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Abstract

While Transformer-based models have demon-
strated remarkable language modeling perfor-
mance, their high complexities result in high
costs when processing long contexts. In con-
trast, recurrent neural networks (RNNs) such
as linear attention and state space models have
gained popularity due to their constant per-
token complexities. However, these recurrent
models struggle with tasks that require accu-
rate recall of contextual information from long
contexts, because all contextual information
is compressed into a constant-size recurrent
state. Previous works have shown that the re-
call ability is positively correlated with the re-
current state size, yet directly training RNNs
with larger recurrent states results in high train-
ing costs. In this paper, we introduce StateX,
a training pipeline for efficiently expanding
the states of pre-trained RNNs through post-
training. For two popular classes of RNNs,
linear attention and state space models, we de-
sign post-training architectural modifications
to scale up the state size with no or negligible
increase in model parameters. Experiments on
models up to 1.3B parameters demonstrate that
StateX efficiently enhances the recall ability
of RNNs without incurring high post-training
costs or compromising other capabilities.

1 Introduction

Recently, recurrent neural networks (RNNs) such
as gated linear attention (GLA) (Yang et al.,
2024b) and Mamba2 (Dao and Gu, 2024) have
shown promising capabilities in language model-
ing. These architectures have constant per-token
complexity, while the more popular Transformer
architecture (Vaswani et al., 2023) has per-token
complexity that grows linearly with the context
length. Thus, RNNs are much more efficient than
Transformers in processing long contexts.
However, RNNSs still underperform Transform-
ers in certain aspects, with one of the most criti-
cal being the long-context recall capability (Jelassi

et al., 2024a). Unlike Transformers, which store
the representations of every token in the context,
RNNs compress all contextual information into a
constant-size state'. As a result, the recall ability
of RNNs heavily depends on the size and capac-
ity of this state (Jelassi et al., 2024b; Arora et al.,
2024a; Yang et al., 2024a; Chen et al., 2025). De-
spite the positive gains of increasing the state size,
considering the increased training costs and the
limited benefits in short-context scenarios, most
RNNss are still trained with a rather small state size
compared to the rest of the model. For instance,
in Mamba2-2.8B and GLA-1.3B, their recurrent
states are smaller than 2% of their model sizes.

In this paper, we explore methods for expand-
ing the state size while keeping the training costs
low and introducing little to no additional param-
eters. Specifically, we expand the state size of
pre-trained RNNs through post-training on much
less data than pre-training. Moreover, since larger
recurrent states are more important for long-context
models, we perform state expansion prior to long-
context post-training (LPT), and show the whole
process in Figure 1.

The state expansion process is an architectural
change and depends on the pre-trained model ar-
chitecture. Therefore, we design two state expan-
sion methods, targeting two popular RNN classes:
linear attention (Katharopoulos et al., 2020; Yang
et al., 2024b) and state space models (Dao and Gu,
2024). Additionally, we explore various parameter
initialization techniques and select key layers for
expansion instead of all layers, to balance model
performance and efficiency. Compared to other
state expansion methods that require training from
scratch (e.g., MoM (Du et al., 2025), LaCT (Zhang
et al., 2025)), our method is simpler and can be
seamlessly applied to existing effective RNN im-

'Also called recurrent state in various contexts. We use
these two terms interchangeably in this paper.
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Figure 1: The difference between the traditional pipeline and StateX for training long-context models. We introduce
a state expansion step (architectural modification) before the long-context post-training (LPT) stage to enhance
RNN recall abilities without requiring expensive re-training.

plementations and training pipelines.

We validate our method on public checkpoints
of GLA? and Mamba2?, each with 1.3B parame-
ters and pre-trained on over 100B tokens, by con-
ducting post-training on 10B tokens. Empirical
results demonstrate that compared to the traditional
two-stage method, StateX significantly improves
performance on recall-intensive and needle-in-a-
haystack (NIAH) (Hsieh et al., 2024) tasks while
maintaining performance on common-sense rea-
soning tasks. While using the same amount of data
as ordinary long-context post-training (LPT), Sta-
teX yields consistently better results: the average
accuracy of recall-intensive tasks improves from
43.69 to 44.49 for the GLA model, and from 52.8
to 53.18 for the Mamba2 model. The average ac-
curacy in NIAH tasks with 2K-64K context length
improves from 26.0% to 42.2% for GLA, and from
33.2% to 39.2% for Mamba?2.

Overall, our contributions include:

* To the best of our knowledge, this paper repre-
sents the first work that focuses on expanding
the state size of RNNs through post-training.

* For two popular RNN variants, we design sim-
ple and effective state expansion techniques
and training recipes for efficient post-training.

* We validate our method on public GLA
and Mamba2 1.3B checkpoints. Our results
show consistent improvements in recall perfor-
mance on long-context tasks, without sacrific-
ing performance on common-sense reasoning
benchmarks.

2https ://huggingface.co/fla-hub/gla-1.3B-100B
Shttps://huggingface.co/AntonV/mamba2-1.3b-hf

2 Related Works

In this section, we provide a brief description of
RNNs and related work on expanding their state
sizes. For more details about RNNs, please refer to
the surveys (Wang et al., 2025; Lv et al., 2025).

Modern RNNs Recently, some RNN variants
have shown promising results in sequence model-
ing. Some representative examples include state
space models (SSMs) (Dao and Gu, 2024; Gu and
Dao, 2024), the RWKYV series (Peng et al., 2025,
2024, 2023), linear attention models (Katharopou-
los et al., 2020; Sun et al., 2023; Yang et al., 2024b),
and DeltaNet (Yang et al., 2024a). Some results
have shown that these RNNs can outperform Trans-
formers up to several billion parameters on cer-
tain language tasks, such as common-sense reason-
ing (Waleffe et al., 2024; Team, 2024), and some
hybrid models have scaled up to over 100B pa-
rameters and trillions of training tokens (MiniMax
et al., 2025). RNNs are attractive alternatives to
Transformers because their per-token complexity is
constant, while Transformers’ per-token complex-
ity scales linearly with the context length. However,
since Transformers cache all previous token rep-
resentations, they outperform RNNs in recalling
contextual information. This is one of the reasons
why RNNs have seen limited adoption.

Increasing RNN State Size Many previous
works have investigated the influence of state size
on the capabilities of RNNs. One important im-
provement of modern RNNs over previous works
such as LSTM (Hochreiter and Schmidhuber, 1997)
and GRU (Cho et al., 2014) is the adoption of larger
matrix-valued recurrent states over smaller vector-
valued states (Sun et al., 2023; Qin et al., 2024;
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Table 1: Comparison between our work and existing approaches for increasing RNN state sizes. Vanilla RNNs
underperform due to their smaller state sizes. “?” means that these works are rather new and are therefore yet to be

extensively tested at scale.

Katharopoulos et al., 2020; Hua et al., 2022). Some
later efforts focus on improving the forget mech-
anisms to remove unneeded information in the re-
current states, saving capacity to store more contex-
tual information (Gu and Dao, 2024; Schlag et al.,
2021). Arora et al. (2024a) provides a comprehen-
sive comparison of the recall-throughput tradeoff of
various recent RNN architectures. Although these
methods show promising results, their state size is
still rather small, and they lag behind Transformers
in recall-intensive tasks.

Recent State Expansion Works More recently,
Du et al. (2025) proposes MoM, a new architec-
ture that maintains a large state size but with lower
computational overhead, by updating only parts of
the recurrent state at each time step. LaCT (Zhang
et al., 2025) is a concurrent work to ours that pro-
poses a novel recurrent architecture based on the
test-time training (TTT) framework (Sun et al.,
2025). LaCT utilizes a much larger state than other
RNNs (e.g., GLA and Mamba2) and has demon-
strated strong recall and long-context capabilities.
Another relevant concurrent work is by Liu et al.
(2025). They utilize low-rank projections to in-
crease the state size of RNNs with small parameter
overhead, resulting in considerably better recall per-
formance. However, these architectures have not
yet been thoroughly evaluated at scale across dif-
ferent tasks and may be hard to adopt into existing
codebases.

In brief, the state size is a critical bottleneck of
RNNS. Increasing the state size provides consistent
performance gains for many RNN variants. How-
ever, previous works on expanding RNN states are
trained from scratch, which is highly expensive and
requires significant changes to the model architec-
ture and implementation. This paper, to the best of
our knowledge, is the first effort to expand states
through post-training. Compared to existing archi-
tectures with larger states, our method is simpler

and can be seamlessly integrated into popular RNN
variants such as linear attention methods and SSMs.
Table 1 shows the comparison between our work
and existing works with larger states.

3 Preliminaries

In this section, we first provide a formulation of
RNNs as well as two variants—GLA and SSM
(Sections 3.1, 3.2, and 3.3). Then, we discuss how
the recurrent state size influences the models’ recall
capabilities and cost-efficiency (Section 3.4).

3.1 Recurrent Neural Networks

In RNNSs, all contextual information is stored in a
constant-size recurrent state S;, where t denotes
the time step. At each time step, an RNN layer
inserts new information into the previous state S;_1
with an update rule, and then retrieves information
from S; with a query rule, which is given as

St = fupdate(stfla Xt)a

(D
Yt = fquery(sta Xt)a

where x;,y; € R are the input and output repre-
sentations at the time step ¢, and fupdae and fquery
denotes the update and query rule. In this paper,
we define state size as the parameter number of S;.

3.2 Gated Linear Attention

The GLA model consists of a stack of interleaved
layers of GLA blocks and feed-forward network
(FEN) blocks. Since we only modify the GLA
block, we omit the formulation for FENs. Each
GLA block consists of H heads computed in par-
allel, and the layer output is the sum of the head
outputs. Each GLA head can be formulated as:

Oe {q,k,v},
F,; ) = diag(ayy) € deXd’“,

T di,xd
Sth = FtpSt—1,n + Ky p,ven € R

Uin = x¢Wnp,
(2)

Yih = 9t,nSen € Rd“,
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Figure 2: Illustration of how StateX (our method) expands the state size of linear attention and state space models
with little to no parameter increase. The red parts indicate the additional state parameters unlocked by StateX.

where h € {1,---, H} is the head index, dj, d,
are the key and value dimensions. x;,y; € R? de-
note the input and output representations at the time
step t, respectively, q; n, K¢ n, o n € de,vt,h S
R% are projection functions of x;, and LN denotes
RMSNorm (Zhang and Sennrich, 2019). The state
size in each GLA layer is Hdd,,.

3.3 State Space Models

We focus on Mamba2, which is a state-of-the-art
SSM. A Mamba?2 layer can be formulated as:*

Vi,h = fv(xt7 av,h) € Rdva
ki = fr(xs,0) € R%,

q: = fq(Xt,eq) € dev
App = fa(xe,0a0) €R, 3)
Qpp = exp(—AtAh) € R,

T dixd
Si.h = Si—1n0n + Appky vip € R,

Yin = @Sen + Dpvip € RY,

where f,, fi, fq, fa are differentiable projection
functions parameterized with 60, 0y, 0,4, 0 p, re-
spectively, Ay, Dy, are learnable parameters. dy,
and d,, are hyperparameters and are called the state
dimension and head dimension in SSM literature.
The state size of Mamba?2 is also Hdyd,,, although
these hyperparameter values may differ from GLA.

Relationship with GLA It has been identified
that Mamba2 can be viewed as a variant of
GLA (Yang et al., 2024b) where heads share
the same query/key vectors. In this paper, we
view these two variants as different because this

“We use attention notations (q¢, k¢, v¢) instead of SSM

notations (z+, By, Ct) from the Mamba2 paper for simplicity
and to highlight the analogy between the two RNN variants.

query/key vector sharing mechanism influences our
state expansion.

3.4 Influence of State Size

Recall Ability Since all contextual information
is stored in S;, the ability of RNNs to recall con-
textual information depends on the capacity of S,
which in turn depends on the size of S;. Extensive
empirical evidence indicates a strong positive cor-
relation between the size of the recurrent states and
their performance on recall-intensive tasks (Arora
et al., 2024a; Hua et al., 2022; Yang et al., 2024b;
Zhang et al., 2025; Jelassi et al., 2024a). These
findings highlight the critical role of state size in
determining RNN recall abilities, underscoring the
importance of state expansion for improving recall
capabilities.

Efficiency The computational complexity of the
token mixing component (i.e., update rule and
query rule) scales linearly with the state size. There-
fore, blindly increasing the state size can lead to
high training and inference costs. StateX alleviates
these problems during both training and inference
by expanding the states via post-training (so the
model is trained with smaller states most of the
time) and expanding only a subset of layers.

4 Method

Our method, StateX, involves architectural mod-
ifications that expand the RNN state sizes prior
to long-context post-training to boost their recall
abilities. Meanwhile, we aim to minimize the addi-
tional parameters introduced by this modification
and keep the final architecture similar to the origi-
nal architecture to make it easier for the modified



model to adapt. An overview of the architectural
modifications is illustrated in Figure 2.

In this section, we describe the concrete state
expansion recipe for two popular classes of RNNs—
GLA (Yang et al., 2024b) and SSM (Dao and Gu,
2024) (Sections 4.1 and 4.2). Then, we describe
how to initialize the parameters after the modifi-
cation (Section 4.3) and which layers to apply the
modification (Section 4.4).

4.1 StateX for GLA

Since GLA employs a multi-head mechanism with
different query, key, and value vectors for each
head, we can increase the state size by simply merg-
ing multiple heads into one larger head. This is
because the state size of H heads is H X dj X d,,
and merging them into one head results in a state
size of 1 x Hdy x Hd,, which is H times larger.
Meanwhile, no additional parameters are intro-
duced since the total number of channels in the
QKYV vectors remains the same. The effect of this
change is illustrated in the left side of Figure 2.
Merging GLA heads activates non-diagonal regions
of the state matrix, thereby achieving larger states
than the multi-head counterparts.

In implementation, the only difference between
GLA with expanded states and the vanilla formu-
lation (described in Section 3.2) is the number of
heads and head dimension. Thus, this modification
can be seamlessly applied to existing GLA imple-
mentations. We always merge all heads into one
large head. This is motivated by the finding that
single-head GLA generally outperforms multi-head
GLA (reported in Section 5.6).

4.2 StateX for SSM

The head merging method is not applicable to
SSMs because there is only one key vector in each
layer. For this RNN variant, we increase the key di-
mension by expanding the key and query projection
layers. Specifically, we increase the hyperparame-
ter dj. (the original Mamba?2 paper refers to this as
the state dimension) and the parameters 0y, 0, that
depend on it. Since these two sets of parameters
are much smaller than the other components, the in-
crease in total parameters is less than 1% when we
increase dj by 4 x. This modification is illustrated
by Figure 2 (right).

4.3 Parameter Initialization

After the modification, we can inherit the param-
eters from the pre-trained model and initialize

only the added parameters (for SSMs). However,
perhaps surprisingly, we find that inheriting pre-
trained parameters can be detrimental to down-
stream performance. Thus, we present a better
parameter initialization strategy.

We assume that world knowledge is usually
stored in FFN blocks and the embedding table, and
these parameters take longer to learn than the token-
mixing parameters (GLA and SSM blocks). Thus,
we reinitialize parameters that are responsible for
token-mixing while other components inherit from
the pre-trained checkpoint. An ablation study on
initialization strategies is provided in Section 5.4.

GLA Initialization GLA models consist of in-
terleaving layers of GLA blocks and FFN blocks.
After state expansion, we reinitialize all parameters
associated with the GLA blocks, while FFN blocks
and the embedding table inherit the pre-trained pa-
rameters.

SSM Initialization Mamba2 merges FFN blocks
and the SSM mechanism into one unified layer. Mo-
tivated by the SSM literature, we only reinitialize
the parameters of the SSM mechanism, which are
Ap,0y,04,0a 5, while other modules inherit the
pre-trained parameters. Further implementation
details can be found in Appendix A.4.

4.4 How Many Layers to Expand?

Modifying all layers may result in a too disruptive
change, making it harder for the modified model
to recover from this change through post-training.
Existing works have shown that not all layers are
responsible for recalling information (Bick et al.,
2025). Thus, we hypothesize that only a subset of
layers can benefit from a larger state. Concretely,
we adopt a uniform expansion strategy by expand-
ing one layer every | L/m | layers (where L is the
total number of layers), starting from the first layer,
so that exactly m layers are expanded. For both
GLA and Mamba?2, we use m = 4 by default. In
Section 5.5, we empirically ablate the influence of
the number of expanded layers.

S Experiments

We first describe the details of the experiments (Sec-
tion 5.1). Then, we present the main results of our
method (Section 5.2) as well as improvement on
long-context retrieval tasks (Section 5.3). Finally,
we provide ablation studies involving the choices
of parameter initialization (Section 5.4), the num-
ber of expanded layers (Section 5.5), multi-head



Models | Params Total State | SWDE SQuAD FDA TQA NQ Drop | Avg.
Linear Attention
Vanilla GLA 1.365B 12.48M 44.64 54.96 28.13 5480 19.10 33.64 | 39.21
LPT-GLA 1.365B 12.48M 47.16 56.84 43.56 56.04 21.95 36.56 | 43.69
StateX-GLA (ours) 1.365B 18.72M 50.32 59.15 41.02 55.04 21.82 39.58 | 44.49
State Space Model
Vanilla Mamba2 1.343B 24.96M 57.43 59.58 31.03 6327 5.16 3622 | 42.11
LPT-Mamba2 1.343B 24.96M 54.19 57.81 68.97 63.51 36.87 3546 | 52.80
StateX-Mamba2 (ours) | 1.350B 37.44M 56.17 57.91 68.51 63.68 3643 36.37 | 53.18

Table 2: Accuracy on recall-intentive tasks with sequences truncated to a maximum of 2K tokens, as well as the
model size and state size of each model.

Model LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ | Avg. 1
acc T acc T acc T acc T acc T acc T acc T acc T

Linear Attention
Vanilla GLA 40.11  69.70 3897 53.35 55.13 23.38 39.92  57.65 47.28
LPT-GLA 39.80 69.64 3821 54.78 54.59 22.70 39.61 57.52 | 47.11
StateX-GLA (ours) 38.39 69.75 37.16 5493 53.91 22.53 3997  56.12 | 46.60

State Space Model
Vanilla Mamba2 56.41 7329 4589  60.85 64.31 30.12 43.14  64.19 54.77
LPT-Mamba2 53.02 73.07 4548 59.67 64.31 29.10  41.10 62.78 53.57
StateX-Mamba2 (ours) | 52.55 73.67 45.09 59.98 64.02 29.61 41.61 62.60 | 53.64

Table 3: Performance on language modeling and zero-shot common-sense reasoning.

mechanism in GLA (Section 5.6). We also report

Evaluation

Models are evaluated in common-

the training loss in Section 5.7.

5.1 Experimental Details

Models We apply StateX to the official 1.3B
checkpoints from the original papers of GLA and
Mamba?2. In StateX for Mamba2, we increase the
dj, hyperparameter from 128 to 512. For GLA,
the pre-trained 1.3B checkpoint has four heads, so
StateX with merged heads has a 4 x larger state.

Data All models are trained on SlimPa-
jama (Soboleva et al., 2023), a widely-used, high-
quality, and deduplicated corpus with 627B tokens
extracted from the Internet. We concatenate docu-
ments with a special token as the delimiter. Then,
these concatenations are split into chunks of the
specified training context length.

Training Configuration The training follows
common practices in context length extension by
post-training as closely as possible. Concretely, we
use the cosine learning rate scheduler, with a max-
imum learning rate of 3e-4, and a warmup phase
of 5% of the total training steps. To better evaluate
the ability to recall information from long contexts,
we use a 64K context length. The training spans
a total of 10B tokens, with a batch size of 0.5M
tokens.

sense reasoning and contextual information re-
call. We use 9 popular multiple-choice tasks for
common-sense reasoning, and 6 popular recall-
intensive tasks for evaluating recall. More details
are given in Appendix B.1.

Baseline We mainly compare StateX against
vanilla RNNs and the ordinary LPT versions. The
LPT models undergo the same post-training pro-
cess, but without any architectural modifications,
so their state sizes remain unchanged.

5.2 Main Results

Recall Abilities Table 2 presents scores on recall-
intensive tasks for the original model (Vanilla),
the model using the standard long-context post-
training (LPT), and the model enhanced with Sta-
teX. The columns “Params” and “Total State” re-
port the number of model parameters and state
parameters for each model, respectively. StateX
increases the total state sizes by roughly 50%. The
main takeaway is that StateX models achieve the
highest average performance, underscoring the ad-
vantage of larger states.

Common-Sense Reasoning Table 3 shows that
StateX models’ performance on common-sense rea-
soning is comparable to the vanilla model, imply-



Context Length \ 4K 8K 16K 32K 64K
GLA — Passkey Retrieval

Vanilla 0.25 0.01 0.00 0.00 0.00

LPT 0.74 041 0.13 001 0.01

StateX (ours) 093 0.77 034 0.06 0.01
Mamba2 — NIAH-Single-2

Vanilla 0.05 0.00 0.00 0.00 0.00

LPT 0.83 043 030 0.09 0.01

StateX (ours) 094 0.61 032 0.09 0.00

Table 4: Performance on retrieving specific informa-
tion (i.e., a needle) from synthetically generated long
documents up to 64K tokens.

ing that pre-training knowledge remains largely
unaffected by the architectural change.

5.3 Improvement on Long-Context Retrieval

The recall-intentive tasks we used in Section 5.2
contain mostly sequences with fewer than 4K to-
kens. To evaluate the models’ abilities to retrieve
information from longer contexts, we use the pop-
ular NTAH task (Hsieh et al., 2024). Due to dif-
ferences in the recall abilities between the GLA
and Mamba?2, we evaluate them using NIAH tasks
of varying difficulty to avoid score saturation and
preserve discriminative resolution. For the GLA
model, we employed the simpler passkey retrieval
task from coBench (Zhang et al., 2024), which
involves retrieving a single 5-digit passkey from
long documents consisting of repeated text. For
Mamba2, we use the more challenging NIAH-
Single-2 task from RULER (Hsieh et al., 2024),
where a 7-digit passkey is embedded within seman-
tically meaningful, non-repetitive distractor con-
tent. Further details of the evaluation setup can be
found in Appendix B.2.

Results Table 4 reports the models’ perfor-
mances in NIAH. It shows that, by unlocking a
larger state size, StateX significantly improves the
model’s recall performance in long contexts.

5.4 Comparison Between Reinitialization and
Parameter Inheritance

Although it may seem natural to inherit pre-trained
parameters, our experiments show that reinitializ-
ing the modified parameters yields better perfor-
mance. For Mamba2, whose state expansion pro-
cess introduces new parameters, we initialize the
new parameters with zeros.

As illustrated in Figure 3, the model with reini-
tialized parameters (Reinit) consistently outper-

4 53.64 5345
>4 5318 52 92

46.60 4¢ 56

O 44 -{ ™ GLA-Reinit
GLA-Inherit
42 -4 W= Mamba2-Reinit
Mamba2-Inherit

Common-sense Recall

Figure 3: Model performance of reinitialization and
parameter inheritance.
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Figure 4: Model performance under varying numbers
of expanded layers. Mamba2 has twice as many layers
as GLA because it does not have FFN layers.

forms the one that inherits parameters (Inherit) on
both common-sense reasoning and recall tasks. We
hypothesize that the performance gap arises be-
cause the inherited parameters have already con-
verged, making it difficult to effectively utilize the
newly introduced channels (indicated in red in Fig-
ure 2) via post-training.

5.5 Best Proportion of Expanded Layers

As mentioned in Section 4.4, it is important to bal-
ance the number of expanded layers. To investigate
this trade-off, we conducted an ablation study by
varying the number of expanded layers. The results,
shown in Figure 4, indicate that both the GLA and
Mamba2 models achieve optimal average perfor-
mance when four layers are expanded (out of 24
layers and 48 layers, respectively). When too many
layers are modified, the reinitialized parameters fail
to converge effectively under limited post-training,
leading to a sharp drop in overall performance.



Head Num. | CSR1 Recall T Tr. Loss |

1 42,715 25.992 2.722
4 42.029 24012 2.762
8 42401  21.780 2.798
16 41.527  15.395 2.883

Table 5: Common-sense reasoning (CSR), recall, and
training loss of GLA-340M models with different num-
bers of heads. Single-head GLA outperforms other
configurations due to larger states.

2.6
LPT-Mamba?2
StateX-Mamba2
LPT-GLA
StateX-GLA

Training Loss
N N N N
IN) w » %)

N
=

2.0

2 4 6 8 10
Post-training Tokens (B)

Figure 5: Post-training loss (on SlimPajama) of vanilla
models and expanded models. GLA has considerably
lower loss because it was pre-trained on SlimPajama
while Mamba2 was pre-trained on Pile.

5.6 The Optimality of Single-Head GLA

As mentioned in Section 4.1, the multi-head mech-
anism in GLA significantly reduces the size of the
recurrent state, which in turn leads to a degradation
in model performance. This section presents an
ablation study on the number of heads for GLA
models trained from scratch.

We conducted experiments on GLA models with
340M parameters, trained on 20B tokens from the
SlimPajama dataset (Soboleva et al., 2023). More
experimental details are described in Section B.3.
Table 5 reports the performance of these models
on a range of common tasks. As shown, the single-
head model achieves higher average scores on the
benchmark tasks and converges to a lower final
training loss. Given the same number of param-
eters and other configurations, using fewer heads
allows for a larger state size, which in turn leads
to improved performance in common-sense reason-
ing, recall, and final training loss.

5.7 Training Loss

We also tracked the training loss curves of models
trained with standard LPT and with StateX. Fig-

ure 5 shows the loss curves for both GLA and
Mamba2. The former has generally lower loss
because it was pre-trained on SlimPajama, while
Mamba?2 was not. Notably, the StateX models have
a higher initial training loss due to the architectural
change, but quickly close the gap. Interestingly,
although their final training loss is slightly higher
than the LPT counterparts, they achieve better per-
formance on downstream tasks.

6 Discussions

Some failed attempts are discussed here to avoid
wasting resources and promote future research.

Gated DeltaNet with Large States We have
tried to apply StateX to Gated DeltaNet (GDN)
(Yang et al., 2024a), another strong RNN variant.
Specifically, we merge the multiple smaller heads
in GDN into one large head. However, when using
a head size above 512, the delta rule produces se-
vere loss spikes, leading to divergent runs. Some
normalization tricks mitigate this issue, but only
to a limited extent. Exploring techniques for sta-
bilizing delta rule training with larger states is a
promising research direction.

Freezing Other Modules We have experimented
with a training strategy with an additional first step
in which only the modified layers are trained and
with larger learning rates. The motivation is that a
larger learning rate allows the modified layers to
converge quickly to a better starting point, thereby
minimizing the extent to which other unmodified
modules are affected by parameter reinitialization.
However, this strategy results in slightly worse
overall performance.

7 Conclusions

We have proposed StateX, a novel method for en-
hancing the recall abilities of two popular RNN
variants by expanding the state sizes of pre-trained
RNNs through post-training. Compared to train-
ing RNNs with larger state sizes from scratch, our
method is much faster to train and can be seam-
lessly applied to existing pre-trained models of said
RNN variants. StateX is valuable for closing the
gap in the recall abilities of RNNs and Transform-
ers, especially in long-context scenarios. This work
represents an important step toward RNNs as an ef-
ficient alternative to attention-based architectures.



Limitations

While the idea behind StateX is generally applica-
ble to RNNs, we have only detailed the expansion
strategies for two representative variants, GLA and
SSM. Future architectures may require tailored ex-
tensions to accommodate their specific designs.
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A Formulation of Gated Linear Attention
and Mamba2

For completeness, we provide the complete formu-
lation of GLA and Mamba?2 in this section. These
models are trained on the next-token prediction
task, which means that their input is a sequence of
token IDs and their output is a sequence of proba-
bility distributions over the vocabulary {1,--- ,V'},
where V' is the vocabulary size.

At the beginning, each token ID is converted to
a d-dimensional token embedding by looking up
an embedding table (often called the input embed-
dings) before passing to the backbone network. Let
T denote the sequence length. This creates a se-
quence of T embeddings X(© € RT*4. On the
output side, the output embeddings at each posi-
tiont € {1,---,T} are converted to a probability
distribution over the vocabulary via a linear layer
called the language modeling head.

In the following discussion, we denote the input
and output sequences of representations for the [-th
layer as:

“

where T' is the sequence length, and xgl), ygl) €

R4 are the input and output representations at
time step ¢. Since the input of each layer is the out-

put of the previous layer, we have X() = Y (=1,

A.1 Gated Linear Attention

The entire model of GLA consists of interleaving
GLA blocks and FFN blocks.

Y0 = GLAD (XD £ XU~
YO — FENO (Y01 4 y/(-D ®)

Each GLA block consists of multiple heads that
are computed in parallel, and the block’s output is
the sum of the head outputs. This can be formulated
as (omitting the layer index for simplicity):

H

yi =Y GLAu(x)
h=1

(6)
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Each head in GLA can be formulated as:

O:n =xWn, Oe€{qk,v,a},
St.n = diag(oyn)Se—1,n + k;el:hvt,hy
Ot h = LN(Qt,hSt,h)7
r, = SILU(x, W, + b,),
GLA}(x¢) = (r¢ @ 0,1)Wo.

(N

A.2 Mamba2

Mamba?2 does not have FFNs and consists only of
a stack of Mamba?2 blocks:

Y = Mamba2® (X)) + X¥ (8)
Mamba?2 also employs a multi-head mechanism

where the layer output is the sum of the head out-
puts (omitting the layer index for simplicity):

H
Mamba2(x;) = Z Mamba2, (x;)
h=1

©))

where H is the number of heads, and h is the head
index. Each Mamba2 head can be formulated as:

Vih = fo(Xe,00n) € R%
ki = fu(x¢, 0p) € R%
@ = fo(xi,0,) € R™
A¢p =SILU(x;Wa, + bas) €R
app = exp(—AAp) €R
Sitn = St—1,h0n + At,hktTVt,h € R
0 =4St + Dpviy, € R®
z:5, = SILU(x,W ;) € R®

vt n = Norm(osp, © 2z )W, € R?
(10)

A.3 Update Rule and Query Rule

Central to recurrent architectures are the update
rule and query rule (described in Section 3.1),
which dictate how the architecture models inter-
token dependencies. Table 6 shows the update rule
and query rule of GLA and Mamba2.

A.4 Details of Reinitialization

In the case of GLA, we reinitialize all parameters
within the GLA block, including its normalization
layer. For Mamba, we reinitialize all parameters of
Ap,0r,04. And O, j, is reinitialized specifically by
resetting its internal dt_bias component.



Model ‘ Update rule Query rule State size StateX state size
GLA | S;j = S; 1 ndiag(orn) + &/, vin qt,nSt,n Hdyd, H?dyd,
Mamba?2 St,h = St_l,hat,h + At,hkzvt,h thm + thtvh Hdkdv HdvdkE

Table 6: Overview of GLA and Mamba2, two popular RNNs with matrix-valued recurrent states. H, P, N, dy, d,
are hyperparameters of the architectures. E is the expansion ratio of StateX for SSMs.

B Experiment Details

B.1 Evaluation

We configure the training tasks using the Im-
evaluation-harness framework (Gao et al., 2024). A
set of widely adopted benchmark tasks is selected
to assess the models’ capabilities in common-sense
reasoning and information recall. For the common-
sense and recall tasks, we adopt accuracy (not
normalized accuracy) and contains as the respec-
tive evaluation metrics. Accuracy directly reflects
the correctness of the common-sense task results,
while contains measures the proportion of recall
task outputs that include the passkey. Notably, for
tasks related to recall ability, we adopt the Just
Read Twice prompt (Arora et al., 2024b), given
that all models under evaluation are based on recur-
rent architectures.

B.2 Needle-in-a-Haystack Tasks

As mentioned in the previous section, we design
two passkey retrieval tasks with varying levels of
difficulty. The specific noise configurations and
prompt templates used in each task are detailed
in Table 7. We use 5-digit passkeys in Passkey
Retrieval and 7-digit passkeys in NIAH-Single-2.
For each unique test length, the task will be tested
on 256 randomly generated examples to ensure the
consistency of the results.

B.3 More Details: Ablation Study on the
Number of GLA Heads

The training procedure for these models follows
common language model pre-training practices as
closely as possible. The model is trained on 20B
tokens from SlimPajama, with a 0.5M tokens per
batch, and a sequence length of 4k. We employ a
cosine learning rate scheduler with an initial learn-
ing rate of 3e-4 and no specified minimum learning
rate. All models consist of 340 million parame-
ters and comprise 24 layers, each with an identical
hidden state dimension. The only architectural dif-
ference lies in the number of attention heads: the
single-head model uses one head with a dimension-
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ality of 512, while the four-head model uses four
heads, each with a dimensionality of 128, and so
on, following the same principle.



Passkey Retrieval Task Template:

The pass key is . Remember it. is the pass key.

Task Answer Prefix:
What is the pass key? The pass key is

NIAH-Single-2  Task Template:
Some special magic numbers are hidden within the following text. Make
sure to memorize it. [ will quiz you about the numbers afterwards.

One of the special magic numbers for {word} is:
What is the special magic number for {word} mentioned in the provided
text?

Task Answer Prefix:
The special magic number for {word} mentioned in the provided text is

Table 7: The prompt templates of the NIAH tasks used to evaluate the models in retrieving information from long
contexts.
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