0.00% 1.51% 0.00% 0.00% 6.26% 0.01%
Add 80% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Del 1 1.21% 0.00% 0.00% 0.00% 0.01% 0.19% 0.57% 0.28%
Del 0.1% 3.63% 3.80% 0.79% 0.72% 1.40% 0.50% 1.88% 4.31%
Del 0.5% 3.58% 3.76% 0.18% 0.56% 2.52% 1.15% 3.49% 6.04%
Del 1% 3.40% 3.16% 0.15% 0.65% 3.07% 1.73% 3.74% 4.48%
Del 10% 0.27% 0.39% 0.00% 0.16% 1.67% 0.97% 1.35% 0.46%
Del 50% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Del 80% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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Figure 7: Different fine-tuning ratio.

J Approximation Error of Leaf Scores

As mentioned in Section 3.2, outdated derivatives are used in gain computation to reduce the cost of
updating derivatives. However, these outdated derivatives are only applied to nodes where the best
split remains unchanged. When a sub-tree requires retraining, the derivatives are updated. Therefore,
using outdated derivatives typically occurs when |D′| is small, as fewer data modifications result
in fewer changes to the best splits. Conversely, when more data is added or deleted, |D′| becomes
larger, increasing the likelihood of changes to the best splits in some nodes. As a result, the sub-trees
are retrained, and the derivatives for the data reaching those nodes are updated.

To confirm the effect of using outdated derivatives during online learning, we report the result for the
approximation error of leaf scores in Table 11. Appr. Error =

∑
all trees

∑
all leaves abs(padd/del−pretrain)∑

all trees
∑

all leaves abs(pretrain)
, where

padd/del is the leaf score after adding/deleting, and pretrain is the leaf score of the model retraining from
scratch. Please note that the retrained model has the same structure and split in all nodes of all trees
as the model after adding/deleting, and we only update the latest residual and hessian to calculate the
latest leaf score. When the number of added/deleted data increases, the error will increase because
our method uses outdated derivatives if the best splits remain unchanged. When the number of
add/delete is large enough, almost all nodes in the model will be retrained because their best splits
have changed, so the error becomes 0.
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Figure 6: The impact of sampling rate on time,
number of retrain nodes, and test accuracy during
incremental/decremental learning.

In this section, we discuss the impact of different
settings on the performance of our framework,
e.g., time and accuracy.

Size of Online Dataset |D′|. Different sizes
of online learning dataset D′ can have varying
impacts on both the accuracy and time of the
online learning process. Figure 7 shows the im-
pact of different data addition settings on test
accuracy. Across all datasets, our framework
achieved nearly the same test accuracy, which
validates the effectiveness of our online learn-
ing framework. Decremental learning also has
similar results.

Figure 8 shows the influence of |Din| on in-
cremental/decremental learning time. We only
present the experiment on 2 datasets each for
incremental/decremental learning, due to the
results on other datasets show a similar trend.
These results show that the online learning time
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Figure 8: The impact of |D′| on average learn-
ing time in incremental/decremental learning
(top/bottom row).
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Figure 9: The impact of |D′| on the accumulated
number of retrained nodes for each iteration in
incr./decr. learning (top/bottom row).
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Figure 10: The impact of split robustness tolerance on the learning time, test accuracy, and model
functional similarity ϕ in incremental learning.

increase when the size of Din increase. The reason is straightforward: as the size of Din increases,
the model undergoes more significant changes, resulting in unstable splits. This leads to a greater
number of sub-trees that require retraining, ultimately consuming more time. Figure 9 provides
evidence to support this observation. It illustrates the accumulated number of retrained nodes – how
many nodes need to be retrained. As the size of Din increases, the number of nodes that need to be
retrained also increases. This leads to longer learning times.

Split Random Sampling. Split random sampling is designed to reduce the frequency of retraining
by limiting the number of splits. As mentioned in Section 3.3, a smaller sampling rate leads to
more stable splits, resulting in fewer nodes that require retraining and shorter online learning time.
Figure 6 shows the impact of sampling rate α in split random sampling. The figures at the top
demonstrate that when the sample rate is reduced, a smaller number of split candidates are taken into
account, leading to an expected decrease in online learning time. However, there is no significant
difference between 5% and 10% in the Pendigits dataset. The figures in the second row show the
accumulated number of retrained nodes. It also shows that as the sample rate decreases, the splits
become more stable, resulting in fewer nodes that require retraining. In Pendigits, since the number
of nodes that require retraining is similar for 5% and 10%, it results in a minimal difference in the
online learning time, as mentioned above. However, interestingly, for example in 100% sampling
rate, although there are fewer retraining in incremental learning, it take more time during learning
process, because incremental learning does not have derivatives of the data to be added. Therefore,
more time is needed to calculate their derivatives. On the contrary, decremental learning can reuse
the stored derivatives of the training process, resulting in less time. The bottom row shows the
impact of the sampling rate on the test accuracy. The test accuracy remains almost identical across
all sampling rates. Similar results can be observed in other datasets.

Split Robustness Tolerance. Split robustness tolerance aims to enhance the robustness of a split
in online learning. As the observation in Figure 2, most best splits will be changed to second-best.
Although the best split may change, we can avoid frequent retraining if we allow the split to vary
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Figure 11: The impact of the # bins and # leaves on the acceleration factor of incremental learning
(adding 1 data point).

within a certain range. For a node with ⌈αB⌉ potential splits, if the current split remains within the
top ⌈σαB⌉, we will continue using it. Here σ (0 ≤ σ ≤ 1) is the robustness tolerance. Figure 10
illustrates the impact of split robustness tolerance σ on learning time, test accuracy, and functional
similarity ϕ in incremental learning. To obtain more pronounced experimental results, in this
experiment, we set |D′| = 1%× |Dtr|. The figure on the left shows that the learning time decreases
as the tolerance level increases. Although test accuracy changes only slightly (middle figure), the
functional similarity ϕ drops significantly (right figure). For example, in the Letter dataset, ϕ drops
about 5% from σ = 0 to σ = 0.5. This demonstrates that higher tolerance levels result in faster
learning by avoiding retraining, but with a trade-off of decreased functional similarity. Therefore, we
suggest σ should not be greater than 0.15. Similar results can be obtained on decremental learning.

Number of Bins and Leaves. In online learning procedure, the number of bins and leaves also affects
the online learning time. We report the impact of varying the number of bins (128, 256, · · · , 4096)
and leaves (4, 10, 20, 40, 60, · · · , 200) on the acceleration factor of incremental learning (adding 1
data point) in Figure 11. The number of bins has few effect on both accuracy and the speed of
online learning as shown in the top row of the figures. In terms of the number of leaves, when it
exceeds 20, the accuracy tends to stabilize, except for Covtype, as shown in the bottom row of the
figures. For smaller datasets (Adult, Optdigits, Pendigits, Letter), the more the number of leaves,
the lower the acceleration factor for incremental learning. However, for larger datasets (CreditInfo,
SUSY, HIGGS, Covtype), the more the number of leaves, the greater the acceleration is. Especially
for HIGGS, the largest dataset in our experiments, the acceleration can be more than 100x.
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