Under review as a conference paper at ICLR 2025

AMAP: AUTOMATIC MULTI-HEAD ATTENTION PRUN-
ING BY SIMILARITY-BASED PRUNING INDICATOR

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the strong performance of Transformers, quadratic computation complex-
ity of self-attention presents challenges in applying them to vision tasks. Lin-
ear attention reduces this complexity from quadratic to linear, offering a strong
computation-performance trade-off. To further optimize this, automatic pruning
is an effective method to find a structure that maximizes performance within a
target resource through training without any heuristic approaches. However, di-
rectly applying it to multi-head attention is not straightforward due to channel mis-
match. In this paper, we propose an automatic pruning method to deal with this
problem. Different from existing methods that rely solely on training without any
prior knowledge, we integrate channel similarity-based weights into the pruning
indicator to preserve the more informative channels within each head. Then, we
adjust the pruning indicator to enforce that channels are removed evenly across all
heads, thereby avoiding any channel mismatch. We incorporate a reweight mod-
ule to mitigate information loss due to channel removal and introduce an effective
pruning indicator initialization for linear attention, based on the attention differ-
ences between the original structure and each channel. By applying our pruning
method to the FLattenTransformer on ImageNet-1K, which incorporates original
and linear attention mechanisms, we achieve a 30% reduction of FLOPs in a near
lossless manner. It also has 1.96% of accuracy gain over the DeiT-B model while
reducing FLOPs by 37%, and 1.05% accuracy increase over the Swin-B model
with a 10% reduction in FLOPs as well. The proposed method outperforms pre-
vious state-of-the-art efficient models and the recent pruning methods.

1 INTRODUCTION

Transformer has achieved remarkable success in various computer vision tasks based on attention
mechanisms that effectively capture long-range dependencies. The attention module generates an
attention map by utilizing the query Q@ € RV*® and key K € RV*C to extract the relationships
between tokens, and then projects the value V' € RV X to obtain a feature map with global infor-
mation. It requires a computational cost of O(N2('), which is quadratic with respect to the number
of tokens V. Despite providing excellent performance, the quadratic complexity with respect to N
poses significant challenges for deployment on mobile and edge devices.

Recent research attempts to mitigate this issue by designing efficient transformers. Some approaches
propose network architectures that limit the number of tokens (Wang et al.|(2021)); Liu et al.| (2021);
Hassani et al.| (2023)). By reducing the number of tokens, they cut down computation cost while
trying to maintain the performance. However, this results in limitations of the receptive field, con-
straining the capture of global dependencies. Other approaches propose a new attention mechanism
that can replace original attention (Kitaev et al.| (2020); [Shaker et al.| (2023)); Han et al.| (2023)).
Linear attention is a method that maintains the ability to capture long-range dependencies while re-
ducing computational complexity linearly. They first approximate Softmax function by replacing it
with a simple activation or a tailored function. By changing the computation order from (Q-K7)-
toQ- (KT V they obtain an attention mechanism with computational complexity of O(NC?),
which is quadratic with respect to channels instead of tokens.

!Original attention mechanism
?Linear attention mechanism

Under review as a conference paper at ICLR 2025

Another strategy to improve the network efficiency

is network pruning. It aims to achieve a lightweight | % ___--- -
network by removing redundant parts from the 8351 - _.-®
existing network while minimizing performance -
degradation. This enables the user to adaptively al- =
locate resources based on their requirements, result- <]
ing in a network with computational costs suited to @ —k— AMAP (Ours)
target devices. Human knowledge-based analysisis 3 o] // 4 ::j pvelcpRa0n) (Ccva023)
performed on each element such as gradient, Hes- < 7 -@- DIMAP (ICLR2024)

. SwinTransformer (ICCV2021)
sian distribution, and filter properties to measure the - OFB (CVPRZ024)
extent of redundancy (Gao et al| (2023)); [Yu et al. 8201 -k DeiT (ICLM2021)
(2022b); |Yang et al.| (2023)). These pruning ap- » A
proaches can be non-optimal, as all elements are de- i i 5 T & 1 s
terministically removed based on specific metrics. FLOPs (G)

To tackle this, some approaches find the efficient Figure 1: Comparison of other networks
network structure during the learning process. Au- with our method. The results demonstrate that
tomatic pruning involves a hyper-network or prun- the proposed method outperforms not only vi-
ing indicator with learnable parameters to the tar- sjon transformer variants (2\), but also effi-

get network (Xiao et al| (2019); L1 et al| (2020; cient networks using pruning methods (O).
2022))). It finds the configuration for each layer that

can maximize performance within a limited resource during the learning process. This eliminates
the need for hand-crafted designs tailored to specific networks.

Despite the strength of automatic pruning, applying it directly to Transformer is not trivial. The
original attention mechanism is structured with multiple heads, as shown in Fig. 2(a). It enables
the model to collectively attend to information from various representation subspaces at different
positions (Vaswani et al| (2017)). Fig. 2|b) illustrates the issues when applying automatic pruning
without considering multi-head attention. Removing all channels from a specific head eliminates its
representation subspace, which restricts the range of features that can be extracted. Consequently,
this leads to a notable reduction in the expression capacity compared to the original network. It
can induce mixed channels from different representation subspaces, resulting in the extraction of
features that are entirely different from those of the original network. We refer to these issues as the
channel mismatch problem.

Most Transformer pruning research focuses on the original attention mechanism used in DeiT or
SwinTransformer. Since linear attention has a computation complexity of O(NC?), however, prun-
ing the same number of channels results in a greater reduction in computational cost compared to the
original attention. Based on this advantage, we propose an automatic multi-head attention pruning
method that can be effectively applied to both original and linear attention mechanisms. As in previ-
ous approaches (Xiao et al.|(2019); |Li et al.[(2022); Lee et al.| (2024))), we apply a pruning indicator
to identify and eliminate redundant elements through a learning process. Existing automatic pruning
methods rely solely on training without considering the expression capacity of the original network.
In contrast, we assign weights according to head-wise similarity when training the pruning indicator
to retain the most informative factors for each head. This approach ensures that the representation
subspaces closely resemble the original attention mechanism, minimizing the loss in expression ca-
pacity. To address the channel mismatch issue that arises during reconfiguration as in Fig. P{b),
we introduce a pruning indicator adjustment process, which involves head-wise ranking followed by
rank-wise averaging. It handle the problem by balancing the pruning ratio for each head, as shown in
Fig.[2(c). Our approach leverages the similarity between channels during the training of the pruning
indicator, enabling the representation of removed channels through a combination of the remaining
ones. Consequently, we compensate for the information loss by incorporating a reweighting module
to adjust the scale of the remaining channels. Additionally, we introduce a method to initialize the
pruning indicator for linear attention, ensuring that channel removal is not excessive.

We apply it to FlattenTransformer (Han et al.[|(2023)), a model that integrates both attention mecha-
nisms with state-of-the-art performance, to demonstrate the effectiveness of our proposed approach.
On the ImageNet-1K benchmark (Deng et al.|(2009)), our approach enables a 30% reduction in the
computational complexity of FLatten-Swin-B in a near-lossless manner. This results in a 1.96%
of accuracy gain over the Deit-B model while reducing FLOPs by 37%. Our method achieves
up to a 1.05% performance improvement over the SwinTransformer (Liu et al.| (2021)) with lower

Under review as a conference paper at ICLR 2025

: Attention mechanism

: Reconfiguration }

Channel

Representation subspace

Channel mixing
removal

(a) Multi-head attention mechanism (b) Channel mismatch problem (¢) Ours

Figure 2: Problems arising when multi-head is not considered. (a) Multi-head attention is ap-
plied to each head, forming different representation subspaces. (b) Without considering multi-head,
reconfiguration leads to channel mismatch problems, where representation subspaces are entirely
removed, or get mixed, significantly reducing expression capacity. (c) Our method addresses these
problems through an automatic pruning method that takes multi-head into account.

FLOPs. We also compare our approach against efficient networks using pruning methods. As shown
in Fig. [T} our method shows higher accuracy at the similar FLOPs compared with previous pruning
methods such as NViT (Yang et al.|(2023)) and DIMAP (He & Zhou|(2024))). To demonstrate the ef-
fectiveness across different architectures, we apply our method to the SwinTransformer, achieveing
better performance than SPVIiT (He et al.|(2024)) with similar FLOPs.

The main contribution of our works are summarized as follows:

(1) We apply an automatic pruning method to find a Transformer structure that enhances perfor-
mance for both original and linear attention mechanisms within the target computational complexity.
(2) To address multi-head attention, we propose a similarity-based pruning indicator that maintains
the same proportion across all heads while considering the channel-wise similarity. (3) Experiments
show that our method outperforms state-of-the-art efficient transformers.

2 RELATED WORKS

2.1 EFFICIENT VISION TRANSFORMER

Transformer (Vaswani et al.|(2017)) exhibits exceptional performance in the NLP field due to their
ability to effectively capture long-range dependencies. The Vision Transformer (ViT) has success-
fully adapted these models for image classification, achieving outstanding performance (Dosovitskiy
et al.[(2021)). However, the quadratic computational complexity of the original attention module in
Transformers poses challenges for various vision applications. Several methods address this concern
by limiting the number of tokens. Pyramid Vision Transformer (PvT) (Wang et al.| (2021)) progres-
sively limits the number of tokens using spatial reduction attention, which controls the feature map
size in the patch embedding. Deformable Attention Transformer (DAT) (Xia et al.| (2022)) selects
the positions of keys and values in a data-dependent manner, considering only attentive tokens.
SwinTransformer (Liu et al.|(2021))) divides the input into windows and performs original attention
within these limited regions. Neighborhood Attention Transformer (NAT) (Hassani et al.| (2023))
localizes original attention by considering only the nearest neighboring pixels related to the query.
Other researches improve efficiency by integrating convolution operations into transformer models.
Convolutional vision Transformer (CvT) (Wu et al.| (2021))) uses convolutional projections instead
of linear projections to control efficiency. CMT (Guo et al.| (2022))) proposes a hybrid network of
transformers and convolutions, achieving a better trade-off between accuracy and efficiency.

Another approach to achieve efficient vision transformers is to approximate the original attention
with linear complexity operations. EdgeNeXt (Maaz et al.[(2022)) applies transposed attention along
the channel dimension instead of the spatial dimension, achieving linear complexity with respect to
tokens. Reformer (Kitaev et al.| (2020)) replaces the dot-product operation with locality-sensitive

Under review as a conference paper at ICLR 2025

hashing, reducing the computation to O(n log n). LinFormer (Wang et al.[(2020)) approximates the
original attention matrix using low-rank matrix factorization, achieving linear complexity. Swift-
Former (Shaker et al.| (2023))) demonstrates that key-value interaction can be replaced with a linear
layer without performance degradation, effectively reducing computation. A different line of re-
search involves changing the order of original attention computations to achieve a complexity of
O(NC?). This requires effectively replacing Softmax. CosFormer (Qin et al. (2022)) replaces
Softmax with ReLU activation and cosine-based distance re-weighing. SOftmax-Free Transformer
(SOFT) (Lu et al.|(2021)) uses a Gaussian kernel function to replace Softmax and achieves lin-
ear complexity through low-rank decomposition. Castling-ViT (You et al.| (2023)) extracts spectral
similarity between Q and K using a linear angular kernel. FLattenTransformer (Han et al.| (2023))
reduces computation to linear complexity with focused linear attention, effectively maintaining the
expressiveness of original attention.

2.2 NETWORK PRUNING

Pruning involves identifying and removing redundant components to reduce the network size. Prun-
ing has proven highly effective in original Convolutional Neural Networks (CNNs) (Lin et al.|(2020);
Hou et al.| (2022); |Gao et al. (2023); |Chen et al.| (2023)). Building on the strong performance of
CNNGs, there has been researches aimed at enhancing the efficiency of Vision Transformers through
pruning. One approach, token pruning, involves finding and removing unnecessary tokens, effec-
tively reducing the computational load of the attention mechanism (Bolya et al.| (2022)); [We1 et al.
(2023); Tang et al.| (2023))). Another approach is to reduce the size of the Transformer model itself.
SViTE (Chen et al.| (2021b)) determines redundant components via sparse training and prunes ac-
cordingly. Unified Visual Transformer Compression (UVC) (Yu et al.|(2022b)) reduces network size
by combining pruning methods with various compression techniques. Novel ViT (NViT) (Yang et al.
(2023))) enables global structural pruning based on a Hessian-based structural pruning criterion. It
uses only their heuristic criterion when pruning multi-heads. In contrast, the proposed method takes
into account the representation space of each head, minimizing the information loss of the original
model’s attention mechanism.

To address these issues, there are automatic pruning methods that identify redundant components
through training. AutoPrune (Xiao et al| (2019)) determines the necessity of weights based on
trainable auxiliary parameters. MetaPruning (Liu et al.| (2019)) involves training a meta-network,
PruningNet, to find the optimal structure for a given target network. DHP (Li et al| (2020)) ap-
plies differentiable hypernetworks to determine the configuration of each channel in the backbone
network. Instead of using a hypernetwork, another approach involves a pruning module to each
component, learning the importance and removing components (Li et al.|(2022); [Lee et al.[(2024)).
VTP (Zhu et al|(2021))) applies automatic pruning to Transformers by using trainable gate variables
to identify and remove unnecessary components through learning. Automatic pruning can identify
the efficient network structure without heuristics, but directly applying them to Transformers is not
trivial. Unlike the traditional CNN structure, an automatic pruning method should take into account
the multi-head structure in Transformers without losing expression capacity. In this paper, we pro-
pose a multi-head-aware automatic pruning method, which can be applied to both original attention
and linear attention mechanisms.

3 METHOD

3.1 MULTI-HEAD AUTOMATIC PRUNING

In this section, we propose an automatic pruning method for handling multi-head models. It consists
of two processes: computing the pruning indicator and adjusting the pruning indicator. Fig. [3(a)
illustrates a step of computing pruning indicator, where the importance of each channel is esti-
mated to assign scores. As in previous automatic pruning methods, a pruning indicator consisting
of learnable parameters m € R%ut is employed to determine importance during training. We as-
sign weights to the pruning indicator based on head-wise similarity, considering more informative
elements of the representation subspace. First, the projection matrix P € R *Cout is divided into
Pl P2 ... P" € REn*Cn based on the number of heads h, where Cj,,, Coy: and C, are the num-
ber of input, output and head channels, respectively. To compute the importance, we first compute

Under review as a conference paper at ICLR 2025

Pruning indicator

Head 1 w m m*
— H O @O
P I —)p mx BE=@mN@ L o
... B H O O O
Cosine H H(m‘)
I | & |
» [| =) xH=0 = o
— O o
—— it vl
(a) Computing pruning indicator (b) Pruning indicator adjustment

Figure 3: Multi-head automatic pruning process. To consider multi-head, we first perform the (a)
Computing pruning indicator process. We integrate similarity-based weights into pruning indicators,
allowing them to consider saliency channels in each head. (b) Through Pruning indicator adjustment,
we share rank-wise pruning indicators for each head. This ensures equal channel removal across all
heads, preventing channel mismatch.

the cosine similarity of the channels for each head as:

Sk “ e sk
. PR.(PR)T 1,1 1,Ch
Sh="_ 1 J__ [. : (1
(I PR
SCn.1 SCh,Ch

where S* is the similarity matrix obtained from the cosine similarity of P*, where element sf, i
represents the relationship between the i-th channel and the j-th channel in head k. To incorporate
this into the pruning indicator m, we calculate the similarity-based weights w € R as follows:

Ch
k . k 1
w; =1+ lim (E |si’n|p)P7
p=reo n=1,n#1 (2)
w =Concat[w!, w?, -, w"].

For each row, we estimate similarity by applying the Chebyshev norm (L) to the remaining ele-
ments excluding itself. We apply the Chebyshev norm for two main reasons. First, a well-matched
single instance has higher redundancy compared to several less similar ones. Incorporating channel
redundancy into the pruning indicator via weighting in Eq. (3) results in Chebyshev norm values
less than 1, which ensures more stable training. Through this process, w¥ represents the similarity
between the i-th channel and the other channels in head k. If w has a high score for a specific
channel, it indicates the presence of other channels with high similarity, implying that it can be
replaced by those channels. By combining wf, w§, ..., wf, € w" using the concatenation opera-
tion Concat(-), we obtain the similarity-based weight w. These values are weighted in the pruning
indicator as follows:

m'=w®Om 3)
where © represents the element-wise product. Fig. [3(b) illustrates the method for adjusting pruning
indicators. First, the rank for each head is computed according to m*. The score is calculated by
taking the average of m™ with the same rank in each head. This average is then reassigned to the
head positions with the same rank, enabling the adjustment of pruning indicators to share the same
importance score across all heads. Consequently, redundant channels are masked out by passing
through the following indicator function:

1, ifm* <7
I(m*) =4 4
(m”) {0, otherwise. @

Since the same rank across all heads holds the same pruning indicator, the removal of channels
corresponding to each rank is simultaneously determined. This allows training to ensure that pruning
occurs at the same proportion across all heads, thereby preventing channel mismatch.

Under review as a conference paper at ICLR 2025

Channel

e
| Reweight module
0 0 [
— Tanh
Similarity-based Pruning [| 5]
weights indicator m [] .
.;....................._ A ~ ' :
________________________________ L) N . |
inear
0 Attention
----------------------- m apu- [snsn L
Channel C K
annel
toont token Lo JEN NN
nput token s
" &
....................... %
(a) Removed weight compensation (b) Reweight module

Figure 4: Reweight module configuration. (a) The removed channels can be approximated by
the weighted sum of the remaining channels. (b) The reweight module consists of a simple channel
attention structure, which determines the weights that need to be compensated for each channel.

3.2 REWEIGHT MODULE

The removal of channels results in information loss, requiring a method to compensate for this to
minimize performance degradation. As in Fig.[d{a), our method learns indicators by considering the
similarity of channels for each head, and subsequently removes channels based on these values. The
channels being removed can be represented by the weighted sum of the remaining channels, due to
their high similarity with other channels.

Fig.[]b) illustrates the reweight module. The reweighting method employes a simple channel atten-
tion mechanism inspired by SENet (Hu et al.| (2018)). The input token F' € RV*¢ is compressed
into a feature map Fo € R'*¢ by taking the mean. The compressed feature map is encoded into
weights to compensate for each channel through a linear layer and T'anh activation function. This
is multiplied with the query, allowing the passage of information from the removed channels to
the remaining channels. By applying this module, compensation can be provided for the removed
channels, minimizing performance degradation.

3.3 PRUNING INDICATOR INITIALIZATION FOR LINEAR ATTENTION

Unlike original attention in Transformer, linear attention with a computational complexity of
O(NC?), significantly improves in efficiency as channels are removed. Since the channels of linear
attention are likely to be severely removed during the pruning process, it is non-trivial to properly de-
termine an initial constant value to prevent it. Therefore, a sophisticated initialization of the pruning
indicator is required. We introduce a data-driven method to solve the problem. When the embed-
ding vector is received as input, it is projected into query Q € RN*¢ key K € RV*C and value
V € RVXC The relationship between each token QKT can be expressed as a linear combination
of each channel as shown below.

QKTV = (Q1KT + Q2K + -+ QcKL)V. (5)

The importance of each channel Q; KTV can be determined by calculating the matrix distance from
QK™V in Eq. . By projecting Q; K onto V, we compare matrices in RV *¢ instead of RV >/,
significantly reducing computational complexity when N > C. We use the difference in singular
values to measure the matrix distance. Let X7 and X7 be the singular values of the QK TV and the
Q; KV in j-th image of training database, respectively. The importance score of channel i is given
by:

T = |27 - 5| (©)
The pruning indicator is initialized by accumulating the distance differences for each image and
normalizing them between 0 and 1. Using this initialization, we can retain a sufficient number of
channels, ensuring the attention mechanism operates effectively.

Under review as a conference paper at ICLR 2025

3.4 TRAINING AUTOMATIC PRUNING METHOD

In the [-th layer of the Transformer, the pruning module m*!is applied to the original model’s weight
o' € RCn*Cout a5 follows:

ol = (I(m*}) ® o). (7
where o} and 6! denote the weights of the i-th channel in the original and pruned layers, respectively.
I(-) is the indicator function in Eq. . Since I(-) is a non-differentiable binary operation, the
straight-through estimator (STE) is applied in back-propagation, allowing the pruning indicator to
be learned by directly passing the gradient from I(m!) to m*!

The loss for the automatic pruning method is as follows:
L= »CCE(f(x)v y) + EFLOPS (Mprunea Mtarget) (8)

where Lo g is the cross-entropy loss, comparing the model output f(z) for input with the true
label y. FLOPs aware loss Lr1ops is the Euclidean distance between the current pruned model’s
FLOPs, Mp;une and the target FLOPS, M;q,ge:. To compute the current FLOPs, the following
formula is used:
l l l
Mprune = ZNxcmxcout+ Z (NxCyxCr+NxCypxCy)+ Z (N?xC,+N?xC,) (9)
lep leLA leOA

where P denotes the projection matrix layer, and C’in, C’O,ut, and N represent the numbers of re-
maining input and output channels and tokens, respectively. Unlike traditional CNNs, Transformers
have additional computational costs due to the attention mechanism. LA and O A represent linear
attention and original attention, respectively, with Cy, Cy, and C,, indicating the remaining numbers
of query, key, and value channels. Considering the reconfiguration process, the pruning indicator
m™ for query and key projection is shared to ensure they are pruned at the same proportion.

4 EXPERIMENTS

To verify the proposed method, we apply our Automatic Multi-head Attention Pruning (AMAP)
to the FLattenTransformer (Han et al.| (2023)). This network is composed of original attention
blocks from the SwinTransformer (Liu et al.| (2021)) and linear attention blocks. Unlike previous
pruning methods, the proposed approach can be applied to both types of attentions without specific
heuristics. The largest model, AMAP-L, is a compressed model of FLatten-Swin-B, with a size
of 11.1G. AMAP-B compresses the FLatten-Swin-S model to 6.2G, while AMAP-S and AMAP-T
compress the FLatten-Swin-T model to 4.2G and 1.3G, respectively. While other models follow
the hybrid structure of FLattenTransformer, the smallest model, AMAP-T, consists solely of linear
attention to achieve a higher compression ratio. We evaluate the performance of the compressed
models on the classification task using the ImageNet-1K dataset (Deng et al.|(2009)). To compress
the network, we employ a search and refine process. For more detailed information on the training,
please refer to Appendix [Al

4.1 COMPARISON WITH PREVIOUS METHODS

In Table |1, we compare our AMAP models with previous efficient models. Compared to vision
transformer variants, our method demonstrates superior performance with lower computational cost.
For example, AMAP-L outperforms Swin-B and AS-ViT-L (Chen et al.| (2022)) with 30% and 50%
fewer FLOPs, respectively. Notably, compared to DeiT-B (Touvron et al.| (2021a))), it achieves a
1.96% performance gain with 37% fewer FLOPs. AMAP-S achieves 1.05% better performance
than Swin-T (Liu et al.|(2021))) while requiring approximately 10% fewer computations. The most
efficient model, AMAP-T, surpasses DeiT-T by 4.33% and outperforms GLiT-T (Chen et al.|(2021a))
with similar computational resources.

We also compare ours with efficient networks using pruning method. Our proposed method sur-
passes NViT (Yang et al.| (2023)), a human knowledge-based pruning approach, by up to 0.32% at
the same FLOPs. AMAP-L outperforms EviT (Liang et al.|(2022)) by 1.66% with fewer FLOPs and
achieves up to 0.24% improvement over the state-of-the-art DIMAP (He & Zhou| (2024)) with ap-
proximately 20% fewer FLOPs. Furthermore, APMA-B surpasses OFB (Ye et al.|(2024)) by 1.49%

Under review as a conference paper at ICLR 2025

Venue Acc. (%) 1 FLOPs (G) | Venue Acc. (%) 1 FLOPs (G) |

Deil-T ICML 2021 7272 1.3 EViT-DeiT-S ICLR 2022 81.3 3

DeiT-S Touvron et al.|(2021a) 79.8 4.6 EViT-DeiT-B Liang et al.|(2022) 82.1 11.6
DeiT-B 81.8 17.5 UVC-DeiT-S ICLR 2022 78.82 23
T2T-Vil-t-14 ICCV 2021 81.7 6.1 UVC-DeiT-B Yu et al. |(2022b) 80.57 8

T2T-ViT-t-19 Yuan et al.|(2021) 82.4 9.8 ‘WDPruning AAAL 2022 81.8 6.3
T2T-ViT-t-24 82.6 15 WDPruning Yu et al. |(2022a) 82.2 6.8
CaiT-XXS-24 ICCV 2021 77.6 25 WDPruning 8241 7.6
CaiT-XS-24 Touvron et al.|(2021b) 81.8 54 NVIiT-T CVPR 2023 76.21 1.3
CaiT-S-24 82.7 9.4 NVIiT-S Yang et al.|(2023) 82.19 42
CvT-13 ICCV 2021 81.6 4.5 NViT-B 82.95 6.2
CvT-21 Wu et al.|(2021) 82.5 7.1 X-Pruner CVPR 2023 80.7 32
GLIiT-T ICCV 2021 76.3 1.4 X-Pruner Yu & Xiang|(2023) 82 6

GLiT-S Chen et al.|(2021a) 80.5 44 SPViT TPAMI 2024 824 8.4
GLiT-B 823 17 SPViT-Swin-S He et al.|(2024) 82.4 6.1
Swin-T ICCV 2021 81.3 45 OFB-Swin-T CVPR 2024 79.9 2.6
Swin-S Liu et al.|(2021) 83 8.7 OFB-DeiT-B Ye et al.|(2024) 80.3 3.6
Swin-B 83.5 15.4 OFB-DeiT-B 81.7 8.7
AS-VIT-S ICLR 2022 81.2 53 Swin-T-DIMAP1 ICLR 2024 81.71 3.8
AS-ViT-B Chen et al.|(2022) 82.5 8.9 Swin-S-DIMAP1 |He & Zhou|(2024) 83.08 7.5
AS-VIiT-L 83.5 22.6 Swin-B-DIMAP1 83.52 13.2
STViT-Swin-T CVPR 2023 81.0 3.1 AMAP-Swin-T 81.96 4.2
STViT-Swin-S |Chang et al.|(2023) 82.8 59 AMAP-Swin-S 82.72 6.2
STViT-Swin-B 83.2 10.48 AMAP-T 76.53 1.3
Flatten-Swin-T ICCV 2023 82.1 45 AMAP-S 82.35 4.2
Flatten-Swin-S |Han et al. |(2023) 83.5 8.7 AMAP-B 83.19 6.2
Flatten-Swin-B 83.8 154 AMAP-L 83.76 11.1

(a) Vision transformer variants (b) Efficient networks using pruning methods

Table 1: ImageNet-1K results of various efficient models and our method, AMAP. Our approach
demonstrates higher performance at lower FLOPs than both vision transformer variants and efficient
networks using pruning methods.

Acc. (%) T FLOPs (G) | Throughput T Speed up
FLatten-Swin-B|Han et al.[(2023) 83.8 15.4 340 x1
AMAP-L 83.76 (-0.04) 11.1 30%) 463 x 1.4
FLatten-Swin-S 83.5 8.7 492 x1
AMAP-B 83.19 (-0.31) 6.2 (30% |) 663 x 1.3
FLatten-Swin-T 82.1 4.5 805 x 1
AMAP-S 82.35 (+0.25) 42(10% 1) 921 x 1.1
AMAP-T 76.53 (-5.57) 1.3 (70% 1) 1221 x 1.5

Table 2: Comparison between FlattenTransformer and AMAP. All measurements are conducted
under the same computational environment on RTX A6000. Note that AMAP-S achieves better
throughput compared to Flatten-Swin-T, while showing better accuracy.

with 30% fewer FLOPs and obtains performance gains of 1.39% and 1.19% over WDPruning (Yu
et al. (2022a)) and X-Prune (Yu & Xiang| (2023)), respectively, with similar computational cost.
While other networks rely on original attention mechanisms with a computational complexity of
O(N?2C), our method also compresses linear attention-based networks, which have a complexity of
O(NC?). As aresult, even with less channel pruning, it is possible to achieve the same reduction
in computational cost, thereby maintaining a greater expressive capacity.

To demonstrate the general applicability of our method, we apply it to SwinTransformer and com-
pare it with other pruning techniques. AMAP-Swin-T and AMAP-Swin-S are compressed versions
of Swin-T and Swin-S, respectively. With nearly the same FLOPs, AMAP-Swin-S, which com-
presses the original model by 30%, surpasses the previous state-of-the-art X-Pruner (Yu & Xiang
(2023)) by 0.72% and SPVIiT (He et al.|(2024)) by 0.32%. AMAP-Swin-T is more efficient and
achieves around 0.66% better performance compared to Swin-T. These results show that the pro-
posed method can be effectively applied to multi-head attention networks.

We also compare the performance of the state-of-the-art FLattenTransformer (Han et al.| (2023))
backbone with our proposed method applied. AMAP-L and AMAP-B enable near-lossless com-
pression of the FLatten-Swin-B and FLatten-Swin-S models, respectively, reducing computational
cost about 30% with only a 0.04% and 0.31% performance drop. As shown in Table 2] this leads to
a throughput improvement of around 1.3x to 1.4x. AMAP-S achieves a performance gain of 0.25%
over the FLatten-Swin-T model while also reducing computational cost and increasing computation
speed, demonstrating the effectiveness of our method in optimizing model performance.

4.2 ABLATION STUDY

In this section, we show the effectiveness of each module and method by individually removing them
and comparing the performance. All experiments, except the one in Table 3(b), are performed using

Under review as a conference paper at ICLR 2025

Acc. (%)T FLOPs (G) |
AMAP-B 83.19 6.2
Acc. (%)1 FLOPs (G) | AMAP-B T | 82.72 (-0.47) 6.2
Original 76.53 1.3 AMAP-S 82.35 4.5
(-) Reweight module 76.36 (-0.17) 1.3 AMAP-S ' | 82.17 (-0.18) 4.5
(-) Similarity-based weight 75.90 (-0.63) 1.3 AMAP-T 76.53 1.3
(-) Multi-head automatic pruning | 72.78 (-3.75) 1.3 AMAP-T T | 71.04 (-5.49) 13
(a) Impact of each module (b) Impact of pruning indicator initialization

Table 3: Evaluation of the effectiveness of proposed methods. | denotes no initialization. Sig-
nificant performance degradation is observed when each module and method is removed.

Head H

Head

——
Q-proj 707077 0070707 22 %

Head

(
i
i
i

(
i
i
i
i

v

7777777777777, 3.3 8048 % [72222222] 3301 %

Number of channels Number of channels Number of channels

(a) w/o multi-head pruning (b) w/o pruning indicator initialization (c) ours

Figure 5: Pruned model structure after reconfiguration. (a) Without applying multi-head prun-
ing, the pruning ratio for each head is inconsistent, leading to a channel mismatch problem. (b)
Without indicator initialization for linear attention, the attention mechanism does not function prop-
erly. (c) Our proposed method ensures consistent pruning ratios across heads to resolve the channel
mismatch problem and demonstrates effective pruning of each module in appropriate proportions.

AMAP-T, and the experimental setup is consistently configured. The similarity-based weight and
multi-head automatic pruning are proposed in Sec. [3.1] reweight module in Sec. [3.2] and pruning
indicator initialization in Sec.

Multi-head Automatic Pruning In contrast to conventional automatic pruning methods, our pro-
posed approach can remove channels considering the multi-head structure. Without considering
multi-heads, the accuracy drops by 3.75%, indicating a significant performance drop, as shown in
Table 3] (a). In Fig. [5[a), the channels for query, key, and value vary across each head. During
the reconstruction process in the network, where redundant channels are actually removed for real
acceleration, channel mismatch occurs across heads. The almost complete removal of channels in
specific heads leads to restricted representation space and severe performance degradation. On the
other hand, applying our proposed method, as shown in Fig.[5[c), ensures that channels are removed
at the same proportion across heads, thereby preserving the network’s expression capacity.

Similarity-based Weight We analyze the singular value norms of each attention layer in the model
right after the search process. Given the varying number of channels in the model with and without
the similarity-based weight, we calculate the norm of the top three singular values for each head.
Fig. [6] shows that the singular value norms are higher across all layers when the similarity-based
weight is applied. This indicates that the model has eigenvectors of greater significance, enabling it
to inherently extract more distinct features. Consequently, as shown in Table [3{a), the performance
gap between the model using the similarity-based weight and the model without it is a significant
0.63%.

Reweight Module We apply a reweight module to compensate for the information loss that occurs
when channels are removed. As shown in Table 3] (a), when the module is removed in the proposed
automatic pruning method, there is a decrease in accuracy of 0.17% without any change in FLOPs.
Fig. [7] illustrates the attention for tokens with and without applying the module. When applying
the reweight module, the relationship with relevant object tokens strengthens, similar to the original
model, while the relationship with background tokens weakens. The result demonstrates that the
reweight module allows relevant tokens to receive better attention.

Under review as a conference paper at ICLR 2025

Effectiveness of similarity-based weight

144 B With similarity-based weight
N without similarity-based weight

Top-3 singular value

® > 2 » & % © 1 ® ° o >
‘sac““ ﬁoc\‘» aac““ ﬁoc\‘» oon"n ‘.,96"% wzﬂ‘k ‘g#‘“ ant‘» 3&‘§ ‘.,aC"\' aac“‘"

Attention layer
Figure 6: Top-3 singular value norms for each attention layer of the pruned model. When using
similarity-based weights, it demonstrates larger singular value norms. It indicates that when em-
ploying the proposed method, salient channels can be effectively retained.

Without With
Image Query FLattenTransformer reweight module reweight module
' ¥ ‘ B

§] :
? [

[E N]

L ;

y :.; Lo I -
A — : :
B e il

Figure 7: The effect of the reweight module. The red block represents the query token, while the
blue blocks depict the relationship between this query token and other tokens. It demonstrates that
the reweight module can compensate for information loss caused by pruning.

Pruning Indicator Initialization for Linear Attention Fig. [5(b) shows the model structure ob-
tained from the search process when the pruning indicator for linear attention is not initialized. It
illustrates that channels of the projection matrix for the query and key are severely pruned, whereas
the feed-forward network is not pruned. This imbalance leads to improper operation of the attention
mechanism. In contrast, Fig. Ekc) demonstrates how our method alleviates such issues. Table|3| (b)
presents the impact of pruning indicator initialization across various sizes of our models. In the
highly compressed AMAP-T model, without pruning indicator initialization, there is a significant
performance degradation of 5.49%. For AMAP-B and AMAP-S, the performance drops by 0.47%
and 0.18%, respectively, showing less impact compared to the model with higher compression.
However, there is still observable performance improvement, demonstrating the effectiveness of our
proposed initialization method.

5 CONCLUSION

In this paper, we introduce an AMAP (Automatic Multi-head Attention Pruning) method. Integrat-
ing similarity weights into the trainable scheme allows us to progressively achieve a more optimal
structure compared to other pruning methods that rely on deterministic metrics. Through an ablation
study, we validate the impact of the proposed similarity-based pruning indicator, reweight module,
and initialization method. Comparative analysis against vision transformer variants and previous
pruning methods demonstrates the superior efficiency and performance trade-off of AMAP.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster. arXiv preprint arXiv:2210.09461, 2022.

Shuning Chang, Pichao Wang, Ming Lin, Fan Wang, David Junhao Zhang, Rong Jin, and
Mike Zheng Shou. Making vision transformers efficient from a token sparsification view. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6195—
6205, 2023.

Boyu Chen, Peixia Li, Chuming Li, Baopu Li, Lei Bai, Chen Lin, Ming Sun, Junjie Yan, and Wanli
Ouyang. Glit: Neural architecture search for global and local image transformer. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 12-21, 2021a.

Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, and Zhangyang Wang. Chasing sparsity
in vision transformers: An end-to-end exploration. Advances in Neural Information Processing
Systems, 34:19974-19988, 2021b.

Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, and Denny Zhou. Auto-
scaling vision transformers without training. In International Conference on Learning Represen-
tations, 2022.

Yanqi Chen, Zhengyu Ma, Wei Fang, Xiawu Zheng, Zhaofei Yu, and Yonghong Tian. A unified
framework for soft threshold pruning. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=cCFgcrg0ds8.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp- 248-255, 2009. doi: 10.1109/CVPR.2009.5206848.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Shanggian Gao, Zeyu Zhang, Yanfu Zhang, Feihu Huang, and Heng Huang. Structural alignment
for network pruning through partial regularization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 17402-17412, 2023.

Jianyuan Guo, Kai Han, Han Wu, Yehui Tang, Xinghao Chen, Yunhe Wang, and Chang Xu. Cmt:
Convolutional neural networks meet vision transformers. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp. 12175-12185, 2022.

Dongchen Han, Xuran Pan, Yizeng Han, Shiji Song, and Gao Huang. Flatten transformer: Vi-
sion transformer using focused linear attention. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5961-5971, 2023.

Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. Neighborhood attention trans-
former. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 6185-6194, 2023.

Haoyu He, Jianfei Cai, Jing Liu, Zizheng Pan, Jing Zhang, Dacheng Tao, and Bohan Zhuang. Prun-
ing self-attentions into convolutional layers in single path. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Yang He and Joey Tianyi Zhou. Data-independent module-aware pruning for hierarchical vision
transformers. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=7016foUilG.

Zejiang Hou, Minghai Qin, Fei Sun, Xiaolong Ma, Kun Yuan, Yi Xu, Yen-Kuang Chen, Rong
Jin, Yuan Xie, and Sun-Yuan Kung. Chex: Channel exploration for cnn model compression.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12287-12298, 2022.

11

https://openreview.net/forum?id=cCFqcrq0d8
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=7Ol6foUi1G

Under review as a conference paper at ICLR 2025

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132-7141, 2018.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=rkgNKkHtvB.

Donghyeon Lee, Eunho Lee, and Youngbae Hwang. Pruning from scratch via shared pruning mod-
ule and nuclear norm-based regularization. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pp. 1393-1402, 2024.

Yanyu Li, Pu Zhao, Geng Yuan, Xue Lin, Yanzhi Wang, and Xin Chen. Pruning-as-search: Efficient
neural architecture search via channel pruning and structural reparameterization. In Thirty-First
International Joint Conference on Artificial Intelligence, 2022.

Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, and Radu Timofte. Dhp: Differentiable meta
pruning via hypernetworks. In Computer Vision—-ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23-28, 2020, Proceedings, Part VIII 16, pp. 608—624. Springer, 2020.

Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song, Jue Wang, and Pengtao Xie. Not all patches
are what you need: Expediting vision transformers via token reorganizations. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=BjyvwnXXVn_.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling
Shao. Hrank: Filter pruning using high-rank feature map. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 1529-1538, 2020.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012-10022, 2021.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and Jian
Sun. Metapruning: Meta learning for automatic neural network channel pruning. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 3296-3305, 2019.

Jiachen Lu, Jinghan Yao, Junge Zhang, Xiatian Zhu, Hang Xu, Weiguo Gao, Chunjing Xu, Tao
Xiang, and Li Zhang. Soft: Softmax-free transformer with linear complexity. Advances in Neural
Information Processing Systems, 34:21297-21309, 2021.

Muhammad Maaz, Abdelrahman Shaker, Hisham Cholakkal, Salman Khan, Syed Waqas Zamir,
Rao Muhammad Anwer, and Fahad Shahbaz Khan. Edgenext: efficiently amalgamated cnn-
transformer architecture for mobile vision applications. In European Conference on Computer
Vision, pp. 3-20. Springer, 2022.

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng
Kong, and Yiran Zhong. cosformer: Rethinking softmax in attention. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
B18CQrx2Up4l

Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, and
Fahad Shahbaz Khan. Swiftformer: Efficient additive attention for transformer-based real-time
mobile vision applications. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 17425-17436, 2023.

Quan Tang, Bowen Zhang, Jiajun Liu, Fagui Liu, and Yifan Liu. Dynamic token pruning in plain
vision transformers for semantic segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 777-786, 2023.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347-10357. PMLR, 2021a.

12

https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=BjyvwnXXVn_
https://openreview.net/forum?id=BjyvwnXXVn_
https://openreview.net/forum?id=Bl8CQrx2Up4
https://openreview.net/forum?id=Bl8CQrx2Up4

Under review as a conference paper at ICLR 2025

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going
deeper with image transformers. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 3242, 2021b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. In Proceedings of the IEEE/CVF international conference on computer vision, pp.

568-578, 2021.

Siyuan Wei, Tianzhu Ye, Shen Zhang, Yao Tang, and Jiajun Liang. Joint token pruning and squeez-
ing towards more aggressive compression of vision transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2092-2101, 2023.

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:
Introducing convolutions to vision transformers. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 22-31, 2021.

Zhuofan Xia, Xuran Pan, Shiji Song, Li Erran Li, and Gao Huang. Vision transformer with de-
formable attention. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 47944803, 2022.

Xia Xiao, Zigeng Wang, and Sanguthevar Rajasekaran. Autoprune: Automatic network pruning by
regularizing auxiliary parameters. Advances in neural information processing systems, 32, 2019.

Huanrui Yang, Hongxu Yin, Maying Shen, Pavlo Molchanov, Hai Li, and Jan Kautz. Global vision
transformer pruning with hessian-aware saliency. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 18547-18557, 2023.

Hancheng Ye, Chong Yu, Peng Ye, Renqiu Xia, Yansong Tang, Jiwen Lu, Tao Chen, and Bo Zhang.
Once for both: Single stage of importance and sparsity search for vision transformer compression.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
5578-5588, 2024.

Haoran You, Yunyang Xiong, Xiaoliang Dai, Bichen Wu, Peizhao Zhang, Haoqi Fan, Peter Vajda,
and Yingyan Celine Lin. Castling-vit: Compressing self-attention via switching towards linear-
angular attention at vision transformer inference. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14431-14442, 2023.

Fang Yu, Kun Huang, Meng Wang, Yuan Cheng, Wei Chu, and Li Cui. Width & depth pruning for
vision transformers. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp- 3143-3151, 2022a.

Lu Yu and Wei Xiang. X-pruner: explainable pruning for vision transformers. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 24355-24363, 2023.

Shixing Yu, Tianlong Chen, Jiayi Shen, Huan Yuan, Jianchao Tan, Sen Yang, Ji Liu, and Zhangyang
Wang. Unified visual transformer compression. In International Conference on Learning Repre-
sentations, 2022b. URL https://openreview.net/forum?id=93s721iUgkCZP.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH Tay, Jiashi
Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
imagenet. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
558-567, 2021.

Mingjian Zhu, Yehui Tang, and Kai Han. Vision transformer pruning. arXiv preprint
arXiv:2104.08500, 2021.

13

https://openreview.net/forum?id=9jsZiUgkCZP

Under review as a conference paper at ICLR 2025

A TRAINING DETAILS

Pruning indicator m m* &h
m —
Q Q Q —
Network Similarity-based weights Reasslgn score -
-'
Clunnel
CE Loss MAC Loss
Lnyer
(a) Pruning indicator initialization (b) Multi-head automatic pruning (c) Training loss

Figure 8: Search pipeline. To perform network search, (a) we initialize the pruning indicator, (b)
apply multi-head automatic pruning to mask unnecessary channels, and (c) train the network using
cross-entropy loss and FLOPs loss.

WG 555+ opie o
of00 e[oo

(a) Reconstruction (b) Add reweight module (c) Retraining the pruned network

Figure 9: Refine pipeline. To accelerate the retraining process, (a) we reconstruct the network
and (b) add a reweight module to compensate for information loss. Then, (c) we retrain the pruned
network.

To compress the network, we perform search and refine process. The search process involves de-
termining the efficient network through an automatic pruning module over 30 epochs. We use the
AdamW optimizer, starting with a learning rate of 5e-4 and decaying to 5e-6, with a weight decay
set to le-6. The batch size is 1024, and the training is conducted on 8 RTX A6000 GPUs. The refine
process aims to recover any information loss during the search phase. Except for setting the weight
decay, the experimental setup remains the same as in the search process. AMAP-L, AMAP-B and
AMAP-S apply a weight decay of 0.05, while AMAP-T uses a weight decay of 1e-6 to minimize
additional sparsity. In all experiments, the threshold 7 for the indicator function is set to 0.5.

The proposed method for compressing the network involves a two-step process: a search to find
the efficient structure and a refinement to restore the loss information. Fig. [§]illustrates the search
pipeline. First, the pruning indicator is initialized (Sec.[3.3). Then, the proposed similarity-based
weights are computed, and an automatic pruning method is applied to reassign the scores for all
heads using the pruning indicator, masking unnecessary channels (Sec. [3.I). During the search
process, cross-entropy loss for classification and FLOPs loss to achieve the target compression rate
are used to train the network (Sec. [3.4).

After the search process, the refinement procedure to restore network performance is shown in Fig[9]
To accelerate retraining, the network is reconstructed based on the structure obtained during the
search process. Reweight modules are added to compensate for the information loss caused by
pruning (Sec. [3.2)). Subsequently, the network is trained using cross-entropy loss.

Table[A]shows the time required for the Search and Refine processes. The experiments are conducted
using the Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz for the CPU and the NVIDIA RTX A6000

14

Under review as a conference paper at ICLR 2025

Search time (hours) Refine time (hours)
AMAP-L 17 110
AMAP-B 10 69
AMAP-S 7 48
AMAP-T 7 42

Table 4: The computing hours for the search and refine processes.

49GB for the GPU. The largest model, AMAP-L, requires 17 hours for the search process and
110 hours for the refine process. AMAP-B requires 12 hours for model search, and an additional
72 hours for the refine process to recover information loss. Since AMAP-S and AMAP-T prune
FLatten-Swin-T, their search time is the same at 7 hours. After pruning, AMAP-S and AMAP-T
require 48 hours and 42 hours, respectively, in the refine process.

15

	Introduction
	Related Works
	Efficient Vision Transformer
	Network Pruning

	Method
	Multi-head Automatic Pruning
	Reweight Module
	Pruning Indicator Initialization for Linear Attention
	Training Automatic Pruning Method

	Experiments
	Comparison with Previous Methods
	Ablation Study

	Conclusion
	Training details

