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ABSTRACT

This work introduces the Supervised Expectation-Maximization Framework
(SEMF), a versatile and model-agnostic approach for generating prediction inter-
vals in datasets with complete or missing data. SEMF extends the Expectation-
Maximization algorithm, traditionally used in unsupervised learning, to a supervised
context, leveraging latent variable modeling for uncertainty estimation. Extensive
empirical evaluations across 11 tabular datasets show that SEMF often achieves
narrower normalized prediction intervals and higher coverage rates than traditional
quantile regression methods. Furthermore, SEMF can be integrated with machine
learning models like gradient-boosted trees and neural networks, highlighting
its practical applicability. The results indicate that SEMF enhances uncertainty
quantification, particularly in scenarios with complete data.

1 INTRODUCTION

In the evolving field of machine learning (ML), the quest for models able to predict outcomes
while quantifying the uncertainty of their predictions is critical. The ability to estimate prediction
uncertainty is particularly vital in high-stakes domains such as healthcare (Dusenberry et al., 2020),
finance (Wisniewski et al., [2020), and autonomous systems (Tang et al.,[2022), where prediction-
based decisions have important consequences. Traditional approaches have primarily focused on
point estimates, with little to no insight into prediction reliability. This limitation underscores
the need for frameworks that can generate both precise point predictions and robust prediction
intervals. Such intervals provide a range within which the true outcome is expected to lie with a fixed
probability, offering a finer understanding of prediction uncertainty. This need has spurred research
into methodologies that extend beyond point estimation to include uncertainty quantification, thereby
enabling more informed decision-making in applications reliant on predictive modeling (Ghahramanil
2015).

In this paper, we introduce the Supervised Expectation-Maximization Framework (SEMF) based on
the Expectation-Maximization (EM) algorithm (Dempster et al.,|1977)). Traditionally recognized as a
clustering technique, EM is used for supervised learning in SEMF, allowing for both point estimates
and prediction intervals using any ML model (model-agnostic). SEMF generates representations
for latent or missing modalities, which can be relevant for incomplete data and holds potential for
multi-modal data applications, though multi-modal settings are left for future exploration. This paper
details the methodology behind the framework and proposes a training algorithm based on Monte
Carlo (MC) sampling, also used in variational inference for Variational Auto-Encoders (VAEs) (David
M. Blei & McAuliffel [2017aj Kingma & Welling| 2014). SEMF differs from prominent supervised
EM approaches such as|Ghahramani & Jordan|(1993), which focus on point prediction using Gaussian
Mixture Models (GMMs). Additionally, our method operates in a frequentist paradigm, directly
maximizing the likelihood function through iterative EM steps without integrating over posterior
distributions. Although SEMF can be extended to a Bayesian framework as its likelihood component,
this extension lies beyond the scope of this paper.

The remainder of this paper is organized as follows: [Section 2] details the theory and the methodology
of SEMF. reviews related works in latent representation learning, uncertainty estimation,
and handling of missing data. describes the experimental setup, including datasets and
evaluation metrics. discusses the results, demonstrating the efficacy of SEMF. Lastly,

concludes the paper, and outlines the limitations and potential research directions.
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2 METHOD

This section presents the founding principles of SEMF from its parameters, training, and inference
procedure with, at its core, the EM algorithm. This algorithm, first introduced by [Dempster et al.
(1977), is an unsupervised method for handling latent variables and incomplete data. Invented to
maximize the model likelihood, it builds a sequence of parameters that guarantee an increase in the
log-likelihood (Wul [1983) by iterating between the Expectation (E) and the Maximization (M) steps.
In the E-step, one computes

Q(plp') = Egp o) l0g p(x. 2)] = / log p(x. 2)p’ (z})dz. (1)

where p’ stands for the current estimates, log p(x, z) is the log-likelihood of the complete observation
(x,z), and z is a latent variable. The M-step maximizes this Q-function: p’ < argmax, Q(p|p’) .
The sequence is repeated until convergence.

2.1 PROBLEM SCENARIO

Let x = (x1,x2,...,xk) denote K inputs and the output be y. For simplicity, we limit y to be
numerical, although it could be categorical without loss of generality. Component xj is a source: a
modality, a single or group of variables, or an unstructured input such as an image or text. For clarity,
we limit to K = 2, where x; and x; are single variables. We assume that only x; may contain missing
values, either at random or partially at random.

Let p(y|x) be the density function of the outcome given the inputs (the fact that y is continuous
can be easily relaxed). A founding assumption, in the spirit of VAE, is that p(y|x) decomposes
into p(ylx) = fp(ylz)p(zl|x1)p(z2|x2)dzldz2, where z = (z1,22) are unobserved latent vari-
ables. We assume that p(y|z,x) = p(y|z), that is, z contains all the information of x about
y, and that p(z|x) = p(z1|x1)p(z2]x2), that is, there is one latent variable per source. These
are independent conditionally on their corresponding source. Finally, if x; is missing, then
p(ylx2) = fp(ylz)p(z]|x1)p(x1|x2)p(12|x2)dx1dzldz2. The contribution to the log-likelihood
of a complete observation (y, z,x) is log p(y, z|x) = log p(y|z) + log p(z|x). In the E-step, we
compute

f log p(y. )P’ (zlysx)dz = / log p(¥12)p’ (zlysx)dz + f log p(zl)p’ (ly, x)dz. (2)

where p’ is our current estimate. [Eq. 2| can be estimated by MC sampling. Since sampling from
p’(z]y, x) can be inefficient, we rather rely on the decomposition p’(z|y, x) = p’(y|z)p’ (z|x)/p’ (¥|x).
Thus, we sample z,- from p’(z|x),r = 1,..., R, and, setting w, = p’(y¥|z,)/2; P’ (¥|z:), approximate
the right-hand side term of [Eq. 2|

R
/Ing(y,ZIX)p’(ZIy,X)dz ~ Z{IOgP(ylzr)+10gp(erX)}wr- 3)

r=1

If x| is missing, a similar development leads to

R
/10gp(y,z,xll)Cz)p’(z,xlly)dz ~ > {logp(ylz,) +10g p(zrlx) +log p(xirla)} wr, (4)

r=1

where x; - and z, are respectively sampled from p’ (x| |x2) and p’(z|x; -, x2).

2.2 OsIeEcTIVE FUNCTION

Adapting and for the observed data {(y;,x;)}2Y,, the overall loss function, £, is

N R
L£(.0.6) == > {10g py(zirlvir) +10g po(vilzir) + Lier,) log pe (xirlva)} wir, (5)

i=1 r=1

where 1,,, is the set of those i’s such that x; ; is missing. The models of p(y|z), p(z|x), and p(x1]x2)
inherit parameters 6, ¢, and &, respectively. Also, x; ; , is sampled from p & (x1|x2,;), if x1 ; is missing,
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and z1 ;- and 2o ; , are sampled from p 4 (z1|x1,;,-) and p 4 (22]x2,;). Furthermore, for compactness
of notation, x; , is (x1,,x2,;) if x1; is observed, and (x1; ,,x2,;) if x1;, is missing. Finally, the
weights are

(yilzs
Wiy = Ifé) (yl| 1,r) ) (6)
Yie Por (Vilzie)

E shows that L is a sum of losses associated with the encoder model, p 4, for each source, the
decoder model, py, from the latent variables to the output, and, if applicable, the model handling
missing data, p . At each M-step, £ is minimized with respect to 6, ¢, and &. Then, ¢, ¢’, and &’
are updated, as well as the weights and the sampling. Then the process is iterated until convergence.

2.2.1 ExampLE: L(¢,6,&) UNDER NORMALITY

Similar to |[Kingma & Welling| (2014), we develop further £ under normality assumptions for the
encoder, p g, and the decoder, pg. These simple cases are illustrative, though any other distributions
could be adopted, including non-continuous or non-numerical outcomes.

Encoder p;(z|x). Let my be the length of the latent variable zx, kK = 1,2. We assume a normal
model for Z; given X = xg,

Zi| Xk = Xk ~ Ny (8 (X1)s T Imy ), @)

where J,,,, is the my X my identity matrix. In particular,
my 1 1 &
log py(zilxx) = 5 log 27 — 3 logO',f - E Z{zk,j - g¢k’j(Xk)}2, k=1,2. (8

J=1

The mean g4, (xx) can be any model, such as a neural network, with output of length my, k = 1, 2.
The scale o can be fixed, computed via the weighted residuals, or learned through a separate set
of models. It controls the amount of noise introduced in the latent dimension and is pivotal in
determining the prediction interval width for p(y|z). In this paper, o is fixed for simplicity.

Decoder py(y|z). We assume a normal model for Y given Z = z,
Y|Z =z~ N(fo(2).07). )

This results in a log-likelihood contribution,

1 1 1
10gP9(Y|Z)=—§10g27T—ElogUz—T._z{y—fe(Z)}z' (10)

Again, the mean fy(z) can be any model, such as a neural network.

Model for missing data p¢(x;|x2). We use an empirical model for X; given X, = x, where
P& (x1]x2) put masses only on those non-missing x;’s in the training set. Let /,,,,, be the set of indices
such that x| j, j € Iy, are all the non-missing x in the training set. Additionally, for a given j € Iy,
x1[j] is the observed x; corresponding to j. For a given x», p £ (x2) is a vector of length |/,,,,|, the
cardinality of 1,,,, with components

expi{he, j(x2)}
Yier,, explhe  (x2)}

where h¢ is a vector of length |I,,,,,|, typically a neural network with input x, and output on I,,,,. Now,
the probability of X; = x; given X, = x5 is

pe(jlx) = J € Inm, Y

peril) = > peila) - 1{a =x{""[j]}. (12)

J€Inm
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Summary. Overall, the M-step is

my
¢y = arg “;I;(HZ Wi.r Z{Zk,i,r,j - gqbk,j(xk,i,r)}z’ k=1,2, (13)

ir j=1
6" = argmin > wi, {yi = fo(zi0)} (14)

i,r
. 1
() =5 Z wirdyi = for (zir) ) (15)
¢ =argmax > w,log pe(jilxas). (16)
J teDy

When x; ; is missing, the sampling is enriched by simulated x1 ; ,-. selects j* from I,,,, based
on p ¢ (jlxz) according to[Eq. 12|and [Eq. T1] The D above is a subset of the data for £, learned on
the missing data part. We also note that learning the parameters above is parallelizable.

2.3 TRAINING

For efficiency purpose, the training set, {1, ..., N}, is segmented into batches {by, ..., by} on which
the index i runs (and thus the denominator of must be adapted accordingly). The process
iterates for each batch until the maximum number of steps is reached or an early stopping criterion is
satisfied. The full details are given in[Algorithm I|(Appendix A). The framework requires tuning
hyper-parameters such as the number of MC samples R, the number of latent nodes my, and the
standard deviation o of Z;. Monitoring the point prediction on a hold-out validation is important to
combat overfitting and terminate the training early with a PATIENCE hyper-parameter. Moreover, due
to the generative nature of SEMF, the variation resulting from the initial random seed is measured

in Additionally. the model-specific hyper-parameters (p g4, pg and p¢) are also
discussed in the same Subsection.

2.4 INFERENCE

The encoder-decoder structure of SEMF entails the simulations of z,- during inference, as depicted
in In theory, any inference can be performed for §, for instance the mean value § =
% > fo(zr), where z, ~ pg(z|x) (see lAlgorithm 2| in |Appendix AI). For prediction intervals, a
double simulation scheme is used,

Zr ~p(Z|x)’ )A’r,s ~p6(y|zr)’ r’sz 1""7R' (17)
Prediction interval at a given level of certainty a follows as
PI = quantile ({y,,s}; % |- %) . (18)

Remark. We denote the R for inference as Rjnfer-

3 RELATED WORK

3.1 LATENT REPRESENTATION LEARNING

Latent representation learning involves modeling hidden variables from observed data for various ML
tasks, most notably Auto-Encoders (AEs) and VAEs. AEs are neural networks that reconstruct inputs
by learning an intermediate latent representation. The encoder g4 () in an AE embeds the input x into
a latent variable z, which then passes through the decoder fy(+), reconstructing x as £ = fy(z). The
training process optimizes the parameters ¢ and 6 by minimizing the reconstruction loss. Unlike AEs,
which focus on reconstruction, VAEs use variational methods to fit distributions of latent variables
and the output (Kingma & Welling, [2014). Given a sample x with a latent variable z, VAEs model the
marginal likelihood p ¢ (x). However, directly maximizing this likelihood is difficult (David M. Blei
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Simulate pe(z1|r2), Sample 2, Fuse, Generate Predict
Encode Decode Interval (Point)
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Figure 1: Inference procedure with the SEMF’s learnable parameters ¢y, 6 and &. Here, we illustrate
the number of inputs k as k = 1, 2, assuming that x; may contain missing values

& McAuliffe, 201°7b). Thus, alternative methods exist, such as maximizing the evidence lower bound
(ELBO), which provides guarantees on the log-likelihood (Balakrishnan et al.,[2017).

For supervised and semi-supervised tasks, latent representation learning can include task-specific
predictions (Kingma et al., 2014). More specifically, models such as AEs follow the classical
encoder-decoder objective while training a predictor /1 (z) through an additional layer or model to
estimate the output y. This dual objective helps in learning more task-relevant embeddings (Zhuang
et al.,[2015} |Le et al.l 2018). Semi-supervised VAEs are similar, with the distinction that they couple
the reconstruction loss of the unlabeled data with a variational approximation of latent variables. This
is effective even with sparse labels (Ji et al.} 20205 Zhuang et al.| 2023)).

The EM algorithm has already been used for supervised learning tasks using specific models
(Ghahramani & Jordanl (1993} [Williams et al., [2005}; [Louiset et al.,|2021)), where the goal has been
point prediction with GMMs. Similarly, the EM algorithm adapts well to minimal supervision (Luo
et al., 2020) and using labeled and unlabeled data in semi-supervised settings for both single and
multiple modalities (He & Jiang, [2022; Xu et al.,|2024). Our work differs by modifying using MC
sampling to generate prediction intervals with any ML model and, in theory, under any distribution.

3.2 PREDICTION INTERVALS

Crucial for estimating uncertainty, prediction intervals in regression are often derived using methods
such as Bayesian approaches (Williams & Rasmussen, |1995; [Hensman et al.,[2015};|/Gal & Ghahramani|
2016), ensemble techniques (Breiman, |2001; Lakshminarayanan et al., 2017; Malinin et al.,|2021)),
or quantile regression (Koenker & Bassett, |1978; [Koenker & Hallock, 2001)). Additionally, these
methods can be complemented with conformal prediction, a framework for calibrating any point
predictor to produce prediction intervals (Vovk et al.| [2005; |2022), making it highly relevant for
enhancing reliability in applications requiring rigorous uncertainty quantification.

A key component of quantile regression is the pinball loss function, which effectively balances the
residuals to capture the desired quantiles even for non-parametric models (Steinwart & Christmann,
2011), making it ideal for asymmetric distributions where tail behavior is of critical importance
(Koenker & Hallock, 2001)). This loss function is pivotal not only for single model scenarios but also
enhances ensemble methods by refining their quantile estimate (Meinshausen & Ridgewayl, 2006)).
Conformal prediction further extends the applicability of these intervals by providing a layer of
calibration that adjusts intervals obtained from any predictive model, ensuring they cover the true
value with a pre-specified probability (Romano et al.,|[2019).
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3.3  MIssING DaTA

Managing missing values is a pivotal aspect when dealing with real-world data. Naive methods such
as discarding instances or mean/median-imputation may be infeasible or carry the risk of changing the
data distribution (Yoon et al.,[2020; Jadhav et al.;2019). The chosen technique for handling missing
data should adhere to the dataset’s characteristics and mechanisms behind the missing data (Ibrahim
et al.| |2008). More advanced approaches, like the Iterative Imputer from scikit-learn (Pedregosa
et al.| [2011), an implementation of Multiple Imputation by Chained Equations (MICE) (van Buuren &
Groothuis-Oudshoorn, 2011), expand on the simple imputations by iteratively modeling each feature
with missing values as a function of other features (Buckl, [1960; [Schafer, [1997)). Due to its complexity,
MICE is best compared with alternatives such as K-means clustering and artificial neural networks
(ANNs). K-means assigns missing values based on cluster centroids (Wang et al.,|2019)) as opposed to
ANNSs, which learn complex, non-linear relationships between variables (Pereira et al.,[2020). ANNs
effectively predict or reconstruct missing values and thus are particularly useful in datasets where
relationships between variables are intricate and not easily captured by straightforward imputation
methods. Accordingly, ANNs have demonstrated superior performance over MICE and GMM (with
EM for missing values) in scenarios where a large proportion of the data is missing (Smieja et al.,
2018).

4 EXPERIMENTAL SETUP

4.1 DATASETS

We systematically curate a subset of datasets from the OpenML-CTR23 (Fischer et al.l [2023)
benchmark suite to evaluate and carry out our experiments. Initially comprising 35 datasets, we
apply an exclusion criteria to refine this collection to 11 datasets. The details and overview are in
We remove duplicated rows from all the datasets and carry out the standardization
(scaling) of all predictors, including the outcome, which we transformed to have zero means and
unit variances. The features of these datasets are then treated as separate inputs to SEMF. In the
second stage of our experiments, we artificially introduce 50% missing values in our datasets for any
predictor except for the first feature of a randomly chosen row, which emulates missing completely
at random (MCAR) data. In all our datasets, 70% of the data is used to train all models, 15% as a
hold-out validation set to monitor SEMF’s performance, and 15% to evaluate the models. To combat
overfitting, baseline models that benefit from early stopping are allocated another 15% from the
training data. Lastly, it is essential to note that all data in SEMF are processed batch-wise, without
employing mini-batch training, to ensure consistency and stability in the training process.

4.2 MoDELS

Our baseline consists of both point and quantile regression eXtreme Gradient Boosting (XGBoost)
(Chen & Guestrin, |2016a), Extremely Randomized Trees (ET) (Geurts et al., |2006), and neural
networks (Tagasovska & Lopez-Paz, [2019), all summarized and depicted in To ensure
consistency in our experimental setup, we align the families and hyper-parameters of p 4 and pg with
our baseline models. For example, in the case of XGBoost in SEMF, we use K XGBoosts, g4, (xk),
one for each input xx, k = 1,..., K, and one XGBoost for fy(z) with the same hyper-parameters.
We refer to the SEMF’s adoption of these models as MultiXGBs, MultiETs, and MultiMLPs. When
establishing prediction intervals, we conformalize our prediction intervals according to/Romano et al.
(2019) at an uncertainty tolerance of 5% for both the baseline and SEMF @]} The missing data
simulator, p ¢, is constructed using a shallow neural network, which employs the SELU activation
function (Klambauer et al.,2017). It is experimented with two distinct node counts: 50 and 100.

To constrain the breadth of our parameter exploration, the simulator for the missing model adopts
the optimal set of hyper-parameters identified from analyses involving complete datasets. We target
(larger) o values that introduce more noise and produce better intervals than point predictions. The
optimal models are then trained and tested with five different seeds, and the results are averaged.
The point prediction, §, uses the mean inferred values. We then study the performance of SEMF
against mean and median imputation techniques, five nearest neighbors, and MICE from Pedregosa
et al.| (2011). The imputers are used within the point and interval baseline models explained in the
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following subsection to form the missing value baseline. contains more details on the
hyper-parameters for each SEMF model and dataset.

Table 1: SEMF models, baselines, and hyper-parameters.

SEMF

Point Prediction Baseline

Interval Prediction Baseline

MultiXGBs XGBoost (Chen & Guestrin/[2016b)

Trees: 100, Maximum depth: 6, Early stopping
steps: 10

Quantile XGBoost
Same as point prediction baseline, XGBoost

MultiETs  Extremely Randomized Trees (Pedregosal Quantile Extremely Randomized Trees
et al.!|[2011) (Johnson|[2024)
Trees: 100, Maximum depth: 10 Same as point prediction baseline, Extremely

Randomized Trees

MultiMLPs Deep Neural Network Simultaneous Quantile Regression
Hidden layers: 2, Nodes per layer: 100, Activa- (Tagasovska & Lopez-Paz|2019)
tion functions: ReLU, Epochs: 1000 or 5000, Same as point prediction baseline, Deep Neural
Learning rate: 0.001, Batch training, Early stop- Network
ping steps: 100

4.3  METRICS

The evaluation of point predictions employs Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), and R-squared (R2). For prediction intervals, the chosen metrics, following |Pearce
et al.| (2018)) and |Zhou et al.|(2023)), are the Prediction Interval Coverage Probability (PICP), and
Normalized Mean Prediction Interval Width (NMPIW) as described in This paper
also evaluates SEMF on our new metric, termed Coverage-Width Ratio (CWR),

PICP

CWR = ————,
NMPIW

19)
which evaluates the coverage probability ratio to the prediction interval’s width. CWR provides a
refined understanding of the balance between an interval’s accuracy (coverage) and precision (width).

Though a larger value of this metric is better in higher confidence levels, the marginal increase in
NMPIW is likely higher than that of PICP, resulting in decreasing CWR.

In our case, measuring the performance of SEMF over the baseline models is far more critical than
reviewing absolute metrics in isolation. For any metric above, except for (R?), this is computed as

Metricsgmr — MetricBaseline

Metricp (%) = x 100, (20)

Metricgaseline

on which we base our decisions for selecting the best hyper-parameters as explained in|Appendix D.

5 REesuLTs

We trained and tested 330 models corresponding to the three model types—MultiXGBs, MultiETs,
and MultiMLPs—across 11 datasets with both complete and 50% missing data, using five seeds
for each combination. [Table 2]and [Table 3| present the mean and standard deviation for our metrics
aggregated over the five seeds. [Appendix E|includes the results from each individual run. For
comparison, we also present the non-conformalized prediction intervals in[Appendix F} though we
solely discuss the results for conformalized intervals on both complete and incomplete data.

5.1 CompLETE DATA

The results of models with complete data are in Overall, MultiXGBs and MultiMLPs
performed generally well in producing intervals compared to their baselines, as shown by positive
ACWR and ANMPIW while achieving similar APICP to the baselines. Notably, all models attained
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Table 2: Test results for all models with complete data at 95% quantiles aggregated over five seeds.
For each metric, the mean and standard deviation of the performance across the seeds are separated
by +. Performance over the baseline is highlighted in bold.

INTERVAL PREDICTIONS Point PREDICTIONS

RELATIVE ABSOLUTE RELATIVE ABSOLUTE
DATASET ACWR APICP ANMPIW PICP NMPIW ARMSE AMAE R?
MurTiXGBs
SPACE_GA 6%0+3% -1%=+0% 7% +2% 0.94+0.01  0.26+0.01 -9%=1% -10%=+2% 0.60+0.01
CPU_ACTIVITY 16%0+6% 1%+1%  12%+5%  0.94+0.01 0.09+0.00  21%=+1% -1%=+2% 0.98+0.00
NAVAL_PROPULSION_PLANT 172%+14%  0%=+1% 63%+2% 0.95+0.01 0.11+£0.00 -14%+4% -12%+2% 0.99+0.00
MIAMI_HOUSING ~7%=+3% 0%=0% -8%=+3% 0.95+0.00  0.13+0.00 4%0+4% 3%+3% 0.91+0.01
KINSNM 6%0+2% 1%+0% 5%=+2% 0.94+0.01  0.45+0.01 -20%=+1% -22%=+1% 0.63+0.01
CONCRETE_COMPRESSIVE_STRENGTH ~ 41%+12% 3%+2%  31%+7%  0.94+0.02 0.31+0.01 -26%+6% -40%+11%  0.85+0.01
CARS 40%+18%  -3%=+1%  30%+8%  0.91+0.01 0.13+0.01 -3%=3% -1%=+3% 0.95+0.00
ENERGY_EFFICIENCY 222%+45%  -4%+3%  70%+3%  0.92+0.02 0.05+0.01 -15%=+22% -16%=+17% 1.00+0.00
CALIFORNIA_HOUSING -1%+3% 0%=+0% -2%=+4% 0.95+0.00  0.42+0.01 -1%=+1% -1%=+1% 0.81+0.00
AIRFOIL_SELF_NOISE 21%+21%  -1%+2% 15%+15% 0.97+0.02 0.36+0.06  -64%=+32% -73%+41%  0.86+0.05
QSAR_FISH_TOXICITY 34%0+8% -5%=+3%  29%=+5%  0.87+0.02  0.33+0.01 3%+3% 1%+4% 0.55+0.02
MuLtiETs
SPACE_GA -6%=+3% 1%+1% -7%=+3% 0.96+0.00  0.29+0.01 -15%=+2% -18%=+3% 0.54+0.02
CPU_ACTIVITY 11%+2% -4%+0%  13%+2%  0.94+0.00 0.11+0.00 -14%+1% -20%+2% 0.98+0.00
NAVAL_PROPULSION_PLANT 137%+22%  1%+0%  57%+4%  0.96+0.00 0.27+0.02 -316%+45% -406%+43% 0.96+0.01
MIAMI_HOUSING -9%z=1% -1%=+0% -9%31% 0.95+0.00  0.15+0.00 -10%=+2% -20%+2% 0.90+0.00
KINSNM -10%=+1% 1%+1%  -12%+2%  0.94+0.01  0.53+0.01 -34%+2% -38%=+2% 0.48+0.01
CONCRETE_COMPRESSIVE_STRENGTH -8%+5% -3%+2% -6%+6% 0.89+0.02  0.31+0.02 -67%+6% -94%+8% 0.76+0.01
CARS -25%+5% 0%=+3%  -34%=+14%  0.92+0.02  0.15+0.01 3%+4% 1%+2% 0.95+0.00
ENERGY_EFFICIENCY 10%+6% -4%+2% 12%+6%  0.94+0.02 0.06+0.00 3%+2% 1%+1% 1.00+0.00
CALIFORNIA_HOUSING 1%+2% -2%=+0% 3%=+2% 0.95+0.00  0.55+0.01 -15%=+1% -21%=+1% 0.71+0.01
AIRFOIL_SELF_NOISE -16%+10%  -3%+2%  -17%+12%  0.96+£0.02 0.43+0.03 -118%=+43% -141%=+49%  0.80+0.08
QSAR_FISH_TOXICITY -6%+9% -5%+2%  -2%+12%  0.88+0.02  0.36+0.02 -6%+1% -11%=+1% 0.53+0.01
MuLtiMLPs
SPACE_GA 6%+3% -1%=1% 6%+2% 0.95+0.01  0.23+0.00 0%=1% -1%=1% 0.75+0.01
CPU_ACTIVITY -7%=+6% 0%=+1% -9%3=+7% 0.95+0.00  0.10+0.00 7%0+2% 5%=+2% 0.98+0.00
NAVAL_PROPULSION_PLANT 4%+16% 1% +0% 0%=+14% 0.96+0.00 0.08+0.01 -45%+25% -36%+20% 1.00+0.00
MIAMI_HOUSING -38%=+3% 0%=+1%  -61%+9%  0.95+0.00 0.15+0.01 -3%=+2% 4%+2% 0.91+0.00
KINSNM 8%+5% 0%z1% 8%+5% 0.95+0.01  0.20+0.01 7%+2% 7% +2% 0.93+0.00
CONCRETE_COMPRESSIVE_STRENGTH 11%+6% -2%+2% 11%+6%  0.94+0.02 0.29+0.03 12%+5% 15%+4%0 0.91+0.01
CARS 3%+12% -3%+3%  4%+11%  0.92+0.02  0.13+0.01 -3%=+3% 0%=+3% 0.95+0.00
ENERGY_EFFICIENCY 53%+21%  0%+4%  34%=+10%  0.96+0.02 0.05+0.00  32%=+3% 33%+3% 1.00+0.00
CALIFORNIA_HOUSING -12%=+3% 0%=+1% -14%+4%  0.95+0.00 0.43+0.01 7% +0% 9%+1% 0.82+0.00
AIRFOIL_SELF_NOISE 68%0+28% 2%+1%  40%+11% 0.97+0.01 0.18+0.01 18%+4%0 16%+5% 0.97+0.00
QSAR_FISH_TOXICITY 5%+10% 1%+1%  3%=+10%  0.89+0.03  0.35+0.04 4%+5% 7% +4% 0.55+0.04

suitable intervals on naval_propulsion_plant and energy_efficiency. Interestingly, MultiMLPs also
attained good relative performance improvements for point prediction, which can indicate that the
chosen o was too low for generating performant prediction intervals. MultiETs attained mixed
results, with significant improvements in ACWR for other datasets such as naval_propulsion_plant,
but its overall performance remains less conclusive.

5.2  MissiNG DATA

The results of models with 50% missing data are in Note that relative metrics for SEMF are
compared with the best result from any baseline imputer on that metric, regardless of how the imputer
performed on the other metrics. Overall, the results are worse and less consistent than with complete
data. MultiXGBs maintained good performance on some datasets, such as naval_propulsion_plant
and energy_efficiency, but declined on others, like cpu_activity. MultiETs continued to exhibit mixed
results, with only naval_propulsion_plant offering marginally better performance over the baseline.
Similarly, MultiMLPs worked well on only one dataset, namely concrete_compressive_strength, while
the other datasets had increased model uncertainty.

5.3 DiscussioN

Our results indicate that SEMF, when combined with XGBoost and MLPs, performs strongly on
datasets with complete data. Both models produce better prediction intervals than traditional quantile
regression methods in the complete case. MultiMLPs also deliver good point predictions for some
datasets despite the experimental design prioritizing interval estimation over point accuracy. This
could indicate either the effectiveness of the chosen o, which (indirectly) led to narrower prediction



Under review as a conference paper at ICLR 2025

Table 3: Test results for all models with missing data at 95% quantiles aggregated over five seeds. For
each metric, the mean and standard deviation of the performance across the seeds are separated by =+.
Performance over the baseline is highlighted in bold.

INTERVAL PREDICTIONS PoINT PREDICTIONS

RELATIVE ABSOLUTE RELATIVE ABSOLUTE
DATASET ACWR APICP ANMPIW PICP NMPIW ARMSE AMAE R2?
MuLTiXGBs
SPACE_GA 0%=+3% -2%=+1% 2%+3% 0.94+0.01  0.32+0.01 -7%+4% -9%:+3% 0.45+0.06
CPU_ACTIVITY -14%+9%  0%=+2%  -20%=+14%  0.94+0.03  0.18+0.02 -1%+21% -17%+13% 0.83+0.07
NAVAL_PROPULSION_PLANT 18%+23%  -3%+2%  12%=18%  0.93+0.04 0.59+0.17 -14%+20% -29%=+35% 0.77+0.05
MIAMI_HOUSING -18%+13%  -1%+1%  -25%+22%  0.94+0.01  0.20+0.02 -14%=+11% -18%+10% 0.72+0.10
KINSNM -9%=+3% 1%+1% -13%=+5% 0.96+0.01  0.63+0.03 -3%=+3% -4%+4% 0.40+0.02
CONCRETE_COMPRESSIVE_STRENGTH 1%+9% -2%+2% 1%+10% 0.95+0.01 0.57+0.02 -16%+12% -20%=+14% 0.58+0.08
CARS 9%+27%  -7%=+4% 6%+23% 0.90+0.04  0.34+0.02 -30%=+22% -35%+24% 0.66+0.15
ENERGY_EFFICIENCY 26%+24%  -4%+4%  18%=+18%  0.95+0.04 0.27+0.05 -186%+265% -153%=188%  0.91+0.08
CALIFORNIA_HOUSING -6%+6% -1%=+1% -8%+8% 0.95+0.02  0.59+0.03 -4%+4% -5%=+5% 0.69+0.05
AIRFOIL_SELF_NOISE -24%+6%  -1%+2%  -32%=+12%  0.95+0.03  0.76+0.07 -37%=+31% -43%+36% 0.41+0.12
QSAR_FISH_TOXICITY 0%=+8% -4%+5% 0%=+11% 0.91+£0.05  0.50+0.11 -4%+4% -2%=+3% 0.36+0.04
MuLTiETs
SPACE_GA -11%+2%  0%+2% -14%=+5% 0.95+0.01  0.34+0.02 -12%+4% -13%=+5% 0.40+0.06
CPU_ACTIVITY -15%+8%  -3%+2%  -18%=+13%  0.94+0.02  0.20+0.02 -21%=18% -44%+14% 0.82+0.07
NAVAL_PROPULSION_PLANT 4%+16%  -4%=+3% 4%+18% 0.95+0.03  0.73+0.13 -37%+21% -95%+48% 0.71+0.06
MIAMI_HOUSING -33%+10%  0%+3%  -55%=+24%  0.95+0.01 0.27+0.02 -25%z=+10% -39%=+14% 0.68+0.12
KINSNM -14%+1%  1%=+1% -17%+2% 0.95+0.01  0.66+0.02 -11%+2% -13%+3% 0.32+0.03
CONCRETE_COMPRESSIVE_STRENGTH ~ -20%+3%  -2%+4% -27%+9% 0.95+0.02  0.61+0.02 -37%=+18% -51%+22% 0.48+0.06
CARS -32%+12%  -4%=+4%  -53%+32%  0.93+0.02  0.38+0.05 -38%=+15% -32%+14% 0.62+0.16
ENERGY_EFFICIENCY -30%+28%  -4%+2%  -82%=+120%  0.96+0.03 0.32+0.22 -69%+60% -75%+43% 0.94+0.03
CALIFORNIA_HOUSING -6%+4% -2%=+1% -4%+4% 0.96+0.01  0.70+0.03 -14%+3% -17%=+3% 0.61+0.05
AIRFOIL_SELF_NOISE -31%=+4% -3%+1% -43%+9% 0.94+£0.02 0.75+0.05 -62%+51% -89%+66% 0.35+£0.10
QSAR_FISH_TOXICITY ~T%+7% -3%=+3% -7%=+6% 0.92+0.04  0.50+0.08 -9%+9% -10%+9% 0.39+0.09
MuLtiMLPs
SPACE_GA -25%+11%  -3%+2%  -34%+25%  0.94+0.01  0.38+0.06 -40%=+23% -34%+15% 0.21+0.23
CPU_ACTIVITY -40%+9%  0%+2%  -73%+24%  0.95+0.01  0.25+0.02 -15%+19% -23%+17% 0.75+0.12
NAVAL_PROPULSION_PLANT -43%+11%  -1%+2% -89%+44% 0.95+0.02 1.33+0.19 -108%+66% -183%+195%  -0.03+0.47
MIAMI_HOUSING -36%+7%  -1%+1%  -57%+20%  0.94+0.02 0.22+0.02 -25%=+8% -28%+11% 0.67+0.10
KINSNM -19%+3%  0%=+0% -24%+5% 0.96+0.01  0.70+0.02 -16%+8% -15%+9% 0.37+0.04
CONCRETE_COMPRESSIVE_STRENGTH 5%+10% -3%+2% 5%+10% 0.94+0.02  0.54+0.04 -12%+5% -12%+6% 0.54+0.05
CARS -22%+17%  -1%+4%  -38%+30%  0.95+0.03  0.35+0.06 -28%=+12% -26%+13% 0.66+0.10
ENERGY_EFFICIENCY T%+11%  -4%+3%  -11%+14%  0.95+0.03  0.31+0.08 1%+9% -1%+16% 0.95+0.03
CALIFORNIA_HOUSING -24%+5% 0%=+1% -34%+10% 0.96+0.01 0.68+0.02 -5%+2% -3%+3% 0.61+0.06
AIRFOIL_SELF_NOISE -8%+6% -4%=+3% -7%=+8% 0.93+0.04 0.61+0.07 -15%=+8% -9%=+8% 0.55+0.18
QSAR_FISH_TOXICITY -11%+5%  -2%+3% -14%=+8% 0.92+0.04  0.53+0.11 -13%+7% -14%=+8% 0.34+0.06

intervals or underfitting of the MLPs. The truth may lie somewhere in between; SEMF’s sampling
operation, akin to cross-validation, partially helps combat overfitting, ensuring robust results despite
variations in the data. In our preliminary experiments, we observed that increasing the depth of the
baseline MLPs did not help and eventually led to overfitting. ETs exhibit more mixed performance,
highly dependent on the dataset’s characteristics. One possible explanation behind the larger variations
in predictive power compared to other models may be ETs’ reliance on randomized splits, which
introduces significant variability in the prediction process. Consequently, ETs may not benefit from
the iterative sampling and refinement of predictions inherent in SEMF.

The robustness of SEMF diminishes when applied to datasets with missing data. Despite not offering
improvements over the baseline in the presence of missing data, we have presented these results
to transparently illustrate our framework’s current capabilities of handling missing inputs. From a
theoretical standpoint, we believe there is value in further investigating how a single loss function that
leverages EM’s missing data capabilities can be effectively applied. Given that SEMF performs well
with complete data, a practical alternative might involve using the best imputation method for the
data at hand before applying SEMF, effectively treating the data as complete. We expect our ablation
study to perform well, given the complete data results.

An important observation is the stability of SEMF across different random seeds, as indicated
by consistent PICP and NMPIW metrics (full results in [Appendix E), contrasting the significant
variability observed in the baseline models. This suggests that SEMF offers a more reliable
performance framework. Additionally, it is worth noting that our experiments did not precisely
tune for conformalized prediction intervals but used the non-conformalized (raw) quantiles from
SEMF. The non-conformalized intervals offer less coverage but produce better CWR and NMPIW
than the baseline (Appendix F). Certain experimental choices—such as processing the columns
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separately, using the same hyperparameters for both complete and incomplete data, and fixing the
number of latent nodes per input (m)—may have further constrained the models’ ability to tailor
their performance to the varying complexities of different datasets.

6 CONCLUSION

This paper introduces the Supervised Expectation-Maximization Framework (SEMF), a novel
model-agnostic approach for generating prediction intervals in datasets with missing values. SEMF
draws from the EM algorithm for supervised learning to devise latent representations that produce
better prediction intervals than quantile regression. Due to SEMF’s iterative simulation technique,
training and inference can be done with complete and incomplete data. A comprehensive set of 330
experimental runs on 11 datasets with three different model types showed that SEMF, in the case of
complete data, outperforms quantile regression, particularly on complete datasets and when using
XGBoost, which intrinsically lacks latent representations. The results of the missing data are less
positive and require further investigation. This research underscores SEMF’s potential in various
application domains and opens new avenues for further exploration of supervised latent representation
learning and uncertainty estimation.

7 LimitaTioNs & FUTURE WORK

The primary limitation of this study was its reliance on the normality assumption, which may not
fully capture the potential of SEMF across diverse data distributions. Although in we
demonstrate that the framework can learn non-normal patterns, further investigation and exploration
of SEMF under other distributions, such as uniform, log-normal, and generalized extreme value
distributions, are needed. The computational complexity of the approach presents another significant
challenge, as the current implementation can be optimized for large-scale applications. Additionally,
while the CWR metric is useful, it implicitly assumes that a 1% drop in PICP equates to a 1% reduction
in NMPIW, thus assuming a uniform distribution. Evaluating CWR under various distributional
assumptions would provide a more comprehensive assessment of its implications. Additionally, SEMF
has only been evaluated on MCAR data and does not address missing at random cases (MAR), which
require further investigation for real-world applicability. Finally, applying the same hyper-parameters
across all datasets without specific tuning for incomplete data likely contributes to the observed
decline in accuracy and robustness.

Future work presents several intriguing avenues for exploration. A promising direction is the
application of SEMF in multi-modal data settings, where the distinct p » components of the framework
could be adapted to process diverse data types—from images and text to tabular datasets—enabling
a more nuanced and powerful approach to integrating heterogeneous data sources. This capability
positions the framework as a versatile tool for addressing missing data challenges across various
domains and can also help expand it to discrete and multiple outputs. Another valuable area for
development is the exploration of methods to capture and leverage dependencies among input
features, which could improve the model’s predictive performance and provide deeper insights into
the underlying data structure. These advancements can enhance the broader appeal of end-to-end
approaches like SEMF in the ML community.
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A SEMF ALGORITHM

Algorithm 1 SEMF Training: two input sources where x; can be missing

Require: y,xi,x2, R
Ensure: 6, ¢1, ¢2,¢
1: Initialize 0, ¢1, ¢2, &
2: Initialize Dy, D,,,D,,,Dx,D; to 0
3: Split I ={1,..., N} into L batches {by,...,br}
4: for¢=1,...,Ldo
5 for all i in b, do
6: if x; ; is absent then
7: forr=1,...,Rdo
8 Simulate [j; r,x1,i,-] ~ pe(-lx2,)

9: Simulate z1;, ~ pg, (-1x1,i,r)

10: Simulate z2; , ~ pg, (-|x2,;)

11: Set z; r = [21,i,r> 22,i,r]

12: end for

13: else

14: forr=1,...,Rdo

15: Simulate z1;  ~ pg, (-1x1,;)

16: Simulate z2; » ~ pg, (-|x2,;)

17: Set zir = [21,i,r> 22,i,r]

18: end for

19: end if
20: forr=1,...,Rdo
21: Compute

T B peyilzia)

22: Update Dy « Dy U [yilzi r[wir]
23: Update D,, « D, U [z2,i rlx2.ilwir]
24: if x; ; is absent then
25: Update D, < D, U [z1,ir1x1,0,0 Wi r]
26: Update Dy < Dy U [Jirlx2.ilwir]
27: else
28: Update Dy, < Dy U [z1,;r1x1,iIwir]
29: end if
30: end for
31: Update 6 «— Q,(6, D)
32: Update ¢1 — Q1(¢],Dzl)
33: Update ¢y «— Q2(¢2, Dy,)
34: Update £ < O, (&,Dy)
35:  end for
36: end for

37. Check convergence; Go to step 4 if not
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Algorithm 2 SEMF Inference

Require: 6, ¢}, ¢5, &%, x1,x2, R
Ensure: z; ,
1: forr=1,...,R do

2:  if x;; is absent then

3: Simulate [ i, X1,ir] ~ pe-(-|x2,)
4: Simulate z ; , ~ P¢f('|x1,i,r)
5: Simulate z2; » ~ pg; (-|x2,:)
6: Set z; r = [z1,i,r> 22,i,r]

7:  else

8: Simulate zy ; , ~ P¢T('|X1,i)
9: Simulate z3 ; , ~ P¢;('|X2,i)
10: Set zi» = [21,ir> 22,07 ]
11:  endif
12: end for

B DATASETS FOR TABULAR BENCHMARK

OpenML-CTR23 (Fischer et al., [2023)) datasets are selected in the following manner. The first
criterion is to exclude datasets exceeding 30,000 instances or 30 features to maintain computational
tractability. Moreover, we exclude the moneyball data (Kaggle|, 2017) to control for missing values
and any datasets with non-numeric features, such as those with temporal or ordinal data not encoded
numerically. We then categorize the datasets based on size: small for those with less than ten features,
medium for 10 to 19 features, and large for 20 to 29 features. We apply a similar size classification
based on the number of instances, considering datasets with more than 10,000 instances as large. To
avoid computational constraints, we exclude datasets that were large in both features and instances,
ensuring a varied yet manageable set for our experiments. This leads us to the final list of 11 datasets

listed in[Table 4

Table 4: Summary of benchmark tabular datasets retained from (Fischer et al., 2023))

Dataser NAME N SampLes N Features  OpeNML Data ID Y [Min:Max] SOURCE

SPACE_GA 3,107 7 45402 [-3.06:0.1] (PACE & BARRY!|1997)
CPU_ACTIVITY 8,192 22 44978 [0:99] (RASMUSSEN ET AL.{|1996)
NAVAL_PROPULSION_PLANT 11,934 15 44969 [0.95:1.0] (CorADDU ET AL.][2016)
MIAMI_HOUSING 13,932 16 44983 [72,000:2,650,000]  (KAGGLE!|2022}

KINSNM 8,192 9 44980 [0.04:1.46] (GHAHRAMANT!|1996)
CONCRETE_COMPRESSIVE_STRENGTH 1,030 9 44959 [2.33:82.6] (YEH{|1998)

CARS 804 18 44994 [8,639:70,756] (Kurper{[2008)
ENERGY_EFFICIENCY 768 9 44960 [6.01:43.1] (T'sanas & Xirara{2012)
CALIFORNIA_HOUSING 20,640 9 44977 [14,999:500,001] (KELLEY PACE & BARRY{|1997)
AIRFOIL_SELF_NOISE 1,503 6 44957 [103.38:140.98] (Brooks ET AL./|1989)
QSAR_FISH_TOXICITY 908 7 44970 [0.053:9.612] (M. Cassorti & Consonnt|2015)

C OPTIMAL SET OF HYPER-PARAMETERS

The hyper-parameter tuning for SEMF is implemented and monitored using Weights & Biases (Biewald,
2020). A random search is done in the hyper-parameter space for a maximum of 500 iterations on all 11
datasets, focusing on tuning the models only on the complete datasets. Key hyper-parameters are varied
across a predefined set to balance accuracy and computational efficiency. The following grid is used
for hyper-parameter tuning: the number of importance sampling operations R € {5, 10, 25, 50, 100}
(100 is omitted for MultiMLPS), nodes per latent dimension my € {1, 5, 10, 20, 30}, and standard
deviations o, € {0.001,0.01,0.1, 1.0}. Early stopping steps (PATIENCE) are set to five or ten, and
Rinfer 1s explored at [30, 50, 70]. The option to run the models in parallel must be consistently enabled.
shows the optimal set of hyper-parameters. This table includes common hyper-parameters
for complete and 50% datasets and another part showing &podes, Which is tuned manually and only
relevant to the missing data.
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Table 5: Hyper-parameters for MultiXGBs, MultiETs, and MultiMLPs used for both complete and
missing data.

COMPLETE AND MISSING MissING

DATASET

R mp Ok PATIENCE  Rjpfer Enodes
MuLtiXGBs
SPACE_GA 10 30 1.0 5 70 100
CPU_ACTIVITY 5 30 1.0 5 70 50
NAVAL_PROPULSION_PLANT 5 30 0.01 5 50 100
MIAMI_HOUSING 5 10 0.1 5 50 50
KINSNM 5 30 1.0 10 70 100
CONCRETE_COMPRESSIVE_STRENGTH 25 30 1.0 5 70 100
CARS 50 10 1.0 10 70 100
ENERGY_EFFICIENCY 5 1 0.01 10 70 100
CALIFORNIA_HOUSING 5 10 0.1 10 50 100
AIRFOIL_SELF_NOISE 25 1 0.01 10 70 100
QSAR_FISH_TOXICITY 50 30 1.0 5 70 100
MuLtiETs
SPACE_GA 10 30 1.0 10 70 100
CPU_ACTIVITY 5 30 1.0 10 70 50
NAVAL_PROPULSION_PLANT 5 30 0.01 10 50 100
MIAMI_HOUSING 10 10 0.1 10 50 50
KINSNM 5 30 1.0 10 70 100
CONCRETE_COMPRESSIVE_STRENGTH 25 30 1.0 10 70 100
CARS 100 5 0.1 10 100 100
ENERGY_EFFICIENCY 5 1 0.01 10 70 100
CALIFORNIA_HOUSING 5 10 0.1 5 50 100
AIRFOIL_SELF_NOISE 25 1 0.01 10 70 100
QSAR_FISH_TOXICITY 50 30 1.0 10 70 100
MuLTiMLPs
SPACE_GA 25 10 0.001 10 50 100
CPU_ACTIVITY 5 20  0.001 5 50 50
NAVAL_PROPULSION_PLANT 5 20  0.001 5 50 100
MIAMI_HOUSING 5 20 0.01 5 50 50
KINSNM 5 20  0.001 5 50 100
CONCRETE_COMPRESSIVE_STRENGTH 5 30 0.001 10 50 100
CARS 5 30 0.1 5 50 100
ENERGY_EFFICIENCY 50 30 0.1 10 50 100
CALIFORNIA_HOUSING 5 20 0.01 5 50 100
AIRFOIL_SELF_NOISE 25 10 0.01 10 50 100
QSAR_FISH_TOXICITY 50 30 1.0 10 70 100

MultiXGBs and MultiMLPs benefit from early stopping to reduce computation time in complete and
incomplete cases. Similarly, the baseline models for these instances use the same hyper-parameters
for early stopping. Further, the number of epochs in the case of MultiMLPs is set as 1000, except
for energy_efficiency and OSAR_fish_toxicity, where this is changed to 5000. Any model-specific
hyperparameter we did not specify in this paper remains at the implementation’s default value (e.g.,
the number of leaves in XGBoost from Chen & Guestrin|(2016b))). Along with the supplementary
code, we provide three additional CSV files: one for the results and hyperparameters of all 330 runs
and the other two for the optimal hyperparameters of SEMF models, both raw (directly from SEMF)
and conformalized.

Additional conditions are applied only for experiments with missing data. Datasets california_housing,
cpu_activity, miami_housing, and naval_propulsion_plant—have a PATIENCE of five to expedite the
training process. Additionally, for california_housing and cpu_activity, the Rinr value is set to 30,
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while for all the other datasets, it is set to 50. We do this to ensure efficient computation, speed, and
memory usage (especially for the GPU).

For training MultiXGBs and MultiETs, the computations are performed in parallel using CPU cores
(Intel® Core™ i9-13900KF). For MultiMLPs, they are done on a GPU (NVIDIA® GeForce RTX™
4090). The GPU is also consistently used for the missing data simulator and training p . All the
computations are done on a machine with 32 GB of memory. The code provides further details on
hardware and reproducibility.

D METRICS FOR PREDICTION INTERVALS

D.1 CoMMON METRICS

The most common metrics for evaluating prediction intervals (Pearce et al., 2018; Zhou et al.| 2023)
are:

* Prediction Interval Coverage Probability (PICP): This metric assesses the proportion of
times the true value of the target variable falls within the constructed prediction intervals.

For a set of test examples (xy, y1), ..., (xn,Yn), a given level of confidence «, and their
corresponding prediction intervals /1, .. ., Iy, the PICP is calculated as:
| N
PICP = — 1(y; € [L;,U;]), 21
N Zl (vi € [Li. Ui]) 21)

where U; and L; are the upper and lower bounds of the predicted values for the i-th instance.
y; is the actual value of the i-th test example, and 1 is the indicator function, which equals 1
if y; is in the interval [L;, U;] and 0 otherwise. 0 < PICP < 1 where PICP closer to 1 and
higher than the confidence level « is favored.

* Mean Prediction Interval Width (MPIW): The average width is computed as
1 X
MPIW = ;(U,- - L), (22)

which shows the sharpness or uncertainty, where 0 < MPIW < co and MPIW close to O is
preferred.

* Normalized Mean Prediction Interval Width (NMPIW): Since MPIW varies by dataset, it
can be normalized by the range of the target variable

MPIW
NMPIW = —————— (23)
max(y) — min(y)

where max(y) and min(y) are the maximum and minimum values of the target variable,
respectively. The interpretation remains the same as MPIW.
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D.2 IMPACT OF RELATIVE METRICS FOR MODELING

As our primary focus is on interval prediction, configurations demonstrating the most significant
improvements in ACWR and APICP are prioritized when selecting the optimal hyper-parameters.
Furthermore, both APICP and ACWR must be positive, indicating that we must at least have the same
reliability of the baseline (PICP) with better or same interval ratios (CWR). In instances where no
configuration meets the initial improvement criteria for both metrics, we relax the requirement for
positive APICP to accept values greater than -5% and subsequently -10%, allowing us to consider
configurations where SEMF significantly improves CWR, even if the PICP improvement is less
marked but remains within an acceptable range for drawing comparisons.
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E FULL CONFORMALIZED RESULTS

Table 6: Test results for MultiXGBs with complete data at 95% quantiles for seeds 0, 10, 20, 30, 40,
with rows ordered by seed (ascending). Performance over the baseline is highlighted in bold.

INTERVAL PREDICTIONS Point PrEDICTIONS
RELATIVE ABSOLUTE RELATIVE ABSOLUTE

DATASET ACWR APICP ANMPIW PICP MPIW NMPIW ARMSE AMAE R2

SPACE_GA 2% -2% 4% 0.95 2.40 0.26 -10% -13% 0.60
SPACE_GA 10% -1% 10% 0.95 2.34 0.25 -10% -10% 0.62
SPACE_GA 8% -2% 9% 0.93 2.24 0.24 -9% -8% 0.60
SPACE_GA 6% -2% 7% 0.94 2.38 0.26 -8% -10% 0.59
SPACE_GA 7% -1% 7% 0.95 2.55 0.28 -8% -10% 0.59
CPU_ACTIVITY 7% 1% 5% 0.95 0.49 0.09 22% 2% 0.98
CPU_ACTIVITY 20% 1% 17% 0.93 0.45 0.09 20% -5% 0.98
CPU_ACTIVITY 20% 0% 17% 0.93 0.45 0.09 21% 0% 0.98
CPU_ACTIVITY 21% 1% 16% 0.94 0.45 0.09 23% -2% 0.98
CPU_ACTIVITY 10% 2% 7% 0.95 0.47 0.09 20% -3% 0.98
NAVAL_PROPULSION_PLANT 163% -1% 62% 0.95 0.36 0.11 -15% -12% 0.99
NAVAL_PROPULSION_PLANT 190% 0% 66% 0.95 0.37 0.11 -20% -14% 0.99
NAVAL_PROPULSION_PLANT 151% 0% 60% 0.96 0.40 0.12 -12% -9% 0.99
NAVAL_PROPULSION_PLANT 185% -1% 65% 0.94 0.35 0.10 -9% -15% 0.99
NAVAL_PROPULSION_PLANT 169% -1% 63% 0.96 0.37 0.11 -15% -11% 0.99
MIAMI_HOUSING -2% 0% -2% 0.95 0.99 0.12 4% 1% 0.91
MIAMI_HOUSING -10% 0% -10% 0.95 1.03 0.13 7% 7% 0.90
MIAMI_HOUSING -6% 1% -8% 0.95 0.99 0.12 9% 5% 0.91
MIAMI_HOUSING -7% 0% -8% 0.95 0.99 0.12 3% -1% 0.91
MIAMI_HOUSING -10% 0% -12% 0.95 1.05 0.13 -4% 0% 0.90
KINSNM 6% 0% 6% 0.94 2.27 0.45 -21% -24% 0.62
KINSNM 4% 1% 3% 0.95 2.39 0.47 -19% -21% 0.64
KINSNM 9% 1% 8% 0.94 2.20 0.43 -17% -20% 0.64
KINSNM 9% 1% 7% 0.95 2.36 0.46 -21% -22% 0.63
KINSNM 3% 1% 2% 0.94 233 0.46 -20% -23% 0.62
CONCRETE_COMPRESSIVE_STRENGTH 40%0 -3% 31% 0.93 1.42 0.29 -16% -22% 0.86
CONCRETE_COMPRESSIVE_STRENGTH 47% -6% 36% 0.91 1.48 0.30 -29% -52% 0.84
CONCRETE_COMPRESSIVE_STRENGTH 59% -2% 39% 0.96 1.60 0.32 -21% -34% 0.86
CONCRETE_COMPRESSIVE_STRENGTH 35% -3% 28% 0.95 1.48 0.30 -28% -39% 0.83
CONCRETE_COMPRESSIVE_STRENGTH 24%0 0% 19% 0.97 1.59 0.32 -34% -52% 0.86
CARS 56% -4% 38% 0.91 0.70 0.12 -7% -4% 0.95
CARS 36% -5% 30% 0.90 0.86 0.14 -4% -4% 0.95
CARS 30% -3% 25% 0.91 0.76 0.13 2% 5% 0.96
CARS 65% -1% 40% 0.93 0.75 0.13 -5% -1% 0.95
CARS 16% -4% 17% 0.91 0.87 0.15 -2% 0% 0.95
ENERGY_EFFICIENCY 165% -5% 64%0 0.92 0.20 0.06 -50% -29% 1.00
ENERGY_EFFICIENCY 288% 0% 74% 0.91 0.14 0.04 -3% -13% 1.00
ENERGY_EFFICIENCY 217% -1% 69% 0.96 0.18 0.05 -21% -31% 1.00
ENERGY_EFFICIENCY 253% -3% 73% 0.92 0.16 0.04 17% 16% 1.00
ENERGY_EFFICIENCY 185% -10% 68% 091 0.23 0.07 -17% -22% 1.00
CALIFORNIA_HOUSING -5% 0% -6% 0.95 1.82 0.43 -2% -3% 0.81
CALIFORNIA_HOUSING 4% 0% 4% 0.95 1.72 0.41 -1% -2% 0.81
CALIFORNIA_HOUSING -4% 1% -5% 0.95 1.76 0.42 0% -1% 0.82
CALIFORNIA_HOUSING 1% 0% 1% 0.95 1.74 0.41 0% 0% 0.81
CALIFORNIA_HOUSING -3% 1% -4% 0.95 1.79 0.42 -1% -1% 0.82
AIRFOIL_SELF_NOISE 15% -4% 16% 0.95 1.73 0.37 -82% -93% 0.86
AIRFOIL_SELF_NOISE 45% 1% 30% 0.97 1.42 0.30 -18% -18% 0.93
AIRFOIL_SELF_NOISE 5% 1% 4% 0.98 1.86 0.40 -73% -76% 0.85
AIRFOIL_SELF_NOISE -6% 0% -7% 0.98 2.15 0.46 -109% -138% 0.78
AIRFOIL_SELF_NOISE 46%0 -2% 33% 0.95 1.37 0.29 -41% -43% 0.89
QSAR_FISH_TOXICITY 21% -2% 19% 0.38 2.12 0.33 3% 3% 0.53
QSAR_FISH_TOXICITY 39% -9% 35% 0.85 1.97 0.31 8% 7% 0.58
QSAR_FISH_TOXICITY 43% -3% 32% 0.89 2.21 0.34 4% 3% 0.57
QSAR_FISH_TOXICITY 38% -3% 30% 0.89 2.11 0.33 -2% -1% 0.54
QSAR_FISH_TOXICITY 29% -6% 28% 0.85 2.11 0.33 0% -6% 0.52
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Table 7: Test results for MultiETs with complete data at 95% quantiles for seeds 0, 10, 20, 30, 40,
with rows ordered by seed (ascending). Performance over the baseline is highlighted in bold.

INTERVAL PREDICTIONS PoinT PREDICTIONS
RELATIVE ABSOLUTE RELATIVE ABSOLUTE

DATASET ACWR APICP ANMPIW PICP MPIW NMPIW ARMSE AMAE R?

SPACE_GA -8% 2% -11% 0.95 2.59 0.28 -13% -15% 0.55
SPACE_GA -3% 0% -3% 0.95 2.77 0.30 -14% -17% 0.55
SPACE_GA -2% 1% -4% 0.96 2.61 0.28 -13% -13% 0.57
SPACE_GA -9% 1% -11% 0.96 2.81 0.30 -15% -18% 0.54
SPACE_GA -7% 0% -8% 0.96 2.79 0.30 -19% -24% 0.51
CPU_ACTIVITY 11% -4% 13% 0.95 0.57 0.11 -13% -20% 0.98
CPU_ACTIVITY 14% -5% 16% 0.94 0.54 0.10 -13% -18% 0.98
CPU_ACTIVITY 9% -4% 11% 0.95 0.58 0.11 -13% -18% 0.98
CPU_ACTIVITY 10% -4% 13% 0.94 0.57 0.11 -15% -22% 0.97
CPU_ACTIVITY 10% -4% 13% 0.94 0.57 0.11 -16% -22% 0.97
NAVAL_PROPULSION_PLANT 131% 1% 56% 0.96 0.96 0.28 -320% -418% 0.96
NAVAL_PROPULSION_PLANT 144% 1% 59% 0.96 0.88 0.26 -286% -369% 0.97
NAVAL_PROPULSION_PLANT 174% 0% 63% 0.96 0.81 0.24 -257% -348% 0.97
NAVAL_PROPULSION_PLANT 127% 0% 56% 0.96 0.94 0.28 -324% -426% 0.96
NAVAL_PROPULSION_PLANT 108% 1% 52% 0.96 1.03 0.30 -391% -469% 0.95
MIAMI_HOUSING -7% 0% -7% 0.95 1.22 0.15 -11% -20% 0.90
MIAMI_HOUSING -10% -1% -10% 0.95 1.24 0.15 -6% -17% 0.90
MIAMI_HOUSING -8% -1% -8% 0.95 1.25 0.15 -13% -23% 0.89
MIAMI_HOUSING -9% -1% -10% 0.95 1.22 0.15 -9% -19% 0.90
MIAMI_HOUSING -9% 0% -9% 0.94 1.24 0.15 -10% -22% 0.89
KINSNM -10% 1% -12% 0.95 2.75 0.54 -36% -40% 0.46
KINSNM -8% 0% -9% 0.94 2.66 0.52 -33% -36% 0.49
KINSNM -11% 3% -15% 0.95 2.76 0.54 -32% -35% 0.50
KINSNM -9% 2% -12% 0.94 2.67 0.52 -36% -40% 0.48
KINSNM -10% 1% -13% 0.95 2.73 0.53 -33% -36% 0.49
CONCRETE_COMPRESSIVE_STRENGTH -18% -3% -18% 0.89 1.67 0.34 -78% -110% 0.74
CONCRETE_COMPRESSIVE_STRENGTH -5% -3% -3% 0.89 1.51 0.30 -71% -97% 0.76
CONCRETE_COMPRESSIVE_STRENGTH -6% -6% 0% 0.87 1.42 0.29 -63% -87% 0.77
CONCRETE_COMPRESSIVE_STRENGTH -6% -3% -4% 0.90 1.47 0.30 -63% -91% 0.77
CONCRETE_COMPRESSIVE_STRENGTH -6% 1% -7% 0.92 1.59 0.32 -61% -88% 0.77
CARS -35% 5% -60% 0.95 1.01 0.17 6% 3% 0.95
CARS -25% 1% -34% 0.91 0.83 0.14 8% 4% 0.95
CARS -19% 0% -24% 0.92 0.80 0.14 4% -2% 0.95
CARS -24% -3% -28% 0.90 0.86 0.15 2% 0% 0.95
CARS -21% -3% -22% 0.91 0.91 0.15 -3% 1% 0.94
ENERGY_EFFICIENCY 16% -8% 21% 0.90 0.18 0.05 0% 0% 1.00
ENERGY_EFFICIENCY 6% -2% 6% 0.97 0.21 0.06 4% 1% 1.00
ENERGY_EFFICIENCY 8% -4% 11% 0.95 0.21 0.06 5% 2% 1.00
ENERGY_EFFICIENCY 3% -3% 5% 0.96 0.21 0.06 1% 0% 1.00
ENERGY_EFFICIENCY 17% -4% 18% 0.95 0.19 0.06 5% 0% 1.00
CALIFORNIA_HOUSING -2% -2% 1% 0.95 2.38 0.57 -16% -22% 0.70
CALIFORNIA_HOUSING 3% -2% 5% 0.95 2.31 0.55 -13% -19% 0.72
CALIFORNIA_HOUSING 2% -2% 4% 0.95 2.29 0.55 -15% -20% 0.71
CALIFORNIA_HOUSING 0% -3% 3% 0.95 2.32 0.55 -16% -22% 0.71
CALIFORNIA_HOUSING 1% -3% 4% 0.95 2.32 0.55 -14% -20% 0.72
AIRFOIL_SELF_NOISE -25% -5% -26% 0.94 2.17 0.46 -166% -184% 0.74
AIRFOIL_SELF_NOISE 0% -1% 1% 0.98 1.78 0.38 -59% -80% 0.89
AIRFOIL_SELF_NOISE -15% -1% -16% 0.98 1.98 0.42 -97% -106% 0.84
AIRFOIL_SELF_NOISE -28% -5% -32% 0.93 2.20 0.47 -169% -213% 0.67
AIRFOIL_SELF_NOISE -14% -3% -13% 0.96 1.93 0.41 -98% -125% 0.84
QSAR_FISH_TOXICITY -16% -2% -17% 0.88 2.45 0.38 -6% -10% 0.53
QSAR_FISH_TOXICITY -10% -2% -9% 0.89 243 0.38 -7% -12% 0.52
QSAR_FISH_TOXICITY 3% -6% 9% 0.88 2.38 0.37 -8% -12% 0.50
QSAR_FISH_TOXICITY -12% -4% -9% 0.88 241 0.38 -5% -10% 0.55
QSAR_FISH_TOXICITY 8% -9% 16% 0.84 2.03 0.32 -6% -13% 0.53
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Table 8: Test results for MultiMLPs with complete data at 95% quantiles for seeds 0, 10, 20, 30, 40,
with rows ordered by seed (ascending). Performance over the baseline is highlighted in bold.

INTERVAL PREDICTIONS PoinT PREDICTIONS
RELATIVE ABSOLUTE RELATIVE ABSOLUTE

DATASET ACWR APICP ANMPIW PICP MPIW NMPIW ARMSE AMAE R?

SPACE_GA 5% -2% 7% 0.95 2.11 0.23 0% -1% 0.74
SPACE_GA 3% -1% 3% 0.96 2.13 0.23 -1% -1% 0.75
SPACE_GA 6% -1% 7% 0.94 2.04 0.22 -3% -3% 0.74
SPACE_GA 5% -2% 6% 0.95 2.15 0.23 0% 0% 0.76
SPACE_GA 10% 0% 9% 0.95 2.06 0.22 1% 0% 0.76
CPU_ACTIVITY -18% 1% -22% 0.96 0.58 0.11 4% 2% 0.98
CPU_ACTIVITY -3% 0% -2% 0.95 0.51 0.10 8% 7% 0.98
CPU_ACTIVITY -9% 0% -10% 0.95 0.53 0.10 6% 5% 0.98
CPU_ACTIVITY -6% 0% -7% 0.95 0.54 0.10 6% 5% 0.98
CPU_ACTIVITY -2% 0% 2% 0.95 0.53 0.10 8% 5% 0.98
NAVAL_PROPULSION_PLANT 32% 1% 24% 0.95 0.23 0.07 -44% -48% 1.00
NAVAL_PROPULSION_PLANT 0% 1% -2% 0.96 0.31 0.09 -9% -11% 1.00
NAVAL_PROPULSION_PLANT 7% 0% 5% 0.95 0.24 0.07 -35% -13% 1.00
NAVAL_PROPULSION_PLANT -8% 1% -11% 0.96 0.28 0.08 -86% -63% 1.00
NAVAL_PROPULSION_PLANT -13% 2% -16% 0.96 0.34 0.10 -51% -45% 0.99
MIAMI_HOUSING -38% 0% -60% 0.95 1.18 0.15 -6% 1% 0.91
MIAMI_HOUSING -37% 0% -59% 0.95 1.16 0.14 -2% 7% 0.91
MIAMI_HOUSING -43% 0% -74% 0.95 1.25 0.15 -4% 6% 0.91
MIAMI_HOUSING -38% 1% -62% 0.95 1.15 0.14 -2% 3% 0.92
MIAMI_HOUSING -33% -1% -47% 0.95 1.10 0.14 -1% 4% 0.91
KINSNM 10% 1% 9% 0.95 1.03 0.20 4% 5% 0.93
KINSNM 2% 1% 1% 0.96 1.07 0.21 10% 10% 0.94
KINSNM 4% 1% 3% 0.95 1.06 0.21 10% 6% 0.94
KINSNM 10% -3% 12% 0.93 0.99 0.19 6% 5% 0.93
KINSNM 15% -1% 13% 0.94 1.03 0.20 7% 7% 0.93
CONCRETE_COMPRESSIVE_STRENGTH 7% -3% 9% 0.91 1.24 0.25 18% 19% 0.92
CONCRETE_COMPRESSIVE_STRENGTH 18% 1% 14% 0.97 1.39 0.28 9% 12% 0.91
CONCRETE_COMPRESSIVE_STRENGTH 2% 1% 1% 0.97 1.63 0.33 9% 15% 0.91
CONCRETE_COMPRESSIVE_STRENGTH 7% -5% 11% 0.94 1.62 0.33 4% 10% 0.90
CONCRETE_COMPRESSIVE_STRENGTH 19% -3% 18% 0.93 1.26 0.26 18% 20% 0.91
CARS 5% -9% 13% 0.88 0.66 0.11 -5% -2% 0.95
CARS 0% -3% 2% 0.93 0.80 0.14 -6% -2% 0.95
CARS -9% 0% -10% 0.93 0.80 0.14 1% 1% 0.96
CARS -8% -3% -4% 0.93 0.33 0.14 -2% -1% 0.95
CARS 25% -1% 21% 0.94 0.79 0.13 -4% 5% 0.95
ENERGY_EFFICIENCY 76%0 -3% 46%0 0.94 0.16 0.04 31% 31% 1.00
ENERGY_EFFICIENCY 46% 7% 25% 0.99 0.19 0.06 35% 32% 1.00
ENERGY_EFFICIENCY 34% -1% 27% 0.95 0.17 0.05 28% 32% 1.00
ENERGY_EFFICIENCY 29% -3% 25% 0.95 0.16 0.05 31% 32% 1.00
ENERGY_EFFICIENCY 79%0 -3% 45%0 0.96 0.17 0.05 37% 38% 1.00
CALIFORNIA_HOUSING -13% 1% -16% 0.95 1.88 0.45 8% 11% 0.82
CALIFORNIA_HOUSING -8% 0% -9% 0.95 1.78 0.42 7% 8% 0.81
CALIFORNIA_HOUSING -16% 1% -20% 0.95 1.83 0.44 7% 9% 0.82
CALIFORNIA_HOUSING -11% -1% -12% 0.94 1.82 0.43 7% 8% 0.81
CALIFORNIA_HOUSING -12% 0% -13% 0.94 1.76 0.42 7% 9% 0.82
AIRFOIL_SELF_NOISE 98% -2% 51% 0.97 0.82 0.18 21% 19% 0.97
AIRFOIL_SELF_NOISE 33% 0% 24% 0.98 0.90 0.19 17% 12% 0.97
AIRFOIL_SELF_NOISE 36% -3% 28% 0.95 0.79 0.17 11% 9% 0.97
AIRFOIL_SELF_NOISE 83% -4% 47% 0.95 0.76 0.16 22% 22% 0.97
AIRFOIL_SELF_NOISE 93%, -1% 49% 0.98 0.88 0.19 18% 18% 0.97
QSAR_FISH_TOXICITY -11% 2% -16% 0.91 2.53 0.39 5% 11% 0.51
QSAR_FISH_TOXICITY 3% 2% 1% 0.91 2.38 0.37 0% -1% 0.57
QSAR_FISH_TOXICITY 7% -1% 7% 0.91 2.31 0.36 6% 11% 0.54
QSAR_FISH_TOXICITY 18% 2% 14% 0.90 2.10 0.33 -4% 6% 0.52
QSAR_FISH_TOXICITY 9% -1% 9% 0.83 1.84 0.29 10% 9% 0.61
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Table 9: Test results for MultiXGBs with 50% missing data at 95% quantiles for seeds 0, 10, 20, 30,
40, with rows ordered by seed (ascending). Performance over the baseline is highlighted in bold.

INTERVAL PREDICTIONS PoinT PREDICTIONS
RELATIVE ABSOLUTE RELATIVE ABSOLUTE

DATASET ACWR APICP ANMPIW PICP MPIW NMPIW ARMSE AMAE R?

SPACE_GA 4% -4% 7% 0.93 2.82 0.31 -11% -13% 0.35
SPACE_GA 2% -1% 3% 0.94 2.97 0.32 -6% -6% 0.45
SPACE_GA -4% -3% -2% 0.94 3.06 0.33 -12% -11% 0.44
SPACE_GA -1% -1% -1% 0.95 2.97 0.32 -1% -6% 0.46
SPACE_GA 2% 0% 2% 0.95 2.77 0.30 -5% -11% 0.54
CPU_ACTIVITY -9% 1% -11% 0.95 0.89 0.17 -7% -23% 0.94
CPU_ACTIVITY -26% 1% -44% 0.93 1.02 0.19 -1% -26% 0.81
CPU_ACTIVITY -15% -2% -14% 0.89 0.80 0.15 -30% -30% 0.73
CPU_ACTIVITY -1% -1% -3% 0.95 0.86 0.16 36% 5% 0.88
CPU_ACTIVITY -19% 2% -26% 0.98 1.12 0.21 -2% -11% 0.81
NAVAL_PROPULSION_PLANT -8% 0% -11% 0.98 2.93 0.86 -45% -90% 0.73
NAVAL_PROPULSION_PLANT 31% -2% 24% 0.93 1.50 0.44 5% -6% 0.84
NAVAL_PROPULSION_PLANT 18% -2% 17% 0.96 2.06 0.61 -30% -42% 0.83
NAVAL_PROPULSION_PLANT 53% -5% 37% 0.87 1.27 0.37 6% 6% 0.76
NAVAL_PROPULSION_PLANT -5% -3% -6% 0.93 222 0.65 -7% -11% 0.70
MIAMI_HOUSING -10% -2% -11% 0.94 1.45 0.18 -7% -12% 0.80
MIAMI_HOUSING -38% 0% -63% 0.93 1.86 0.23 -35% -35% 0.54
MIAMI_HOUSING -26% -1% -33% 0.95 1.74 0.22 -10% -19% 0.76
MIAMI_HOUSING 1% -3% 2% 0.95 1.35 0.17 -14% -20% 0.79
MIAMI_HOUSING -17% 1% -22% 0.94 1.64 0.20 -4% -4% 0.72
KINSNM -6% 0% -8% 0.97 3.36 0.66 0% 1% 0.40
KINSNM -15% 1% -22% 0.97 3.46 0.68 -6% -8% 0.39
KINSNM -8% 3% -12% 0.95 3.00 0.59 1% 2% 0.41
KINSNM -9% 2% -14% 0.96 3.11 0.61 -5% -7% 0.44
KINSNM -8% 1% -9% 0.95 3.23 0.63 -5% -6% 0.37
CONCRETE_COMPRESSIVE_STRENGTH -8% -3% -8% 0.95 2.81 0.57 -19% -22% 0.48
CONCRETE_COMPRESSIVE_STRENGTH 7% -5% 11% 0.93 2.79 0.56 -37% -44% 0.57
CONCRETE_COMPRESSIVE_STRENGTH 14% -3% 13% 0.97 2.69 0.55 -4% -9% 0.64
CONCRETE_COMPRESSIVE_STRENGTH 4% -1% 3% 0.95 2.83 0.57 -15% -24% 0.50
CONCRETE_COMPRESSIVE_STRENGTH -11% 0% -14% 0.97 3.01 0.61 -4% -3% 0.69
CARS 31% -3% 24% 0.93 1.91 0.32 -9% -16% 0.75
CARS 51% -7% 38% 0.93 1.84 0.31 -37% -25% 0.81
CARS -16% -11% -17% 0.89 2.17 0.37 -68% -80% 0.55
CARS -13% -3% -21% 0.94 2.18 0.37 -8% -14% 0.76
CARS -5% -12% 5% 0.83 2.00 0.34 -28% -39% 0.40
ENERGY_EFFICIENCY -11% 0% -13% 1.00 1.15 0.33 -15% -24% 0.97
ENERGY_EFFICIENCY 20% -10% 25% 0.89 0.84 0.24 -705% -520% 0.76
ENERGY_EFFICIENCY 42%0 -1% 23% 0.95 0.78 0.23 -37% -39% 0.94
ENERGY_EFFICIENCY 61% -4% 40% 0.94 0.70 0.20 -16% -44% 0.96
ENERGY_EFFICIENCY 20% -3% 16% 0.97 1.12 0.33 -155% -137% 0.93
CALIFORNIA_HOUSING -14% 0% -17% 0.96 2.67 0.64 -3% -3% 0.65
CALIFORNIA_HOUSING 0% -2% 0% 0.96 2.41 0.57 -11% -13% 0.73
CALIFORNIA_HOUSING -7% -1% -8% 0.96 248 0.59 0% 1% 0.73
CALIFORNIA_HOUSING 2% -3% 3% 0.92 2.28 0.54 -4% -7% 0.61
CALIFORNIA_HOUSING -12% -1% -16% 0.97 2.63 0.63 -1% -3% 0.73
AIRFOIL_SELF_NOISE -30% -2% -43% 0.97 3.95 0.84 -94% -110% 0.50
AIRFOIL_SELF_NOISE -18% -1% -22% 0.91 2.98 0.64 -19% -29% 0.38
AIRFOIL_SELF_NOISE -23% -4% -25% 091 3.49 0.75 -43% -48% 0.19
AIRFOIL_SELF_NOISE -31% 1% -49% 0.97 3.61 0.77 -14% -8% 0.52
AIRFOIL_SELF_NOISE -17% -1% -21% 0.97 3.81 0.81 -14% -22% 043
QSAR_FISH_TOXICITY -8% 3% -14% 0.98 4.22 0.66 4% 4% 0.43
QSAR_FISH_TOXICITY -6% 1% -7% 0.97 3.93 0.61 -9% -3% 0.35
QSAR_FISH_TOXICITY 8% -5% 10% 0.88 2.59 0.40 -4 -5% 0.38
QSAR_FISH_TOXICITY -5% -5% -5% 0.88 2.83 0.44 -7% -3% 0.35
QSAR_FISH_TOXICITY 12% -11% 15% 0.85 2.58 0.40 -5% -3% 0.30

23



Under review as a conference paper at ICLR 2025

Table 10: Test results for MultiETs with 50% missing data at 95% quantiles for seeds 0, 10, 20, 30,
40, with rows ordered by seed (ascending). Performance over the baseline is highlighted in bold.

INTERVAL PREDICTIONS PoinT PREDICTIONS
RELATIVE ABSOLUTE RELATIVE ABSOLUTE

DATASET ACWR APICP ANMPIW PICP MPIW NMPIW ARMSE AMAE R?

SPACE_GA -7% -2% -6% 0.94 3.08 0.33 -18% -19% 0.29
SPACE_GA -12% 3% -18% 0.97 341 0.37 -7% -7% 0.40
SPACE_GA -13% 0% -16% 0.95 3.05 0.33 -13% -11% 0.42
SPACE_GA -13% 0% -18% 0.96 3.21 0.35 -8% -8% 0.41
SPACE_GA -10% 0% -11% 0.96 291 0.32 -15% -18% 0.46
CPU_ACTIVITY -18% -3% -23% 0.95 1.03 0.19 -40% -56% 0.92
CPU_ACTIVITY -12% -6% -11% 0.91 1.04 0.20 -15% -44% 0.81
CPU_ACTIVITY -5% -5% -2% 0.92 1.00 0.19 -43% -59% 0.75
CPU_ACTIVITY -13% -2% -14% 0.96 0.97 0.18 2% -19% 0.87
CPU_ACTIVITY -30% -1% -42% 0.96 1.31 0.25 -10% -43% 0.76
NAVAL_PROPULSION_PLANT -19% 0% -23% 0.98 3.17 0.94 -63% -158% 0.71
NAVAL_PROPULSION_PLANT 11% -5% 13% 0.94 2.24 0.66 -31% -78% 0.73
NAVAL_PROPULSION_PLANT 14% -2% 14% 0.97 2.26 0.67 -61% -147% 0.80
NAVAL_PROPULSION_PLANT 24%0 -9% 25% 0.89 1.99 0.59 -13% -42% 0.66
NAVAL_PROPULSION_PLANT -10% -2% -11% 0.95 2.75 0.81 -19% -52% 0.64
MIAMI_HOUSING -15% -2% -17% 0.94 1.86 0.23 -11% -25% 0.79
MIAMI_HOUSING -44% 5% -87% 0.96 2.39 0.30 -43% -64% 0.47
MIAMI_HOUSING -41% 0% -69% 0.96 2.30 0.29 -27% -42% 0.72
MIAMI_HOUSING -35% -2% -52% 0.96 2.18 0.27 -21% -33% 0.79
MIAMI_HOUSING -31% 1% -48% 0.95 2.24 0.28 -22% -30% 0.64
KINSNM -15% -1% -19% 0.96 3.55 0.69 -8% -8% 0.29
KINSNM -14% 2% -19% 0.96 343 0.67 -10% -14% 0.32
KINSNM -11% 0% -13% 0.94 3.20 0.63 -9% -12% 0.32
KINSNM -14% 0% -18% 0.95 3.30 0.65 -14% -18% 0.37
KINSNM -14% 2% -19% 0.96 342 0.67 -13% -16% 0.30
CONCRETE_COMPRESSIVE_STRENGTH -20% 4% -35% 0.96 3.01 0.61 -30% -43% 0.41
CONCRETE_COMPRESSIVE_STRENGTH -16% -8% -10% 0.92 3.08 0.62 -72% -94% 0.47
CONCRETE_COMPRESSIVE_STRENGTH -18% -3% -24% 0.96 2.99 0.60 -21% -33% 0.56
CONCRETE_COMPRESSIVE_STRENGTH -25% -4% -34% 0.94 2.86 0.58 -26% -36% 0.41
CONCRETE_COMPRESSIVE_STRENGTH -22% 2% -31% 0.96 3.05 0.62 -35% -50% 0.53
CARS -24% -6% -27% 0.92 1.99 0.34 -22% -23% 0.73
CARS -49% 4% -103% 0.97 2.70 0.46 -20% -17% 0.80
CARS -14% -5% -12% 0.93 2.02 0.34 -59% -56% 0.60
CARS -36% -6% -54% 0.93 2.44 0.41 -37% -37% 0.66
CARS -37% -6% -68% 0.89 2.12 0.36 -50% -25% 0.34
ENERGY_EFFICIENCY 2% -3% 5% 0.97 0.62 0.18 -18% -32% 0.98
ENERGY_EFFICIENCY -42% -6% -62% 0.94 0.85 0.25 -159% -104% 0.90
ENERGY_EFFICIENCY -4% -6% 2% 0.93 0.69 0.20 -8% -20% 0.95
ENERGY_EFFICIENCY -29% -4% -41% 0.94 0.79 0.23 -39% -82% 0.95
ENERGY_EFFICIENCY -75% 0% -316% 1.00 2.61 0.76 -122% -136% 0.92
CALIFORNIA_HOUSING -2% -2% 0% 0.96 2.88 0.69 -11% -16% 0.60
CALIFORNIA_HOUSING -9% -2% -8% 0.96 2.90 0.69 -19% -23% 0.64
CALIFORNIA_HOUSING -5% -2% -4% 0.97 3.02 0.72 -11% -13% 0.64
CALIFORNIA_HOUSING -1% -3% 1% 0.93 2.77 0.66 -15% -18% 0.50
CALIFORNIA_HOUSING -10% -1% -10% 0.97 3.07 0.73 -13% -17% 0.64
AIRFOIL_SELF_NOISE -33% -3% -46% 0.97 3.62 0.77 -163% -218% 0.34
AIRFOIL_SELF_NOISE -36% -2% -56% 0.93 3.42 0.73 -27% -36% 0.42
AIRFOIL_SELF_NOISE -31% -5% -40% 0.92 3.42 0.73 -50% -83% 0.17
AIRFOIL_SELF_NOISE -32% -2% -45% 0.97 3.91 0.83 -45% -57% 0.43
AIRFOIL_SELF_NOISE -22% -2% -30% 0.94 3.29 0.70 -27% -51% 0.36
QSAR_FISH_TOXICITY 2% 1% 0% 0.98 4.12 0.64 4% 2% 0.51
QSAR_FISH_TOXICITY -10% -4% -7% 0.93 343 0.53 -12% -12% 0.40
QSAR_FISH_TOXICITY -7% 1% -11% 0.93 2.87 0.45 -6% -8% 0.45
QSAR_FISH_TOXICITY -17% -7% -16% 0.86 2.99 0.47 -23% -26% 0.25
QSAR_FISH_TOXICITY 0% -3% -1% 0.90 2.63 0.41 -4% -6% 0.34
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Table 11: Test results for MultiMLPs with 50% missing data at 95% quantiles for seeds 0, 10, 20, 30,
40, with rows ordered by seed (ascending). Performance over the baseline is highlighted in bold.

INTERVAL PREDICTIONS PoinT PREDICTIONS
RELATIVE ABSOLUTE RELATIVE ABSOLUTE

DATASET ACWR APICP ANMPIW PICP MPIW NMPIW ARMSE AMAE R?

SPACE_GA -25% -3% -32% 0.95 3.45 0.37 -41% -40% 0.15
SPACE_GA -22% -3% -27% 0.96 3.58 0.39 -28% -25% 0.35
SPACE_GA -45% -2% -82% 0.95 4.52 0.49 -85% -61% -0.21
SPACE_GA -13% -2% -13% 0.95 3.12 0.34 -21% -20% 0.37
SPACE_GA -20% -6% -18% 0.92 3.07 0.33 -25% -26% 0.38
CPU_ACTIVITY -22% -2% -32% 0.95 1.14 0.21 14% 1% 0.92
CPU_ACTIVITY -449% 2% -80% 0.95 1.40 0.27 -30% -34% 0.72
CPU_ACTIVITY -49% 1% -100% 0.94 1.44 0.27 -37% -49% 0.54
CPU_ACTIVITY -45% 2% -89% 0.96 1.23 0.23 -20% -17% 0.78
CPU_ACTIVITY -38% -1% -61% 0.96 1.29 0.24 -3% -16% 0.78
NAVAL_PROPULSION_PLANT -36% -4% -52% 0.95 5.40 1.59 -215% -562% -0.85
NAVAL_PROPULSION_PLANT -449% -2% -78% 0.95 4.14 1.22 -99% -94% 0.16
NAVAL_PROPULSION_PLANT -64% -1% -175% 0.98 4.66 1.37 -141% -163% 0.50
NAVAL_PROPULSION_PLANT -35% 2% -67% 0.92 3.53 1.04 -24% -27% 0.27
NAVAL_PROPULSION_PLANT -38% -2% -70% 0.94 4.75 1.40 -62% -68% -0.21
MIAMI_HOUSING -32% -1% -46% 0.94 1.48 0.18 -21% -20% 0.74
MIAMI_HOUSING -46% 1% -88% 0.96 1.98 0.25 -41% -48% 0.53
MIAMI_HOUSING -25% -2% -31% 0.95 1.69 0.21 -18% -19% 0.75
MIAMI_HOUSING -34% -2% -49% 0.96 1.82 0.23 -23% -22% 0.77
MIAMI_HOUSING -42% -2% -72% 0.91 1.91 0.24 -24% -32% 0.57
KINSNM -14% 1% -17% 0.98 3.68 0.72 -3% 0% 0.43
KINSNM -18% 0% -22% 0.97 3.67 0.72 -20% -22% 0.36
KINSNM -17% 1% -22% 0.96 3.56 0.70 -12% -10% 0.39
KINSNM -24% 0% -32% 0.96 3.46 0.68 -26% -24% 0.36
KINSNM -20% 0% -25% 0.95 3.51 0.69 -20% -19% 0.31
CONCRETE_COMPRESSIVE_STRENGTH -10% 2% -13% 0.95 2.80 0.57 -9% -6% 0.51

CONCRETE_COMPRESSIVE_STRENGTH 9% -3% 8% 0.95 2.68 0.54 -15% -13% 0.59
CONCRETE_COMPRESSIVE_STRENGTH -1% -4% 3% 0.95 2.86 0.58 -20% -23% 0.52
CONCRETE_COMPRESSIVE_STRENGTH 16% -5% 16% 0.91 2.49 0.50 -10% -10% 0.46
CONCRETE_COMPRESSIVE_STRENGTH 13% -3% 11% 0.96 2.40 0.48 -5% -9% 0.60
CARS -23% -3% -33% 0.95 1.93 0.33 -3% -5% 0.75
CARS -28% -2% -43% 0.97 1.94 0.33 -36% -38% 0.75
CARS -27% -3% -39% 0.94 2.06 0.35 -34% -33% 0.70
CARS -41% 6% -85% 0.97 2.70 0.46 -32% -37% 0.63
CARS 8% -4% 10% 0.90 1.68 0.28 -32% -15% 0.48
ENERGY_EFFICIENCY -12% 0% -14% 0.99 1.44 0.42 -8% 1% 0.97
ENERGY_EFFICIENCY -4% -2% -2% 0.97 0.69 0.20 14% 18% 0.98
ENERGY_EFFICIENCY -24% -3% -37% 0.94 1.23 0.36 8% 2% 0.92
ENERGY_EFFICIENCY 10% -3% -1% 0.96 1.07 0.31 -8% 6% 0.96
ENERGY_EFFICIENCY -7% -10% 0% 0.89 0.84 0.24 -1% -32% 0.93
CALIFORNIA_HOUSING -28% 1% -42% 0.95 3.00 0.71 -8% -9% 0.55
CALIFORNIA_HOUSING -20% -2% -25% 0.97 2.85 0.68 -1% 0% 0.68
CALIFORNIA_HOUSING -30% 0% -42% 0.96 2.90 0.69 -7% -3% 0.63
CALIFORNIA_HOUSING -16% -1% -19% 0.93 2.70 0.64 -4% -3% 0.54
CALIFORNIA_HOUSING -28% 0% -40% 0.96 2.83 0.67 -2% -1% 0.65
AIRFOIL_SELF_NOISE -14% 0% -16% 1.00 3.46 0.74 -20% -11% 0.84
AIRFOIL_SELF_NOISE 2% -6% 7% 0.89 2.60 0.56 -22% -13% 0.31

AIRFOIL_SELF_NOISE -12% -8% -9% 0.88 2.56 0.55 -23% -20% 0.44
AIRFOIL_SELF_NOISE -13% -5% -12% 0.93 2.94 0.63 -9% -1% 0.62
AIRFOIL_SELF_NOISE -5% 1% -8% 0.94 2.77 0.59 -3% 1% 0.54
QSAR_FISH_TOXICITY -16% 1% -20% 0.99 4.78 0.74 -8% -9% 0.44
QSAR_FISH_TOXICITY -7% -5% -7% 0.92 3.31 0.51 -21% -28% 0.28
QSAR_FISH_TOXICITY -5% -2% -8% 0.95 3.17 0.49 -6% -8% 0.39
QSAR_FISH_TOXICITY -8% -5% -8% 0.86 2.74 0.43 -21% -17% 0.28
QSAR_FISH_TOXICITY -17% 2% -28% 0.90 3.03 0.47 -10% -9% 0.32
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F AGGREGATED RESULTS FOR NON-CONFORMALIZED PREDICTIONS

Table 12: Test results for all models with complete-raw data at 95% quantiles aggregated over five
seeds. For each metric, the mean and standard deviation of the performance across the seeds are
separated by +. Performance over the baseline is highlighted in bold.

INTERVAL PREDICTIONS PoinT PREDICTIONS

RELATIVE ABSOLUTE RELATIVE ABSOLUTE
DATASET ACWR APICP ANMPIW PICP NMPIW ARMSE AMAE R?
MuLtiXGBs
SPACE_GA -1%+5% 6%+2% -7%+6% 0.89+0.01  0.20+0.01 -9%=+1% -10%=+2% 0.60+0.01
CPU_ACTIVITY 25%+6%%0 9%+1% 12%+4%  0.89+0.01  0.07+0.00 21%+1% -1%+2% 0.98+0.00
NAVAL_PROPULSION_PLANT 156%0+13% 8%0x1% 58%+2%  0.96+0.00 0.11+0.00 -14%+4% -12%+2% 0.99+0.00
MIAMI_HOUSING 61%+5% -7%+2% 43%0+3% 0.82+0.01  0.06+0.00 4%+4% 3%+3% 0.91+0.01
KINSNM 10%0+3% 5%+2% 4%+4% 0.90+0.01  0.38+0.01 -20%=+1% -22%=+1% 0.63+0.01
CONCRETE_COMPRESSIVE_STRENGTH 13%+4% 26%+6% -11%+7% 0.91£0.01 0.25+0.00 -26%+6% -40%=+11% 0.85+0.01
CARS 18%0+8% 15%+4% 2%+8% 0.89+0.02  0.12+0.01 -3%=+3% -1%+3% 0.95+0.00
ENERGY_EFFICIENCY 247%+89%  22%+6%  60%+17% 0.88+0.02 0.05+0.01  -15%=+22% -16%=+17%  1.00+0.00
CALIFORNIA_HOUSING 31%=+5% 0%=+1% 23%+4%  0.88+0.01  0.28+0.00 -1%+1% -1%=+1% 0.81+0.00
AIRFOIL_SELF_NOISE 61%+41% 4%0+9% 31%+16% 0.81+0.07 0.19+0.04 -64%+32% -73%+41% 0.86+0.05
QSAR_FISH_TOXICITY 10%0+3% 11%+3% -1%+3% 0.76+0.01  0.23+0.00 3%+3% 1%+4% 0.55+0.02
MurTiETs
SPACE_GA 9% +3% -2%=+1% 9%+4% 0.91+£0.01  0.22+0.01 -16%+2% -18%+3% 0.54+0.02
CPU_ACTIVITY 27%+3%% -8%+0% 27%=+2%  0.90+£0.00  0.09+0.00 -14%+1% -20%+2% 0.98+0.00
NAVAL_PROPULSION_PLANT 219%+32% -9%+0% 71%+3% 0.91£0.00 0.19+0.02 -320%=+41% -409%+36% 0.96+0.01
MIAMI_HOUSING 69%+3% -13%+0% 48%+1%  0.86+0.00  0.08+0.00 -10%+2% -20%=1% 0.90+0.00
KINNM 10%+2% -9%=+0% 17%=+2%  0.88+0.01  0.44+0.01 -35%+2% -38%+2% 0.48+0.01
CONCRETE_COMPRESSIVE_STRENGTH 9%+9% -12%+2% 19%+8% 0.81+0.01  0.24+0.02 -67%+7% -94%+9% 0.76+0.01
CARS 11%+6% 16%0+2% -5%+7% 0.83+0.02  0.09+0.01 3%=+3% 1%+2% 0.95+0.00
ENERGY_EFFICIENCY -4%+5% 0%=+7% -5%+14% 0.65+0.03  0.02+0.00 3%+3% 0%=+1% 1.00+£0.00
CALIFORNIA_HOUSING 31%+2% -7%+0% 29%=+1%  0.90+0.00 0.41+0.01 -15%=+1% -21%=+1% 0.71+0.01
AIRFOIL_SELF_NOISE 18%0+25% -15%+4%  25%=+17%  0.83+0.04 0.26+0.06 -117%+45% -141%+51%  0.80+0.08
QSAR_FISH_TOXICITY 12%+2% -9%=+1% 19%+2%  0.82+0.01  0.28+0.00 -6%+1% -11%+1% 0.53+0.01
MuLtiMLPs
SPACE_GA 8%+1% 0%=+3% 7%+3% 0.81+0.01  0.14+0.00 0%=+1% -1%=+1% 0.75+0.01
CPU_ACTIVITY 8%+3% -9%+4% 15%+6%  0.72+0.02  0.05+0.00 7%0+2% 5%+2% 0.98+0.00
NAVAL_PROPULSION_PLANT 21%+18% 0%=+3% 16%+13% 0.92+0.01 0.07+£0.01  -45%=+25% -36%+20% 1.00+0.00
MIAMI_HOUSING 9% +4% 2%+3% 6%+6% 0.81+0.02  0.05+0.00 -3%+2% 4%+2% 0.91+0.00
KINSNM 2%+7% 8% +5% -6%=+10%  0.81+0.02  0.13+0.01 7%+2% 7% +2% 0.93+0.00
CONCRETE_COMPRESSIVE_STRENGTH 98%+13% -23%+7% 61%+5% 0.56+0.04  0.06+0.00 12%+5% 15%+4% 0.91+0.01
CARS 0%=14% 6%+12% -9%=+30%  0.76+0.08  0.07+0.01 -3%=+3% 0%=+3% 0.95+0.00
ENERGY_EFFICIENCY 82%+18%  25%+23% 31%=11% 0.62+0.04 0.02+0.00 32%=+3% 33%+3% 1.00+0.00
CALIFORNIA_HOUSING -14%+2% 8%+1% -26%+3% 0.89+0.01 0.31+0.01 7%+0% 9%+1% 0.82+0.00
AIRFOIL_SELF_NOISE 74%+41% 0%+6% 39%+15%  0.75+0.02  0.08+0.00 18%+4% 16%0+5% 0.97+0.00
QSAR_FISH_TOXICITY -6%+4% 11%+3% -19%+5%  0.76+0.03  0.23+0.01 4%+5% 7% +4% 0.55+0.04
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Table 13: Test results for all models with missing-raw data at 95% quantiles aggregated over five
seeds. For each metric, the mean and standard deviation of the performance across the seeds are
separated by +. Performance over the baseline is highlighted in bold.

INTERVAL PREDICTIONS PoINT PREDICTIONS

RELATIVE ABSOLUTE RELATIVE ABSOLUTE
DATASET ACWR APICP ANMPIW PICP NMPIW ARMSE AMAE R?
MuLTiXGBs
SPACE_GA -5%+6% 4%0+2% -12%+7% 0.86+0.02  0.22+0.01 -7%+4% -9%=+3% 0.45+0.06
CPU_ACTIVITY -5%+19% 12%+8% -37%=+46% 0.89+0.06  0.14+0.04 -1%+21% -17%=+13% 0.83+0.07
NAVAL_PROPULSION_PLANT 105%+29%  -16%+6% 56%0+6% 0.70+£0.06  0.18+0.02 -14%+20% -29%=+35% 0.77+0.05
MIAMI_HOUSING 16%+13% -5%=+5% 10%+16% 0.82+0.06  0.10+0.02  -14%=11% -18%=+10% 0.72+0.10
KINSNM -5%+2% 3%+2% -14%+5% 0.88+0.01  0.48+0.01 -3%+3% -4%+4% 0.40+0.02
CONCRETE_COMPRESSIVE_STRENGTH 2%+3% 8% +4% -10%=+3% 0.77+0.03  0.30+0.01 -16%+12% -20%=+14% 0.58+0.08
CARS -15%+14% 26%+9% -63%=+26% 0.85+0.04  0.27+0.03 -30%+22% -35%=+24% 0.66+0.15
ENERGY_EFFICIENCY 10%+26% 11%+6% -24%+43% 0.92+0.02  0.22+0.05 -186%+265%  -153%=+188%  0.91+0.08
CALIFORNIA_HOUSING 26%+7% -2%=+3% 21%+6% 0.88+0.03  0.40+0.03 -4%+4% -5%=+5% 0.69+0.05
AIRFOIL_SELF_NOISE -2%=+18% -3%=+4% -4%+17% 0.73+0.04  0.34+0.06  -37%=+31% -43%=+36% 0.41+0.12
QSAR_FISH_TOXICITY -2%+3% 0%=+5% -6%=7% 0.73+0.03  0.26+0.02 -4%+4% -2%=+3% 0.36+0.04
MurTiETs
SPACE_GA 4%+3% -5%=1% 7% +4% 0.88+0.02  0.24+0.01 -12%=+4% -14%+4% 0.40+0.05
CPU_ACTIVITY -16%+10% -5%=1% -20%=+18% 0.93+0.01  0.20+0.03 -30%+23% -54%+20% 0.79+0.10
NAVAL_PROPULSION_PLANT 58%+5% -17%+4% 46%0+3% 0.82+0.05  0.41+0.03 -36%+21% -93%=+48% 0.71+0.05
MIAMI_HOUSING 20%+14% -10%+4% 21%+13% 0.87+0.05  0.14+0.03 -27%+11% -37%=+11% 0.67+0.11
KINSNM 5%+2% -8%+2% 12%+4% 0.87+0.02  0.50+0.02 -11%=+2% -13%+3% 0.32+0.03
CONCRETE_COMPRESSIVE_STRENGTH 1%+5% -14%=+3% 13%0+2% 0.80+0.02 0.37+0.01 -35%+21% -50%+25% 0.49+0.06
CARS -23%+6% -8%=+5% -35%=+14% 0.83+0.04  0.24+0.02 -33%+18% -31%=+18% 0.66+0.09
ENERGY_EFFICIENCY -15%+16% 0%=+9% -36%+42% 0.85+0.05  0.15+0.01 -73%+74% -84%+64% 0.94+0.04
CALIFORNIA_HOUSING 21%=+7% -7%=+2% 22%+5% 0.91+0.02 0.52+0.03 -14%+3% -17%=+3% 0.61+0.05
AIRFOIL_SELF_NOISE -7%+18% -20%+2% 8%+16% 0.76+£0.03  0.42+0.08 -65%+54% -93%=+70% 0.33+0.11
QSAR_FISH_TOXICITY 10%+7% -9%=+3% 16%+3% 0.82+0.03  0.33+0.03 -8%+8% -10%+9% 0.39+0.09
MurTiMLPs
SPACE_GA -11%=+5% -15%+2% 1%+6% 0.68+0.03  0.16+0.01 -40%+23% -34%=+15% 0.21+0.23
CPU_ACTIVITY -50%+16%  22%+14%  -193%=+118% 0.86+0.10  0.18+0.07 -15%+19% -23%+17% 0.75+0.12
NAVAL_PROPULSION_PLANT -52%+19%  -14%+24%  -102%+56%  0.63+0.18  0.34+0.07 -108%+66%  -183%=195% -0.03+0.47
MIAMI_HOUSING -33%+15%  13%+10% -92%=+70% 0.85+0.06  0.12+0.04 -25%=+8% -28%=+11% 0.67+0.10
KINSNM -11%=+5% -5%=2% -8%+6% 0.77+0.01  0.35+0.02 -16%=+8% -15%+9% 0.37+0.04
CONCRETE_COMPRESSIVE_STRENGTH -15%=+13% -13%=+28% -10%+48% 0.60+0.22  0.22+0.11 -12%+5% -12%=+6% 0.54+0.05
CARS -51%=+4% 43%0+7% -211%+34%  0.93+0.02  0.29+0.03 -28%+12% -26%=+13% 0.66+0.10
ENERGY_EFFICIENCY -13%+18%  9%+15% -30%+25% 0.66+0.13  0.09+0.04 1%+9% -1%+16% 0.95+0.03
CALIFORNIA_HOUSING -17%+6% 4%0+3% -28%=+14% 0.88+0.03  0.44+0.04 -5%+2% -3%=+3% 0.61+0.06
AIRFOIL_SELF_NOISE 2%+16% -2%=+5% -1%+21% 0.75+0.07 0.25+0.08 -15%=+8% -9%=+8% 0.55+0.18
QSAR_FISH_TOXICITY -17%+5% 6%0+6% -30%=+11% 0.76+£0.04  0.28+0.03 -13%+7% -14%+8% 0.34+0.06
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G EXAMPLE OF LEARNING WITH NON-NORMALITY

To illustrate how SEMF adapts to non-normal outcomes, we provide an example from the
naval_propulsion_plant dataset (Coraddu et al 2016). [Figure 2| shows the distribution of the
ground-truth y variable which in this case is gt_compressor_decay_state_coefficient. The
values are uniformly distributed, and we only standardize the values without changing the shape of
the distribution.

700

600

500

Frequency
3
(=]

w
=]
=]

200

100

-1.5 -1.0 -0.5 0.0 0.5 1.0 15
Standardized gt_compressor_decay_state_coefficient

Figure 2: Distribution of the standardized outcome (y) variable for the naval_propulsion_plant
dataset which shows that y is uniformly distributed prior to any training.

After training our SEMF model under the normality assumption with the ideal hyper-parameters (and
a seed of 0), sampling from a normal distribution for the z dimension, we infer on some randomly
sampled test instances that provide us with the prediction intervals in[Figure 3] The ‘SEMF intervals’
can be compared with XGBoost quantile regression, constituting our baseline. This figure shows
that SEMF’s predicted intervals are better than the baseline. This plot alone does not tell us much
about the predicted output distribution. Therefore, we provide [Figure 4] The last plot shows that for a
handful of the instances, the predicted values can take any shape and are not necessarily normal.
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Figure 3: Predicted intervals and true values on 100 randomly selected test samples for SEMF
MultiXGBs and XGBoost quantile regression with complete data at 95% quantiles (according to Eq

13).
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Figure 4: Violin plot for the first ten instances of the test set where both the ground truth and 50
values inferred by SEMF (according to Eq 12) are generated for each instance. We have added jitter

here, so the points do not perfectly align along the x-axis.
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