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Abstract001

While Transformer-based models have demon-002
strated remarkable language modeling perfor-003
mance, their high complexities result in high004
costs when processing long contexts. In con-005
trast, recurrent neural networks (RNNs) such006
as linear attention and state space models have007
gained popularity due to their constant per-008
token complexities. However, these recurrent009
models struggle with tasks that require accu-010
rate recall of contextual information from long011
contexts, because all contextual information012
is compressed into a constant-size recurrent013
state. Previous works have shown that the re-014
call ability is positively correlated with the re-015
current state size, yet directly training RNNs016
with larger recurrent states results in high train-017
ing costs. In this paper, we introduce StateX,018
a training pipeline for efficiently expanding019
the states of pre-trained RNNs through post-020
training. For two popular classes of RNNs,021
linear attention and state space models, we de-022
sign post-training architectural modifications023
to scale up the state size with no or negligible024
increase in model parameters. Experiments on025
models up to 1.3B parameters demonstrate that026
StateX efficiently enhances the recall ability027
of RNNs without incurring high post-training028
costs or compromising other capabilities.029

1 Introduction030

Recently, recurrent neural networks (RNNs) such031

as gated linear attention (GLA) (Yang et al.,032

2024b) and Mamba2 (Dao and Gu, 2024) have033

shown promising capabilities in language model-034

ing. These architectures have constant per-token035

complexity, while the more popular Transformer036

architecture (Vaswani et al., 2023) has per-token037

complexity that grows linearly with the context038

length. Thus, RNNs are much more efficient than039

Transformers in processing long contexts.040

However, RNNs still underperform Transform-041

ers in certain aspects, with one of the most criti-042

cal being the long-context recall capability (Jelassi043

et al., 2024a). Unlike Transformers, which store 044

the representations of every token in the context, 045

RNNs compress all contextual information into a 046

constant-size state1. As a result, the recall ability 047

of RNNs heavily depends on the size and capac- 048

ity of this state (Jelassi et al., 2024b; Arora et al., 049

2024a; Yang et al., 2024a; Chen et al., 2025). De- 050

spite the positive gains of increasing the state size, 051

considering the increased training costs and the 052

limited benefits in short-context scenarios, most 053

RNNs are still trained with a rather small state size 054

compared to the rest of the model. For instance, 055

in Mamba2-2.8B and GLA-1.3B, their recurrent 056

states are smaller than 2% of their model sizes. 057

In this paper, we explore methods for expand- 058

ing the state size while keeping the training costs 059

low and introducing little to no additional param- 060

eters. Specifically, we expand the state size of 061

pre-trained RNNs through post-training on much 062

less data than pre-training. Moreover, since larger 063

recurrent states are more important for long-context 064

models, we perform state expansion prior to long- 065

context post-training (LPT), and show the whole 066

process in Figure 1. 067

The state expansion process is an architectural 068

change and depends on the pre-trained model ar- 069

chitecture. Therefore, we design two state expan- 070

sion methods, targeting two popular RNN classes: 071

linear attention (Katharopoulos et al., 2020; Yang 072

et al., 2024b) and state space models (Dao and Gu, 073

2024). Additionally, we explore various parameter 074

initialization techniques and select key layers for 075

expansion instead of all layers, to balance model 076

performance and efficiency. Compared to other 077

state expansion methods that require training from 078

scratch (e.g., MoM (Du et al., 2025), LaCT (Zhang 079

et al., 2025)), our method is simpler and can be 080

seamlessly applied to existing effective RNN im- 081

1Also called recurrent state in various contexts. We use
these two terms interchangeably in this paper.
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Figure 1: The difference between the traditional pipeline and StateX for training long-context models. We introduce
a state expansion step (architectural modification) before the long-context post-training (LPT) stage to enhance
RNN recall abilities without requiring expensive re-training.

plementations and training pipelines.082

We validate our method on public checkpoints083

of GLA2 and Mamba23, each with 1.3B parame-084

ters and pre-trained on over 100B tokens, by con-085

ducting post-training on 10B tokens. Empirical086

results demonstrate that compared to the traditional087

two-stage method, StateX significantly improves088

performance on recall-intensive and needle-in-a-089

haystack (NIAH) (Hsieh et al., 2024) tasks while090

maintaining performance on common-sense rea-091

soning tasks. While using the same amount of data092

as ordinary long-context post-training (LPT), Sta-093

teX yields consistently better results: the average094

accuracy of recall-intensive tasks improves from095

43.69 to 44.49 for the GLA model, and from 52.8096

to 53.18 for the Mamba2 model. The average ac-097

curacy in NIAH tasks with 2K–64K context length098

improves from 26.0% to 42.2% for GLA, and from099

33.2% to 39.2% for Mamba2.100

Overall, our contributions include:101

• To the best of our knowledge, this paper repre-102

sents the first work that focuses on expanding103

the state size of RNNs through post-training.104

• For two popular RNN variants, we design sim-105

ple and effective state expansion techniques106

and training recipes for efficient post-training.107

• We validate our method on public GLA108

and Mamba2 1.3B checkpoints. Our results109

show consistent improvements in recall perfor-110

mance on long-context tasks, without sacrific-111

ing performance on common-sense reasoning112

benchmarks.113

2https://huggingface.co/fla-hub/gla-1.3B-100B
3https://huggingface.co/AntonV/mamba2-1.3b-hf

2 Related Works 114

In this section, we provide a brief description of 115

RNNs and related work on expanding their state 116

sizes. For more details about RNNs, please refer to 117

the surveys (Wang et al., 2025; Lv et al., 2025). 118

Modern RNNs Recently, some RNN variants 119

have shown promising results in sequence model- 120

ing. Some representative examples include state 121

space models (SSMs) (Dao and Gu, 2024; Gu and 122

Dao, 2024), the RWKV series (Peng et al., 2025, 123

2024, 2023), linear attention models (Katharopou- 124

los et al., 2020; Sun et al., 2023; Yang et al., 2024b), 125

and DeltaNet (Yang et al., 2024a). Some results 126

have shown that these RNNs can outperform Trans- 127

formers up to several billion parameters on cer- 128

tain language tasks, such as common-sense reason- 129

ing (Waleffe et al., 2024; Team, 2024), and some 130

hybrid models have scaled up to over 100B pa- 131

rameters and trillions of training tokens (MiniMax 132

et al., 2025). RNNs are attractive alternatives to 133

Transformers because their per-token complexity is 134

constant, while Transformers’ per-token complex- 135

ity scales linearly with the context length. However, 136

since Transformers cache all previous token rep- 137

resentations, they outperform RNNs in recalling 138

contextual information. This is one of the reasons 139

why RNNs have seen limited adoption. 140

Increasing RNN State Size Many previous 141

works have investigated the influence of state size 142

on the capabilities of RNNs. One important im- 143

provement of modern RNNs over previous works 144

such as LSTM (Hochreiter and Schmidhuber, 1997) 145

and GRU (Cho et al., 2014) is the adoption of larger 146

matrix-valued recurrent states over smaller vector- 147

valued states (Sun et al., 2023; Qin et al., 2024; 148

2

https://huggingface.co/fla-hub/gla-1.3B-100B
https://huggingface.co/AntonV/mamba2-1.3b-hf


Method Performance Efficient Training Easy Adoption

Vanilla RNNs (small states) ✗ ✓ ✓

Training large states from scratch ✓ ✗ ✓

Novel architectures with large states ? ? ✗

StateX (ours) ✓ ✓ ✓

Table 1: Comparison between our work and existing approaches for increasing RNN state sizes. Vanilla RNNs
underperform due to their smaller state sizes. “?” means that these works are rather new and are therefore yet to be
extensively tested at scale.

Katharopoulos et al., 2020; Hua et al., 2022). Some149

later efforts focus on improving the forget mech-150

anisms to remove unneeded information in the re-151

current states, saving capacity to store more contex-152

tual information (Gu and Dao, 2024; Schlag et al.,153

2021). Arora et al. (2024a) provides a comprehen-154

sive comparison of the recall-throughput tradeoff of155

various recent RNN architectures. Although these156

methods show promising results, their state size is157

still rather small, and they lag behind Transformers158

in recall-intensive tasks.159

Recent State Expansion Works More recently,160

Du et al. (2025) proposes MoM, a new architec-161

ture that maintains a large state size but with lower162

computational overhead, by updating only parts of163

the recurrent state at each time step. LaCT (Zhang164

et al., 2025) is a concurrent work to ours that pro-165

poses a novel recurrent architecture based on the166

test-time training (TTT) framework (Sun et al.,167

2025). LaCT utilizes a much larger state than other168

RNNs (e.g., GLA and Mamba2) and has demon-169

strated strong recall and long-context capabilities.170

Another relevant concurrent work is by Liu et al.171

(2025). They utilize low-rank projections to in-172

crease the state size of RNNs with small parameter173

overhead, resulting in considerably better recall per-174

formance. However, these architectures have not175

yet been thoroughly evaluated at scale across dif-176

ferent tasks and may be hard to adopt into existing177

codebases.178

In brief, the state size is a critical bottleneck of179

RNNs. Increasing the state size provides consistent180

performance gains for many RNN variants. How-181

ever, previous works on expanding RNN states are182

trained from scratch, which is highly expensive and183

requires significant changes to the model architec-184

ture and implementation. This paper, to the best of185

our knowledge, is the first effort to expand states186

through post-training. Compared to existing archi-187

tectures with larger states, our method is simpler188

and can be seamlessly integrated into popular RNN 189

variants such as linear attention methods and SSMs. 190

Table 1 shows the comparison between our work 191

and existing works with larger states. 192

3 Preliminaries 193

In this section, we first provide a formulation of 194

RNNs as well as two variants—GLA and SSM 195

(Sections 3.1, 3.2, and 3.3). Then, we discuss how 196

the recurrent state size influences the models’ recall 197

capabilities and cost-efficiency (Section 3.4). 198

3.1 Recurrent Neural Networks 199

In RNNs, all contextual information is stored in a 200

constant-size recurrent state St, where t denotes 201

the time step. At each time step, an RNN layer 202

inserts new information into the previous state St−1 203

with an update rule, and then retrieves information 204

from St with a query rule, which is given as 205

St = fupdate(St−1,xt),

yt = fquery(St,xt),
(1) 206

where xt,yt ∈ Rd are the input and output repre- 207

sentations at the time step t, and fupdate and fquery 208

denotes the update and query rule. In this paper, 209

we define state size as the parameter number of St. 210

3.2 Gated Linear Attention 211

The GLA model consists of a stack of interleaved 212

layers of GLA blocks and feed-forward network 213

(FFN) blocks. Since we only modify the GLA 214

block, we omit the formulation for FFNs. Each 215

GLA block consists of H heads computed in par- 216

allel, and the layer output is the sum of the head 217

outputs. Each GLA head can be formulated as: 218

□t,h = xtW□,h, □ ∈ {q,k,v},
Ft,h = diag(αt,h) ∈ Rdk×dk ,

St,h = Ft,hSt−1,h + k⊤
t,hvt,h ∈ Rdk×dv ,

yt,h = qt,hSt,h ∈ Rdv ,

(2) 219
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Figure 2: Illustration of how StateX (our method) expands the state size of linear attention and state space models
with little to no parameter increase. The red parts indicate the additional state parameters unlocked by StateX.

where h ∈ {1, · · · , H} is the head index, dk, dv220

are the key and value dimensions. xt,yt ∈ Rd de-221

note the input and output representations at the time222

step t, respectively, qt,h,kt,h,αt,h ∈ Rdk ,vt,h ∈223

Rdv are projection functions of xt, and LN denotes224

RMSNorm (Zhang and Sennrich, 2019). The state225

size in each GLA layer is Hdkdv.226

3.3 State Space Models227

We focus on Mamba2, which is a state-of-the-art228

SSM. A Mamba2 layer can be formulated as:4229

vt,h = fv(xt, θv,h) ∈ Rdv ,

kt = fk(xt, θk) ∈ Rdk ,

qt = fq(xt, θq) ∈ Rdk ,

∆t,h = f∆(xt, θ∆,h) ∈ R,
αt,h = exp(−∆tAh) ∈ R,
St,h = St−1,hαt,h +∆t,hk

⊤
t vt,h ∈ Rdk×dv ,

yt,h = qtSt,h +Dhvt,h ∈ Rdv ,

(3)230

where fv, fk, fq, f∆ are differentiable projection231

functions parameterized with θv, θk, θq, θ∆,h, re-232

spectively, Ah, Dh are learnable parameters. dk233

and dv are hyperparameters and are called the state234

dimension and head dimension in SSM literature.235

The state size of Mamba2 is also Hdkdv, although236

these hyperparameter values may differ from GLA.237

Relationship with GLA It has been identified238

that Mamba2 can be viewed as a variant of239

GLA (Yang et al., 2024b) where heads share240

the same query/key vectors. In this paper, we241

view these two variants as different because this242

4We use attention notations (qt,kt,vt) instead of SSM
notations (xt, Bt, Ct) from the Mamba2 paper for simplicity
and to highlight the analogy between the two RNN variants.

query/key vector sharing mechanism influences our 243

state expansion. 244

3.4 Influence of State Size 245

Recall Ability Since all contextual information 246

is stored in St, the ability of RNNs to recall con- 247

textual information depends on the capacity of St, 248

which in turn depends on the size of St. Extensive 249

empirical evidence indicates a strong positive cor- 250

relation between the size of the recurrent states and 251

their performance on recall-intensive tasks (Arora 252

et al., 2024a; Hua et al., 2022; Yang et al., 2024b; 253

Zhang et al., 2025; Jelassi et al., 2024a). These 254

findings highlight the critical role of state size in 255

determining RNN recall abilities, underscoring the 256

importance of state expansion for improving recall 257

capabilities. 258

Efficiency The computational complexity of the 259

token mixing component (i.e., update rule and 260

query rule) scales linearly with the state size. There- 261

fore, blindly increasing the state size can lead to 262

high training and inference costs. StateX alleviates 263

these problems during both training and inference 264

by expanding the states via post-training (so the 265

model is trained with smaller states most of the 266

time) and expanding only a subset of layers. 267

4 Method 268

Our method, StateX, involves architectural mod- 269

ifications that expand the RNN state sizes prior 270

to long-context post-training to boost their recall 271

abilities. Meanwhile, we aim to minimize the addi- 272

tional parameters introduced by this modification 273

and keep the final architecture similar to the origi- 274

nal architecture to make it easier for the modified 275
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model to adapt. An overview of the architectural276

modifications is illustrated in Figure 2.277

In this section, we describe the concrete state278

expansion recipe for two popular classes of RNNs—279

GLA (Yang et al., 2024b) and SSM (Dao and Gu,280

2024) (Sections 4.1 and 4.2). Then, we describe281

how to initialize the parameters after the modifi-282

cation (Section 4.3) and which layers to apply the283

modification (Section 4.4).284

4.1 StateX for GLA285

Since GLA employs a multi-head mechanism with286

different query, key, and value vectors for each287

head, we can increase the state size by simply merg-288

ing multiple heads into one larger head. This is289

because the state size of H heads is H × dk × dv,290

and merging them into one head results in a state291

size of 1 ×Hdk ×Hdv, which is H times larger.292

Meanwhile, no additional parameters are intro-293

duced since the total number of channels in the294

QKV vectors remains the same. The effect of this295

change is illustrated in the left side of Figure 2.296

Merging GLA heads activates non-diagonal regions297

of the state matrix, thereby achieving larger states298

than the multi-head counterparts.299

In implementation, the only difference between300

GLA with expanded states and the vanilla formu-301

lation (described in Section 3.2) is the number of302

heads and head dimension. Thus, this modification303

can be seamlessly applied to existing GLA imple-304

mentations. We always merge all heads into one305

large head. This is motivated by the finding that306

single-head GLA generally outperforms multi-head307

GLA (reported in Section 5.6).308

4.2 StateX for SSM309

The head merging method is not applicable to310

SSMs because there is only one key vector in each311

layer. For this RNN variant, we increase the key di-312

mension by expanding the key and query projection313

layers. Specifically, we increase the hyperparame-314

ter dk (the original Mamba2 paper refers to this as315

the state dimension) and the parameters θk, θq that316

depend on it. Since these two sets of parameters317

are much smaller than the other components, the in-318

crease in total parameters is less than 1% when we319

increase dk by 4×. This modification is illustrated320

by Figure 2 (right).321

4.3 Parameter Initialization322

After the modification, we can inherit the param-323

eters from the pre-trained model and initialize324

only the added parameters (for SSMs). However, 325

perhaps surprisingly, we find that inheriting pre- 326

trained parameters can be detrimental to down- 327

stream performance. Thus, we present a better 328

parameter initialization strategy. 329

We assume that world knowledge is usually 330

stored in FFN blocks and the embedding table, and 331

these parameters take longer to learn than the token- 332

mixing parameters (GLA and SSM blocks). Thus, 333

we reinitialize parameters that are responsible for 334

token-mixing while other components inherit from 335

the pre-trained checkpoint. An ablation study on 336

initialization strategies is provided in Section 5.4. 337

GLA Initialization GLA models consist of in- 338

terleaving layers of GLA blocks and FFN blocks. 339

After state expansion, we reinitialize all parameters 340

associated with the GLA blocks, while FFN blocks 341

and the embedding table inherit the pre-trained pa- 342

rameters. 343

SSM Initialization Mamba2 merges FFN blocks 344

and the SSM mechanism into one unified layer. Mo- 345

tivated by the SSM literature, we only reinitialize 346

the parameters of the SSM mechanism, which are 347

Ah, θk, θq, θ∆,h, while other modules inherit the 348

pre-trained parameters. Further implementation 349

details can be found in Appendix A.4. 350

4.4 How Many Layers to Expand? 351

Modifying all layers may result in a too disruptive 352

change, making it harder for the modified model 353

to recover from this change through post-training. 354

Existing works have shown that not all layers are 355

responsible for recalling information (Bick et al., 356

2025). Thus, we hypothesize that only a subset of 357

layers can benefit from a larger state. Concretely, 358

we adopt a uniform expansion strategy by expand- 359

ing one layer every ⌊L/m⌋ layers (where L is the 360

total number of layers), starting from the first layer, 361

so that exactly m layers are expanded. For both 362

GLA and Mamba2, we use m = 4 by default. In 363

Section 5.5, we empirically ablate the influence of 364

the number of expanded layers. 365

5 Experiments 366

We first describe the details of the experiments (Sec- 367

tion 5.1). Then, we present the main results of our 368

method (Section 5.2) as well as improvement on 369

long-context retrieval tasks (Section 5.3). Finally, 370

we provide ablation studies involving the choices 371

of parameter initialization (Section 5.4), the num- 372

ber of expanded layers (Section 5.5), multi-head 373
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Models Params Total State SWDE SQuAD FDA TQA NQ Drop Avg. ↑

Linear Attention
Vanilla GLA 1.365B 12.48M 44.64 54.96 28.13 54.80 19.10 33.64 39.21
LPT-GLA 1.365B 12.48M 47.16 56.84 43.56 56.04 21.95 36.56 43.69
StateX-GLA (ours) 1.365B 18.72M 50.32 59.15 41.02 55.04 21.82 39.58 44.49

State Space Model
Vanilla Mamba2 1.343B 24.96M 57.43 59.58 31.03 63.27 5.16 36.22 42.11
LPT-Mamba2 1.343B 24.96M 54.19 57.81 68.97 63.51 36.87 35.46 52.80
StateX-Mamba2 (ours) 1.350B 37.44M 56.17 57.91 68.51 63.68 36.43 36.37 53.18

Table 2: Accuracy on recall-intentive tasks with sequences truncated to a maximum of 2K tokens, as well as the
model size and state size of each model.

Model LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg. ↑
acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑

Linear Attention
Vanilla GLA 40.11 69.70 38.97 53.35 55.13 23.38 39.92 57.65 47.28
LPT-GLA 39.80 69.64 38.21 54.78 54.59 22.70 39.61 57.52 47.11
StateX-GLA (ours) 38.39 69.75 37.16 54.93 53.91 22.53 39.97 56.12 46.60

State Space Model
Vanilla Mamba2 56.41 73.29 45.89 60.85 64.31 30.12 43.14 64.19 54.77
LPT-Mamba2 53.02 73.07 45.48 59.67 64.31 29.10 41.10 62.78 53.57
StateX-Mamba2 (ours) 52.55 73.67 45.09 59.98 64.02 29.61 41.61 62.60 53.64

Table 3: Performance on language modeling and zero-shot common-sense reasoning.

mechanism in GLA (Section 5.6). We also report374

the training loss in Section 5.7.375

5.1 Experimental Details376

Models We apply StateX to the official 1.3B377

checkpoints from the original papers of GLA and378

Mamba2. In StateX for Mamba2, we increase the379

dk hyperparameter from 128 to 512. For GLA,380

the pre-trained 1.3B checkpoint has four heads, so381

StateX with merged heads has a 4× larger state.382

Data All models are trained on SlimPa-383

jama (Soboleva et al., 2023), a widely-used, high-384

quality, and deduplicated corpus with 627B tokens385

extracted from the Internet. We concatenate docu-386

ments with a special token as the delimiter. Then,387

these concatenations are split into chunks of the388

specified training context length.389

Training Configuration The training follows390

common practices in context length extension by391

post-training as closely as possible. Concretely, we392

use the cosine learning rate scheduler, with a max-393

imum learning rate of 3e-4, and a warmup phase394

of 5% of the total training steps. To better evaluate395

the ability to recall information from long contexts,396

we use a 64K context length. The training spans397

a total of 10B tokens, with a batch size of 0.5M398

tokens.399

Evaluation Models are evaluated in common- 400

sense reasoning and contextual information re- 401

call. We use 9 popular multiple-choice tasks for 402

common-sense reasoning, and 6 popular recall- 403

intensive tasks for evaluating recall. More details 404

are given in Appendix B.1. 405

Baseline We mainly compare StateX against 406

vanilla RNNs and the ordinary LPT versions. The 407

LPT models undergo the same post-training pro- 408

cess, but without any architectural modifications, 409

so their state sizes remain unchanged. 410

5.2 Main Results 411

Recall Abilities Table 2 presents scores on recall- 412

intensive tasks for the original model (Vanilla), 413

the model using the standard long-context post- 414

training (LPT), and the model enhanced with Sta- 415

teX. The columns “Params” and “Total State” re- 416

port the number of model parameters and state 417

parameters for each model, respectively. StateX 418

increases the total state sizes by roughly 50%. The 419

main takeaway is that StateX models achieve the 420

highest average performance, underscoring the ad- 421

vantage of larger states. 422

Common-Sense Reasoning Table 3 shows that 423

StateX models’ performance on common-sense rea- 424

soning is comparable to the vanilla model, imply- 425
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Context Length 4K 8K 16K 32K 64K

GLA — Passkey Retrieval

Vanilla 0.25 0.01 0.00 0.00 0.00
LPT 0.74 0.41 0.13 0.01 0.01
StateX (ours) 0.93 0.77 0.34 0.06 0.01

Mamba2 — NIAH-Single-2

Vanilla 0.05 0.00 0.00 0.00 0.00
LPT 0.83 0.43 0.30 0.09 0.01
StateX (ours) 0.94 0.61 0.32 0.09 0.00

Table 4: Performance on retrieving specific informa-
tion (i.e., a needle) from synthetically generated long
documents up to 64K tokens.

ing that pre-training knowledge remains largely426

unaffected by the architectural change.427

5.3 Improvement on Long-Context Retrieval428

The recall-intentive tasks we used in Section 5.2429

contain mostly sequences with fewer than 4K to-430

kens. To evaluate the models’ abilities to retrieve431

information from longer contexts, we use the pop-432

ular NIAH task (Hsieh et al., 2024). Due to dif-433

ferences in the recall abilities between the GLA434

and Mamba2, we evaluate them using NIAH tasks435

of varying difficulty to avoid score saturation and436

preserve discriminative resolution. For the GLA437

model, we employed the simpler passkey retrieval438

task from ∞Bench (Zhang et al., 2024), which439

involves retrieving a single 5-digit passkey from440

long documents consisting of repeated text. For441

Mamba2, we use the more challenging NIAH-442

Single-2 task from RULER (Hsieh et al., 2024),443

where a 7-digit passkey is embedded within seman-444

tically meaningful, non-repetitive distractor con-445

tent. Further details of the evaluation setup can be446

found in Appendix B.2.447

Results Table 4 reports the models’ perfor-448

mances in NIAH. It shows that, by unlocking a449

larger state size, StateX significantly improves the450

model’s recall performance in long contexts.451

5.4 Comparison Between Reinitialization and452

Parameter Inheritance453

Although it may seem natural to inherit pre-trained454

parameters, our experiments show that reinitializ-455

ing the modified parameters yields better perfor-456

mance. For Mamba2, whose state expansion pro-457

cess introduces new parameters, we initialize the458

new parameters with zeros.459

As illustrated in Figure 3, the model with reini-460

tialized parameters (Reinit) consistently outper-461
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52

54
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rm
an

ce
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)

46.60

44.49

46.26

44.30

53.64 53.1853.45 52.92
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GLA-Inherit
Mamba2-Reinit
Mamba2-Inherit

Figure 3: Model performance of reinitialization and
parameter inheritance.
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Figure 4: Model performance under varying numbers
of expanded layers. Mamba2 has twice as many layers
as GLA because it does not have FFN layers.

forms the one that inherits parameters (Inherit) on 462

both common-sense reasoning and recall tasks. We 463

hypothesize that the performance gap arises be- 464

cause the inherited parameters have already con- 465

verged, making it difficult to effectively utilize the 466

newly introduced channels (indicated in red in Fig- 467

ure 2) via post-training. 468

5.5 Best Proportion of Expanded Layers 469

As mentioned in Section 4.4, it is important to bal- 470

ance the number of expanded layers. To investigate 471

this trade-off, we conducted an ablation study by 472

varying the number of expanded layers. The results, 473

shown in Figure 4, indicate that both the GLA and 474

Mamba2 models achieve optimal average perfor- 475

mance when four layers are expanded (out of 24 476

layers and 48 layers, respectively). When too many 477

layers are modified, the reinitialized parameters fail 478

to converge effectively under limited post-training, 479

leading to a sharp drop in overall performance. 480
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Head Num. CSR ↑ Recall ↑ Tr. Loss ↓

1 42.715 25.992 2.722
4 42.029 24.012 2.762
8 42.401 21.780 2.798
16 41.527 15.395 2.883

Table 5: Common-sense reasoning (CSR), recall, and
training loss of GLA-340M models with different num-
bers of heads. Single-head GLA outperforms other
configurations due to larger states.

2 4 6 8 10
Post-training Tokens (B)

2.0

2.1

2.2
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2.4

2.5

2.6

Tr
ai

ni
ng

 L
os

s

LPT-Mamba2
StateX-Mamba2
LPT-GLA
StateX-GLA

Figure 5: Post-training loss (on SlimPajama) of vanilla
models and expanded models. GLA has considerably
lower loss because it was pre-trained on SlimPajama
while Mamba2 was pre-trained on Pile.

5.6 The Optimality of Single-Head GLA481

As mentioned in Section 4.1, the multi-head mech-482

anism in GLA significantly reduces the size of the483

recurrent state, which in turn leads to a degradation484

in model performance. This section presents an485

ablation study on the number of heads for GLA486

models trained from scratch.487

We conducted experiments on GLA models with488

340M parameters, trained on 20B tokens from the489

SlimPajama dataset (Soboleva et al., 2023). More490

experimental details are described in Section B.3.491

Table 5 reports the performance of these models492

on a range of common tasks. As shown, the single-493

head model achieves higher average scores on the494

benchmark tasks and converges to a lower final495

training loss. Given the same number of param-496

eters and other configurations, using fewer heads497

allows for a larger state size, which in turn leads498

to improved performance in common-sense reason-499

ing, recall, and final training loss.500

5.7 Training Loss501

We also tracked the training loss curves of models502

trained with standard LPT and with StateX. Fig-503

ure 5 shows the loss curves for both GLA and 504

Mamba2. The former has generally lower loss 505

because it was pre-trained on SlimPajama, while 506

Mamba2 was not. Notably, the StateX models have 507

a higher initial training loss due to the architectural 508

change, but quickly close the gap. Interestingly, 509

although their final training loss is slightly higher 510

than the LPT counterparts, they achieve better per- 511

formance on downstream tasks. 512

6 Discussions 513

Some failed attempts are discussed here to avoid 514

wasting resources and promote future research. 515

Gated DeltaNet with Large States We have 516

tried to apply StateX to Gated DeltaNet (GDN) 517

(Yang et al., 2024a), another strong RNN variant. 518

Specifically, we merge the multiple smaller heads 519

in GDN into one large head. However, when using 520

a head size above 512, the delta rule produces se- 521

vere loss spikes, leading to divergent runs. Some 522

normalization tricks mitigate this issue, but only 523

to a limited extent. Exploring techniques for sta- 524

bilizing delta rule training with larger states is a 525

promising research direction. 526

Freezing Other Modules We have experimented 527

with a training strategy with an additional first step 528

in which only the modified layers are trained and 529

with larger learning rates. The motivation is that a 530

larger learning rate allows the modified layers to 531

converge quickly to a better starting point, thereby 532

minimizing the extent to which other unmodified 533

modules are affected by parameter reinitialization. 534

However, this strategy results in slightly worse 535

overall performance. 536

7 Conclusions 537

We have proposed StateX, a novel method for en- 538

hancing the recall abilities of two popular RNN 539

variants by expanding the state sizes of pre-trained 540

RNNs through post-training. Compared to train- 541

ing RNNs with larger state sizes from scratch, our 542

method is much faster to train and can be seam- 543

lessly applied to existing pre-trained models of said 544

RNN variants. StateX is valuable for closing the 545

gap in the recall abilities of RNNs and Transform- 546

ers, especially in long-context scenarios. This work 547

represents an important step toward RNNs as an ef- 548

ficient alternative to attention-based architectures. 549
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Limitations550

While the idea behind StateX is generally applica-551

ble to RNNs, we have only detailed the expansion552

strategies for two representative variants, GLA and553

SSM. Future architectures may require tailored ex-554

tensions to accommodate their specific designs.555
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A Formulation of Gated Linear Attention727

and Mamba2728

For completeness, we provide the complete formu-729

lation of GLA and Mamba2 in this section. These730

models are trained on the next-token prediction731

task, which means that their input is a sequence of732

token IDs and their output is a sequence of proba-733

bility distributions over the vocabulary {1, · · · , V },734

where V is the vocabulary size.735

At the beginning, each token ID is converted to736

a d-dimensional token embedding by looking up737

an embedding table (often called the input embed-738

dings) before passing to the backbone network. Let739

T denote the sequence length. This creates a se-740

quence of T embeddings X(0) ∈ RT×d. On the741

output side, the output embeddings at each posi-742

tion t ∈ {1, · · · , T} are converted to a probability743

distribution over the vocabulary via a linear layer744

called the language modeling head.745

In the following discussion, we denote the input746

and output sequences of representations for the l-th747

layer as:748

X(l) =

x
(l)
1
...

x
(l)
T

 ,Y(l) =

y
(l)
1
...

y
(l)
T

 (4)749

where T is the sequence length, and x
(l)
t ,y

(l)
t ∈750

R1×d are the input and output representations at751

time step t. Since the input of each layer is the out-752

put of the previous layer, we have X(l) = Y(l−1).753

A.1 Gated Linear Attention754

The entire model of GLA consists of interleaving755

GLA blocks and FFN blocks.756

Y′(l) = GLA(l)(X(l−1)) +X(l−1)

Y(l) = FFN(l)(Y′(l−1)) +Y′(l−1)
(5)757

Each GLA block consists of multiple heads that758

are computed in parallel, and the block’s output is759

the sum of the head outputs. This can be formulated760

as (omitting the layer index for simplicity):761

yt =
H∑

h=1

GLAh(xt) (6)762

Each head in GLA can be formulated as: 763

□t,h = xtW□, □ ∈ {q,k,v,α},
St,h = diag(αt,h)St−1,h + k⊤

t,hvt,h,

ot,h = LN(qt,hSt,h),

rt = SILU(xtWr + br),

GLAh(xt) = (rt ⊙ ot,h)Wo.

(7) 764

A.2 Mamba2 765

Mamba2 does not have FFNs and consists only of 766

a stack of Mamba2 blocks: 767

Y(l) = Mamba2(l)(X(l)) +X(l) (8) 768

Mamba2 also employs a multi-head mechanism 769

where the layer output is the sum of the head out- 770

puts (omitting the layer index for simplicity): 771

Mamba2(xt) =

H∑
h=1

Mamba2h(xt) (9) 772

where H is the number of heads, and h is the head 773

index. Each Mamba2 head can be formulated as: 774

vt,h = fv(xt, θv,h) ∈ Rdv

kt = fk(xt, θk) ∈ Rdk

qt = fq(xt, θq) ∈ Rdk

∆t,h = SILU(xtW∆,h + b∆,h) ∈ R
αt,h = exp(−∆tAh) ∈ R
St,h = St−1,hαt,h +∆t,hk

⊤
t vt,h ∈ Rdk×dv

ot,h = qtSt,h +Dhvt,h ∈ Rdv

zt,h = SILU(xtWz,h) ∈ Rdv

yt,h = Norm(ot,h ⊙ zt,h)Wo,h ∈ Rd

(10) 775

A.3 Update Rule and Query Rule 776

Central to recurrent architectures are the update 777

rule and query rule (described in Section 3.1), 778

which dictate how the architecture models inter- 779

token dependencies. Table 6 shows the update rule 780

and query rule of GLA and Mamba2. 781

A.4 Details of Reinitialization 782

In the case of GLA, we reinitialize all parameters 783

within the GLA block, including its normalization 784

layer. For Mamba, we reinitialize all parameters of 785

Ah, θk, θq. And θ∆,h is reinitialized specifically by 786

resetting its internal dt_bias component. 787
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Model Update rule Query rule State size StateX state size

GLA St,h = St−1,hdiag(αt,h) + kT
t,hvt,h qt,hSt,h Hdkdv H2dkdv

Mamba2 St,h = St−1,hαt,h +∆t,hk
T
t vt,h qtSt,h +Dhvt,h Hdkdv HdvdkE

Table 6: Overview of GLA and Mamba2, two popular RNNs with matrix-valued recurrent states. H,P,N, dk, dv
are hyperparameters of the architectures. E is the expansion ratio of StateX for SSMs.

B Experiment Details788

B.1 Evaluation789

We configure the training tasks using the lm-790

evaluation-harness framework (Gao et al., 2024). A791

set of widely adopted benchmark tasks is selected792

to assess the models’ capabilities in common-sense793

reasoning and information recall. For the common-794

sense and recall tasks, we adopt accuracy (not795

normalized accuracy) and contains as the respec-796

tive evaluation metrics. Accuracy directly reflects797

the correctness of the common-sense task results,798

while contains measures the proportion of recall799

task outputs that include the passkey. Notably, for800

tasks related to recall ability, we adopt the Just801

Read Twice prompt (Arora et al., 2024b), given802

that all models under evaluation are based on recur-803

rent architectures.804

B.2 Needle-in-a-Haystack Tasks805

As mentioned in the previous section, we design806

two passkey retrieval tasks with varying levels of807

difficulty. The specific noise configurations and808

prompt templates used in each task are detailed809

in Table 7. We use 5-digit passkeys in Passkey810

Retrieval and 7-digit passkeys in NIAH-Single-2.811

For each unique test length, the task will be tested812

on 256 randomly generated examples to ensure the813

consistency of the results.814

B.3 More Details: Ablation Study on the815

Number of GLA Heads816

The training procedure for these models follows817

common language model pre-training practices as818

closely as possible. The model is trained on 20B819

tokens from SlimPajama, with a 0.5M tokens per820

batch, and a sequence length of 4k. We employ a821

cosine learning rate scheduler with an initial learn-822

ing rate of 3e-4 and no specified minimum learning823

rate. All models consist of 340 million parame-824

ters and comprise 24 layers, each with an identical825

hidden state dimension. The only architectural dif-826

ference lies in the number of attention heads: the827

single-head model uses one head with a dimension-828

ality of 512, while the four-head model uses four 829

heads, each with a dimensionality of 128, and so 830

on, following the same principle. 831
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Passkey Retrieval Task Template:
The grass is green. The sky is blue. The sun is yellow. Here we go. There
and back again.
......
The pass key is {number}. Remember it. {number} is the pass key.
......
The grass is green. The sky is blue. The sun is yellow. Here we go. There
and back again.

Task Answer Prefix:
What is the pass key? The pass key is

NIAH-Single-2 Task Template:
Some special magic numbers are hidden within the following text. Make
sure to memorize it. I will quiz you about the numbers afterwards.
Paul Graham Essays.
...... One of the special magic numbers for {word} is: {number}. ......
What is the special magic number for {word} mentioned in the provided
text?

Task Answer Prefix:
The special magic number for {word} mentioned in the provided text is

Table 7: The prompt templates of the NIAH tasks used to evaluate the models in retrieving information from long
contexts.
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