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Abstract

While various avenues of research have been001
explored for iterative pruning, little is known002
what effect pruning has on zero-shot test per-003
formance and its potential implications on the004
choice of pruning criteria. This pruning setup005
is particularly important for cross-lingual mod-006
els that implicitly learn alignment between007
language representations during pretraining,008
which if distorted via pruning, not only leads009
to poorer performance on language data used010
for retraining but also on zero-shot languages011
that are evaluated. In this work, we show012
that there is a clear performance discrepancy013
in magnitude-based pruning when comparing014
standard supervised learning to the zero-shot015
setting. From this finding, we propose two016
weight regularizers that aim to maximize the017
alignment between units of pruned and un-018
pruned networks to mitigate alignment distor-019
tion in pruned cross-lingual models for that020
performs well for both non zero-shot and zero-021
shot settings. We provide experimental results022
on cross-lingual tasks for the zero-shot setting023
using XLM-RoBERTaBase, where we also find024
that pruning has varying degrees of representa-025
tional degradation depending on the language026
corresponding to the zero-shot test set. This is027
also the first study that focuses on cross-lingual028
language model compression.029

1 Introduction030

Deep neural networks (DNNs) have grown increas-031

ingly large in the recent years. This has led to mod-032

els requiring more storage requirements, more re-033

sources for training and inference (e.g., GPUs and034

TPUs), longer compute times and larger carbon035

footprints. This is largely due to the rise of masked036

self-supervised learning (SSL) which trains DNNs037

(e.g., Transformers in NLP) on a large collection038

of samples that do not have task labels but instead039

use a subset of the inputs as labels. Given the afore-040

mentioned challenges, it has become more difficult041

for machine learning practitioners to use these SSL042

pretrained models for fine-tuning on downstream 043

tasks. While training tricks such as effective batch 044

sizes, gradient accumulation and dynamic learning 045

rate schedules (Howard and Ruder, 2018) have im- 046

proved the efficiency of fine-tuning DNNs under 047

resource constraints, it can still come at a cost, e.g. 048

gradient accumulation leads to less updates. 049

Pruning (LeCun et al., 1990; Reed, 1993) is a 050

type of model compression method (Buciluǎ et al., 051

2006) that aims to address these shortcomings 052

by zeroing out a subset of weights in the DNN, 053

while maintaining performance close to the original 054

model. Retraining is often carried out directly after 055

each pruning step to recover from pruning induced 056

performance drops. This process is referred to as 057

iterative pruning. Although, iterative pruning has 058

been extensively studied in the SSL setting (Has- 059

sibi and Stork, 1993; Han et al., 2015a; Ding et al., 060

2018) and the transfer learning setting (Molchanov 061

et al., 2016; Gordon et al., 2020; Sanh et al., 2020), 062

little is known about pruning DNNs in the zero- 063

shot setting1 where a model is required to make 064

predictions on a set of samples from classes that 065

are unobserved during training. One salient exam- 066

ple is pretrained cross-lingual language models 067

(XLMs) (Lample and Conneau, 2019; Conneau 068

et al., 2019) whereby the model is trained with a 069

masked/translation language model (MLM/TLM) 070

objective to predict tokens for a large set of dif- 071

ferent languages whereby the objective forces the 072

XLM model to learn similar representations for dif- 073

ferent languages. After cross-lingual pretraining, 074

the model is further fine-tuned to a downstream task 075

in one language (e.g., English) and then evaluated 076

on different languages in the zero-shot setting (e.g., 077

Spanish, French, Chinese, etc.). In this context, ap- 078

plying current pruning methods can damage the 079

1Here, zero or one-shot is the conventional usage of the
meaning (i.e., number of samples per class), not one-shot
pruning (2018) which is the number of pruning steps used
during retraining.
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XLM cross-lingual alignment that has been learned080

during pretraining. Ideally, we would aim to prune081

XLMs in such a way that avoids this alignment082

distortion which effects the zero-shot performance083

of pruned XLMs. Additionally, overfitting to the084

language used for fine-tuning becomes more of an085

issue due to the progressive reduction in parame-086

ters throughout iterative pruning as the remaining087

weights are relatively large, moving away from an088

“aligned” XLM state.089

This is an important problem to address as the090

application of large pretrained models in the zero091

shot-setting for both natural language and com-092

puter vision is of practical importance e.g., using093

XLMs in production for multiple languages by only094

requiring annotations in a single language for fine-095

tuning, making predictions on unseen classes at test096

time from pretrained visual representations (Bucher097

et al., 2017) using only semantic descriptions (i.e.,098

label similarity to known classes) or zero-shot099

predictions in pretrained multi-models such as100

CLIP (Radford et al., 2021).101

Hence, this work addresses the alignment distor-102

tion pruning problem by introducing AlignReg, a103

class of weight regularizers for magnitude-based104

pruning that force pruned models to have parame-105

ters that point in a similar direction or have a similar106

distribution to the parameters of the original pre-107

trained network. To our knowledge, this is the first108

study on how iteratively pruned models perform in109

the zero-shot setting and how the solution differs110

from solutions found in the non-zero shot setting.111

We believe our findings have a strong practical im-112

plication as well-established pruning criteria may113

not be suitable given the observed discrepancy be-114

tween zero-shot performance and the typically re-115

ported non-zero shot performance. Moreover, our116

proposed weight regularizer improves overall prun-117

ing generalization in zero-shot cross-lingual trans-118

fer. Below, we summarize our contributions.119

• The first analysis of pruning cross-lingual120

models, how this effects zero-shot cross-121

lingual transfer and performance differences122

to pruning in the SSL setup.123

• A weight regularizer that mitigates alignment124

distortion by minimizing the layer-wise Frobe-125

nius norm or unit similarity between the126

pruned model and unpruned model, avoiding127

overfitting to single language task fine-tuning.128

• A post-analysis of weight distributions after129

pruning and how they differ across module 130

types in Transformers. 131

2 Related Work 132

Below we describe regularization-based prun- 133

ing, other non-magnitude based pruning and how 134

masked language modeling (MLM) implicitly 135

learns to align cross-lingual representations. 136

Regularization-based pruning. Pruning can be 137

achieved by using a weight regularizer that encour- 138

ages network sparsity. Three well-established regu- 139

larizers are L0 (Louizos et al., 2017), L1 regulariza- 140

tion (Liu et al., 2017; Ye et al., 2018) and the com- 141

monly used L2 regularization for weight sparsity 142

(Han et al., 2015b,a). Wang et al. have proposed an 143

L2 regularizer that increases in influence through- 144

out retraining and shows the increasing regular- 145

ization improves pruning performance. For struc- 146

tured pruning where whole blocks of weights are 147

removed, Group-wise Brain Damage (Lebedev and 148

Lempitsky, 2016) and SSL (Wen et al., 2016) pro- 149

pose to use Group LASSO (Yuan and Lin, 2006) to 150

learn structured solutions. 151

Importance-based pruning. Magnitude-based 152

pruning (MBP) relies on the assumption that 153

weight or gradient magnitudes have correlation 154

with its importance to the overall output of the net- 155

work. Mozer and Smolensky instead use a learnable 156

gating mechanism that approximates layer impor- 157

tance, finding that weight magnitudes reflect impor- 158

tance statistics. To measure weight importance as 159

the difference in loss between pruned and unpruned 160

network, LeCun et al. approximate this difference 161

with a Taylor series up to the second order. This 162

involves the product of the gradient and weight 163

magnitude in the 1st term and an approximation 164

of the Hessian and the square of the weight mag- 165

nitude for the second term. However, computing 166

the Hessian and even its approximations (LeCun 167

et al., 1990; Hassibi and Stork, 1993; Dong et al., 168

2017; Wang et al., 2019; Singh and Alistarh, 2020) 169

can significantly slow down retraining. In our work, 170

we avoid the requirement of computing the Hes- 171

sian or approximations thereof, as it is not scalable 172

for models such as XLM-R (Conneau et al., 2019). 173

Park et al. have extended MBP to block approxima- 174

tions to avoid pruning lowest weight magnitudes 175

that may be connected to weights in adjacent lay- 176

ers that have high weight magnitude. Lee et al. 177

have provided a method to automatically choose 178

the sparsity of layers by using the rescaled version 179
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of weight magnitude to incorporates the model-180

level distortion incurred by pruning.181

Implicit Alignment in Pretrained MLMs In182

context of multi-task learning, Chen et al. (2020)183

minimize the mean squared error between pre-184

trained weights and weights being learned for a185

set of different source tasks to avoid catastrophic186

forgetting in the continual learning setting. Wu187

et al. (2019) have found that multilingual MLM (i.e188

training with an MLM objective with concatenated189

text for multiple languages) naturally leads to mod-190

els with strong cross-lingual transfer capabilities.191

Additionally, they find that this is also found for192

monolingual models that do not share vocabulary193

across monolingual corpora and the only require-194

ment is that weight sharing is used in the top layers195

of the multi-lingual encoder. In the context of our196

work, we want to bias our fine-tuned and iteratively197

pruned model to have similar geometric proper-198

ties and symmetries to these pretrained MLMs to199

preserve zero-shot cross-lingual transfer.200

3 Methodology201

In this section, we describe how our proposed202

AlignReg weight regularizers can improve prun-203

ing performance in both supervised learning and204

zero-shot pruning settings. We focus on two regu-205

larizers, namely, a neuron correlation-based reg-206

ularizer (cosine-MBP) and Frobenius layer-norm207

regularizer (frobenius-MBP).208

Let D := {Xi, yi}Di=1 where each Xi of D209

training samples consists of a sequence of vec-210

tors Xi := (x1, . . . ,xn) and xi ∈ Rd (e.g.,211

d = 512). For structured prediction (e.g., NER212

and POS), yi ∈ Rn×c and for single and pair-213

wise sentence classification, yi ∈ Rc where c is214

the number of classes. Let θ = (θ1, . . . , θL) be215

the parameters of a pretrained network f with L216

layers, where θl refers to the parameters, includ-217

ing weight matrix Wl and bias bl, at layer l. Let218

fθ̃ be a network with parameters θ̃ consisting of219

weights W̃l ∈ RNl−1×Nl and bias b̃l ∈ RNl where220

Nl is the number of units in the l-th layer. Here,221

W̃l := WlMl where M is the pruned mask. For222

MBP (Karnin, 1990) we remove weights of Wl,223

∀l ∈ L with the smallest absolute weight mag-224

nitude until a specified percentage p of weights225

are removed. Note that this is a layer-wise process226

and requires the pruned weights to be masked with227

Ml which has 0 entries corresponding to weights228

to be pruned and 1 entries for unpruned weights229

Wl. Global MBP can also be used whereby the 230

weights {Wl}Ll=1 are first vectorized and concate- 231

nated prior to choosing p lowest weight magnitudes. 232

Unlike layer-wise MBP, the percentage of weights 233

removed in each layer can vary for global-MBP. 234

Typically, weight regularization is used with MBP 235

to encourage weight sparsity. Thus the objective 236

for iterative pruning pruning can be expressed as, 237

Lθ := Ez

[ 1

D

D∑
i=1

ℓce
(
fθ̃(Xi),yi

)
+ λ||θ̃||0

]
(1) 238

where λ controls the influence of the weight 239

magnitude regularization. We now describe our 240

proposed AlignReg. 241

3.1 AlignReg - Pruning-Aware Regularization 242

AlignReg can be used to align weights unit-wise or 243

layer-wise between unpruned and pruned networks. 244

We initially discuss the cosine-MBP regularizer. 245

cosine-MBP aims to preserve the inherent cross- 246

lingual alignment, during iterative pruning, by min- 247

imizing the angle between parameter vectors of the 248

same unit in the pruned and unpruned network. 249

The intuition is that cross-lingual alignment re- 250

lies more on parameter vector direction than vec- 251

tor magnitudes. Moreover, as the network is be- 252

ing pruned, the weights will consequently change 253

weight magnitude to account for the information 254

loss. To apply AlignReg to linear layers within 255

Transformers, we compute the pairwise cosine sim- 256

ilarity between pairs of pruned weights W̃l ⊂ f̃ 257

and unpruned weights W ⊂ f for all l-th layers. 258

For Wl ∈ RNl−1×Nl of the l-th layer, the average 259

weight correlation is 260

ρ(W̃l,Wl) =
1

Nl

Nl∑
i=1

|W⊤
liW̃li|

||Wli||2||W̃li||2
(2) 261

where Wli is i-th column of the matrix corre- 262

sponding to the i-th unit of the l-th layer. Intu- 263

itively, ρ(Wl,W̃l) is the average cosine similarity 264

between weight vectors of the same unit at the l-th 265

layer of the pruned and unpruned network. Adding 266

AlignReg to the objective results in Equation (3), 267

Lθ := ℓce
(
fθ̃(X),y

)
+

λ

L

L∑
l

ρ
(
W̃l,Wl

)
(3) 268

where λ ∈ [0,∞) controls the importance of 269

AlignReg relative to the main cross-entropy loss 270

ℓce(·, ·). The gradient of the loss w.r.t to θ is then 271
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expressed as equation (4),272

∇θLθ := ∇θ̃ℓce(fθ̃(X),y) +
λ

L

L∑
l

∂ρ
(
W̃l,Wl

)
∂W̃l

(4)273

where ∂ρ(W̃l,Wl)

∂W̃l
is a function of the ‘2-norm of274

the matrices in Wl. For the element Wl,(i,j) of i-th275

row and j-th column in Wl, we have276

∂ρ(W̃l,Wl)

∂W̃l,(i,j)

=
1

Nl − 1

Nl∑
j=1

(
sign(W⊤

l,(,j)W̃l,(,j))

[ W̃l,(i,j)

||Wl,(,j)||2||W̃l,(,j)||2
-

Wl,(i,j)W⊤
l,(,j)W̃l,(,j)

||Wl,(,j)||32||W̃l,(,j)||2

]) (5)277

where Wl,(,j) and W̃l,(,j) are j-th column in Wl278

and W̃l, respectively. Thus, this regularization fa-279

vors solutions with high cosine similarity between280

units of pruned and unpruned networks. We also281

consider a layer-wise ρ(W,W̃) that relaxes the282

unit-level alignment to whole layers. This is par-283

tially motivated due to the fact neural networks284

can exhibit similar output activation behavior even285

when neuron weights have been permuted within286

the layer (Brea et al., 2019). To perform this we287

simply apply Equation (2) with vectorized weights288

ρ(vec(W̃l), vec(Wl)) and the subsequent partial289

derivatives in Equations (4) and (5) are applied for290

updating W̃l. In our experiments we did not see a291

significant difference using vectorized weights and292

thus use unit-wise cosine similarity.293

Relaxing Unit-Wise AlignReg To A Layer-Wise294

Frobenius Distortion Formulation Thus far we295

have described the application of cosine similarity296

as a measure of similarity between unpruned and297

pruned weights of the same units. However, this298

may be a strict constraint, particularly at high com-299

pression rates where the remaining weights for a300

unit are forced to have higher norms to allow ze-301

roed weights. Hence, an alternative measure is the302

layer-wise Frobenius norm (Frobenius-MBP) reg-303

ularizer based on the difference between weights304

||W − W̃||F . MBP itself can be viewed in terms305

of minimizing the Frobenius distortion (Han et al.,306

2015a; Dong et al., 2017) as minM:||M||0=p ||W −307

M⊙W||F where ⊙ is the Hadamard product, || · ||0308

denotes the entrywise 0-norm, and p is a constraint309

of the number of weights to remove as a percent-310

age of the total number of weights for that layer.311

In the zero-shot setting, we need to account for312

out-of-distribution Frobenius distortions, such as313

alignment distortion in XLM due to pruning and314

overfitting to a single language. Taking the view 315

of Frobenius distortion minimization when using 316

our weight regularizer, we reformulate it to include 317

Frobenius-MBP as, 318

min
M:||M||0=p

[
||W-M ⊙ W||2F + λ||WT -M ⊙ W||2F

]
(6) 319

where WT are the weights from the pretrained 320

model prior to fine-tuning that is cross-lingually 321

aligned from the masked language modeling 322

(MLM) pretraining objective. In our experiments, 323

λ = 5× 10−4. 324

frobenius-MBP Implicitly Aligns Eigenvectors 325

To explicitly show that the Frobenius distortion 326

minimization aligns fine-pruned and pretrained pa- 327

rameter vectors we expect their eigenvectors to 328

also be close. We can use the Eckart-Young-Mirsky 329

Theorem (Golub et al., 1987) to express Frobenius 330

distortion minimization as Equation 7, 331

||WT −M⊙W||2F = ||Σ−U⊤M⊙WV||2F (7) 332

where the unitary invariance under the 2-norm that 333

U,V vanishes and singular value matrix is left to 334

approximate WT , hence the inclusion of Σ. We 335

express X = UkΣ
12
k , Y = Σ12

k V⊤
k and XY = Ak. 336

Hence, we can further describe the minimization 337

as ||Σ − U⊤WT
k V||2F and since X, Y are unitary, 338

||Σ− Σk||2F . 339

3.2 Connections to Knowledge Distillation 340

Knowledge distillation (KD) works by using out- 341

puts of the last layer (Hinton et al., 2015) or in- 342

termediate layers (Romero et al., 2014) as addi- 343

tional soft targets. AlignReg regularizers instead 344

operate directly on minimizing a divergence or dis- 345

tance between weight tensors as opposed to their 346

corresponding output activations. Hence, AlignReg 347

does not necessarily need training data as it op- 348

erates directly on aligning weight tensors. Since 349

the networks that are used for alignment are ar- 350

chitecturally identical, we can show that maximiz- 351

ing weight similarity is equivalent to minimizing 352

distance between their corresponding output ac- 353

tivations (Romero et al., 2014) when the norm 354

of input Z is smaller than the output range of σ. 355

For our experiments, we use XLM-RoBERTaBase 356

which contain Gaussian Linear Error Unit (GeLU) 357

activation functions, which can be formulated as 358

σ(Zli) := Zli/2(1.0 + erf(Zli/
√
2.0)) where erf 359

is an error function, σ(·) is a monotonic activation 360

function and Zli is the input vector. The GELU 361
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Figure 1: English and Zero-Shot Test Accuracy on News Classification.

activation has the properties that for Zli > 0 it is362

equivalent to the ReLU activation and Zli ≤ 0 it363

tends to -1. For Zli > 0, ||Zli||2 ≤ 1 and a mono-364

tonic piecewise linear function σ(·), the inequal-365

ity ||Wli-Mli ⊙ Wli||F ≤ ||σ(ZlWli)-σ(ZliMli ⊙366

Wli)||F holds. Layer normalization leads to fea-367

tures having zero mean and unit variance and hence368

||Zli||2 ≤ 1. Hence, minimizing the Frobenius dis-369

tortion of pruned and unpruned weights is equiva-370

lent to minimizing the mean squared error (MSE)371

between output activations, as is the knowledge372

distillation method used for FitNets (Romero et al.,373

2014). In contrast, KD using FitNets encourages374

the student network to have activation outputs that375

are the same as the teacher with permutation invari-376

ance on the units incoming weights, not restricting377

the weights to be similar. Unlike KD, this mini-378

mization can be peformance without any data.379

4 Experimental Setup380

Datasets. We perform experiments on multilin-381

gual tasks from the XGLUE benchmark (Liang382

et al., 2020) with pretrained XLMRBase. This cov-383

ers pairwise classification (QAM, QADSM, WPR,384

XNLI), sentence classification (NC) and structured385

prediction (NER and POS) tasks.386

Iterative Pruning Details. Texts are tokenized387

using the SentencePiece BPE tokenizer (Sennrich388

et al., 2015) with a vocabulary of 250K tokens. For389

structured prediction tasks (POS and NER), a sin-390

gle layer feed-forward (SLFF) token-level classifier391

is used on top of XLM-RBase and for sentence-level392

task a SLFF sentence-level classifier is used. The393

batch size is 32, the learning rate is 5 · 10−6 and394

the maximum sequence length is set to 256 for all395

tasks, except for POS in which we use a learning396

rate of 2 · 10−5 and max sequence length of 128.397

We carry out a pruning step after each 15 training398

epochs, uniformly pruning 10% of the parameters399

at each pruning step. We omit the pruning of embed- 400

ding layers, layer normalization parameters and the 401

classification layer as they account for a relatively 402

small number of the total parameter count (< 1%) 403

and play an important role in XLM generalization. 404

Although prior work has suggested non-uniform 405

pruning schedules (e.g., cubic schedule (Zhu and 406

Gupta, 2017)), we did not see major differences to 407

uniform pruning in preliminary experiments. Each 408

task is trained with English data only and evalu- 409

ated on all available languages for that task. Hence, 410

we expect the percentage of achievable compres- 411

sion to be lower as performance in the zero-shot 412

cross-lingual setting to be more difficult than the 413

monolingual setting (e.g., GLUE tasks). 414

Pruning Baselines. Below lists our pruning base- 415

lines. Random Pruning (1997) - weights are 416

pruned uniformly at random across all layers to 417

a chosen fraction.Layer-wise Magnitude Prun- 418

ing (MBP) (Janowsky, 1989; Mozer and Smolen- 419

sky, 1989) - for each layer, weights with the low- 420

est absolute value (LAV) are pruned. Layer-wise 421

Gradient Magnitude Pruning (Sun et al., 2017) 422

- for each layer, prunes the weights with LAV of 423

the accumulated gradients evaluated on a batch 424

of inputs. Global Magnitude Pruning (Global- 425

MBP) (Karnin, 1990) - prunes weights with LAV 426

anywhere in the DNN. L0 norm MBP (Louizos 427

et al., 2017) - uses non-negative stochastic gates 428

that choose which weights are set to zero as a 429

smooth approximation to the non-differentiable 430

L0-norm. Lookahead pruning (LAP) (Park et al., 431

2020) - prunes paths that have smallest weight mag- 432

nitude across blocks of layers, unlike MBP which 433

treats layers independently. Layer-Adaptive Mag- 434

nitude Pruning (LAMP) (Lee et al., 2020) adap- 435

tively sets the pruning ratio of each layer. 436
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Figure 2: Zero-Shot Test F1 on Named Entity Recognition.
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Figure 3: Question Answer Matching Test Accuracy.
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Figure 4: Part of Speech Tagging Test Accuracy.

5 Empirical Results437

We now discuss results on the XGLUE tasks.438

News Classification (NC) Figure 1 shows the439

results on news classification where a category440

for news article is predicted and evaluated in 5441

languages and trained and iteratively pruned on442

English text. Firstly, we observe the trend in it-443

erative pruning performance degradation is some-444

what volatile. From preliminary experiments we445

found news classification to require only 3 epochs446

to converge for standard fine-tuning on XLM-447

RoBERTaBase. We find that this task is relatively448

“similar” to the pretraining task and therefore able449

to easier recover from pruning steps. Overall, both 450

Cosine-MBP and Frobenius-MBP consistently lead 451

to the best zero-shot test performance across both 452

pruning steps and languages. 453

Question Answer Matching (QAM) Figure 3 454

shows the test accuracy on English and the zero- 455

shot test accuracy on French and German for 456

Question-Answer Matching (QAM). This involves 457

predicting whether a question is answered correctly 458

or not given a question-answer pair. We find that 459

Frobenius-MBP and Cosine-MBP maintain higher 460

accuracy across multiple pruning steps, outperform- 461

ing baselines. More generally, we see there is close 462

to 2% drop in average test accuracy drop in French 463

and German when compared to testing on samples 464

from the same language used in training. 465

Named Entity Recognition (NER) The Named 466

Entity Recognition (NER) cross-lingual dataset is 467

made up of CoNLL-2002 NER and CoNLL-2003 468

NER (Sang and De Meulder, 2003), covering En- 469

glish, Dutch, German and Spanish with 4 named 470

entities. From Figure 2 we find that cross-lingual 471

transfer of pruned models is most difficult in Ger- 472

man and Dutch, which both come from the same 473

language family, sharing commonalities such as 474

word order and having similar vocabularies. The 475

primary reason for the difficulty in maintaining per- 476

formance in high compression rates for this NER 477

dataset is that there is only 15k training samples, be- 478

ing significantly lower than the remaining XGLUE 479

tasks (the majority contains 100k training samples). 480

Thus, not only is there less training data to recover 481

directly after each pruning step, but the pruning 482

step interval itself is shorter. In contrast, English 483

test performance is close to the original perfor- 484

mance up until 25% of remaining weights, unlike 485

the remaining languages. We find that gradient- 486

MBP eventually overtakes MBP approaches past 487
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Figure 5: Zero-Shot XNLI Results Per Language After Iteratively Fine-Pruning XLM-RoBERTaBase

20% remaining weights. However accuracy has re-488

duced too much at this compression level. We find489

that Cosine-MBP and Frobenius-MBP weight regu-490

larizers achieve the best performing pruned model491

performance above 20% remaining weights, with492

Lookahead pruning and L0 regularized MBP being493

competitive in zero-shot performance.494

Part of Speech Tagging (POS) The Part of495

Speech (PoS) tagging dataset consists of a sub-496

set of the Universal Dependencies treebank (Nivre497

et al., 2020) and covers 18 languages. In Figure 4,498

we see both Cosine-MBP and Frobenius-MBP tend499

to outperform baselines, although L0-based prun-500

ing (Louizos et al., 2017) has similar performance501

to Cosine-MBP for zero-shot accuracy. There is502

also a clear discrepancy between SSL accuracy503

(English) versus zero-shot accuracy (Average), the504

latter following closer to linear decay after 40-50%505

of weights remaining.506

Cross-Lingual Natural Language Inference507

(XNLI) Figure 5 shows the zero-shot cross-508

lingual transfer for various unstructured pruning509

methods. We find that both the accuracy on the510

English test (i.e SSL generalization) and the av-511

erage zero-shot test accuracy are consistently im-512

proved using Cosine-MBP and Frobenius-MBP,513

outperforming L0 pruning, Lookahead pruning514

and LAMP. We find that morphologically rich lan-515

guages such as Arabic, Swahili and Turkish de-516

grade in performance linearly once performance517

begins to drop after 60% of the remaining weights518

are pruned. This trend is roughly followed for all519

MBP-based pruning methods. Additionally, test ac- 520

curacy on English can be maintained within 10% 521

accuracy drop of the original test accuracy up to 522

20% of remaining weights for MBP, while Swahili 523

can only be within a 10% accuracy drop up to 55% 524

of the remaining weights. Hence, iterative pruning 525

in the zero-shot setting leads to faster performance 526

degradation for languages that are typologically or 527

etymologically further from the language used for 528

fine-tuning. 529

When comparing, English and the average zero- 530

shot test accuracy we see that the slope is steeper 531

after the inflection point2 for all pruning methods, 532

not to mention the greater than 10% accuracy drop 533

across pruning steps. 534

XGLUE Average Result Finally, in Table 1 we 535

show the overall and average task understanding 536

scores on the XGLUE benchmark for our proposed 537

AlignReg weight regularizer and the pruning base- 538

lines. We find that the use of AlignReg Cosine-MBP 539

and Frobenius-MBP better preserves cross-lingual 540

alignment during model pruning, thereby outper- 541

form other MBP baselines, including LAMP and 542

Lookahead pruning, based on improved zero-shot 543

cross-lingual performance. 544

Discussion From our experiments, we found that 545

layer-wise pruning tends to outperform global prun- 546

ing. This can be explained by the clear discrep- 547

ancy between weight norms of different layer types 548

within each self-attention block. Global pruning 549

2The point which the performance slope significantly steep-
ens and drops are relatively large to previous pruning steps.
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Prune Method XNLI NC NER PAWSX POS QAM QADSM WPR Avg.

No Pruning 73.48 80.10 82.60 89.24 80.34 68.56 68.06 73.32 76.96

Random 51.22 70.19 38.19 57.37 52.57 53.85 52.34 70.69 55.80
Global-Random 50.97 69.88 38.30 56.74 53.02 54.02 53.49 69.11 55.69
L0-MBP 64.75 78.98 56.22 72.09 71.38 59.31 53.35 71.70 65.97
L2-MBP 64.30 78.79 54.43 77.99 70.68 59.24 60.33 71.52 67.16
L2-Global-MBP 64.17 78.64 54.47 75.51 72.27 59.26 60.10 71.50 66.99
L2-Gradient-MBP 61.11 73.77 53.25 79.56 65.89 57.35 59.33 71.59 65.23
Lookahead 60.84 79.18 54.44 71.05 68.76 55.94 53.41 71.26 64.36
LAMP 58.04 63.64 51.92 66.05 67.43 55.36 52.42 71.09 60.74

Cosine-MBP 66.20 79.15 55.62 78.45 71.62 57.56 61.37 72.51 67.81
Frobenius-MBP 65.71 79.84 55.61 78.78 71.62 61.62 61.37 71.48 68.25†

Table 1: Overall XGLUE Score for Iterative Pruning of XLM-RBase @ 31% Remaining Weights.

Figure 6: Pruned Model Weight Norms Per Layer

chooses the majority of weights to prune from the550

layer type that has the smallest norm, leading to an551

information bottleneck, or layer collapse (Lee et al.,552

2018) for very high compression rates. This effect553

is due to layer normalization being applied after554

query, key and value (QKV) parameters, rescaling555

features such that weight magnitudes remain low.556

Hence, this motivates why we have focused on the557

application of AlignReg to layer-wise MBP. This558

is reflected in Figure 6 which shows the weight559

norm by layer type for each layer for MBP. We560

see that QKV weight values are distinctly higher561

than the remaining fully-connected layers (atten-562

tion output layer, intermediate position-wise feed-563

forward layer and the blocks output layer), with564

the exception that the output attention layer norm565

becomes higher between layer 3-8. Lastly, we note566

that for the majority of tasks, the rate of perfor-567

mance drop for zero-shot test performance occurs568

close to 30% of remaining weights. This is consis-569

tent for all pruning methods. Figure 7 visualizes570

the class separability via a t-SNE plot of two prin-571

cipal components of the last hidden representation572

corresponding to the [CLS] token of an iteratively573

Figure 7: Class Separability Between Class Represen-
tations At Each Iterative Pruning Step on PAWSX.

pruned XLM-RBase for PAWSX. Even from only 574

two principal components of a single token input, 575

we clearly see a change in class separability from 576

31% to 28% remaining weights, reflecting the lack 577

of linear separation. 578

6 Conclusion 579

In this paper, we analysed iterative pruning in the 580

zero-shot setting where a pretrained masked lan- 581

guage model uses self-supervised learning on text 582

from various languages but can only use a sin- 583

gle language for downstream task fine-tuning. We 584

find that some languages degrade in iterative prun- 585

ing performance faster than others for some tasks 586

(NER and XNLI) and propose a weight regularizer 587

that biases the iteratively pruned model towards 588

learning weight distributions close to the cross- 589

lingually aligned pretrained state. This improves 590

over well-established weight regularization meth- 591

ods for magnitude-based pruning in both the stan- 592

dard supervised learning setting and the zero-shot 593

setting. 594
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