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Abstract
We study the cross-domain RL (CDRL) prob-
lem from the perspective of preference-based
learning. We identify the critical correspondence
identifiability issue (CII) in the existing unsuper-
vised CDRL methods and propose to mitigate CII
with the weak supervision of preference feedback.
Specifically, we propose the principle of cross-
domain preference consistency (CDPC), which
can serve as additional guidance for learning a
proper correspondence between the source and
target domains. To substantiate the principle of
CDPC, we present an algorithm that integrates
a state decoder learned by the preference con-
sistency loss during training and a cross-domain
MPC method for action selection during infer-
ence. Through extensive experiments in both Mu-
JoCo and Robosuite, we demonstrate that CDPC
can achieve effective and data-efficient knowledge
transfer across domains than the state-of-the-art
CDRL benchmark methods.

1. Introduction
Reinforcement Learning (RL) has shown impressive suc-
cess on a wide range of tasks, encompassing both discrete
and continuous control scenarios, such as game playing
(Mnih et al., 2015; Silver et al., 2016; Vinyals et al., 2019)
and robot control (Levine et al., 2016; Tobin et al., 2017).
However, solving these tasks in a data-efficient manner has
remained a significant challenge in RL, mainly due to the
need for extensive online trial-and-error interactions and the
resulting prolonged training periods. To alleviate the data
efficiency issue, one natural and promising approach is to
reuse the control policies learned on similar tasks for fast
knowledge transfer. Built on this intuition, cross-domain
reinforcement learning (CDRL) offers a generic formula-
tion that extends the applicability of transfer learning to RL,
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where the source domain and the target domain can have
different transition dynamics as well as distinct state-action
representations. With access to the source domain (either
the data samples or the environment) and the pre-trained
source-domain models (either policies or value functions),
CDRL aims to transfer the knowledge acquired from the
source domain to the target domain in a data-efficient man-
ner. This adaptability of CDRL is crucial for overcoming
the data inefficiency in conventional RL, offering a more
flexible and resource-efficient solution.

Several recent attempts on CDRL (Zhang et al., 2021a; Gui
et al., 2023) have demonstrated the possibility of direct
policy transfer by learning the state-action correspondence
between domains, or essentially a mapping function, from
unpaired trajectories in a fully unsupervised manner (i.e.,
no reward signal available in the target domain). For ex-
ample, (Gui et al., 2023) proposes to learn the state-action
correspondence (i.e., a target-to-source state decoder and a
source-to-target action encoder) by minimizing a dynamic
cycle consistency loss, which is meant to align the one-step
transition of the unpaired trajectories from the two domains.
These unsupervised approaches can serve as powerful RL
solutions in practice as it is widely known that the reward
design can require substantial efforts and hence be rather
time-consuming. Despite the progress, we identify that this
unsupervised approach can be prone to the correspondence
identifiability issue (CII). To illustrate this, we provide a
toy example of a gridworld as shown in Figure 1. This
phenomenon indicates that without any supervision from
the target domain, learning the state-action correspondence
can be an underdetermined problem. As a result, there is
one important research question to be answered: How to
address the correspondence identifiability issue in cross-
domain transfer for RL with only weak supervision?

In this paper, we answer the above question from the per-
spective of cross-domain preference-based RL (CD-PbRL).
Specifically, we present a new CDRL setting where the
agent in the target domain can receive additional weak super-
vision signal in the form of preferences over trajectory pairs.
The primary motivation for proposing the method is the com-
plexity involved in designing a reward function for most
RL environments. Particularly, the target domain is often
unknown and more complex compared to the source domain.
Therefore, we aim to achieve transfer learning without re-
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lying on reward information. Inspired by a series of papers
on large language models (LLMs) (Memarian et al., 2021;
Liu et al., 2023; Chakraborty et al., 2023; Sun et al., 2023b)
and existing preference-based RL (PbRL) methods (Wirth
et al., 2017; Busa-Fekete & Hüllermeier, 2014; Kamishima
et al., 2010; Wirth & Fürnkranz), we believe that human
preference can be used to solve RL problems. Furthermore,
by maintaining the consistency of preferences across the
two domains, we aim to address the CDRL problem. Ac-
cordingly, we present a systematic approach that effectively
leverages this preference signal to tackle the identifiability
issue. Specifically, we propose the framework of Cross-
Domain Preference Consistency (CDPC), which can better
learn the state-action correspondence by enforcing the tra-
jectory preferences to be consistent across the two domains.
The proposed CDPC framework consists of two major com-
ponents: (i) Target-to-source state decoder: To enable the
reuse of a source-domain pre-trained policy (denoted by
πsrc), CDPC learns a target-to-source state decoder (denoted
by ϕ−1). To learn ϕ−1 without suffering from CII, CDPC
utilizes a cross-domain pairwise preference loss (or equiva-
lently the negative log-likelihood), which is calculated with
respect to the source-domain trajectories induced by ϕ−1

with the target-domain preferences as our labels. Compared
to the existing unsupervised CDRL, this loss function of-
fers additional constraints for the state decoder such that
the identifiability issue can be mitigated. (ii) Cross-domain
model predictive control for inference: During inference, we
propose to leverage the learned state decoder and determine
the target-domain actions by planning via model-predictive
control (MPC). Specifically, at each time step, we gener-
ate multiple synthetic target-domain trajectories of finite
length (with the help of a learned dynamics model) and
choose the first action of the best trajectory. Different from
the standard MPC, the proposed cross-domain MPC uses
the source-domain reward of the source-domain trajectory
induced by the state decoder as the selection criterion for
MPC. With this design, there is no need to learn the action
correspondence between source and target domains. More-
over, this framework is general in the sense that it can be
integrated with any enhancements of MPC.

The main contributions can be summarized as follows:

• We identify the correspondence identifiability issue of
cross-domain RL and the need for including weak super-
vision in cross-domain knowledge transfer. To address
this issue, we propose a formulation termed cross-domain
preference-based RL, where the preferences over trajecto-
ries are available as an additional weak supervision signal.

• To solve CD-PbRL, we propose a generic framework
based on the concept of cross-domain preference con-
sistency or CDPC. To substantiate CDPC, we learn a
target-to-source state decoder by using a pairwise ranking

Figure 1. An illustrative example of the correspondence iden-
tifiability issue: Let the source domain and the target domain be
a 3× 3 gridworld (with the goal state at the bottom-right corner),
represented in decimal numbers and binary numbers, respectively.
The two domains share the same action representation. Let (ϕ−1

α )
and (ϕ−1

β ) be two candidate state decoders that map the trajectory
τ into the trajectory τ ′

α and τ ′
β , respectively. One can verify that

both decoders achieve zero dynamics cycle consistency loss. How-
ever, it is difficult to distinguish whether τ ′

α or τ ′
β is better in terms

of goal-reaching, indicating an identifiability issue when training
the decoder solely based on dynamic cycle consistency loss. The
detailed explanation is provided in Appendix A.

loss during training and determine the target actions by
cross-domain MPC during inference.

• Through extensive experiments in both MuJoCo loco-
motion tasks and the robot arm manipulation tasks in
Robosuite, we demonstrate that CDPC can achieve more
effective knowledge transfer across domains than the state-
of-the-art CDRL benchmark methods. Additionally, we
provided an ablation study to verify the importance of
preference consistency.

2. Related Work
Cross-Domain Knowledge Transfer in RL. Cross-domain
transfer in RL (Taylor & Stone, 2009; Zhu et al., 2023; Ser-
rano et al., 2024) is an area of research within reinforcement
learning (RL) that specifically addresses the challenge of
transferring learned policies or value functions from one
domain to another, even when there are disparities in state-
action dimensions between the domains. Cross-domain
transfer learning can be divided into imitation learning (Kim
et al., 2020; Fickinger et al., 2021; Raychaudhuri et al.,
2021) and transfer learning. Transfer learning itself can be
further categorized into single-source transfer (Ammar &
Taylor, 2012) and multiple-source transfer (Ammar et al.;
Qian et al., 2020; Talvitie & Singh, 2007; Serrano et al.,
2021). From the perspective of what is being transferred,
which means the known information, it can be generally
divided into demonstrations (Ammar et al., 2015; Shankar
et al., 2022; Watahiki et al., 2023), policy (Wang et al., 2022;
Yang et al., 2023; Gui et al., 2023; Chen et al., 2024), pa-
rameters (Devin et al., 2017; Zhang et al., 2021b), and value
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function (Torrey et al., 2008; Taylor et al., 2008).

Common practices to solve CDRL under different state and
action representations include leveraging cycle consistency
and transition between states and actions across two do-
mains to discover mapping functions (Zhang et al., 2021a;
You et al., 2022; Li et al., 2022; Wu et al., 2022; Raychaud-
huri et al., 2021; Gui et al., 2023), or employing adversarial
training techniques to identify mapping relationships be-
tween states and actions in the source and target domains
(Gui et al., 2023; Li et al., 2022; Wulfmeier et al., 2017;
Mounsif et al., 2020; Raychaudhuri et al., 2021; Watahiki
et al., 2022).

Preference-based RL (PbRL). PbRL (Wirth et al., 2017;
Busa-Fekete & Hüllermeier, 2014; Kamishima et al., 2010;
Wirth & Fürnkranz) is a popular RL setting that focuses
on learning policies or value functions from preferences
rather than explicit reward signals. One common approach
is to model the preference feedback as a binary classifica-
tion problem (Lee et al.; 2021; Akrour et al., 2011; Pilarski
et al., 2011; Akrour et al., 2012; Wilson et al., 2012; Ibarz
et al., 2018). PBRL has been applied to various real-world
domains, including personalized recommendation systems
(Li et al., 2010), interactive learning from human feedback
(Knox & Stone, 2009), and robot learning from human pref-
erences (Warnell et al., 2018). Besides, PBRL can also be
employed for automatic summarization of articles (Stiennon
et al., 2020). This approach enables the model to acquire
sophisticated summarization techniques through preference-
based learning (Stiennon et al., 2020; Ouyang et al., 2022;
Achiam et al., 2023; Lee et al., 2023; Kirk et al., 2023; Sun
et al., 2023a). Beyond its application in large language mod-
els, preference-based techniques are also commonly utilized
in training RL agents (Memarian et al., 2021; Liu et al.,
2023; Chakraborty et al., 2023; Sun et al., 2023b). By lever-
aging human feedback to train reward functions, these tech-
niques enable RL agents to approximate real-world rewards
more accurately, guiding the agents towards convergence to
an optimal policy.

3. Preliminaries
In this section, we first describe the standard problem for-
mulation of preference-based RL and proceed to present
the proposed extended version of preference-based RL for
cross-domain transfer. Throughout this paper, for any set
X , we use ∆(X ) to denote the set of all probability distri-
butions over X . In this work, as in typical RL, we model
each domain as a Markov decision process (MDP) denoted
by M = (S,A, T , R, µ, γ), where S and A denote the
state space and action space, T : S ×A → ∆(S) is the
transition kernel that maps each state-action pair to a prob-
ability distribution over the next state, R : S ×A → R
denotes the reward function, µ ∈ ∆S is the initial state

distribution, and γ ∈ (0, 1] is the discount factor. Let
π : S → ∆(A) denote the policy of the RL agent and
let τ = (s0, a0, r1, · · · ) denote a trajectory generated under
π in the domainM. Given a trajectory τ , we slightly abuse
the notation and use R(τ) to denote the total expected re-
ward accrued along τ , i.e., R(τ) :=

∑∞
t=0R(st, at). Let

Π denote the set of all stationary Markov policies. We
define the expected total discounted reward under π as
V π
M(µ) := E[

∑∞
t=0 γ

tR(st, at)|s0 ∼ µ, π]. Let π∗
M :=

argmaxπ∈Π V
π
M(µ) be an optimal policy forM in that it

maximizes the expected total discounted reward.

3.1. Problem Formulation of Preference-based RL

In the standard PbRL, the environment is modeled as an
MDP M = (S,A, T , R, µ, γ) as usual. Moreover, the
goal of PbRL remains the same as the standard reward-
based RL, i.e., finding an optimal policy π∗

M that maximizes
V π
M(µ). Despite the existence of an underlying true reward

function (so that the RL objective function is well-defined),
in the PbRL setting, the reward function R is hidden and
not observable to the learner during training. Nevertheless,
given two trajectories τ and τ ′, the learner can receive the
(possibly randomized) preference over τ and τ ′, which is
determined by the total expected reward R(τ) and R(τ ′)
along the trajectories. For notional convenience, we use
τ ≻ τ ′ (or an equivalent expression τ ′ ≺ τ ) to denote the
event that τ is preferred over τ ′. Note that a probability
preference model P(τ, τ ′;R) is typically needed to specify
the likelihood of the event τ ≻ τ ′. For example, under the
celebrated Bradley-Terry model (Bradley & Terry, 1952),
we have P(τ, τ ′;R) := 1/(1 + exp(R(τ ′) − R(τ))). We
assume that under the preference model, for any pair of
trajectories τ, τ ′, either the event τ ≻ τ ′ or τ ′ ≻ τ would
happen at each time.

To solve PbRL, one popular way is to adopt a two-stage
approach, where we first learn the underlying true reward
function from the preference feedback and then apply an
off-the-shelf RL algorithm for policy learning. Under a pref-
erence model P(τ, τ ′;R), a reward model R̂ can be learned
by maximizing the log-likelihood, i.e., given a dataset of
trajectories D,

R̂ = argmaxR′:S ×A→R Eτ,τ ′∈D,τ≻τ ′
[
logP(τ, τ ′;R′)

]
.

(1)
This approach has been widely used in the fine-tuning of
large language models with RLHF (Ouyang et al., 2022).

3.2. Problem Formulation of Cross-Domain
Preference-based RL

In this section, we formally present the proposed CDPbRL
problem. Specifically, we extend the standard (unsuper-
vised) CDRL problem, which aims to achieve knowledge
transfer from a source domain to another target domain,
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to the scenario where the preferences over trajectories are
available as weak supervision in the target domain. The
source and target domains are modeled as follows:

• Source domain: As usual, we model the source domain
as an MDPMsrc = (Ssrc,Asrc, T src, Rsrc, µsrc, γ)

1. For
efficient knowledge transfer, the source-domain is typi-
cally an environment that is cheap and easy to access, e.g.,
a simulator. Accordingly, we presume that the learner has
full access to the source-domain environment and hence
can collect data samples and obtain a pre-trained source-
domain policy πsrc. This setting has been adopted by most
of the existing CDRL literature (Xu et al., 2023).

• Target domain: Similar to the source domain, the
target domain is modeled as an MDP Mtar =
(S tar,Atar, T tar, Rtar, µtar, γ). Notably, the target-domain
MDP can differ from source-domain MDP in both transi-
tion dynamics and the state-action representations. Here
we only assume that the two domains share the same
discount factor, which is a fairly mild condition. In the
standard unsupervised CDRL setting (Zhang et al., 2021a;
Gui et al., 2023), the learner is given a set of target-domain
trajectories Dtar = {τi}Di=1 collected under some behav-
ior policy. Moreover, due to the unsupervised setting, the
reward function Rtar is assumed to be unobservable to the
learner, and hence Dtar only contains information about
the visited state-action pairs. Notably, this formulation
can suffer from the identificability issue by nature as de-
scribed in Section 1. By contrast, built on the CDRL,
the CD-PbRL formulation additionally includes that the
learner can further receive preference information about
pairs of trajectories in the target domain, despite the un-
known true rewards. The goal of CD-PbRL is again to
find an optimal policy π∗

Mtar
:= argmaxπ∈Πtar V

π
Mtar

(µtar)
for the target domain.

4. Methodology
In this section, we formally present the proposed algorithm
for the CD-PbRL problem. We start by describing the pro-
posed CDPC principle and thereafter provide the imple-
mentation of the training and inference procedure of the
resulting CDPC algorithm.

4.1. Cross-Domain Preference Consistency

To mitigate the correspondence identifiability issue, we pro-
pose to constrain the learning of state correspondence by
preference consistency, which is meant to ensure that the
preference ordering of the corresponding trajectories in the
two domains remains consistent. An illustration of the

1Throughout this paper, we use the subscripts “src” and “tar” to
denote the objects of the source and the target domain, respectively.

CDPC principle is provided in Figure 2. To better moti-
vate this, we can think of an analogy in language modeling:
We can interpret τi and τj as two sentences written in Ger-
man. The state decoder acts like a translator, converting a
German sentence into one in English. If τi is more aligned
with natural human language in German than τj , then after
translation by the decoder, τ ′i is expected to be also more
natural and fluent than τ ′j in English expression. The above
characteristic can be used as an additional requirement to
identify the inter-domain state correspondence.

Figure 2. The principle of cross-domain preference consistency:
Let τi and τj be two target-domain trajectories. If τi is preferred
over τj , which means it has a higher total return, then the trajec-
tories transformed through a state decoder ϕ−1 shall maintain the
same preference, i.e., ϕ−1(τi) shall be preferred over ϕ−1(τj).

Based on the concept of CDPC, here we provide an overview
of the proposed algorithm, which consists of the following
two major building blocks:

• (Training) Learning a target-to-source state decoder
by preference consistency: As in typical CDRL meth-
ods, our CDPC framework also learns a state decoder
ϕ−1 : S tar → Ssrc such that actions taken in Mtar can
be determined through knowledge transfer from a source-
domain policy. Recall from Section 1 that fully unsuper-
vised CDRL methods, where the state decoder is learned
solely based on dynamics alignment (Gui et al., 2023)
or reconstruction (Zhang et al., 2021a), can suffer from
the identifiability issue. As a result, we propose to learn
the state decoder based on the CDPC principle, which
serves as an additional criterion for learning the state cor-
respondence across domains. Specifically, to learn the
state decoder2 ϕ−1

θ : S tar → Ssrc (parameterized by θ),
we construct a cross-domain loss function based on the
pairwise ranking idea in PbRL as follows:

Lpref(θ) := Eτi,τj∼Dtar

[
log

(
1+eRsrc(ϕ−1

θ (τj))−Rsrc(ϕ−1
θ (τi))

)]
.

(2)
2Here we use the term “decoder” as this mapping function is

typically learned based on an autoencoder network architecture.
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The preference loss function in (2) resembles (1) of PbRL
but with one major difference: the preference consistency
is captured through the state decoder ϕ−1

θ . This preference
loss function can be used in conjunction with any other off-
the-shelf loss function for unsupervised CDRL, such as
dynamics cycle consistency or reconstruction loss (Zhang
et al., 2021a). More implementation details of the state
decoder are described in Section 4.2.

• (Inference) Selecting target-domain actions by MPC in
target domain with cross-domain trajectory optimization:
With a properly learned state decoder, the next step is to
transfer the pre-trained source-domain policy πsrc to the
target domain. Notably, one naive approach is to simply
learn an additional action encoder ψ : Asrc → Atar (e.g.,
similarly by preference consistency) such that given any
state s ∈ S tar, a target-domain action can be induced by
ψ(asrc) with asrc ∼ πsrc(ϕ

−1(s)), as also adopted by (Gui
et al., 2023). However, this approach can suffer from
inaccurate preference correspondence. The details about
this naive approach are provided in Appendix B.

To better leverage the CDPC principle in selecting actions
in the target domain, we propose to enforce knowledge
transfer from the perspective of planning. Specifically,
we use MPC in the target domain with the help of cross-
domain trajectory optimization (CDTO). The details im-
plementation is provided in Section 4.3.

4.2. Training Phase of CDPC: Learning a State Decoder

In the CD-PbRL setting, a well-trained state decoder ϕ−1
θ

should satisfy the following characteristics: (i) ϕ−1
θ shall be

able to ensure preference consistency between trajectories
and (ii) meet the original cycle consistency conditions in
both state construction and dynamics alignment. To learn
the state decoder, we use the preference consistency loss
as described in Section 4.1 as well as the dynamics cycle
consistency loss and reconstruction loss.

• Dynamics cycle consistency loss: One common prin-
ciple of learning state-action correspondence is through
dynamics alignment, i.e., the next state obtained by the
state decoder shall be consistent with that generated under
the source-domain transition dynamics. Specifically, in
this work, we use the following loss function to capture
dynamics cycle consistency:

Ldcc(θ) = E
[ ∥∥T src

(
ϕ−1
θ (s) , a

)
− ϕ−1

θ (s′)
∥∥2 ], (3)

where the expectation is over the randomness of s, s′ ∼
Dtar and a ∼ πsrc(·|ϕ−1(s)).

• Reconstruction loss: Additionally, the reconstruction
loss (Zhang et al., 2021a; Gui et al., 2023; Zhu et al.,

2017) is widely used in cross-domain tasks for its several
advantages: (i) It acts as a regularization term, encour-
aging the decoder to produce outputs closely resembling
the input data. This enhances reconstruction quality and
generalization across domains. (ii) The loss fosters model
stability by promoting consistency between input and
reconstructed outputs, even in the presence of noise or
domain variations. Minimizing the reconstruction loss
leads to a more compact and meaningful data representa-
tion, facilitating better transfer learning and generalization
capabilities. The reconstruction loss is defined as

Lrec(θ) := E
[ ∥∥ϕω (

ϕ−1
θ (s)

)
− s

∥∥2 ], (4)

where the expectation is over the randomness of the state
s drawn from the target-domain dataset Dtar. Note that
we presume the use of an autoencoder, where ϕ and ω rep-
resent the parameters of the state decoder and encoder, re-
spectively. As we only need the decoder for inference, we
ignore the dependency of Lrec(θ) on ω in (4) for brevity.

In summary, the total loss of the state decoder can be ex-
pressed as follows:

Ltotal(θ) = Lpref(θ) + β1Ldcc(θ) + β2Lrec(θ), (5)

where β1 > 0 and β2 > 0 are the weights for balancing the
three loss terms. The overall pseudocode are provided in
Algorithm 1.

4.3. Inference Phase of CDPC: Cross-Domain MPC

During the inference phase, given a well-trained state
decoder, we propose to determine target-domain actions
through planning via cross-domain MPC, which consists of
two major components:

• Cross-domain trajectory optimization (CDTO): As in
typical MPC, at each time step t, based on the current
observation st, we determine the action at by (i) gener-
ating multiple synthetic trajectories of length h with st
as the starting state (denoted by D(t)) in the target do-
main, and then (ii) selecting one trajectory τ from D(t)

based on some performance metric, and (iii) choosing the
first action of τ as the action at. Notably, to implement
(ii), we propose to use the source-domain reward of the
source-domain trajectory induced by the state decoder as
the selection criterion for MPC.

• Generation of synthetic trajectories for cross-domain
MPC: To implement the subroutine (i) in CDTO, we
also learn two helper models based on the target-domain
dataset Dtar, namely a target-domain dynamics model
(learned in a standard way by minimizing squared errors
of next-state prediction) and a target-domain policy by
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Figure 3. An illustration of cross-domain MPC: During inference, based on the current state st, we generate m synthetic trajectories of
length h by using a learned target-domain dynamics model and utilizing a behavior-cloned policy πι from Dtar. These m trajectories
are then mapped into the corresponding source trajectories using the trained state decoder ϕ−1

θ . We compute the total return for each
trajectory separately using the source-domain reward function (available in the cross-domain RL setting). Finally, the first action a∗

1 from
the sequence with the highest total return is adopted.

behavior cloning. This can be viewed as a variant of
the random shooting technique in the model-based RL
literature (e.g., (Nagabandi et al., 2018; 2020)) but with a
behavior-cloned policy.

The cross-domain MPC approach is illustrated in Figure 3.
Remark 4.1. Note that here we choose the most basic variant
of MPC during inference mainly to show the effectiveness
of CDPC framework. The proposed framework can be
readily enhanced and integrated with more sophisticated
MPC methods, such as the popular cross-entropy method
(Botev et al., 2013) and the filtering and reward-weighted
refinement (Nagabandi et al., 2020).

The overall pseudocode are provided in Algorithm 2.

4.4. Algorithm

5. Experimental Results
5.1. Experimental Configuration

Environment Domains. We utilize MuJoCo and Robosuite
to simulate robot locomotion and manipulation, respectively.
While MuJoCo and Robosuite already have pre-configured
reward functions, given the CD-PbRL problem setting, we
will not utilize them during training; they will only serve as
performance metrics for evaluation.

• MuJoCo. We consider three MuJoCo tasks, namely
Reacher, HalfCheetah, and Walker. Regarding the cross-
domain setting, we use the original MuJoCo environments
as the source domains and consider robots of more com-
plex morphologies (and hence with higher state and action

Algorithm 1 Cross-Domain Preference Consistency
(CDPC)
Require:

target domain trajectory training data buffer Dtar

1: for each episode k do
2: // Training
3: τi, τj ∼ Dtar

4: Query human for preference
5: Update state decoder ϕ−1

θ using Ltotal(θ) (Equation
5)

6: // Validation
7: for each timestep t = 1..T do
8: st ← current state in target domain environment
9: Select optimal action at using Algo. 2

10: Take a step with at in the environment
11: end for
12: end for

dimensionalities) as the target domains, The detailed de-
scription about the source domain and target domain can
be found in Table 4 and Figure 9 in Appendix C.

• Robosuite. We set the source domain and target domain
as two structurally different robot arms, namely Panda
and IIWA, which have distinct state-action representa-
tions. We let the two types of robot arms perform the
same set of tasks, including Lift, Door, and Assembly.
The detailed description of the source domain and target
domain can be found in Table 5 and Figure 10. All of the
detailed information about the environments is provided
in Appendix C.

Benchmark Methods. We compare CDPC with multi-
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Algorithm 2 Cross-Domain Trajectory Optimization
(CDTO)
Require:

state st, state decoder ϕ−1

Ensure:
action at

1: Initialize D(t) ← ∅
2: Generate synthetic trajectories τ1:m using policy net-

work πι(s) and dynamic model Fγ(s, a)
3: D(t) ← D(t) ∪ {τ1, τ2, ..., τm}
4: Decode τ1:m using state decoder ϕ−1

θ

5: Compute R1:m
s using source domain reward function

Rsrc

6: Sort τ1:m by R1:m
s in descending order

7: τ∗ ← D(t)[0]
8: a∗ ← first action of τ∗

9: return a∗

ple benchmark algorithms, including: (i) SACT : Train-
ing an SAC agent directly in the target domain using the
true environmental rewards; (ii) SACR: Learning a reward
model using the PbRL method as in (1) and then training
an SAC agent in the target domain using the learned re-
ward model; (iii) Dynamics Cycle-Consistency (DCC):
DCC is an unsupervised CDRL method that learns state-
action correspondence by cycle consistency in dynamics
and reconstruction. (iv) Cross-Morphology Domain policy
adaptation (CMD): CMD is a more recent CDRL method
proposed by (Gui et al., 2023) specifically for transfer in
cross-morphology problems.

Dataset. As described in the problem formulation of CD-
PbRL, a target-domain datasetDtar is provided to the learner.
To implement this, we follow the data collection method
of D4RL (Fu et al., 2020). Specifically, we mix the expert
demonstrations (by an expert policy learned under SAC
(Haarnoja et al., 2018)) and sub-optimal data generated
by unrolling a uniform-at-random policy. For a fair com-
parison, this dataset is shared by all the algorithms in the
experiments. The comparison of experiments with varying
mixing proportions is included in our ablation study.

5.2. Results and Discussions

Q: Does CDPC achieve effective cross-domain transfer?
The results of final total rewards are shown in Figure 4,
indicating that CDPC converges faster and performs better
than the baselines. Table 1 shows the results for the target
environments. Notably, CDPC can achieve higher total
rewards than all the benchmark methods, even than SAC
with true reward signals.

Q: Does CDPC achieve data-efficient cross-domain trans-
fer in RL? As shown in Figure 4, compared to the other

methods, CDPC already performs better during the initial
training phase because it well utilizes the source-domain
knowledge. CDPC achieves a good total return with only a
small number of training iterations, addressing the impor-
tant data inefficiency issue in RL. The reason why DCC
and CMD perform relatively poorly is that they suffer from
the identifiability issue as they only focus on learning the
state-action correspondence between two domains. SACR,
on the other hand, needs to first learn a reward model, and if
the reward model is inaccurate, it greatly impacts the results.
SACT converges more slowly as it does not involve any
knowledge transfer from the source domain.

Q: Does CDPC learn a state decoder that can effectively
achieve cross-domain preference consistency? We pro-
vide an ablation study and investigate the significance of
the preference consistency loss. The results showed that the
preference consistency loss has a highly significant effect.
Without using Lpref(θ), the decoder encounters identifiabil-
ity issues, making it unable to decode good trajectories into
corresponding source trajectories. Consequently, it also be-
comes unable to utilize the MPC module to select suitable
actions. The comparison results are shown in Figure 5 and
Table 3. We also provide a Reacher example for visualiza-
tion (with the link provided in Appendix D). In the video,
we can see that the decoder with preference consistency
loss can maintain preference consistency across domains.
In contrast, the decoder without preference consistency loss
cannot achieve such consistency.

Moreover, we also compare the state decoders learned by
CDPC, DCC, and CMD in terms of their capabilities to
maintain preference consistency across domains. The re-
sults, as shown in Figure 6, indicate that the CDPC decoder
is significantly better in achieving preference consistency.

Q: Does the quality of the target-domain data have a
significant impact on CDPC? Recall that CDPC learns
from a target-domain Dtar with mixed samples collected
by an expert policy and a uniform-at-random policy. Let
α ∈ [0, 1] denote the mixing rate of expert data. We evaluate
CDPC with four choices of mixture proportions and observe
that CDPC is not very sensitive to the data quality. The
results are shown in Figure 7 and Table 2. Even without
any expert data, the performance of CDPC remains very
competitive compared to the baselines.

6. Conclusion
We study a new cross-domain RL problem with preference
feedback and propose a generic CDPC framework that en-
forces preference alignment between the source and tar-
get domains. Based on this concept, we propose a CDPC
algorithm that combines a state decoder learned by pref-
erence consistency loss for training and a cross-domain

7
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Table 1. Final total rewards of CDPC and the benchmark methods.
Tasks SACT SACR DCC CMD CDPC

Reacher-3joints -8.3±1.1 -17.2±2.4 -11.2±1.5 -12.9±1.6 -5.7±0.6
HalfCheetah-3legs 3866.5±362.3 -3171.3±44214.7 3479.5±599.5 646.9±129.9 4716.4±588.9

Walker-head 505.2±158.5 -207.1±82.3 911.4±49.6 961.9±8.8 1111.8±162.7
IIWA-Lift 212.2±33.4 31.5±21.2 58.4±22.8 21.9±5.4 240.6±34.9

IIWA-Door 448.1±29.0 20.6±12.8 54.7±24.6 39.7±9.1 465.8±33.2
IIWA-Assembly 55.0±14.8 4.4±3.3 9.1±7.2 5.6±1.6 56.5±3.1

Figure 4. Learning curves of CDPC and the benchmark methods.

(a) Reacher-3joints (b) IIWA-Lift

Figure 5. Ablation study: Learning curves of CDPC with and with-
out the preference consistency loss.

(a) Reacher-3joints (b) HalfCheetah-3legs

Figure 6. A comparison of the preference accuracy of the state
decoders learned by CDPC, DCC, and CMD.
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Table 2. Total final rewards of CDPC under different mixing rates of expert data α.

Tasks α = 0.8 α = 0.5 α = 0.2 α = 0.0

Reacher-3joints -5.77±0.69 -6.43±1.04 -7.93±1.30 -13.17±1.45
IIWA-Lift 240.67±34.92 160.09±36.17 170.45±41.49 110.22±21.52

Table 3. Ablation study: Final total rewards of CDPC with and
without the preference consistency loss.

Tasks w/ pref loss w/o pref loss

Reacher-3joints -5.77±0.59 -12.02±0.83
IIWA-Lift 240.67±34.92 124.27±10.31

(a) Reacher-3joints (b) IIWA-Lift

Figure 7. Learning curves of CDPC under different mixing rates
of expert data α.

MPC method for inference. Through extensive experiments
on various robotic tasks, we confirm that CDPC indeed
serves as a promising solution to achieving effective and
data-efficient cross-domain transfer across domains.

Acknowledgements
This material is based upon work partially supported by
the National Science and Technology Council (NSTC), Tai-
wan under Contract No. 112-2628-E-A49-023 and Contract
No. 112-2634-F-A49-001-MBK, also partially supported
by the NVIDIA Taiwan R&D Center, and also supported
by the Higher Education Sprout Project of the National
Yang Ming Chiao Tung University and Ministry of Educa-
tion (MOE), Taiwan. We also thank the National Center
for High-performance Computing (NCHC) for providing
computational and storage resources.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Akrour, R., Schoenauer, M., and Sebag, M. Preference-

based policy learning. In Machine Learning and Knowl-
edge Discovery in Databases: European Conference,
ECML PKDD 2011, Athens, Greece, September 5-9,
2011. Proceedings, Part I 11, pp. 12–27. Springer, 2011.

Akrour, R., Schoenauer, M., and Sebag, M. April: Active
preference learning-based reinforcement learning. In Ma-
chine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2012, Bristol, UK,
September 24-28, 2012. Proceedings, Part II 23, pp. 116–
131. Springer, 2012.

Ammar, H. B. and Taylor, M. E. Reinforcement learning
transfer via common subspaces. In Adaptive and Learn-
ing Agents: International Workshop, ALA 2011, Held
at AAMAS 2011, Taipei, Taiwan, May 2, 2011, Revised
Selected Papers, pp. 21–36. Springer, 2012.

Ammar, H. B., Eaton, E., Luna, J. M., and Ruvolo, P. Au-
tonomous Cross-Domain Knowledge Transfer in Lifelong
Policy Gradient Reinforcement Learning.

Ammar, H. B., Eaton, E., Ruvolo, P., and Taylor, M. Un-
supervised cross-domain transfer in policy gradient rein-
forcement learning via manifold alignment. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 29, 2015.

Botev, Z. I., Kroese, D. P., Rubinstein, R. Y., and L’Ecuyer, P.
The cross-entropy method for optimization. In Handbook
of statistics, volume 31, pp. 35–59. Elsevier, 2013.

Bradley, R. A. and Terry, M. E. Rank analysis of incomplete
block designs: I. The method of paired comparisons.
Biometrika, 39(3/4):324–345, 1952.
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Appendix
A. Identifiability Issue

Here, we explain the detailed steps of the gridworld example in Figure 1.

Given : one target domain trajectory τ , two state decoder ϕ−1
α and ϕ−1

β , one well-trained source domain policy πsrc, source
domain reward function Rsrc (defined as follows: reaching the endpoint (2, 2) yields a reward of +1, while all other states
yield a reward of +0.) Assume discount factor γ equals to 1.

For ϕ−1
α , the process of decoding can be described as follows:

1. ϕ−1
α (00, 00)⇒ (0, 0), πsrc(0, 0) =→, go to (0, 1), reward = +0

2. ϕ−1
α (00, 01)⇒ (0, 1), πsrc(0, 1) =→, go to (0, 2), reward = +0

3. ϕ−1
α (00, 10)⇒ (0, 2), πsrc(0, 2) =↓, go to (1, 2), reward = +0

4. ϕ−1
α (01, 10)⇒ (1, 2), πsrc(1, 2) =↓, go to (2, 2), reward = +1

5. ϕ−1
α (10, 10)⇒ (2, 2), total return = 1

For ϕ−1
β , the process of decoding can be described as follows:

1. ϕ−1
β (00, 00)⇒ (0, 0), πsrc(0, 0) =↓, go to (1, 0), reward = +0

2. ϕ−1
β (00, 01)⇒ (1, 0), πsrc(1, 0) =→, go to (1, 1), reward = +0

3. ϕ−1
β (00, 10)⇒ (1, 1), πsrc(1, 1) =↓, go to (2, 1), reward = +0

4. ϕ−1
β (01, 10)⇒ (2, 1), πsrc(2, 1) =→, go to (2, 2), reward = +1

5. ϕ−1
β (10, 10)⇒ (2, 2), total return = 1

However, we cannot determine whether τ ′α or τ ′β is better, even after looking at the reward information; it is still not easy to
distinguish between them. Without a suitable mechanism for choosing between ϕ−1

α or ϕ−1
β , an identifiability issue may

arise.

B. Discussion: A Naive CD-PbRL Approach With an Action Encoder

The most naive approach to addressing inter-task mapping problems is to train mapping functions for both state and action. A
simple illustration and explanation are provided in Figure 8. Initially, we employed the concept of preference consistency to
train an autoencoder for both state and action. However, the results were highly unstable, and since there was no information
available regarding the target domain’s reward, we needed to additionally train a reward model in the target domain to ensure
both domains had preference information to maintain bidirectional mapping. A particularly tricky aspect is that if the reward
model is not well-trained easily, the preference labels provided by the reward model will be incorrect, which will lead to
poor performance of the action encoder. We also included the training results of this naive method in Figure 8.

Finally, we cleverly combined the preference consistency state decoder with MPC, which only required finding a decoder
that could ensure consistent preferences, guaranteeing the effectiveness of the MPC approach.

C. Detailed Configurations of the Environments

The detailed descriptions of the environments of our experiments are as follows:

• Reacher: MuJoCo Reacher is an environment commonly used in reinforcement learning research. In this environment,
an agent, typically a robotic arm, must learn to control its movements to reach a target location. The agent receives
observations such as position and velocity of its joints, and its goal is to learn a policy that enables it to efficiently
navigate its arm to the target.

13



Cross-Domain Policy Adaptation for RL via Preference Consistency

(a) Naive method (b) Total return of naive method

Figure 8. Naive method: (a) (a.1)First, the target state is transformed into the corresponding source state through the decoder. (a.2)Second,
Using the known source domain policy, an action is selected in the source domain. (a.3)Finally, the action encoder transforms this action
into the corresponding target action to complete one step. This process is repeated until termination. (b) Performance of naive method is
poor and unstable.

(a) Two joints Reacher (b) Two legs HalfCheetah (c) Without head Walker

(d) Three joints Reacher (e) Three legs HalfCheetah (f) With head Walker

Figure 9. Agent morphologies of source domain and target domain in MuJoCo

• HalfCheetah: MuJoCo HalfCheetah is a simulated environment frequently utilized in reinforcement learning research.
In this environment, an agent, typically a virtual half-cheetah, learns to navigate and control its movements in a
physics-based simulation. The primary objective for the agent is to achieve efficient locomotion while adhering to
physical constraints. The HalfCheetah environment offers a continuous control task, where the agent must learn to
balance speed and stability to achieve optimal performance.

• Walker: MuJoCo Walker is a simulated environment frequently utilized in reinforcement learning research. In this
environment, an agent, typically a virtual bipedal walker, learns to navigate and control its movements in a physics-
based simulation. The primary objective for the agent is to achieve efficient and stable bipedal locomotion while
adhering to physical constraints. The Walker environment offers a continuous control task, where the agent must learn
to balance, walk, and sometimes recover from disturbances to achieve optimal performance.
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Table 4. Differences between source and target domain in MuJoCo
Reacher HalfCheetah Walker

Source
Domain

state dim 11 17 17
action dim 2 6 6

Target
Domain

state dim 12 23 19
action dim 3 9 7

(a) Panda Lift (b) Panda Door (c) Panda Assembly

(d) IIWA Lift (e) IIWA Door (f) IIWA Assembly

Figure 10. Agent morphologies of source domain and target domain in Robosuite

• Panda: RoboSuite Panda is a versatile robotic platform featuring a highly dexterous Panda robot arm. It’s designed for
research and development in robotics, offering flexibility for various tasks like manipulation and assembly. With its
user-friendly interface and comprehensive software framework, it fosters innovation and collaboration in both academic
and industrial settings. Our experimental tasks include Block Lifting, Door Opening, and Nut Assembly Round.

• IIWA: RoboSuite IIWA presents an advanced robotic platform centered around the highly sensitive and versatile IIWA
robotic arm. Tailored for research and development, it excels in precision tasks like assembly and pick-and-place
operations. Its intuitive interface and robust software framework support experimentation with cutting-edge robotics
algorithms. Whether in academia or industry, RoboSuite IIWA empowers users to explore the forefront of robotic
technology.

D. Video

The link to the video is https://imgur.com/a/cdpc-decoder-visualization-KvzLOqA. A small note we
must clarify is that you might be curious about why the target point in the decoded trajectory keeps moving while the
robotic arm doesn’t move much. This is because our decoder takes the entire state as input, and the target point position is
included in the state. Practically, it’s challenging to ensure that the decoded target point position remains the same each
time. However, in the Reacher environment, a trajectory can be considered good if the total distance between the fingertip
position and the target point position is minimized throughout the episode. The decoder ensures that the decoded trajectory
maintains preference consistency, and we can leverage this characteristic with MPC to select the optimal actions.
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Table 5. Differences between source and target domain in Robosuite
Lift Door NutAssemblyRound

Source
Domain

state dim 42 46 46
action dim 7 7 7

Target
Domain

state dim 50 54 54
action dim 7 7 7

E. Experimental Setting

• Hyperparameter
We train source domain policy using SAC for 1e6 episodes, 128 for batch size, 3e-4 for Q network, policy and alpha
learning rate. Target domain expert policy using SAC for 1e5 episodes, 128 for batch size, 3e-4 for Q network, policy
and alpha learning rate. Decoder using LSTM for batch size 32, 1e-3 for learning rate run for 5 random seeds.

• Device
GeForce RTX 2080 Ti, GeForce RTX 3090, GeForce RTX 4060, GeForce RTX 4090.

• Codebase
For the implementation of SAC, we follow the github (https://github.com/quantumiracle/
Popular-RL-Algorithms/tree/master)
For the implementation of Robosuite policy, we follow the github (https://github.com/
ARISE-Initiative/robosuite-benchmark/tree/master)
For the implementation of DCC and CMD, we follow the github (https://github.com/sjtuzq/Cycle_
Dynamics/tree/master)
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