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ABSTRACT

The joint-embedding predictive architecture (JEPA) recently has shown impres-
sive results in extracting visual representations from unlabeled imagery under a
masking strategy. However, we reveal its disadvantage lies in the inadequate grasp
of local semantics for dense representations, a shortfall stemming from its masked
modeling on the embedding space and the consequent in less discriminative or
even missing local semantics. To bridge this gap, we introduce Dense-JEPA, a
novel masked modeling objective rooted in JEPA, tailored for enhanced dense
representation learning. Our key idea is simple: we consider a set of semanti-
cally similar neighboring patches as a target of a masked patch. To be specific,
the proposed Dense-JEPA (a) computes feature similarities between each masked
patch and its corresponding neighboring patches to select patches having seman-
tically meaningful relations, and (b) employs lightweight cross-attention heads to
aggregate features of neighboring patches as the masked targets. Consequently,
Dense-JEPA learns better dense representations, which can be beneficial to a wide
range of downstream tasks. Through extensive experiments, we demonstrate our
effectiveness across various visual benchmarks, including ImageNet-1K image
classification, ADE20K semantic segmentation, and COCO object detection tasks.

1 INTRODUCTION

The success of self-supervised learning (SSL) frameworks (Chen et al., 2020a; Chen & He, 2021;
He et al., 2020; Grill et al., 2020), especially in harnessing vast reservoirs of unlabeled images, has
been undeniable in the computer vision community. Model architectures like the Vision Transformer
(ViT; Dosovitskiy et al. (2021)) have consistently garnered significant attention, and initial attempts
at seamless integration with SSL have indeed demonstrated potential (Chen et al., 2021; Xie et al.,
2021; Caron et al., 2021). In particular, Masked autoencoder (MAE; He et al. (2021)), which recon-
structs missing patches on pixel space, has achieved advanced success in various visual downstream
tasks, such as image classification, object detection, and semantic segmentation.

Recently, the image-based joint-embedding predictive architecture (I-JEPA; Assran et al. (2023))
has shown promising results in learning self-supervised representations by leveraging a masking
strategy to reconstruct representations of masked patches. Specifically, I-JEPA uses a masked image
to predict the representations of various unmasked blocks located in the same image. Nevertheless,
we observed that this approach often produces inaccurate self-attention maps, as illustrated in Fig-
ure 1). These inaccuracies can be attributed to the inability to capture a deep understanding of local
semantics, which is essential for dense prediction tasks.

One challenge posed by existing SSL approaches built upon ViTs is the potential lack of local
semantics in the extracted representations from disjoint input patches, where local semantics are
naturally intertwined within the image patches. This inspires us to incorporate explicit processing
of these local semantics in I-JEPA for improved dense representation learning. Our key idea is to
generate a semantically meaningful target, encompassing local semantics, for each masked patch by
harnessing similarities among patches within a neighborhood. During pre-training, we employ the
self-supervised dense target to capture local semantics, which can be advantageous for a variety of
dense prediction tasks, such as object detection and semantic segmentation.

In this paper, we introduce Dense-JEPA, a novel dense representation learning framework with a
Joint-Embedding Predictive Architecture. Our goal is to generate dense targets capturing local se-
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Figure 1: Visualizations for qualitative comparison. We visualize the top-10% of highly corre-
lated patches by thresholding the attention maps of query patches in the last layer using pre-trained
I-JEPA and our method. The patches extracted by I-JEPA are separated and do not specifically fo-
cus on the location of the given query patch, especially for examples from the boxes highlighted in
yellow. In contrast, Dense-JEPA performs better by encouraging the model to learn local semantics.

mantics that can serve as an alternative masked modeling objective, which can be incorporated with
the joint-embedding predictive architecture (LeCun, 2022). To this end, we propose Masked Se-
mantic Neighboring to find semantically similar neighboring patches for masked patches and Local
Aggregation Target to generate the dense targets from them. Specifically, Masked Semantic Neigh-
boring computes feature similarities between each masked patch and its corresponding neighboring
patches to select semantically similar patches, and Local Aggregation Target employs lightweight
cross-attention heads to aggregate features of chosen neighboring patches as the dense targets for
masked patches. Consequently, the proposed Dense-JEPA learns better dense representations, as
shown in Figure 1, which can be beneficial to dense prediction downstream tasks such as semantic
segmentation, object detection, and local prediction tasks.

To demonstrate the effectiveness of Dense-JEPA, we conduct extensive downstream experiments
after pre-training ViT-B/16 and ViT-L/16 (Dosovitskiy et al., 2021) on ImageNet-1k; these experi-
ments include ImageNet-1K image classification, COCO object detection, ADE20K semantic seg-
mentation, DAVIS video segmentation, and Clevr local prediction benchmarks. Our experimental
results demonstrate that the Dense-JEPA improves the performance of I-JEPA with a large margin
and even outperforms other SSL baselines (He et al., 2021; Chen et al., 2021; Bao et al., 2021) on
various benchmarks; for example, our method achieved +1.4 mIoU (i.e., 47.6 → 49.0) on ADE20K
semantic segmentation, +1.7 (J&F)m (i.e., 56.6 → 58.3) on DAVIS video segmentation, +1.0
APbox (i.e., 49.9 → 50.9) on COCO object detection, and +1.1 APmask (i.e., 44.5 → 45.6) on COCO
instance segmentation. Furthermore, we observed that Dense-JEPA also can improve linear evalu-
ation performances (i.e., 77.5 → 78.2) of I-JEPA on ImageNet-1k benchmark, which demonstrates
that the proposed method is not only beneficial to dense representation learning but also can enhance
the quality of global image representations.

Overall, our work highlights the effectiveness of considering a dense target for masked modeling on
the embedding space, and we hope that our work could inspire researchers to further explore dense
representation learning in a self-supervised manner.
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2 RELATED WORK

Self-supervised Visual Representation Learning. Self-supervised visual learning aims to mine
the internal characteristics of images without annotations by applying well-designed pretext tasks.
Early non-transformer researchers introduced instance-level (Wu et al., 2018; Chen et al., 2020a;b;
Grill et al., 2020; He et al., 2020; Chen et al., 2020c; Chen & He, 2021; Zbontar et al., 2021)
and cluster-based (Caron et al., 2020; Li et al., 2021a; Wang et al., 2021; Mo et al., 2021; 2022)
contrastive learning to pull representations from positive samples closer while pushing away features
from negative pairs. Recently, contrastive learning has been widely used in self-supervised vision
transformers (Chen et al., 2021; Xie et al., 2021; Caron et al., 2021; Yun et al., 2022; Mo et al., 2023)
to achieve promising performance on visual downstream tasks. Typically, MoCo-v3 (Chen et al.,
2021) introduced a momentum encoder in ViT (Dosovitskiy et al., 2021) to minimize the distance
between representations of two augmented views from the base encoder and momentum one. To
capture the local-to-global alignment, DINO (Caron et al., 2021) used a momentum encoder with
multi-crop training to achieve knowledge distillation in the vision transformer.

Masked Image Modeling. Masked image modeling has been extensively explored in previous
literature (Bao et al., 2021; Atito et al., 2021; He et al., 2021; Wei et al., 2022; Xie et al., 2022) to re-
construct the masked image patch given the unmasked counterpart as clues. Early approaches (Bao
et al., 2021; Atito et al., 2021; He et al., 2021; Li et al., 2021b; Shi et al., 2022) designed customized
masking strategies (e.g., random, block-wise) as pre-text tasks during pre-training. For example,
block-wise masking was introduced in BEiT (Bao et al., 2021) to learn transferrable visual repre-
sentations by recovering discrete tokens of masked image patches. Given features extracted from
the 25% unmasked patches, the seminal work, MAE (He et al., 2021) directly reconstructed missing
pixels of 75% masked patches, and showed promising performances on various downstream tasks.

Joint-Embedding Predictive Architectures. Joint-Embedding Predictive Architectures (JEPA; Le-
Cun (2022)) learn to predict the embeddings of a signal from a compatible signal using a predictor
conditioned on a latent variable to achieve prediction. Based on JEPA, the image-based JEPA, I-
JEPA (Assran et al., 2023), recently proposed to predict multiple target block representations given
the output of the context encoder under a masking strategy. The key characteristic of I-JEPA is that
its objective is located on the embedding space, while masked image modeling models do on the
pixel (or token) space. Despite it enabling efficient pre-training of I-JEPA, however, the masked
modeling target on the embedding space could pose degradation in dense representation learning if
the target representations were discriminative or lack local semantics among themselves. In con-
trast, we aim to develop a novel masked modeling objective incorporated with JEPA to generate
target representations capturing local semantics for learning better dense representations.

3 METHOD

In this section, we present a novel masked modeling framework, coined Dense-JEPA, designed for
the joint-embedding predictive architecture to enhance understanding local semantics within images.
Our key idea is that semantically similar representations can provide local semantics as a masked
modeling objective by enforcing them to have similar representations. We first provide preliminaries
in Section 3.1 and then present details of two modules, Masked Semantic Neighboring in Section 3.2
and Local Aggregation Target in Section 3.3. Figure 2 shows an overall illustration of the proposed
method, Dense-JEPA.

3.1 PRELIMINARIES

We first describe the problem setup and notations and then revisit the Image-based Joint-Embedding
Predictive Architectures (I-JEPA; Assran et al. (2023)), which is a self-supervised visual represen-
tation learning under masked modeling.

Problem Setup and Notations. Given an image with a dimension of 3 × H × W and a patch
resolution of P , our goal is to learn a masked autoencoder framework with an encoder fe(·) and
a decoder fd(·) to recover the masked patches using unmasked ones. We formally denote patch
embeddings of raw input via each linear projection layer, i.e., x ∈ RN×D, H and W are the height
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and width of each image, and D is the dimension of features. Note that N = H/P ×W/P and N
is the total number of patches.

Masked Autoencoder. To address the masked image modeling problem, MAE (He et al., 2021)
first applied a random masking set M along the total number of patches, and then an encoder to
extract features from unmasked patches. Finally, unmasked embeddings and masked tokens were
concatenated into a decoder to recover the raw pixels of masked patches. The vanilla masking
loss for each image is calculated with the mean square loss between the targeted pi and predicted
normalized pixels p̂i as:

LMAE =
1

|M |
∑
i∈M

||pi − p̂i||22, (1)

where |M | denotes the total number of masked patches in the masking set M .

Image-based Joint-Embedding Predictive Architecture. To tackle the masked image modeling
task, I-JEPA (Assran et al., 2023) introduced a context encoder fθ(·), a target encoder fθ̃(·), and
a predictor gθ(·), to predict the M target block representations sy(1), ..., sy(M) given the output
of the context encoder, sx, For a target block syi

corresponding to a target mask Bi, the predictor
gθ(·, ·) takes as input the output of the context encoder sx and a mask token for each patch to predict
{mj}j∈Bi , and outputs the patch-level prediction {ŝyj}j∈Bi , that is, {ŝyj}j∈Bi = gθ(sx, {mj}j∈Bi)
The masking objective is optimized by the average L2 distance between the predicted patch-level
representations ŝyj and the target patch-level representation syj , which is formulated as:

LI-JEPA =
1

|M |

M∑
i=1

∑
j∈Bi

||syj − ŝyj ||22, (2)

where |M | denotes the total number of target blocks, and Bi is the mask corresponding to the i-th
target block.

3.2 DENSE-JEPA: MASKED SEMANTIC NEIGHBORING

However, a masked modeling target in the representation space like I-JEPA could pose a challenge in
terms of missing local semantics if the target patch-level representations syj

were less discriminative
among themselves. As shown in Figure 1, we also observed that I-JEPA often generates inaccurate
self-attention maps, and it arguably indicates its deficiency in comprehending local semantics. To
tackle this, we aim to generate target representations capturing local semantics that can serve as an
alternative masked modeling objective, which can be incorporated with the joint-embedding pre-
dictive architecture (LeCun, 2022). We note that prior investigation on patch-level representation
learning (Yun et al., 2022) inspires us to explore similarities among patch-level representations lo-
cated in a neighborhood. To this end, we propose Masked Semantic Neighboring module to find
semantically similar neighboring patches for masked patches and Local Aggregation Target module
(see Section 3.3) to make them have similar target representations.

Masked Semantic Neighboring. For patches in a given masked block, we aim to find their neigh-
boring patches semantically similar, as neighboring patches often share a semantic context. In order
to sample semantically similar patches from the neighborhood Ni, we compute the dense semantic
similarity d(i, j) between the query patch xi and its neighboring patch xj for all j ∈ Ni based on
representations from the target encoder fθ̃(·), which is formulated as:

d(i, j) =
fθ̃(xi)

⊤fθ̃(xj)

∥fθ̃(xi)∥2∥fθ̃(xj)∥2
, (3)

where fθ̃(xi), fθ̃(xj) ∈ R1×D, and ∥ · ∥2 denotes the ℓ2-norm operator. With the computed sim-
ilarity scores, we apply a ranking on the neighboring patches {xj}j∈Ni

and select a set of dense
patches {xj}j∈Pi with top-k highest similarities, where Pi denotes a set of dense patch indices in
the neighborhood, and k is the number of dense patches, i.e., k = |Pi|. Unless stated otherwise, we
use k = 4 for our experiments.

3.3 DENSE-JEPA: LOCAL AGGREGATION TARGET

We remark that our goal is to generate target representations capturing local semantics and dis-
criminative among themselves. With the benefit of the selected neighboring patches having similar
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Figure 2: Illustration of the proposed novel masked modeling framework (Dense-JEPA), rooted in
I-JEPA, tailored for enhanced dense representation learning. The Masked Semantic Neighboring
module computes the dense semantic similarity between the query patch and its neighboring patch
based on representations from the target encoder fθ̃(·) to select semantically similar patches from
the neighborhood. Then Local Aggregation Target module composed of a context patch aggregation
head hθ(·) and a target patch aggregation head hθ̃(·), aggregates target features of selected patches
using cross-attention to construct dense targets. Finally, the model is optimized by the average L2

distance between the predicted dense representations and the target dense representation.

semantics, we introduce Local Aggregation Target module composed of a context patch aggregation
head hθ(·) and a target patch aggregation head hθ̃(·). Specifically, we aggregate target represen-
tations of selected patches {fθ̃(xj)}j∈Pi using cross-attention head hθ(·) to construct dense target
sLATi for enforcing semantically similar patches could have the similar dense targets. Simultaneously,
we symmetrically apply context aggregation head hθ(·) to produce corresponding context sLATx from
context representations of unmasked patches as:

sLATi = hθ̃({xj}j∈Pi
,xt), sLATx = hθ(sx,xc), (4)

where sx denotes context embeddings and xt,xc denote the averaged embeddings from all patches
in the target encoder and only unmasked patches in the context encoder, respectively. The cross-
attention operator hθ(·) and hθ̃(·) is formulated as:

hθ̃({xj}j∈Pi ,xt) = Softmax

(
xt{xj}⊤j∈Pi√

D

)
{xj}j∈Pi ,

hθ(sx,xc) = Softmax

(
xcs

⊤
x√
D

)
sx,

(5)

where D is the dimension of embeddings. For a given target block sLATyi
corresponding to a target

mask Bi, the predictor gθ(·, ·) takes as input the output of the context patch aggregation head sax
and a mask token for each patch to predict {mj}j∈Bi , and outputs a dense prediction {ŝLATyj

}j∈Bi =

gθ(s
LAT
x , {mj}j∈Bi). The new masking objective is optimized by the average L2 distance between

the predicted dense representations ŝLATyj
and the target dense representation si in the i-th block,

which is formulated as:

LDense-JEPA =
1

|M |

M∑
i=1

∑
j∈Bi

||sLATi − ŝLATyj
||22, (6)
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Table 1: ADE20K semantic segmentation, COCO object detection, and instance segmentation.
We fine-tuned pre-trained ViT-B/16 models to perform ADE20K semantic segmentation and COCO
object detection and instance segmentation. The mIoU, APbox, and APmask metrics denote the results
of ADE20K segmentation, COCO detection, and COCO segmentation, respectively. The best results
are indicated in bold.

Method Pre-train data mIoU APbox APmask

Supervised ImageNet-1K w/ labels 47.4 47.9 42.9
DINO (Caron et al., 2021) ImageNet-1K 46.8 50.1 43.4
MoCo v3 (Chen et al., 2021) ImageNet-1K 47.3 47.9 42.7
BEiT (Bao et al., 2021) ImageNet-1K+DALLE 47.1 49.8 44.4
MAE (He et al., 2021) ImageNet-1K 48.1 50.3 44.9

I-JEPA (Assran et al., 2023) ImageNet-1K 47.6 49.9 44.5
Dense-JEPA (ours) ImageNet-1K 49.0 50.9 45.6

where |M | denotes the total number of target blocks, and Bi is the target mask corresponding to the
i-th target block. In terms of semantic similarity among patches, the closer the final target represen-
tations, pre-training through these targets would promote the enhancement of learned embeddings
that encompass local semantics.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Following previous methods (He et al., 2021; Assran et al., 2023), we use ImageNet-
1K (Deng et al., 2009) for image classification, MS-COCO (Lin et al., 2014) for object detection
and instance segmentation, and ADE20K (Zhou et al., 2017; 2018) for semantic segmentation. We
closely follow previous work (Chen et al., 2021; Xie et al., 2021; Caron et al., 2021), and adopt the
Mask R-CNN (He et al., 2017) as the detector. The ViT-Base (Dosovitskiy et al., 2021) backbone
weights are initialized with weights pre-trained on ImageNet-1K using our Dense-JEPA. Following
the settings in (He et al., 2021; Bao et al., 2021), we use the UPerNet approach (Xiao et al., 2018)
based on our ImageNet-1K pre-trained ViT-Base for evaluation. For a fair comparison, we fine-tune
the detector with the same learning rate in (He et al., 2021; Bao et al., 2021). For video object seg-
mentation, we use DAVIS-2017 dataset containing 60 training, 30 validation, and 60 testing videos.
For local prediction tasks on Clevr (Johnson et al., 2016), we follow the previous work (Assran et al.,
2023) and use Clevr/Count and Clevr/Dist.

Evaluation Metrics. We follow previous masked image modeling work (He et al., 2021; Bao et al.,
2021) to report the classification accuracy of linear probing and fine-tuning. For object detection and
instance segmentation on MS-COCO, we apply APbox and APmask as metrics for the bounding boxes
and the instance masks. mIoU results are reported to evaluate semantic segmentation on ADE20K.
For video object segmentation on DAVIS-2017, we use Jabri-based (J&F)m, Jm, Fm as metrics
to evaluate the quality of frozen representations of image patches by segmenting scenes with the
nearest neighbor between consecutive frames. For local prediction tasks on Clevr, we use object
counting and depth prediction to evaluate the linear probing performance of our model.

Implementation. For input images, the resolution is resized to 224× 224, i.e., H = W = 224. We
follow prior work (He et al., 2021; Assran et al., 2023) and apply a patch size of 16, i.e., P = 16. The
small, base, and large models of ViT (Dosovitskiy et al., 2021) architecture are used for experiments.
We set the embedding dimension of the predictor to 384, and keep the number of self-attention heads
the same as the backbone context-encoder. For the smaller ViT-S/16 and ViT-B/16 context-encoder,
we set the depth of the predictor as 6. For ViT-L/16 context-encoders, we set the depth of the
predictor to 12. Following I-JEPA (Assran et al., 2023), we use AdamW to optimize the context-
encoder and predictor weights. We train our model using the default batch size of 2048, and the
learning rate linearly increased from 1e-4 to 1e-3 during the first 15 epochs of pre-training, and
decay to 1e-6 following a cosine schedule. The weight decay is linearly increased from 0.04 to 0.4,
and the target-encoder weights are initialized the same as the context-encoder weights, and updated
via an exponential moving average. We use a momentum value of 0.996, and linearly increase this
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Table 2: DAVIS video object segmentation. We perform DAVIS 2017 video object segmenta-
tion using ImageNet-1K pre-trained ViT-B/16 and ViT-L/16 models. We report Jabri-based metrics
(J&F)m, Jm, Fm to evaluate the quality of pre-trained representations. The best results are indi-
cated in bold.

Method Backbone (J&F)m Jm Fm

MAE (He et al., 2021) ViT-B/16 51.0 49.4 52.6
ViT-L/16 53.4 52.5 54.3

I-JEPA (Assran et al., 2023) ViT-B/16 56.2 56.1 56.3
ViT-L/16 56.6 56.3 56.9

Dense-JEPA (ours) ViT-B/16 57.7 56.7 58.7
ViT-L/16 58.3 57.3 59.2

Table 3: ImageNet-1K image classification. We perform a linear evaluation on pre-trained ViT-
B/16 and ViT-L/16 models for image classification on ImageNet-1K benchmark. We report the top-1
accuracy to evaluate the quality of pre-trained representations. The best results are indicated in bold.

Method Backbone Epochs Top-1 Accuracy

data2vec (Baevski et al., 2022) ViT-L/16 1600 77.3

MAE (He et al., 2021) ViT-B/16 1600 68.0
ViT-L/16 1600 76.0

I-JEPA (Assran et al., 2023) ViT-B/16 600 72.9
ViT-L/16 600 77.5

Dense-JEPA (ours) ViT-B/16 600 73.8
ViT-L/16 600 78.2

value to 1.0. For masking, we use the same strategy and settings as I-JEPA (Assran et al., 2023) for
4 possibly overlapping target blocks masks. Our small, base, and large models are pre-trained on
ImageNet-1K (Deng et al., 2009) for 600 epochs.

4.2 COMPARISON TO PRIOR WORK

In this work, we propose a novel and effective framework for dense representation learning with a
joint-embedding predictive architecture. In order to demonstrate the effectiveness of the proposed
Dense-JEPA, we comprehensively compare it to previous mask image modeling baselines (He et al.,
2021; Baevski et al., 2022; Chen et al., 2022; Assran et al., 2023).

Detection and Segmentation tasks. For the ADE20K semantic segmentation and COCO object
detection & instance segmentation benchmarks, we report the quantitative comparison results in
Table 1; our method achieved the best results regarding all the metrics compared to previous mask
modeling baselines. In particular, the proposed Dense-JEPA outperforms I-JEPA (Assran et al.,
2023), the current image-based joint-embedding predictive architecture by 0.9@mIoU. Also, we
achieve significant performance gains of 1.0@APbox and 1.1@APmask on COCO object detection
and instance segmentation compared to I-JEPA, which indicates the importance of leveraging the
self-supervised dense targets to capture local semantics for dense prediction tasks. Furthermore,
we observed that Dense-JEPA even can achieve better results than the strongest baseline, MAE (He
et al., 2021), a generative autoencoder architecture for masked image modeling.

In addition, our method shows significant and consistent gains in the DAVIS 2017 video object seg-
mentation benchmark as shown in Table 2. Compared to I-JEPA, ours achieved the results gains of
1.5@(J&F)m, 0.6@Jm, and 2.4@Fm on ViT-B/16. Moreover, the margins increased more sig-
nificantly when we evaluated the large-scale backbone, ViT-L/16, by 1.7@(J&F)m, which shows a
scaling behavior of ours. Overall, these significant improvements reported in Tables 1 and 2 demon-
strate the superiority of our approach to learning local semantics during self-supervised pre-training.

Image classification task. Here, we validate the quality of our learned global representation by
performing the common linear evaluation task on ImageNet-1k. Table 3 summarizes the results;
Dense-JEPA outperforms all the baselines in Table 3. For example, Dense-JEPA achieved 78.2%

7



Under review as a conference paper at ICLR 2024

Table 4: Clever object counting and depth prediction. We perform a linear evaluation on pre-
trained models for Clever object counting and depth prediction benchmarks. The Clevr/Count and
Clevr/Dist metrics denote the result of object counting and depth prediction tasks, respectively. The
best results are indicated in bold, and the second best ones are underlined.

Method Backbone Clevr/Count Clevr/Dist

DINO (Caron et al., 2021) ViT-B/8 86.6 53.4
iBOT (Zhou et al., 2022) ViT-L/16 85.7 62.8

data2vec (Baevski et al., 2022) ViT-L/16 85.3 71.3

MAE (He et al., 2021) ViT-B/16 86.6 70.8
ViT-L/16 92.1 73.0

I-JEPA (Assran et al., 2023) ViT-B/16 82.2 70.7
ViT-L/16 85.6 71.2

Dense-JEPA (ours) ViT-B/16 83.5 71.1
ViT-L/16 87.1 71.8

Table 5: Ablation studies on component analysis. We perform ablation studies on Masked Seman-
tic Neighboring (MSN) and Local Aggregation Target (LAT) modules using a pre-trained ViT-S/16
model on the DAVIS benchmark. The best results are indicated in bold.

MSN LAT (J&F)m Jm Fm

✗ ✗ 53.7 52.5 54.8
✓ ✗ 55.2 54.3 56.1
✗ ✓ 54.6 53.3 55.9
✓ ✓ 57.1 55.7 58.5

top-1 accuracy on ViT-L/16, while MAE and I-JEPA did 76.0% and 77.5%, respectively. These
results further indicate the benefit of the proposed method in learning the global semantics of images.

Other low-level tasks. We also present additional Clevr benchmarks for measuring abilities of
object-counting and depth prediction. Table 4 shows linear evaluation results of Dense-JEPA on
the Clevr counting and depth benchmarks. Compared to I-JEPA (Assran et al., 2023), we achieve
the results gains of 1.3@Clevr/Count and 0.4@Clevr/Dist using ViT-B/16. Moreover, we observe
similar scaling behavior as shown in Table 2, with increased improvements on ViT-L/16. These
results where MAE achieved the best scores arguably show that JEPA objectives on the embedding
space would have the potential to pose degradation in dense representation learning.

4.3 EXPERIMENTAL ANALYSIS

In this section, we performed ablation studies to demonstrate the benefit of the proposed Masked
Semantic Neighboring and Local Aggregation Target modules. Here, we conducted extensive ex-
periments on ImageNet-1k pre-trained ViT-S/16 to explore the impact of neighbors and dense pairs,
types of local aggregation heads, and learned meaningful patch-level representations.

Masked Semantic Neighboring & Local Aggregation Target. In order to demonstrate the effec-
tiveness of Masked Semantic Neighboring (MSN) and Local Aggregation Target (LAT), we ablate
the impact of each module and report the quantitative results on DAVIS 2017 video object segmen-
tation benchmark with ViT-S/16 in Table 7. As shown in the table, adding MSN to the vanilla base-
line highly increases the results of 1.5@(J&F)m, which validates the benefit of masked semantic
neighboring in finding semantically similar neighboring patches for masked patches. Meanwhile,
introducing only LAT in the baseline increases the video segmentation performance regarding all
metrics. More importantly, incorporating MSN and LAT into the baseline significantly raises the
performance by 3.4@(J&F)m. These improving results validate the importance of MSN and LAT
in extracting local semantics from self-supervised dense targets for better representations.

Impact of Neighbors and Dense Pairs. To explore the impact of neighbors in neighboring and the
number of selected dense pairs, we ablated the neighbors from {3×3, 5×5, All patches} and varied
the number of dense pairs from {1, 2, 4, 8}. The quantitative results on the DAVIS benchmark with
ViT-S/16 are reported in Table 6. As shown in the table, the proposed Dense-JEPA achieved the
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Table 6: Ablation studies on hyperparameters. We perform ablation studies using a pre-trained
ViT-S/16 model to explore effects on neighbors and dense pairs in the Masked Semantic Neighboring
module. The best results are indicated in bold.

Neighbors # Dense Pairs (J&F)m Jm Fm

3×3
4

57.1 55.7 58.5
5×5 56.3 54.9 57.7

All patches 48.5 46.7 50.3

3×3
1 55.9 54.3 57.5
2 56.3 54.9 57.7
8 56.7 55.3 58.1

Table 7: Ablation studies on aggregation head. We perform ablation studies on context and target
aggregation heads in Local Aggregation Target modules using two types (Cross-attention & Self-
attention). The best results are indicated in bold.

Context Head hθ Target Head hθ̃ (J&F)m Jm Fm

Cross-attention Cross-attention 57.1 55.7 58.5
Self-attention Cross-attention 53.7 52.5 54.9
Self-attention Self-attention 50.6 49.5 51.7

best performance of (J&F)m when we use 3× 3 neighbors and 4 dense pairs. With the increased
number of dense pairs from 1 to 4, the proposed method consistently increases performance as
more semantically similar target pairs are extracted. Nevertheless, increasing the number of dense
pairs from 4 to 8 will not continually improve the results since 4 dense pairs might be enough to
extract the learned dense representations using ViT-S/16. Furthermore, replacing 3 × 3 neighbors
with all patches significantly deteriorates the performance of all metrics. These results indicate the
importance of selecting semantically meaningful neighboring patches for capturing local semantics.

Types of Local Aggregation Heads. Local aggregation heads affect the ability of the proposed
method to aggregate dense targets and context with local semantics. To explore such effects more
comprehensively, we varied the type of Local Aggregation Heads from cross-attention and self-
attention operators asymmetrically. We report the comparison results on the DAVIS benchmark with
ViT-S/16 in Table 6. When both the context and target head use the cross-attention operators, we
achieve the best performance in terms of all metrics. Replacing cross-attention operators with self-
attention operators significantly worsens the results in terms of all metrics. These results indicate
the difficulty in the asymmetric use of cross-attention aggregation heads, as the target aggregation
head is updated using an exponential moving average of the context head weights, and it cannot be
solely trained on its architecture.

5 CONCLUSION

We introduce a novel masked modeling objective tailored for the joint-embedding predictive ar-
chitecture to learn better dense representations from unlabeled images. To tackle this, we aim to
produce semantically meaningful target representations in a self-supervised manner by leveraging
the prior that neighboring patches often contain similar semantics. To be specific, we first search
semantically similar patches for a masked patch within its neighborhood by computing their simi-
larities on the representation space. Then we generate the aggregated representations from the se-
lected neighboring patches to serve as a masked modeling objective via a lightweight cross-attention
head. Finally, the proposed objective would accelerate learned representations of semantically simi-
lar patches being closer, which can be advantageous in understanding local semantics within images.
Through extensive experiments, we have demonstrated our models are not only effective in dense
prediction types of downstream tasks but also show strong performance in image classification tasks.
We believe that our work would not only highlight the effectiveness of considering a dense target for
masked modeling on the embedding space but also provide a comprehensive understanding of local
semantics within images through self-supervised pre-training.
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APPENDIX

In this appendix, we provide the following materials:

• Additional experiments on fine-tuning and segmentation & detection comparison with
DINO (Caron et al., 2021) & MAE (He et al., 2021), and segmentation comparison with
DINOv2 (Oquab et al., 2023) in Section A,

• Additional analyses on the effectiveness of cross-attention layers in local aggregation head,
and computational comparison with I-JEPA (Assran et al., 2023) in Section B,

• Additional visualizations on the cosine similarity maps of query patches and learned atten-
tion maps in Section C.

A ADDITIONAL EXPERIMENTS

In order to further demonstrate the effectiveness of the proposed Dense-JEPA in learning local se-
mantics during self-supervised pre-training, we conduct experiments on fine-tuning comparison with
DINO (Caron et al., 2021) & MAE (He et al., 2021) on ImageNet-1K Deng et al. (2009), and seg-
mentation & detection comparison on ADE20K (Zhou et al., 2017; 2018) & COCO (Lin et al., 2014)
and segmentation comparison on ADE20K with DINOv2 (Oquab et al., 2023).

Fine-tuning Comparison with DINO and MAE. For a comprehensive comparison with DINO and
MAE, we follow previous work (Caron et al., 2021; He et al., 2021) and fine-tune pre-trained ViT-
B/16 & ViT-L/16 on ImageNet-1K. Table A.1 reports the comparison results with prior approaches
using DINO and MAE pre-trained weights. As can be seen, our Dense-JEPA achieves the best
performance in terms of all metrics for two different pre-trained models. These significant improve-
ments demonstrate the superiority of our framework in learning the global semantics of images from
self-supervised pre-training.

Table A.1: Fine-tuning ImageNet-1K image classification. We perform fine-tuning pre-trained
ViT-B/16 for image classification on ImageNet-1K benchmark. We report the top-1 accuracy to
evaluate the quality of fine-tuned representations. The best results are indicated in bold.

Method Pre-train data Backbone Top-1 Accuracy

DINO (Caron et al., 2021) ImageNet-1K ViT-B/16 82.8
MAE (He et al., 2021) ImageNet-1K ViT-B/16 83.6
Dense-JEPA (ours) ImageNet-1K ViT-B/16 84.6
MAE (He et al., 2021) ImageNet-1K ViT-L/16 85.9
Dense-JEPA (ours) ImageNet-1K ViT-L/16 86.6

Segmentation & Detection Comparison with DINO and MAE. For ADE20K segmentation &
COCO detection, we follow the same setting in the previous work (Caron et al., 2021; He et al.,
2021), and compare the proposed Dense-JEPA using ImageNet-1K pre-trained ViT-B/16 models in
Table A.2. Compared to previous methods, we achieve the best results regarding all various metrics
including mIoU, APbox, and APmask. These results validate the effectiveness of our approach in
learning local semantics during self-supervised pre-training.

Table A.2: ADE20K semantic segmentation, COCO object detection, and instance segmenta-
tion. We fine-tuned pre-trained ViT-B/16 models to perform ADE20K semantic segmentation and
COCO object detection and instance segmentation. The mIoU, APbox, and APmask metrics denote
the results of ADE20K segmentation, COCO detection, and COCO segmentation, respectively. The
best results are indicated in bold.

Method Pre-train data Backbone mIoU APbox APmask

DINO (Caron et al., 2021) ImageNet-1K ViT-B/16 46.8 50.1 43.4
MAE (He et al., 2021) ImageNet-1K ViT-B/16 48.1 50.3 44.9

Dense-JEPA (ours) ImageNet-1K ViT-B/16 49.0 50.9 45.6
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Segmentation Comparison with DINOv2. For a more comprehensive comparison with DI-
NOv2 (Oquab et al., 2023), the recent strong self-supervised baseline trained on a large-scale dataset,
we compare our ImageNet pre-trained ViT-B/16 models with Figure 6 in the original DINOv2 paper
using ImageNet pre-trained ViT-L/16 models on ADE20K semantic segmentation. The comparison
results are reported in Table A.3. We can observe that our Dense-JEPA with ViT-B/16 backbone
achieves better results than DINOv2 using ViT-L/16 using different pre-training resolutions. How-
ever, it should be noted that DINOv2 (Oquab et al., 2023) performed linear evaluation settings on
the ADE20K dataset by freezing representations at different resolutions. Although the comparison
is not totally fair, these results further demonstrate the competitive fine-tuning performance on seg-
mentation by learning local semantics during self-supervised pre-training. We believe that our new
framework can be scaled up to more pre-training data to achieve better downstream performances.

Table A.3: ADE20K semantic segmentation. We fine-tuned pre-trained ViT-B/16 models to per-
form ADE20K semantic segmentation. Note that DINOv2 (Oquab et al., 2023) performed linear
evaluation settings on the ADE20K benchmark by freezing representations at different resolutions.
The best results are indicated in bold.

Method Pre-train data Backbone Pre-train Resolution mIoU

DINOv2 (Oquab et al., 2023) ImageNet-1K ViT-L/16 224 43.0
ImageNet-1K ViT-L/16 416 46.2

Dense-JEPA (ours) ImageNet-1K ViT-B/16 224 49.0

B ADDITIONAL ANALYSIS

In this section, we performed ablation studies to demonstrate the advantage of using cross-attention
layers against pooling operators in the proposed context and target aggregation heads in Local Ag-
gregation Target modules, and computational costs for training. Our ablation experiments are based
on ImageNet-1k pre-trained ViT-S/16 models.

Ablation on Cross-attention vs Pooling in Local Aggregation Head. To validate the effective-
ness of using cross-attention layers, we ablated the layer using average-pooling and max-pooling
operators. The comparison results are reported in Table B.1. As can be observed, replacing the
cross-attention layer with average-pooling deteriorates the results by 1.9@(J&F)m, 1.4@Jm, and
2.4@Fm. This might be because average pooling leads to collapsing and losing discrepancy across
patch tokens. Our key is each query patch has distinct neighborhood patches, and objectively de-
rived from the distinct neighborhoods will ensure their distinct target objectives. Meanwhile, using
the max-pooling operator highly decreases the results in terms of all metrics. These results val-
idate the importance of cross-attention layers in preventing losing discrepancy for distinct target
representations during self-supervised pre-training.

Table B.1: Ablation studies on local aggregation head. We perform ablation studies on the cross-
attention layers in the Local Aggregation Target module using ViT-B/16 pre-trained models. The
best results are indicated in bold.

Local Aggregation Head (J&F)m Jm Fm

Average-pooling 55.2 54.3 56.1
Max-pooling 55.6 54.6 56.6

Cross-attention 57.1 55.7 58.5

Computational Comparison with I-JEPA. In order to comprehensively assess the efficiency of the
proposed Dense-JEPA, we compared it with I-JEPA (Assran et al., 2023), the state-of-the-art image-
based joint-embedding predictive architecture, on total pre-training epochs, max memory per GPU,
and running time per step in Table B.2. We can observe that our Dense-JEPA achieves comparable
computation costs in terms of all metrics, especially on total pre-training epochs and max memory
usage. More importantly, we achieve much better downstream performance regarding segmentation
& detection in Table 1 & 2, image classification in Table 3 & A.1, and other low-level tasks in
Table 4. These computational analyses further demonstrate the efficiency of our novel framework.
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Table B.2: Analysis on computational costs. We perform computational analyses on pre-trained
ViT-B/16 models for comparison with I-JEPA. The best results are indicated in bold.

Method Pre-train Max Memory Running Time
Epochs per GPU (GB) per Step (ms)

I-JEPA (Assran et al., 2023) 600 21.9 606.4
Dense-JEPA (ours) 600 21.9 608.2

C ADDITIONAL VISUALIZATIONS

In order to qualitatively demonstrate the effectiveness of the proposed Dense-JEPA in learning local
semantics during pre-training, we provide learned attention maps from the target encoder using pre-
trained I-JEPA and our method, and attention maps from the cross-attention layer in the proposed
Local Aggregation Target (LAT) modules in Figure C.1, C.2, C.3, and C.4. Furthermore, we visual-
ize the top-10% of highly correlated patches in more examples by thresholding the cosine-similarity
maps of query patches in the last layer in Figure C.5, C.6, C.7, and C.8.

Learned Attention Maps. Learning discriminative attention maps is one of the key aspects of
capturing local semantics for downstream tasks of dense prediction type, such as segmentation and
detection. To better evaluate the quality of learned attention maps, we visualize the averaged maps
from different heads in the last attention layer by using a pre-trained ViT-B/16 target encoder. For a
more comprehensive comparison, we also add the attention maps from I-JEPA (Assran et al., 2023)
target encoder and the cross-attention layer in our Local Aggregation Target (LAT) module. The
qualitative visualization results are shown in Figure C.1, C.2, C.3, and C.4. Note that columns for
each image sample represent the original image, attention maps from the target encoder in I-JEPA,
attention maps from the target encoder in our Dense-JEPA, and attention maps from the local ag-
gregation target module in our Dense-JEPA. As can be seen, both attention maps from the target
encoder and the local aggregation target module in our Dense-JEPA are discriminative and focus on
the object semantics in the image. However, the attention maps from the target encoder in I-JEPA ac-
tivate both the foreground and background and can not effectively discriminate the object semantics,
because they did not incorporate local semantics into target representations as our Dense-JEPA did.
Meanwhile, the attention maps of the local aggregation target module in our Dense-JEPA have more
focus on the details of foreground objects than that from the target encoder, indicating the effective-
ness of our local aggregation target module in generating target representations with local semantics.
These high-quality visualization results further demonstrate the superiority of our new framework in
learning meaningful representations with local semantics during self-supervised training, compared
to I-JEPA, the state-of-the-art image-based joint-embedding predictive architecture.

Learned Cosine Similarity Maps. To further validate the effectiveness of our method in learning
dense representations, we visualize the top-10% of highly correlated patches by thresholding the co-
sine similarity maps of query patches in the last layer using the pre-trained ViT-B/16 target encoder.
Figure C.5, C.6, C.7, and C.8 showcase the qualitative visualization results, where rows for each
sample denote the location of the given query patch and the top-10% patches. We can observe that
the patches extracted by our Dense-JEPA are centralized and specifically focus on the location of
the given query patch. For example, given the first query patch on the building in the car example
shown in Figure C.7, the top-10% patches focus on the building. When the query patch is given
on the location of the car, the top-10% patches also change to focus on the car. Another example
can also be seen in the dynamic changes with respect to the location of query patches on the head,
arm, elbow, and microphone in the first sample shown in Figure C.8. Interestingly, when the query
patch is given on the body part from one of two birds in the second example shown in Figure C.7,
the top-10% patches can highlight the location of body parts from both birds, which might be due to
the similar local semantics in both body locations. These visualization results demonstrate that our
Dense-JEPA performs effectively by encouraging the model to learn dense representations.
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Figure C.1: Qualtitative visualization of learned attention maps using ViT-B/16 model. Columns for
each sample denote the original image, attention maps from target encoder in I-JEPA (Assran et al.,
2023), attention maps from target encoder in our Dense-JEPA, and attention maps from the local
aggregation head in our Dense-JEPA. Our Dense-JEPA achieves much better attention maps.

Figure C.2: Qualtitative visualization of learned attention maps using ViT-B/16 model. Columns for
each sample denote the original image, attention maps from target encoder in I-JEPA (Assran et al.,
2023), attention maps from target encoder in our Dense-JEPA, and attention maps from the local
aggregation head in our Dense-JEPA. Our Dense-JEPA achieves much better attention maps.
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Figure C.3: Qualtitative visualization of learned attention maps using ViT-B/16 model. Columns for
each sample denote the original image, attention maps from target encoder in I-JEPA (Assran et al.,
2023), attention maps from target encoder in our Dense-JEPA, and attention maps from the local
aggregation head in our Dense-JEPA. Our Dense-JEPA achieves much better attention maps.

Figure C.4: Qualtitative visualization of learned attention maps using ViT-B/16 model. Columns for
each sample denote the original image, attention maps from target encoder in I-JEPA (Assran et al.,
2023), attention maps from target encoder in our Dense-JEPA, and attention maps from the local
aggregation head in our Dense-JEPA. Our Dense-JEPA achieves much better attention maps.
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Figure C.5: Qualtitative visualization of learned cosine similarity maps given query patches using
ViT-B/16. Rows for each sample denote the location of the given query patch and the top-10%
patches. Our Dense-JEPA performs effectively by encouraging the model to learn local semantics.

Figure C.6: Qualtitative visualization of learned cosine similarity maps given query patches using
ViT-B/16. Rows for each sample denote the location of the given query patch and the top-10%
patches. Our Dense-JEPA performs effectively by encouraging the model to learn local semantics.
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Figure C.7: Qualtitative visualization of learned cosine similarity maps given query patches using
ViT-B/16. Rows for each sample denote the location of the given query patch and the top-10%
patches. Our Dense-JEPA performs effectively by encouraging the model to learn local semantics.

Figure C.8: Qualtitative visualization of learned cosine similarity maps given query patches using
ViT-B/16. Rows for each sample denote the location of the given query patch and the top-10%
patches. Our Dense-JEPA performs effectively by encouraging the model to learn local semantics.
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