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Abstract

Decentralized training enables peer-to-peer on-device learning without relying on a cen-
tral server, but suffers from degraded generalization performance under heterogeneous data
distributions due to local overfitting. One strategy to mitigate this is to seek flatter loss
landscapes during local optimization at each client. However, with extreme data hetero-
geneity, local objectives may diverge from the global one, yielding local flatness rather than
true global flatness. To mitigate this challenge, we introduce GFlat, a novel decentralized
algorithm that enables each client to estimate and incorporate an approximation of the
global update direction while seeking a flatter loss landscape locally. This lightweight strat-
egy allows each client to directly contribute to global flatness without requiring additional
communication or centralized coordination. We theoretically analyze the convergence prop-
erties of GFlat and validate its performance through extensive experiments across a range of
datasets, model architectures, and communication topologies. GFlat consistently improves
generalization in non-IID data settings and achieves up to 6.75% higher test accuracy com-
pared to state-of-the-art decentralized methods. E]

1 Introduction

Modern deep neural networks are fueled by massive amounts of training data generated at edge devices such
as smartphones, Internet-of-Things (IoT) sensors, drones, etc. Traditionally, these models are trained in a
centralized setup by aggregating data from edge devices to the cloud, raising privacy concerns and incurring
significant communication costs. To address these challenges, there has been considerable effort towards
developing on-device learning algorithms |[Kone¢ny et al.| (2016); |Agarwal & Duchi| (2011). Among these,
federated learning has emerged as a popular paradigm in which numerous clients collaboratively train a global
model by sharing locally computed updates with a central server. However, such setup introduces a single
point of failure and demands high network bandwidth for client-server communication |Assran et al.| (2019).
These potential issues have spurred an interest in decentralized learning, where clients are connected via a
sparse topology and train through peer-to-peer communication without relying on a server. Decentralized
Parallel Stochastic Gradient Descent (DPSGD) Lian et al.| (2017) combines SGD with gossip averaging Xiao
& Boyd| (2004) and demonstrates that decentralized algorithms can achieve convergence rates comparable

1The PyTorch implementation can be found at https://github.com/Sakshi09Ch/GFlat
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(a) SADDLe (b) GFlat

Figure 1: Loss landscape visualization for (a) SADDLe, which uses only local perturbations, and (b) GFlat,
our proposed algorithm that combines local and approximate global perturbations to achieve flatter loss land-
scapes in decentralized learning. Results are shown for the CIFAR-10 dataset with ResNet-20, distributed
across 10 clients with extreme data heterogeneity.

to their centralized counterparts. Recently, decentralized training has shown promise in harnessing globally
distributed compute resources to train large language models (LLMs) [Jaghouar et al.| (2024]).

To achieve state-of-the-art performance, most existing decentralized learning algorithms assume data to be
independently and identically distributed (IID) across clients |Lian et al.| (2017)). However, this assumption
rarely holds in real-world scenarios, where data distributions are often heterogeneous or non-I1ID
. Understanding and mitigating the impact of non-IID data in peer-to-peer decentralized learning
remains an active area of research |Lin et al.|(2021); |Aketi et al.| (2023D); Esfandiari et al|(2021); |Aketi et al.
(2023al); [Tang et al (2018); [Choudhary et al.| (2025); Koloskova et al.| (2021)); [Pu & Nedid| (2018); |[Takezawa
let al.| (2023)); Vogels et al.| (2021)). Some approaches aim to improve model consistency by tracking global
information across clients [Lin et al.| (2021)); |Aketi et al| (2023a); [Koloskova et al. (2021); Takezawa et al.|
, while others enhance local gradients by sharing cross-gradients through additional communication
rounds |Aketi et al.[(2023bl); Esfandiari et al.| (2021). Recent methods attribute poor performance under non-
IID settings to local overfitting and propose to seek flatter loss landscapes at each client to indirectly improve
global model generalization (Choudhary et al.| (2025); |Shi et al.| (2023). However, locally flat loss landscapes
do not necessarily imply global flatness, which is ultimately what matters for global model generalization
and overall performance.

In this work, we alleviate the discrepancy between the flatness of the local and global objective by utilizing
global information while seeking flatter loss landscapes at each client. Unlike prior approaches that rely
solely on locally computed perturbations to estimate sharpness Choudhary et al| (2025); [Shi et al.| (2023),
we propose GFlat, which incorporates an approximation of the global update direction without incurring any
computational or communication overhead. Specifically, each client approximates the global perturbation
by computing the difference between its current and previous model parameters. This simple yet effective
strategy enables clients to estimate global sharpness, resulting in a globally flatter loss landscape compared
to relying on local perturbations alone, as illustrated in Figure [l To quantify this improvement, we track
the ratio of the largest to the fifth largest Hessian eigenvalue (A\,42/A5), @ known proxy for loss curvature
[Foret et al.| (2021); |Jastrzebski et al| (2020); Golmant et al.| (2018), across training epochs. As shown in
Figure 2] GFlat consistently achieves a flatter global loss surface compared to SADDLe |Choudhary et al.|
(2025)), which uses only local perturbations. Since GFlat modifies only the local optimization step, it can
be seamlessly integrated into most decentralized learning frameworks without altering their communication
or aggregation protocols. To demonstrate this, we also present Q-GFlat, which integrates a Quasi-Global
Momentum (QGM) buffer Lin et al| (2021) to further boost performance under data heterogeneity. We
present a detailed convergence analysis showing that GFlat achieves convergence rates consistent with state-
of-the-art decentralized algorithms. Comprehensive experiments across multiple datasets, models, and graph
topologies validate the effectiveness of our approach.
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Figure 2: Ratio of largest to 5th largest eigenvalue (Ajmaz/A5) of the Hessian of the global averaged model
at 4 different stages of training for SADDLe and GFlat with extreme data heterogeneity.

In summary, we make the following contributions:

o We introduce GFlat, a decentralized learning algorithm that achieves global flatness under hetero-
geneous data by injecting locally approximated global information into each client’s optimization
process, thereby enhancing generalization without extensive compute or communication overhead.

o We provide a theoretical analysis establishing convergence of GFlat to a first-order stationary point.

e Through extensive experiments on various datasets, model architectures, and graph topologies, we
demonstrate that GFlat results in up to 6.75% better test accuracy compared to current state-of-
the-art techniques with varying degrees of data heterogeneity.

2 Related Work

2.1 Data Heterogeneity in Decentralized Learning

Several algorithms have been proposed to address the challenge of non-IID data in decentralized learning Lin
et al.|(2021)); |Aketi et al.| (2023b); Esfandiari et al.| (2021)); /Aketi et al.| (2023a)); Tang et al.| (2018)); (Choudhary
et al.| (2025); [Koloskova et al.| (2021)); Vogels et al. (2021)); [Aketi et al| (2024). Tracking mechanisms such as
Gradient Tracking Koloskova et al.| (2021); [Pu & Nedid (2018)), Momentum Tracking [Takezawa et al/ (2023),
and Gradient Update Tracking Aketi et al.|(2023a) track global gradients or model updates to minimize the
variation in local gradients across all clients. Cross-Gradient Aggregation (CGA) Esfandiari et al.| (2021) and
Neighborhood Gradient Mean |Aketi et al.| (2023b)) exchange cross-gradients to align local updates between
clients. However, most of the above mentioned techniques require an additional communication round.
Without incurring any communication overhead, another way to improve performance with non-IID data
is to synchronize the momentum buffer at each client through Quasi-Global Momentum (QGM) |Lin et al.
. However, in the presence of extreme heterogeneity, QGM does not lead to considerable performance
improvements Aketi et al.| (2022). D? |Tang et al.| (2018) is shown to be agnostic to data heterogeneity,
but its convergence requires specific constraints on the connectivity between clients. In a different vein,
SADDLe [Choudhary et al| (2025 replaces the local SGD optimizer with Sharpness-Aware Minimization
(SAM) |[Foret et al| (2021) to consistently seek locally flat loss landscapes. Although SADDLe leads to
impressive improvements in test accuracy, it influences global flatness in an indirect manner (refer to Figure
, thereby leaving room for further improvements.

2.2 Sharpness-Aware Minimization

To improve model generalization, the authors in [Foret et al.|(2021]) proposed Sharpness-Aware Minimization
(SAM), an optimizer that simultaneously minimizes loss value as well as sharpness during training. Note that
the connection between a flatter loss landscape and better generalization has been a well-studied phenomenon
in deep learning [Keskar et al.| (2017)); Tzmailov et al.| (2018)). To further improve the performance and
compute-efficiency of SAM, several variants have been proposed in the literature Kwon et al.| (2021));
let al] (2022); Du et al] (2022); Zhao et al| (2022); Mi et al.| (2022)); [Li et al.| (2024); Wu et al| (2024);
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[Luo et al.| (2024). Another line of research strives to shed light on the theoretical understanding of SAM
by studying its convergence properties [Andriushchenko & Flammarion| (2022)); Si & Yun| (2023); [Zhang
let al| (2024); |Oikonomou & Loizoul (2025); Khanh et al.| (2024). Furthermore, SAM has been shown to
improve generalization in federated learning settings Dai et al| (2023); [Qu et al| (2022); [Caldarola et al|
(2022); |Sun et al|(2023); [Fan et al.| (2024); Lee & Yoon| (2024); |Caldarola et al.| (2025)). However, the role of
sharpness in decentralized learning remains relatively unexplored. A recent theoretical result establishes that
Decentralized SGD is asymptotically equivalent to average-direction SAM, suggesting a deeper connection
between sharpness and decentralized optimization (2023)). Some recent methods have applied SAM
directly to encourage local flatness in decentralized settings |Choudhary et al. (2025)); |Chen et al.| (2024));
, yet they do not explicitly consider the mismatch between local and global sharpness. To the
best of our knowledge, this is the first work to explicitly identify and address the flatness discrepancy between
local and global objectives in decentralized learning with heterogeneous data.

3 Background

In this section, we describe the decentralized peer-to-peer learning setup, the flatness-seeking optimizer SAM
[Foret et al.| (2021)), and discuss its implications towards improving generalization under data heterogeneity.

In decentralized learning, the goal is to learn a global model by aggregating models trained on locally
available data at n clients connected in a sparse graph topology modeled as G = ([n], W), where W is the
mixing matrix signifying the graph’s connectivity. We assume that G is strongly connected i.e., there is a
path between each pair of clients Lian et al.|(2017); [Lin et al.| (2021)). Each entry w;; in W implies the effect
of client j on client 7, and w;; = 0 indicates that the j and ¢ are not connected directly. The knowledge
extracted from such private data is shared among peers to minimize the global loss function f(x):

iy /) = - > fi() (1)

x€ER?

Here, f;(x) is the local loss function at client ¢. This optimization problem is tackled by combining Stochastic
Gradient Descent (SGD) with consensus-based gossip averaging Xiao & Boyd| (2004).

Traditional decentralized algorithms like Decentralized Parallel Stochastic Gradient Descent (DPSGD)
assume the data across clients to be distributed in an independent and identical manner (i.e.,
IID). In particular, each client i in DPSGD maintains model parameters x!, computes local gradient g!
through SGD over data B! € D;, and incorporates neighborhood information as shown in the following

update rule:

JEN(3)
In this work, we focus on non-IID /heterogeneous data in the form of skewed label partition, which is more

closely aligned with practical learning scenarios [Hsieh et al.|(2020b). DPSGD performs poorly with non-IID
data due to model overfitting and huge variations in local gradients across clients.

An effective approach to improving decentralized learning under non-I1ID data is to encourage flatter loss
landscapes at each client. Prior work has established a strong correlation between model generalization
and the curvature of the loss landscape, i.e., models converging to flatter minima tend to generalize better
[Keskar et al.| (2017)); Izmailov et al. (2018). Inspired by this, SADDLe |Choudhary et al| (2025) utilizes a
flatness-seeking optimizer called Sharpness-Aware Minimization (SAM) at each client. Originally proposed
for centralized learning, SAM enhances generalization by minimizing both the loss value and its sharpness
through gradient perturbations [Foret et al| (2021). SAM aims to solve the following optimization problem:
min {f,(x) = max f(x+¢)}, 3)
x€ER4

lgli<p

where p is the perturbation radius, and ||.|| denotes the L2-norm. The perturbation radius p controls the size
of the neighborhood over which the loss is maximized, guiding the optimizer to converge to flatter regions.
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Figure 3: Ratio of largest to 5th largest eigenvalue (Ap,qz/As) of the Hessian of the local and the global
averaged model at 4 different stages of training for SADDLe.

In practice, this min-max objective is approximated via a first-order Taylor expansion of f, resulting in the
perturbation £ being the direction of the gradient [Foret et al.| (2021). The final gradient is computed by
minimizing the perturbed loss function f,(x) as follows:

V() = Vf(X)|xtp. 5 where g =V f(x) (4)

SADDLe solves the min-max optimization shown in Equation [3] for the local training at each client. This
results in a locally flat model, thus indirectly improving the generalization performance of the aggregated
global model. However, due to non-IID data, the local objectives can be very different from the global
objective (Equation . Therefore, merely focusing on minimizing local sharpness cannot effectively lead to
a globally flat model. To demonstrate this, we present the local and global sharpness for SADDLe across
training epochs for CIFAR-10 distributed with extreme data heterogeneity across 10 clients in Figure [3] We
use the ratio of the largest to fifth-largest eigenvalue of the Hessian (Aq:/A5) as a proxy for sharpness.
The lower the Ayq./As ratio, the flatter the loss landscape |Jastrzebski et al.| (2020); [Foret et al.| (2021);
|Golmant et al.| (2018). As shown, SADDLe leads to lower Ap,q./As for the local objective, but this does
not directly translate to a low Ap4./As for the global model. To rectify this inconsistency, we propose
GFlat, a novel sharpness-aware decentralized algorithm that incorporates an approximated global update
into the locally computed SAM perturbation, thereby directly minimizing global sharpness and improving
performance under severe data heterogeneity.

4 Methodology

As mentioned earlier, our goal is to minimize the sharpness of the global model in a decentralized learning
setup. To achieve this, we first define the objective for global sharpness-aware minimization in decentralized
learning as follows:

min { max [£(x+€) = %ifxxw] } (5)

R4 <
xeR | (1€l P

Here, £ = p% is the global perturbation, approximated via a gradient ascent step scaled by the pertur-
bation radius p. In a peer-to-peer learning scenario, data privacy concerns and communication constraints
prohibit the computation of global gradient V f(x) to estimate &.

Consequently, gradient computations remain local to each client, relying solely on their respective datasets.
Utilizing only these local perturbations leads to a flatter local model, but does not necessitate a flatter
global model (as shown in Figure . One way to circumvent this challenge is to estimate the global update
direction locally at each client. We propose to approximate the global gradient through model differences
across two consecutive training iterations. Note that such an estimation technique has also been employed
in Quasi-Global Momentum (QGM) to modify the local momentum to reduce the model discrepancy arising
due to heterogeneous data . Based on this approximation, the perturbation ¢! at each client
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is redefined as the combination of local and global perturbations as follows:

t d; 8: t t—1 t
& zp(s.m—l—(l—s).m),where d, =x;  —x; (6)
K3 7

Algorithm 1 GFlat: Achieving Global Flatness in Decentralized Learning with Heterogeneous Data

Input: Each client ¢ initializes model parameters x;, step size 7, perturbation radius p, scaling factor
s € [0,1], mixing matrix W = [wg;]; je1,n), N (i) represents neighbors of ¢ including itself.
procedure TraIN( ) for Vi

1. fort=1,2,...,7T do

2. gl = Vf;(x}; BY) for Bt € D;
3. df = Xt__l — Xt

d? !
4. & = p(s.pary + (1= 9).-1gy)
5. g = Vfi(xt + &5 B))
6. Xz(‘Hl/Q) _ Xz(t) o Ugf
7. SENDRECEIVE(XEt+1/2))
8. x; = Zje/\/}” wijx;tﬂm)
9

. end
<T _ 1N T
return X' =3 " X;

Here, s is a scaling factor that defines the emphasis placed on global vs local perturbation. Intuitively, in the
presence of extreme data heterogeneity, more value should be given to the global perturbation df/||d||, as
the local gradients overfit the locally available data. Similarly, for milder forms of non-IIDness, it may suffice
to emphasize the local perturbation g!/||gt|| over its global counterpart. We observe this in our experiments,
where s remains closer to 1 for extreme heterogeneity (i.e., « = 0.001). We provide additional discussion on
local and global flatness discrepancy in Appendix [E]

Algorithm [T] presents the pseudocode of GFlat. At each training iteration ¢, GFlat computes the stochastic
gradient g! at each client i. Then it estimates the global perturbation through model differences (xff1 —x!)
as shown in line 3, Algorithm [1] The SAM perturbation &! is calculated as a weighted combination of local
and global perturbations (line 4, Algorithm . All clients calculate g! for the perturbed model (x! + &)
to perform local updates (line 6). The clients then exchange models with their peers and perform gossip
averaging (line 8) [Lian et al|(2017). This continues for a predefined set of T iterations, and we evaluate
the consensus model x” [Lian et al.| (2017); |Aketi et al.| (2023a). Note that computing d} to estimate the
global perturbation requires minimal compute, incurs no communication overhead, and O(m) memory at
each client, where m denotes the number of trainable model parameters. In essence, GFlat approximates the
global update direction and incorporates this in local perturbation at each client to target global sharpness
without any communication overhead.

As GFlat modifies the local optimizer, it is effectively complementary to existing decentralized algorithms
for tackling data heterogeneity and can be used in synergy with them. To that effect, we present a version
of GFlat termed Q-GFlat, which incorporates a Quasi-Global Momentum (QGM) buffer [Lin et al| (2021)
to further reduce the model inconsistency. While QGM mimics the global update direction through a
modified local momentum, GFlat focuses on seeking a flatter minimum for the global model by injecting
global information in the local perturbation (i.e., ascent step) for the SAM optimizer. Together, these
techniques greatly improve the performance in the presence of non-I1ID data. Please refer to Appendix [C] for
implementation details.

5 Convergence Rate Analysis

This section provides the convergence analysis for the proposed GFlat algorithm for a general non-convex
loss objective. We state the following standard assumptions:
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Assumption 1 Lipschitz Gradients: Each function f;(x) is L-smooth i.e., ||V fi(y) — Vfi(x)|| < L|ly —
x| Vx,y.

Assumption 2 Bounded Variance: The variance of the stochastic gradients is assumed to be bounded.
There exist constants o and § such that

Vfl(X,B) . VfZ(X)
Vi Bl IV fi(x)

Ep~p, <o® Vi (7)

IV fi(x) = Vf(x)|* < 6 (8)

Assumption 3 Doubly Stochastic Mizing Matriz: W is a real doubly stochastic matrix with A;(W) =1
and maz{|Aa(W)|, Ay (W)[} < VA < 1, where \;(W) is the i*" largest eigenvalue of W and ) is a constant.

These assumptions align with those used in existing decentralized learning algorithms Lian et al| (2017));
Aketi et al| (2023a3b)); [Esfandiari et al,| (2021)); (Choudhary et al| (2024); Lin et al. (2021). Assumption 2
introduces a slight variation of the standard stochastic variance bound (Equation , motivated by recent
works exploring flatter loss landscapes in federated learning settings (detailed discussion in AppendiXQu
et al.| (2022); Lee & Yoon| (2024)); Fan et al. (2024). Theorem [1| presents the convergence for our proposed
GFlat algorithm (proof in Appendix .

Theorem 1 Given Assumptions 1-3, let the learning rate satisfy n < \/(1_\5)2“6;1{\5)_(1_&).

for all T > 1, we have:

Then,

fZE[HVf ] < = (¢ °)—f*)+02L2p2(1—s>2(%+77L)+52L2(<1i2%)2>+

oo 81°L7 2 2 2 2 2 2
(9)

where, € = maxy MaXi<i<n Hm ;;Ei:)ﬂ || denotes the worst case error in approximating the global update

direction for the GFlat perturbation &!.

The result of Theorem [1| shows that the averaged gradient of the consensus (averaged) model X! is upper-
bounded by the sub-optimality gap f(x") — f*, the stochastic variance o, global variance § due to data
heterogeneity, the perturbation radius p and the approximation error e. Further, we present a corollary to
demonstrate the convergence rate of GFlat in terms of training iterations T'. Please refer to Appendix [B-4]
for the detailed proof.

Corollary 2 Suppose that the step size satisfies n = (9(,/;) and the perturbation radius p = (9( 7{)
For sufficiently large T we have,

%0) _ f* _s)o2 82 2
P2 e (Ivs ] o L2 (et £ ) w

t=0

The dominant term in Corollary is (1/v/nT), which determines the overall convergence rate of GFlat. This
matches the standard convergence behavior observed in decentralized algorithms, as established in existing
literature Lian et al.| (2017)); |Lin et al.|(2021); |Aketi et al.| (2023a); Esfandiari et al.| (2021)).

Remark 1. A closer inspection of Equation reveals that the influence of stochastic variance (o) is
modulated by the factor (1 —s). In essence, for higher s, GFlat can speed up the convergence by alleviating
the impact of stochastic variance. As a result, higher values of s (i.e., closer to 1) lead to reduced variance
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contribution, thereby accelerating convergence. Through our experiments, we observe that GFlat achieves
optimal performance for 0.5 <= s <=1, corroborating this theoretical insight.

Remark 2. The approximation error in estimating the global perturbation (¢) appears as a higher-order
term in Equation scaled by 1/T, and thus its impact on convergence diminishes as training progresses.
Consequently, we observe performance gains reported in Tables [IH] even when using an approximation of
global perturbation (i.e., d! in Equation @

6 Experiments

6.1 Experimental Setup

We conduct experiments on diverse datasets, model architectures, graph topologies, and sizes. The analysis
is presented on - (a) datasets: CIFAR-10, CIFAR-100, Imagenette [Husain| (2018]) and ImageNet Deng et al.
(2009), (b) models: ResNet-20, ResNet-18 and MobileNet-v2, (¢) graph topologies: undirected ring with
2 peers/client and torus with 4 peers/client with uniform mixing matrix (Figure7 and (d) graph sizes: 10
to 40 clients. We generate disjoint non-IID data partitions across clients using a Dirichlet distribution [Hsu
et al.| (2019)), where the class proportions for each client are drawn from Dir(«). A smaller concentration
parameter « yields more skewed class distributions, where each client receives data from fewer dominant
classes, resulting in higher statistical heterogeneity (see Figure @ The partitions are fixed at initialization
and remain unchanged during training. We compare GFlat with DPSGD |Lian et al.| (2017) and SADDLe
Choudhary et al.|(2025), and the Q-GFlat variant with QGM [Lin et al.| (2021]) and Q-SADDLe |Choudhary
et al. (2025). We report the test accuracy of the consensus model x" averaged over three randomly chosen
seeds. Please refer to Appendix [D.4] for details related to training hyperparameters.

6.2 Results
Table 1: Test accuracy of various decentralized algorithms evaluated on CIFAR-10 and Imagenette dis-

tributed with different degrees of heterogeneity for various models over a ring topology. We also include
results over the IID baseline, which serves as an upper bound on performance.

. CIFAR-10 (ResNet20) Imagenette (Mobilenet-v2)
Clients  Method a =001 a = 0.001 a=0.01 a = 0.001
DPSGD (1ID) 90.46 £ 0.33 75.15 £ 0.42
DPSGD 49.17 £ 17.38 40.74 £+ 2.62 40.11 £ 4.85 34.50 £ 5.88
10 SADDLe 64.58 £ 5.63 61.30 £+ 0.79 45.95 £+ 3.03 42.37+ 4.30
GFlat (ours) 70.12 £+ 0.68 62.29 £+ 0.66 48.91 + 2.51 48.07 + 1.01
DPSGD (1ID) 89.46 £ 0.02 73.25 £ 0.49
DPSGD 40.49 £+ 3.06 36.13 £+ 5.67 36.45 £+ 0.46 30.96 £ 1.55
20 SADDLe 52.14 £ 2.02 47.06 £+ 2.25 39.18 £ 1.04 37.72 £ 1.16
GFlat (ours) 56.21 £+ 1.33 51.76 + 0.68 39.95 £+ 0.51 39.23 + 1.26

Performance Comparison: Table [T presents results for GFlat across CIFAR-10 and Imagenette under two
different levels of heterogeneity (with lower « indicating higher non-IIDness). As shown, GFlat achieves a 1-
5.5% improvement in accuracy over SADDLe, highlighting the benefits of incorporating global perturbation
into the local SAM step. Similarly, on Imagenette, GFlat results in up to 5.7% better accuracy compared
to SADDLe |Choudhary et al. (2025). We demonstrate the efficacy of Q-GFlat in Table [2] comparing it
against QGM and Q-SADDLe across 10-40 clients connected in a ring topology. On CIFAR-10 and CIFAR-
100, Q-GFlat outperforms Q-SADDLe by ~0.6% and ~2.6%, respectively. We present additional results on
Imagenette in Table [3] where Q-GFlat yields an average improvement of 3.8% for 10-20 clients in a ring
topology. To study the impact of graph topology, results on a 20-client torus topology are reported in Table
[ Both GFlat and Q-GFlat demonstrate significant gains over their respective baselines, SADDLe and
Q-SADDLe, achieving an average improvement of 2.2% for o = 0.01,0.001.
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Table 2: Test accuracy of various decentralized algorithms evaluated on CIFAR-10 and CIFAR-100 dis-
tributed with different degrees of heterogeneity over ResNet-20 over a ring topology.

. CIFAR-10 CIFAR-100
Clients  Method =001 o =0.001 o =001 o = 0.001

QGM 7741 + 8.00 79.48 + 2.76 48.06 + 4.36 44.16 £ 6.71

o QSADDLe 87.72 + 1.59 86.33 + 0.24 58.06 + 0.68 56.76 + 0.86
Q-GFlat (ours)  88.02 + 1.04 86.73 + 0.20 58.98 + 0.33 58.12 + 0.44
QGM 72.20 £ 0.77 62.48 + 8.56 45.23 + 3.26 4448 + 453

0  Q-SADDLe 84.17 + 0.73 82.81 + 0.89 52.59 + 0.48 48.20 + 0.93
Q-GFlat (ours)  84.61 + 0.70 83.04 + 0.41 54.34 + 0.65 53.45 + 0.62
QGM 70.46 + 4.14 60.86 + 0.98 40.15 + 0.90 38.73 + 1.47

4  QSADDLe 77.49 + 0.83 73.54 + 2.04 43.25 + 1.71 41.99 + 1.27
Q-GFlat (ours) — 77.97 + 1.01 75.34 + 1.13 46.37 + 0.79 45.25 + 0.41

Table 3: Test accuracy of various decentralized algorithms evaluated on Imagenette distributed with different

degrees of heterogeneity over MobileNet-v2 over a ring topology.

Imagenette (Mobilenet-v2)

Clients Method =001 = 0.001
QGM 56.30 £ 4.03 45.82 + 5.99
10 Q-SADDLe 62.35 £+ 3.64 63.18 + 1.59
Q-GFlat (ours) 64.98 + 0.96 64.89 + 0.56
QGM 52.52 + 4.88 45.67 £+ 3.10
20 Q-SADDLe 53.64 £ 4.60 53.99 £ 3.45
Q-GFlat (ours) 60.39 + 2.40 58.08 = 1.50

Table 4: Test accuracy of various decentralized algorithms evaluated on Imagenette distributed with different

degrees of heterogeneity over a torus topology.

Imagenette (Mobilenet-v2)

Clients Method ~ =001 =~ = 0.001
DPSGD 35.75 £ 1.91 27.40 £ 1.19
20 SADDLe 40.55 + 4.19 33.23 £ 0.27

GFlat (ours) 40.11 £ 2.00 34.63 + 0.83
QGM 48.28 £+ 5.88 42.46 £ 10.75
Q-SADDLe 58.68 £ 3.04 54.78 £ 5.81
Q-GFlat (ours) 61.98 + 1.17 59.19 + 0.39

Across all experiments, we observe that GFlat exhibits greater 72-

robustness to random seed variations compared to the base-

lines, with significantly lower variance in performance. To g 69-

further emphasize the effectiveness of our approach, we con- 3

duct experiments on ImageNet using the ResNet-18 architec- f‘j

ture, distributed across 10 clients with three different levels of 8%

data heterogeneity. As shown in Table |5 GFlat outperforms

SADDLe by 3% on average. 630 02 05 07 10

Impact of Scaling Factor: To evaluate the impact of the
scaling factor s, we conduct an ablation study using the
CIFAR-10 dataset trained with a ResNet-20 architecture dis-
tributed across 10 clients under a highly non-IID setting (o =
0.01). As shown in Figure[5] s € {0.5,0.7, 1} consistently yields
higher test accuracy compared to s € {0,0.2}, suggesting that

Scaling Factor (s)

Figure 5: Impact of scaling factor s on per-
formance for CIFAR-10 distributed across
10 clients with « = 0.01.
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Table 5: Test accuracy of various decentralized algorithms evaluated on Imagenet distributed with different
degrees of heterogeneity (a) over a ring topology.

Imagenet (ResNet-18)

Clients Method

a=0.1 a=0.01 a = 0.001
DPSGD (IID) 66.73
10 DPSGD 50.00 45.49 46.77
SADDLe 54.63 51.28 51.26
GFlat (ours) 57.54 54.49 52.40
85
P B
575 -~ o
g g
5 3 g6
365 8 86
B i —+— Q-GFlat
8 55- —— GFlat 2 83 — oeiDoE
— SADDLe ......... DPSGD (||D)
0.001 0.010 0.100 1.000 0.001 0.010 0.100 1.000
Degree of heterogeneity () Degree of heterogeneity ()
(a) SADDLe vs GFlat (b) Q-SADDLe vs Q-GFlat

Figure 4: Test accuracy for the CIFAR-10 dataset trained on ResNet-20 architecture distributed with varying
degrees of data heterogeneity over 20 clients.

larger emphasis on the global direction improves performance. This aligns with the insights gained from our
theoretical analysis (Remark 1).

Robustness to Degrees of Data Heterogeneity: We perform an ablation study to analyze the impact
of data heterogeneity on the performance of GFlat. Figure [f] presents the test accuracy of GFlat and Q-
GFlat across different values of «, where lower « indicates higher non-IIDness. As observed, both variants
consistently outperform their respective baselines. Notably, Q-GFlat and Q-SADDLe even surpass the
performance of DPSGD under IID data for a = 1, highlighting the effectiveness of our approach.

7 Limitations and Future Work

GFlat introduces a scaling factor s to balance the relative emphasis on local versus global perturbations. We
keep s fixed throughout the training and tune it as a hyperparameter. However, since the alignment between
local and global models can vary over training iterations, s could be made adaptive. For instance, clients
may benefit from a higher s when the divergence between local and gossip-averaged models is large, and a
lower value when they are well aligned. We leave the design and evaluation of such an adaptive strategy
to future work. Another promising direction for future work is the integration of computationally efficient
variants of SAM Du et al.| (2022); |Liu et al.| (2022)) into our framework, followed by an analysis of their
impact on performance.

8 Conclusion

In this work, we highlight that under severe data heterogeneity in decentralized training, locally flat loss
landscapes at individual clients do not necessarily translate into flatness of the global loss objective. To
address this mismatch, we propose GFlat, a novel algorithm that achieves globally flat loss landscapes by
incorporating an approximated global direction into the local optimization process. We provide a theoret-
ical analysis to establish that GFlat achieves a convergence rate of O(1/v/nT), similar to state-of-the-art
decentralized algorithms. Furthermore, we validate our approach through extensive experiments conducted

10
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across diverse datasets, model architectures, and graph topologies. Our results show that GFlat improves
test accuracy by up to 6.75% over current state-of-the-art decentralized algorithms without any additional
communication cost.
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A Appendix

B Theoretical Analysis

B.1 Discussion on Stochastic Variance Assumption

As mentioned in Section [5, we assume a slight variation of the following standard stochastic variance bound
presented in contemporary decentralized learning works:

Es~p, ||V fi(x; B) = Vfi(x)|]* < 0 (11)
We rewrite our assumption here (Equation 7)) for ease of understanding:

V fi(x; B) Vfi(x)

VB INAeT =T (12)

Es~p,

Concretely, instead of bounding the norm of the difference between V f;(x; B) and the true gradient V f;(x)
for each client, as shown in Equation we bound the difference in their directions |Lee & Yoon| (2024); |Qu
et al| (2022). We argue that the bound in Equation may be loose and less informative in practice |Qu
et al.| (2022), particularly during the later stages of training, when the gradient norms are small. In such
cases, even a small variance in magnitude can lead to significant directional variance, potentially causing
instability in optimization. This distinction is crucial, as the convergence of the consensus model depends
not only on the magnitude of the gradients at each client but also on their alignment with the true update
directions. Moreover, % and ng}g ;H are unit vectors, and thus their euclidean distance can be
reasonably bounded by the angle between them.

B.2 Convergence Rate Proof

In this work, we solve the optimization problem of minimizing the global loss function f(z) distributed across
n clients:

n

1 .
min flx) =~ > filx), where f;(x) = Egeep,[fi(x; BY)] Vi (13)
i=1
We begin by providing an upper bound on the consensus error, defined as - Z 1 Ixt—=x||?, which quantifies

the average deviation of local models x! from the global averaged model x! at training iteration ¢. The
consensus error reflects the effectiveness of gossip-based averaging in decentralized learning and indicates
how closely clients are approaching global agreement.

Lemma 3 Given assumptions 1-3, the distance between the average sequence iterate X' and the sequence
iterates X! (i.e. the consensus error) is given by

T-1 n

1 ~t]|2 An"T 2 2 2 2 2 2 2 2
nE[ZHX— |} ( f2<Lp(1—s)a +36° +4L°(1 — 5)°p*+
= - (14)
T—1 n
A 4L ) 4 s ST VA + €I
=0 i=1
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Proof: We introduce the following notations and the subsequent properties |Esfandiari et al.| (2021)); |Aketi

et al.| (2023Db)); |(Choudhary et al.| (2024):

=Ly
n
G'2[gl.gh. ...
XA xh b, . x]
G' £ [gf, g5, ., gl
H' £ [Vfi(x] +&0), Va(x + &), ..., VN, + &)

(15)

Note that g! represents the local stochastic gradient computed using GFlat as shown in Algorithm [l (line
5). For all the above matrices, [|A[5 = Y27, [|a]|?, where a; is the -th column of the matrix A. Therefore,

we have:
IX'IT-Q)llz = Z lIx} — x*[|>.

For each doubly stochastic matrix W, the following properties hold true:
« QW =WQ;

« I-QW=W({I-Q);
o For any integer t > 1, (I - Q)W||s < (VA (|| - ||s is the spectrum norm of a matrix)

For n arbitrary real square matrices A;, i € {1,2,....,n},

IIZA I < ZZ [AillsllAsls-

1=1j5=1

We now proceed to provide a bound on the consensus error. Since X! = X!~'W — nG' we have:

X'(1-Q)=X"1I-QW-nG'(I-Q)

Applying the above equation ¢ times, we have:

t
XI(I-Q)=XI- chﬁ QW =) GI-QW""

X/(1-Q)

2
]EH :|772E|: ZGT Wt 1-7
t—1 t—1
<n222 [HGT )Wt 1-7

2}
§

HGT Q)Wtflfr'

|

7=07"=0
t—1 t—1 t—1 t—1 + 1 " 1 "
< EIIG51G” s <WZZZA“ == (JENGTIE + NG 1)
7=07"=0 T=07'=
t—1 t—1 + b
=Y Y ARG TR E[| G7I3]
7=07"=0
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(a) follows from the inequality zy < ;(x( + y) 2) for any two real numbers x, y.
t— 1 T

(b) follows from 35, AC—1-73) < A

We proceed with finding the bounds for E[||GT||23]

ZE[Hsz(XzT + ( Z—’BZ—)) - sz(xz + 5:) + sz(XzT +§Z—) - sz(xz + gz—rue) + sz(XzT + gz—rue)

=~V + &)+ VI + P < 4D ENVAE] + (&38])) = V] + &)1 (21)
1=1 I
E[”vfz(xz + 517—) - sz(xz + gz—rue)”]z +E[||sz(xz + gz—rue) - Vf(XzT + sz)H]Q 'HE[”Vf(XzT + 6:)”]2
II II7

Here, &..,. = p% is the true perturbation, where g" = Vf(x]) = L1 3" | Vf;(x]) denotes the average
gradient across all clients. €; = || % - % || is the error introduced due to the global update approximation

computed through the model differences d] and € = maxy maxi<;<n €;.

Now we bound I, II, and II1:

]

dr g7 d7 Vfi(x])
E[|Vfi(x] + (&;d])) — V fi(x] ZQ_LQQIE{ e (1 - : 1—5). =2
IV RGE (6 di) = VGG + €O = BV |y 0= gr = *far ~ 4~ Moo
Vi XZ) 2} 2 2 2 2
_L22 L _
[Hngln Naeo| | <Lt
(22)
Now, we proceed to bound II:
IT: ]E[val(x;r + g‘r) - vfi(XT +§Z-rue)|H2 S LQE[”gT gtrue” ]
3 V fi(x7) (dz Vf(x]) (x)) . 2]
— [2,°F _ _
P H(l D nenn e TRl T ) S -
VAEED VD) ] 2 22 [H V/(x]) }
L?p*(1 — - L?p*s°E
<201 ~s) [Hnm RISl 1~ VAT

§ ALPp*(1 — 5)? + 2L2s%p?e?

Here, (a) results from || Hgﬁifgu | <1and | HVVJ;L(X ) I <

Finding an upper bound for I11:

E[|Vfi(x] + &ue) = VT + D)%) =

ElIVfi(x] + &frue) = V(X)) + VIilx]) = V(%)) + Vf( 1) = VI +EDIP)

< BE[[Vfi(x] + &e) = VEEDIP + BE[|Vfi(x]) = VD] + SE[IVF(x]) = V(=] +€)I°] (24)
<

SE(IV fi(x] + &) — V(XD + 307 + BE[|VF(x]) — VF(x] + &)|I°]

b
< 3L2p% + 30 4+ 3L%p? = 36% + 6L2p*

(a) follows from Equation [8in Assumption 2.
(b) follows from Assumption 1 and the perturbation being bounded by the perturbation radius p.
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Putting Equation and [24] in Equation

E[|G-|3] < 4nL?p*0*(1 — 5)* + 16nL%p*(1 — 5)* + 8L?p*s> Y €} + 12n0” + 24nL?p?

. =1 (25)
1
+4nE[| ~ > Vfix] + €D
i=1
Putting Equation [25] back in Equation
2
IE[HXt(I—Q) } Z)\ (4nL2p?02(1 — 5)2 + 16nL2p2(1 — 5)%+
§
SL2p%s* Y €l +12n0% 4+ 2AnL?p? + 4nE[H5 >V +EDIP)
1=1 =1
nn? 2 2 2 2 2 2 2 2 2 2 8L2p?s*n? - 2 20
< ————4L%p 0" (1 — s)* + 16nL"p*(1 — 5)° + 126 —I—24Lp)+ €;
(1_\/X)2 ( (1_\/X)2 i=1
AP A s 1 9
+———= 2 A 7 E[l=) Vi +&)I°D
vt iy
2
Summing over t € {0,...,T — 1} with E H‘XO(I -Q) } =0:
3
T—1 2 dnn? T—1t—1 : 1
Ss||xa-q) [sors TS S Bl S S VA6 +€DIE) <
t= ¥ t=0 7=0 i=1
T— 1 T— 1 t
4nm? —\=
CT + HfZsz P+ D7) <
1-VA 11—V
( )i (27)
4nm?
T+ —1 ZE ZVfi(xﬁ + €017
i
2 2222 N
nn 2 2 2 2 2 2 2 2 2 2 8L oLmpsTN” 77 2
where C = ———— | 4L“p“0°(1 — s)* + 16nL 1—5)°4+126° + 24L >
T (10t = 7 e / S
Dividing both sides by n:
-1, 2 2
3 IEH’Xt(I - Q) } < T (4L2p202(1 — )2+ 16nL2p2(1 — 5)2 + 1262 + 2412
—'n (1— \f)\)2
t=0 3 - (28)
8L2p282’172T(1 - 2) 4n? — 1 —
(=D& )+ = D Ell= ) Vfilxi + &)
e k) 2 2

This directly translates into an upper bound for the consensus error

3

Z 1EZ||X —= <

( \/X)2<2p2(1 $)20% 4+ 362 +4L%(1 — 5)2p*+

222 4 6L2p2) + SRS SV + )
1o 2l 2
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We analyze the convergence properties of GFlat based on the following update scheme, derived from a
single-step progression of the averaged model X! = % Yo xt:

_ _ 1o~
X' =x' - n(n Zg§> (30)
i=1

To begin, we reiterate Theorem [I] presented in Section [5}

Theorem 4 Given Assumptions 1-3, let the learning rate satisfy n < \/(17\5)2+16§27ﬁ)7(17ﬁ). Then,
for all T > 1, we have:
1= . 2 ) N 2L gL
7 2 B9 Gl < 5 @) - ) 40?2 o (i) "
272 129 ) 2 2[ 8n*L? < 2 2 2 > 2 2 2 }
0L <(1ﬁ)2 +p°L 7(17\[\)2 2(1—98)*+s"€+3 | +3s°¢" +65°+3
Proof: We start with the following property for a L-smooth function f(x):
E[f(x™1)] < E[f(x")] + E(Vf(x"), %" —x)] + glE[Hit+1 - x| (32)
@ n L n N
E[f(x*)] < B[/ (&')] -~ nE[(V f(x Z LRl > & (33)
= i=1
I
(a) results from the update rule in Equation We first start with I:
I E[<Vf<fct>,%zgz>] = B{(VF('), - S O(@ + Vil + &) ~ Vi + €0)]
j i=1
E[(Vf(x Zw; x; +€))] +EAVAR), D (& = VAilxi +€D)))]
=1
a oty 1 - t N 2 - t ty)2 (34)
=E[(Vf(x )%ZVfi(Xi +&N =5 (EIVFE)I )+]E||EZVJ%(XZ- T ) -
i=1 j
E(IVS) - *vaz (xi + &)%)
(a) results from E[g!] = V f;(x! + &!). (b) follows from (a,b) = 3[[|a]® + ||b[|* — |la — b]|?]
Simplifying *:
1 n
IV f(x —fZsz X+ &7 = Zsz )= =~ VAl + €I
i=1
<- LS VA - T+ €I ZLGx xi =& (35)
i=1
L2
< SR - P + )

=1
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(a) follows from Assumption 1. (b) results from the inequity ||a — b[|? < ||al|® + ||b]|.

Now, we define an upper bound for [|£!||%:

d; d  Vf(x) Vf(x;)

€12 = ol e + (1 ). ||2p2||s( - o)+ F-).

' 1l ||gz\| Idll IV F(x5) [Vf(xF) | t||
< p%(35%€* + 357 + 3(1 — 5)?) < 3p?s%e? + 6p%s% + 3p?
Putting this result in Equation [35}
o L& £ 2 iy~ L £ t2
IV f(x —*vaz FHEIP < gZ(Hi = x;[|7 + [|&1] )S;Z(lli = x[%)
i=1 i=1

+ 3L%p?s%€? +6L2p s2 + 3L%p?

€2 < €2, where € = maxi<i<n €;-

Note that L 37 | €2
Substituting Equation [37] into Equation

n n 2 n

BV, = SN 2 SEIVARI +11 D Vit + €I - 2 B (I <))~

i=1 i=1 i=1
3L2%p%s%e? 3L2%p?
3125252 —
2 e 2

Substituting Equation B8 into Equation [33}

Ef(x')] < BIf ()] - TE{IV A7) - TE(I VA €I

1 o 1\  Lp? o
EZHX )+ antg? (S + s+ 1) + DB SR

i=1
Rearranging the terms and dividing by 2 > 0 to find the bound for E[[|V f(x")||?]:

(ELf(x")] - E[f&"*1)]) - ]EHI% Z Vfi(xi + &)II°]

1 — 52¢?
+ L*E] EZHX x![1?)] +6L2p2< 5 + 52 + )+77LIE||Z

E[IVF&)IP) <

3\[\9

We first bound E[[| > L S glR:

n n n

il Y =Bl 3@~ VAT + NPT+l S VA6 + €I
£ D EIE - VAGT I+l VARG DI £ T

3

[II* Z(Vfi(XZ +ENI]

(36)

(37)

(39)

(40)

(41)

(a) holds because gt — V f;(x] + £7) are independent vectors with mean 0 [Yu et al.| (2019)), and (b) follows

from equation 22
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n

Using the above result in Equation we have
2 _ _ I
E[|Vf(x)*] < 5( [f (xt)]—E[f(xt+1)])—E[IIEZV]%(X‘;+§f)||2]+L2E[ﬁZH f—xi)?)
2.2 20202 ( )2 - n - (42)
2 o (87" o 1 L7p7o”(1 —s 1 (et ety )12
ot (T s +2>+77L< w B S VAGE eI
Summing over t € 0,1...,7 — 1 and dividing by T', we have:
= 9 = L&
7 2 BV < o5 (F&) - 7> (E[II > Viilx] +sf>||2}>
n
t=0 t=0 i=1
1.1 52¢2 1
2 L 1 <t 122 2, 4 43
<th_; n;l\x %) >+6 ( +s+2>+ (43)
L?p%c%(1 —s 1«
L (TEHTZ 1L S va e
t=0 i=1
Using the result of Lemma [3]in the above Equation and rearranging the terms
T—1
1 2 B B 4n2L2
— E[||V f(x! < — (f(x" — f(x* +<L—1+ )
7 2 BNV < 7 () = 1)+ (k- 1+ 7
= TZ II*ZW Xt + €1)]2)) W(szz(l_3)202+352+4L2(1_s> o
T ( V)2
2 Q)2 $2¢
+2L23262p2+6L2p2> +nL (L(S)> +6L%p? ( 5 + 52+ ;)
" (44)
4n? L2 —
=) ( Z H{jv]@ e 1))

2 (F&) - f&)) + <?7L —1+
L?p*(1 — 5)%0? ((141725;)2 + 77nL> + (%)52
+ L%p? {(181725;)2 (2(1 —5)? + 5% + 3) + 35%€% + 657 + 3]

272

_ 4n”L .
When nL 1+1—ﬁ§0'

= 2 N 21?2 gL
T 2::0 [(IVFEI)IT] < T (f&") = f) + o L%p*(1 - ) ((1_\[\)2 n) +
87]2L2)2 (2(1 —5)2 + 5% + 3) + 3s5%¢? + 657 + 3]

w1 (2 ) A

B.3 Discussion on the Step Size
< 0. Upon solving this inequality with the fact

The condition for Equation 45(to be true is nL — 1 + 4111125; <
that n > 0, we have:
V(L= VA2 +16(1 - V) — (1 - V)
n< Y (46)

22



Published in Transactions on Machine Learning Research (01/2026)

B.4 Proof for Corollary 2]

According to Equation , on the right hand side, there are four terms with different coefficients with

respect to the step size n = O( %) and perturbation radius p = O (\/;) We separately investigate each
term:

21 -1) = 0( =) (47)
vt (G ) = O + ) .

Qfﬂ%ﬂfzoﬁ) (49)

8n%L> n 1
2 2 2.2 2.2 2 2
L [(1—\&)2(2(1 $)° + s%€ +3)+3se + 6s +3}p —(9( 5+ ) (50)

By omitting n in higher-order terms (since 7' >> n) and combining the results of all the above equations,
the convergence rate is as follows:

T—1 _
1 2 fE)—f (1-s)0? 6 €
> Jos (17 <o HOZ S O B o
T~ nT T3/ T T
This implies that when T is sufficiently large, GFlat results in a convergence rate of O (%)

C Algorithmic Details

The authors in Lin et al.| (2021) propose Quasi-Global Momentum (QGM) buffer, which improves the local
momentum acceleration in the presence of data heterogeneity. Specifically, QGM updates the momentum
buffer by calculating the difference between two consecutive models, xﬁ“ and x!, to locally approximate the

global optimization direction. The update rule for QGM is given by the following equation:

t+1
xt —x{"HY

QGM: x{™" = Y wi[x) —n(g} + pm! )], m! = pm! "+ (1- W (52)
JEN(3)

To further enhance performance, we introduce a variant of our approach called Q-GFlat. For implementation
details, please refer to Algorithm [2]
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Algorithm 2 Q-GFlat
Input: Each client i € [1,n] initializes model parameters x;, step size 7, perturbation radius p, scaling
factor s € [0, 1], mixing matrix W = [wy;]; je[1,n), NV (i) represents neighbors of i, momentum coefficients /3, .

procedure TraIN( ) for Vi

1 fort:172,...7Tdo
2 gl = VF(x}; B) for B} ~ D;
5. m
4. dt — x?_l — Xt'

Coar m;
5. Ngf:p(s.m—ﬁ-(l—s)-”m;”)
6 gl = VF(xt + ¢ B
. XD _ O st
8 SENDRECEIVE(XZ(»H_UQ))

t+1/2

0. X =% wx
10. 1l =pmit+ (1 - p)d!
11. end
return x!

3

D Setup Details

D.1 Datasets and Models

For ImageNet Deng et al.| (2009), the terms of access and details related to the license are available at
https://image-net.org/download.php. We download Imagenette Husain (2018) from https://github.
com/fastai/imagenette), which has Apache License 2.0.

All models use Evonorm |Liu et al.| (2020)); [Hsieh et al.| (2020a)) as a normalization layer, as it is shown to be
better suited for decentralized learning with non-IID data. We use the standard ResNet-18 and ResNet-20
architectures|He et al.| (2016]) with 11M and 0.27M trainable model parameters, respectively. For MobileNet-
V2, we use the architecture with 2.3M parameters |Sandler et al.| (2018]).

D.2 Non-lID Distribution

Similar to prior works Choudhary et al.| (2025); |Aketi et al.| (2023bfal); [Lin et al.| (2021, we use the Dirichlet
distribution to simulate different levels of data heterogeneity in our setup [Hsu et al.| (2019). Figure @
shows the number of data points from each class of CIFAR-10 that are allocated to different clients for
a = 0.01,0.001. While o = 0.01 allows most clients to have samples from two different classes, o = 0.001 is
the most extreme form of non-IIDness, with clients having samples from only one class.

D.3 Graph Topologies

We perform our experiments for two different graph topologies, ring and torus. Ring is one of the most
sparsely connected topology and has 2 peers/neighbors per client, while torus has 4. Please refer to Figure
[@ for a visualization of these.

Table 6: Learning rate (1), batch size per client, and the number of epochs for all the experiments.

Dataset CIFAR-10 CIFAR-100 Imagenette ImageNet
Learning Rate (n) 0.1 0.1 0.01 0.01

Epochs 200 100 100 50
Batch-Size/Client 32 20 32 64
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Figure 6: Test accuracy for the CIFAR-10 trained on ResNet-20 architecture distributed with various levels
of heterogeneity (a:) over 20 clients.
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Figure 7: Ring Graph (left), and Torus Graph (right).

D.4 Hyperparameters

The initial model and all training hyperparameters are synchronized at the start of training, and communi-
cation between clients is assumed to be synchronous. The initial learning rate is set according to Table [6]
with a decay factor of 10 applied at 50% and 75% of training. We use a weight decay of 0.0001, and training
proceeds for a fixed number of epochs as specified in Table @ Quasi-Global Momentum (QGM) uses the
Nesterov momentum with a coefficient of 0.9. For SADDLe and Q-SADDLe |Choudhary et al. (2025), we
adopt the same perturbation radius p as reported in the original paper. Additionally, we perform a grid
search over {0.05,0.1,0.2} for p and {0.2,0.5,0.7,1} for the scaling factor s, selecting the best values based
on performance (see Table [7| for details). As noted in Remark 1 in Section 5| 0.5 <= s <= 1 yields the
best results. Interestingly, when s = 1, GFlat becomes more computationally efficient than SADDLe, as it
eliminates the ascent step required to compute the local perturbation. We report the test accuracy of the
consensus model averaged over three randomly selected seeds. All experiments are conducted using NVIDIA
A40 GPUs.

Table 7: Perturbation Radius (p) and Scaling Factor (s) for GFlat and Q-GFlat.

Dataset CIFAR-10 CIFAR-100 Imagenette ImageNet
Perturbation Radius (p) 0.1 0.2 0.05 0.05
GFlat: Scaling Factor (s) 0.5 0.7 0.5, 0.7 1

Q-GFlat: Scaling Factor (s) 0.7, 1 1 0.7, 1 -

E Additional Discussion on Local and Global Flatness

In decentralized learning, each client’s objective f;(x) captures only a partial view of the global objective
f(x) = % fi(x). Under IID data, these objectives are well aligned: as shown in Figure the eigenvalue spectra

25



Published in Transactions on Machine Learning Research (01/2026)

Bl 3.0~ 2.87
2.5 B Local
20- BN Global
25
2.0-
1.5- 2.0- 1.87
= 15-
5 15
E10-
1.0-
1.0-
0.5- . .
0.0- 0.0- 0.0-

Epoch:50 Epoch:100 ) Epoch:150

Epoch:200

Figure 8: Ratio of largest to 5th largest eigenvalue (Apaz/A5) of the Hessian of the local and globally
averaged models at 4 different training stages, under an IID data distribution across 10 clients on the
CIFAR-10 dataset.

of local and global Hessians are nearly identical, indicating consistent curvature across clients. However,
under non-1ID data, the curvature of these local landscapes can differ dramatically, i.e., regions that appear
flat for one client may correspond to sharp directions in the global loss. Consequently, optimizing for local
flatness alone does not guarantee global flatness, as done in prior methods such as SADDLe
. In fact, aggregating updates from locally flat but mutually misaligned regions may yield
globally sharp solutions that hinder consensus and generalization. This phenomenon is clearly evident in
Figure 3] where the discrepancy between local and global flatness widens markedly under heterogeneous data
partitions.

We attribute this misalignment to the fact that each client estimates its worst-case perturbation using only
its own local gradient g;, which captures limited curvature information. Ideally, one would instead compute
perturbations based on the global gradient (g' = 1/n) ", g!), ensuring that every client’s update direction
is consistent with the global curvature. While this would align local SAM steps with global flatness, such
synchronization fundamentally violates the decentralized setup, requiring full communication among all
clients at every iteration.

E.1 Theoretical Analysis

To overcome the above mentioned limitation, we introduce a locally approximated global direction df,
which allows each client to estimate g' using model differences across consecutive training iterations. This
approximation enables clients to incorporate a proxy of the global update into their local SAM objectives,
effectively aligning local and global flatness without incurring any communication overhead. We refer to the
discrepancy between the approximated and true global directions, ||[d!—7g’||, as the perturbation deviation,
which quantifies how closely each client’s local displacement tracks the global gradient direction. Lemma
formalizes this intuition, showing that the perturbation deviation decays asymptotically at rate O(1/T).

Lemma 5 Suppose Assumptions 1-8 hold. Let the stepsize and perturbation radius satisfy n = Oﬁ and
p=OKT). Then

el -ug* < o) o

t=1 i=1

Proof: Recall the parameter update rule and our approximated global direction df from Algorithm

x| = Z wij(xi =g/ (54)
jent®
di=xI"! —x! = nZwij gj‘l + (xﬁ_l - Zwijx;_1>. (55)
J J
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Add and subtract nz w”gj and ?72 w”gt L
=0 Sl ) o St E ) (- D)
7 J J

A B C (56)

+nzw” t D)

Idt = ng!||* < 4(llAJ12 + | B + ICI* + | DII?). (57)

We start by bounding A. Through Assumption 1, g, — gf|| < L|xj~" — x| = L||d}||. Hence, using
Jensen inequality,

JAIE = || S wis (el — &)
J

2
LY w1 < P2y (58)
J J

Based on notations in Equation |15, @ = 1117 and G £ [gl, g}, ..., g"]. We will also use the stacked vector

notation only to apply ||W — Q||2; non-neighbors simply have w;; = 0. With standard basis vector e] and
W — Q|2 < VX, we have:

n 1/2
1B =nel (W-Q)G' < W —Qll2 |Gl < nVA( Y llgtl?) " (59)

j=1
For each j, add and subtract V f;(x?) and use the inequality ||u + v[|? < 2||u|* + 2||v||*:

lgtl)? = |V £;(x 1) + (V£(x) —ij<>zt>>||2
<2||VEHEY| + 2|V ) - VEERD| (60)

Summing equation [60] over j = 1,...,n yields
SIVHEDIP < 22 [IVHEONF + 2D IV - V| (61)
j=1 j=1 j=1

By L-smoothness (Assumption-1), we have:

SOIVEHED - V(% Lzsz 2= L2 A, (62)
j=1
SIVHEEY|* = STIVEHERD - VARY + VAR < 2062 + 20|V f(x 1) (63)
j=1 j=1
S g2 = ZHWJ MNP < an(|VAED2+02) + 2024, (64)
j=1

Substituting the above in equation

IBI2 < A 4n(IVFRY)2 +6%) + 202 A (65)
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Now we bound C, where C = x!7' — > wijxfl. We stack all client models into X'~! =
(DT (xE1)T] € R™%4, so that the i-th row corresponds to client i. Then C' can be written as
C=e/ (I-W)X'L (66)

Here, e/ € R" is the standard basis vector. Since W is doubly stochastic, we have WQ = QW = Q, and
therefore
I-W)=I-W)I-Q) = (W-Q=W(I-Q).

C=e/I-W)X"'=e/I-W)I-QX"'=¢/(W-Q)(X'"! —x""117) (67)
By Assumption 3, [W — Q]2 < VA:
IC] = lle] (W — Q)X —x' 117 < VXX —x'117|p.

Since |A[|%2 = > |a;||? for the rows a; of A, this yields

ICIP <A I == P = A A (68)

Jj=1
Now we bound D with L-smoothness and bounded perturbation:
2
Hn > wii(g " -8 ) H <n?L*p? (69)
J
Now we bound ) y ||d§||2 From equation we add and subtract the unperturbed gradients to obtain:
=0 wpgt "+ (x0T = Y wx )
k k

(70)
= nzwjkgi + Uzw‘jk(gzil - gL) + nijk(é,?l - g;zfl) + (Xﬁfl - ijkXZ*l)
k k k k

With A; =03, wiegh, Bj =02 win (g, —8k), Cj = x5 = winxy Dy =03 win (8 —8; )

we have,
Dol < 4 AP + 4D IBIE + 4D NCH1P +4) 1D (71)
Jj=1 J J J J

DA = PIWGHE < PIWIBIGE < 7* ) llgkll, (72)
J k=1
since ||[W]|2 <1 for a doubly stochastic W. Through equation

STI4 P < 7P (4n(IVFEDIP +06%) +2L2A, ). (73)
J
For Bj, let AG! := G!™! — G* (row k is g, ' —g!). Then

YIBIP = PIIWAGHE < v ) gt —ghll? < w°L7 Y il (74)
J k=1 k=1
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Now we bound Cj:

SUIGHP = [T =W)X G = [[(W-Q)(I- QX7 < [W-QI [(T- QX" Mz =AA, 1.
j=1

For D;, L-smoothness and ||¢.71]| < p, we have:
lgr " — g 'l < Lp

Combine equation [73{{76]

ST < 4 (4 (ISP +6%) +2078,) + 4212 3L + ANAy + 4170
J J

(1—4n’L?) Y _|db)1* < 169°n (VLX) +0%) + 8n°L2Ay + 4XA,y +4L%p°
J

Assuming a standard stepsize condition 4n?L? <  (so (1 — 4n*L?)~! < 2) we get

SO < 320Pn(IVAENIZ +6%) + 167°L* A, + XAy +8L%p?

J
Substituting the above result in equation

IA|? < (32n4nL2(||Vf(>zt)||2+52) + 165 LA, + 8An2L? At_1+8772L4p2>

Substituting equation [79] and [69] in equation
1df —ng*||* < 4(32 'L (IVF(xO]? +6%) + 160" LA + 8Np?L2 Ay + 8772L4p2)
+4n?A [4n(||Vf(>zt)|\2 +6%) + 21? At} FANA 1 + 4212 p?

Collecting coefficients yields

i —ng'|2 < (1280'L2n + 169°An) ([VF(R))* +6°)

Cy

+ (64774L4 + 8/\772L2> Ap + (32022 + 4) MA_1 + (32L2 + 4) 202 p?
~—————

cl Cp

Ca

lat —ng!IF < C, (IVF&IP +6%) + Cade+iChl1 +C,

with the explicit constants Cy, Ca,C’y,C, as above.
Averaging over total clients n and training iterations 7"

1T1n

T T T
_ 1 _ 1 1
=SS gt < (G IVIEDIP ) + Cam S A+ CAm Y A+ G,
t=1 1 t=1

= t=1 t=1

Now similar to main paper, let = O(y/n/T) and p = O(1/VT).
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From the result of Lemma [t .
1 1
LS s-o(h) o

From Corollary [2}

T
Cs=0(g+7)=0(7) (56)
Cp = o(% +1) =0(1)
()

Putting together the above equations, for a fixed n << T

n

T2l gt < o() (Fr+ ) + o(h)h+0(3) + o)

) + O(#) + O(%) + O(%) (87)

Il
&)
N
S

Interpretation. Perturbation deviation quantifies how closely each client’s displacement d! aligns with the
global gradient ngt, and is controlled by the following key factors:

Id; —ng'I> < Cy(IIVFENI? +0%) + Ca Ay + Cp Aoy + Cp,

The bound shows that this deviation is governed by the global gradient magnitude, the consensus error
among clients, and the SAM perturbation radius. As training progresses, both the global gradient norm and
the consensus error A; decay, while the perturbation effect remains bounded and scales with the decaying
learning rate. Consequently, the deviation diminishes at rate O(1/T), indicating that each client’s local
displacement asymptotically tracks the global descent trend, validating our approximated global direction
as a faithful proxy without requiring any global synchronization.

Implementation note. In our implementation (Algorithm , each client forms the perturbation direction
as a convex combination of its local and approximated global directions:

t

& =p(s.— 4+ (1 — 5).—), 88
(s-faip = =) 1) (88)

where p is the perturbation radius and s controls the emphasis on the global vs local direction.

Since d! = xf_l — x! already represents the model update that includes the step size 7, we include 7 only

with the global gradient term in Lemma |5} In other words, n is implicit in df but explicit in ng?, ensuring
that both quantities are comparable in scale.

E.2 Empirical Validation

To validate the theoretical result of Lemma |5 we compare our practical implementation of GFlat, which
uses the locally approximated global direction d!, against its oracle counterpart GFlat (Oracle) in Table
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which directly uses the true global gradient g* for the SAM ascent step. As expected from the bound on
perturbation deviation, the oracle variant achieves consistently higher accuracy across all settings, serving
as an upper bound on the achievable performance under perfect global coordination. However, the small
performance gap between the two confirms that our locally approximated direction effectively tracks the
global gradient without requiring global synchronization.

Table 8: Test accuracy (%) on CIFAR-10 with ResNet-20 under different levels of heterogeneity (a). GFlat
(Oracle) denotes the variant that uses the true global gradient g in the SAM ascent step and serves as an
upper bound on achievable performance, while GFlat uses the locally approximated global direction.

CIFAR-10 (ResNet20)

Clients Method “ o001 = 0.001
10 GFlat 70.12 £ 0.68 62.29 £+ 0.66
GFlat (Oracle) 73.84 + 0.46 66.41 + 0.34

20 GFlat 56.21 £+ 1.33 51.76 £ 0.68
GFlat (Oracle) 57.41 £ 0.45 52.09 £ 0.94

E.3 Alignment Analysis

We further quantify how well the update directions in GFlat align with the global gradient by measuring
the deviation || sd! + (1 — s)g! — g'|| averaged over clients. For comparison, we compute the same metric
for SADDLe, which relies solely on local gradients, i.e., ||gt — g*||. As shown in Figure EI, GFlat exhibits
substantially smaller deviation, demonstrating that incorporating the approximated global direction improves
curvature alignment across clients and leads to more coordinated updates, along with globally flat model as
demonstrated in Figure

= SADDLe
GFlat

Total Perturbation Deviation
NN W W W
o N * ~ o N w
o w o w o w o

=
~
vl

=
O
o

T T T T T T T T
0 25 50 75 100 125 150 175 200
Epochs

Figure 9: Total perturbation deviation between each client’s update direction and the true global gradient g
on CIFAR-10 distributed across 10 clients with e = 0.01. The smaller deviation observed for GFlat indicates
stronger alignment with the global gradient, validating the theoretical perturbation deviation bound.
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